
A Fortran 90 Tutorial
�

Zane Dodsony

Computer Science Department

University of New Mexico

June 27, 1994

Contents

1 Survey of the New Fortran Standard 3

1.1 New Source Form : 3

1.2 Array Processing : 3

1.3 Modules : 4

1.4 Derived Types and Generic Functions : : : : : : : : : : : : : : : 5

1.5 Pointers and Dynamic Data Structures : : : : : : : : : : : : : : : 6

1.6 Parameterized Data Types : 7

1.7 Numerical Inquiry and Manipulation Functions : : : : : : : : : : 8

2 Examples and Exercises 10

2.1 Getting Started : 10

2.2 Basic Fortran Programs : 10

2.3 Internal Subprograms : 12

2.4 Arrays : 12

2.5 Modules : 14

2.6 Interfaces and Generic Subprograms : : : : : : : : : : : : : : : : 16

2.7 Recursive Subprograms : 17

2.8 Dynamic Data Structures : 19

2.9 Optional and Keyword Arguments : : : : : : : : : : : : : : : : : 25

2.10 Achieving Portability : 29

3 Advanced Numerical Experiments 31

3.1 Interval Arithmetic : 31

3.2 Subtleties in Solving a Quadratic Equation : : : : : : : : : : : : 33

�This work partially supported by the Numerical Algorithms Group Ltd. and the National
Science Foundation (CDA-9017953).

ydzdod@cs.unm.edu

1

4 Complete Example Programs 36

4.1 Rational Arithmetic : 36

4.2 Linear Equation Solvers : 40

4.3 One-Dimensional Multigrid : 47

2

1 Survey of the New Fortran Standard

Fortran 90 has many new features that make it a modern and robust language

for numerical programming. In addition to providing many new language con-

structs, Fortran 90 contains Fortran 77 as a subset (except for four small in-

consistencies). Consequently, all Fortran 77 programs can be compiled and

should produce identical results. However, a few aspects of Fortran 77 have

been labeled as obsolete and may be removed from the next standard, allowing

a progression of the language without supporting all previously available fea-

tures. This survey section is meant to highlight most of the new features in

Fortran 90 and give some indication of their use. Examples and exercises begin

in section 2.

1.1 New Source Form

One of the most visible features of the new Fortran standard is its free source

form. Fortran statements may now appear anywhere on a source line, and

columns are no longer reserved. Line continuation has also been improved and

uses the `&' character at the end of source line to be continued. Trailing com-

ments may be used and begin with a `!' character and continue to the end of

the source line. The semicolon, `;', is used as a statement separator and allows

multiple statements to be placed on a single source line. This new source form

is illustrated in the following program segment.

tmp = x; x = y; y = tmp ! Swap x and y.

print *, 'The values of x and y are ', &

x, y

Blanks are now signi�cant and the underscore character is permissible in

an identi�er. The number of signi�cant characters in an identi�er name has

increased from 6 to 31. Fortran 77's �xed source form, line continuation, and

comment speci�cation is also acceptable in Fortran 90.

1.2 Array Processing

Array processing features are the most signi�cant of the language enhancements

o�ered by the new standard. Popular Fortran 77 extensions, such as whole array

operations, masked assignment, array sections, and vector subscripting that are

common in Cray Fortran and CM (Connection Machine) Fortran, are now part

of the Fortran 90 standard. These types of constructs are important for parallel

and vector computers.

Arithmetic and logical operations work elementally on arrays, so that, for

example, C = A + B calculates the sum of two matrices, element-by-element,

storing the result in C. The statement Z = (A > 0) creates a logical array

with elements whose entries are .true. where the elements of A are greater

3

than 0 and .false. elsewhere. Logical expressions of this kind may be used

in a masked assignment statement, performing the speci�ed assignment only

where the mask is true.

To accompany this new notational convenience, most of the intrinsic func- Intrinsic functions
are de�ned by the lan-
guage and are therefore
present in any standard-
conforming implementa-
tion.

tions act elementally on arrays, so that an expression such as log(A) applies

the scalar log function to each element in A (in an unspeci�ed order).

Arrays may now be dynamically allocated at run-time using pointers or

allocatable arrays.

program AllocatableMatrices

real, allocatable :: A(:, :)

integer n

print *, 'Enter an integer for the array dimension: '

read *, n

! Dynamically allocate an n x n matrix.

allocate(A(n, n))

call random_number(A) ! Fill A with [0,1) random reals.

! Masked assignment.

where (A /= 0.0)

A = 1.0 / A

elsewhere

A = -1.0

end where

print *, 'A = '

print *, A

end program AllocatableMatrices

Automatic arrays are also properly handled and are created on entry to a

subprogram and destroyed upon exit. Lack of this feature in Fortran 77 was

a severe limitation and often required that scratch variables be passed in the

argument list. Functions may also be array-valued, as can be seen from such

assignments as A = log(B).

1.3 Modules

Common blocks in Fortran 77 were the only portable means of achieving global

access of data throughout a collection of subprograms. This is unsafe, error-

prone, and encourages bad programming practices in general. Fortran 90 pro-

vides a new program unit, a module, that replaces the common block and also

provides many other features that allow modularization and data hiding, key

concepts in developing large, maintainable numerical code.

Modules consist of a set of declarations and module procedures that are Module procedures

are subprograms de�ned
within a module.

grouped under a single global name available for access in any other program

unit via the use statement. Interfaces to the contained module procedures are
An interface describes
a subprogram, its at-
tributes, and the at-
tributes of its argu-
ments, to the calling
program or subprogram.

explicit and permit compile time type-checking in all program units that use the

4

module. Visibility of items in a module may be restricted by using the private

attribute. The public attribute is also available. Those identi�ers not declared

private in a module implicitly have the public attribute.

module TypicalModule

private swap ! Make swap visible only within this module.

contains

subroutine order(x, y) ! Public by default.

integer, intent(inout) :: x, y

if (abs(x) < abs(y)) call swap(x, y)

end subroutine order

subroutine swap(x, y)

integer, intent(inout) :: x, y

integer tmp

tmp = x; x = y; y = tmp ! Swap x and y.

end subroutine swap

end module TypicalModule

program UseTypicalModule

use TypicalModule

! Declare and initialize x and y.

integer :: x = 10, y = 20

print *, x, y

call order(x, y)

print *, x, y

end program UseTypicalModule

1.4 Derived Types and Generic Functions

Derived or user-de�ned types, similar to records or structures in other languages,

are available in Fortran 90. Derived types are built from the intrinsic types or

other derived types and allow the creation of data types that behave as if they

were intrinsic types. Generic functions, another new feature in Fortran 90, Generic functions are
functions with the same
name which behave dif-
ferently based on the

types of the arguments
received. An example is

the `+' operator, which
operates on integers as
well as
oating point
numbers.

help to make the support for derived data types complete. A generic function

such as `+' may be extended to operate directly on a derived type, combining the

notational convenience and clarity of operators with the abstraction of derived

types. The module and program below illustrate the extension of the generic

operator `+', to operate on a derived type, interval.

module IntervalArithmetic

type interval

real a ! Left endpoint

real b ! Right endpoint

end type interval

5

interface operator (+)

module procedure addIntervals

end interface

contains

function addIntervals(first, second)

type(interval) addIntervals

type(interval), intent(in) :: first, second

! Numerically, the left and right endpoints of the interval

! sum should be rounded down and up, respectively, to

! ensure that numbers in the two intervals are also in the

! sum. This has been omitted to simplify the example.

addIntervals = interval(first%a + second%a, &

first%b + second%b)

end function addIntervals

end module IntervalArithmetic

program Intervals

use IntervalArithmetic

type(interval) :: x = interval(1.0, 2.0)

type(interval) :: y = interval(3.0, 4.0)

type(interval) z

z = x + y

print *, 'Interval sum: (', z%a, ',', z%b, ').'

end program Intervals

1.5 Pointers and Dynamic Data Structures

Fortran 90 contains 3 types of dynamic data: allocatable arrays, automatic data

objects, and pointers. Allocatable arrays were described brie
y in section 1.2

and apply only to arrays. Automatic data objects consist of those objects that

are created on entry to a subprogram and destroyed upon exit. Pointers may

be used with scalar or array quantities of any type and are used to construct

dynamic structures such as linked lists and trees.

The following program illustrates how a dynamic data structure can be de-

clared and manipulated.

program LinkedList

type node

real data

type(node), pointer :: next

end type node

type(node), pointer :: list, current

nullify(list) ! Initialize list to point to no target.

6

! Place two elements in the list.

allocate(list) ! Reserve space for first node.

call random_number(list%data) ! Initialize data portion.

allocate(list%next) ! Reserve space for second node.

call random_number(list%next%data) ! Initialize data portion.

nullify(list%next%next) ! Initialize next to point to no target.

! Output the list.

current => list ! Assign target of list to target of current.

do while (associated(current))

print *, current%data

current => current%next

end do

end program LinkedList

1.6 Parameterized Data Types

Portability of numerical code has long been di�cult, primarily due to di�erences

in the word sizes of the computers on which the code is run. Fortran 90 intro-

duces parameterized types, increasing portability of software from machine to

machine. This is done using kind values, constants associated with an intrinsic

type such as integer or real. Parameterization of kind values allows precision

changes by changing a single constant in the program. Several intrinsic func-

tions are provided to select kind values based on the range and precision desired

and inquire about a variable's precision characteristics in a portable way.

module Precision

! Define Q to be the kind number corresponding to at least 10

! decimal digits with a decimal exponent of at least 30.

integer, parameter :: Q = selected_real_kind(10, 30)

end module Precision

module Swapping

use Precision

contains

subroutine swap(x, y)

real(Q), intent(inout) :: x, y

real(Q) tmp

tmp = x; x = y; y = tmp

end subroutine swap

end module Swapping

program Portable

use Precision

use Swapping

! Declare and initialize a and b using constants with kind value

7

! given by Q in the Precision module.

real(Q) :: a = 1.0_Q, b = 2.0_Q

print *, a, b

call swap(a, b)

print *, a, b

end program Portable

1.7 Numerical Inquiry and Manipulation Functions

Fortran 90 introduces several intrinsic functions to inquire about machine de-

pendent characteristics of an integer or real. For example, the inquiry function,

huge, can be used to �nd the largest machine representable number for an in-

teger or real value. The integer model used by these inquiry functions is1

i = s

q�1X

k=0

dkr
k

where

i is the integer value

s is the sign (+1 or -1)

r is the radix (r > 1)

q is the number of digits (q > 0)

dkis the kth digit, 0 � dk < r.

The
oating-point model used by the inquiry functions is

x = sbe
pX

k=1

fkb
�k

where

x is the real value

s is the sign (+1 or -1)

b is the base (b > 1)

e is the exponent

p is the number of mantissa digits (p > 1)

fk is the kth digit, 0 � fk < b, f1 = 0) fk = 0 8 k.

Table 1 lists intrinsic functions that inquire about the numerical environment.

Table 2 lists intrinsic functions that manipulate the numerical characteristics

of variables in the real model. An important feature of all of these intrinsic

functions is that they are generic and may be used to obtain information about

any kind of integer or real supported by the Fortran 90 implementation.

1Information on the integer and
oating-point models, as well as the following tables is
taken from chapter 13 of [1].

8

Function Description

digits(x) q for an integer argument, p for a real argument

epsilon(x) b1�p for a real argument

huge(x) Largest in the integer or real model

minexponent(x) Minimum value of e in the real model

maxexponent(x) Maximum value of e in the real model

precision(x) Decimal precision (real or complex)

radix(x) The base b of the integer or real model

range(x) Decimal exponent range (real, complex, or integer)

tiny(x) Smallest positive value in the real model

Table 1: Numeric Inquiry Functions

Function Description

exponent(x) Value of e in the real model

fraction(x) Fractional part in the real model

nearest(x) Nearest processor number in a given direction

rrspacing(x) Reciprocal of relative spacing near argument

set exponent(x) Set the value of e to a speci�ed value

spacing(x) Model absolute spacing near the argument

Table 2: Numeric Manipulation Functions

9

2 Examples and Exercises

2.1 Getting Started

The Fortran 90 compiler is invoked, similar to any other compiler, by issuing

a command with the name of the compiler, such as f90 <prog>, at the shell

prompt. The NAG Fortran 90 compiler has several naming conventions that are

useful. If the �lename's extension ends with .f, it is assumed to be Fortran 77

source using its �xed source form. Using .f90 as the extension, it is assumed

that the source �le uses the free source form. These can be overridden using

compiler switches and options. See the manual page for the f90 command for

more details.

As a �rst attempt at using the Fortran 90 compiler, try the following exercise.

Exercise 2.1 Enter, compile, and run the Hello program given below. Call the

�le hello.f90. It can be compiled by issuing the command f90 hello at the

shell prompt. Note the use of Fortran 90's free source form.

program Hello

print *, 'Hello, world'

end program Hello

2.2 Basic Fortran Programs

Declarations of variables and parameters in Fortran 77 have been changed

slightly in the new standard to allow for more concise speci�cation of an iden-

ti�er's attributes. The Fortran 77 declaration,

integer N

parameter(N = 10)

now can be written more concisely as

integer, parameter :: N = 10

As shown in the above declaration, constants and variables alike may be

initialized at the time of declaration.2

Several new control constructs, many implemented as extensions to For-

tran 77, are now o�cially part of Fortran 90. These include do ... end

do, do while (condition) ... end do, and select case (case expr

) ... end case. The do while (condition) ... end do construct is

illustrated in next exercise. Note that a line number and the continue state-

ment are no longer necessary to mark the end of a do loop.

Fortran 90 introduces synonyms for several relational operators, making

them more natural and similar to relational operators in other languages. These

are summarized in Table 3. Either style is acceptable in Fortran 90 and the styles

2The double colon, `::', is necessary when more than one attribute is given for a variable,
or the variable is to be initialized.

10

Fortran 77 Fortran 90 Synonym

.lt. <

.le. <=

.eq. ==

.gt. >

.ge. >=

.ne. /=

Table 3: Fortran 90 Relational Operators

may be used interchangeably in either source form.

Non-advancing I/O is another new feature of Fortran 90 illustrated in the

next exercise. It permits several write statements to output to a single line,

something that was not possible in Fortran 77. The speci�cation of the format

for the output has also been improved, eliminating the need for line numbers

and a separate format statement.

Comments may be placed anywhere on the source line, preceded with a

`!' character. Trailing comments are also possible. All of these features are

illustrated in the following exercise.

Exercise 2.2 Write a Celsius-Fahrenheit conversion table using the following

program as a guide. Note that this program outputs a Fahrenheit-Celsius table.

program Fahrenheit_Celsius

! Output a table of Fahrenheit and equivalent Celsius temperatures

! from low to high in steps of step.

real, parameter :: low = 0.0

real, parameter :: high = 100.0

real, parameter :: step = 10.0

real f, c ! Fahrenheit and Celsius temperatures, respectively.

f = low

do while (f <= high)

write(*, fmt = "(F8.3)", advance = "no") f

c = 5.0 * (f - 32) / 9.0

write(*, fmt = "(F8.3)") c

f = f + step ! Advance the Fahrenheit temperature.

end do

end program Fahrenheit_Celsius

11

2.3 Internal Subprograms

In Fortran 77, all subprograms are external with the exception of statement

functions. Internal subprograms are now possible under Fortran 90 and achieve

an e�ect similar to Fortran 77's statement functions. They are visible only

within the containing program and have an explicit interface, guarding against

type mismatches in calls to the subprogram. Internal subprograms must be

separated from the main program by the contains statement. An example

illustrating an internal subprogram is given below.

program Triangle

real a, b, c

print *, 'Enter the lengths of the three sides of the triangle'

read *, a, b, c

print *, 'Triangle''s area: ', triangleArea(a, b, c)

contains

function triangleArea(a, b, c)

real triangleArea

real, intent(in) :: a, b, c

real theta

real height

theta = acos((a**2 + b**2 - c**2) / (2.0 * a * b))

height = a * sin(theta)

triangleArea = 0.5 * b * height

end function triangleArea

end program Triangle

Exercise 2.3 Rewrite the Celsius-Fahrenheit program of the previous exercise

to use an internal function to calculate the Fahrenheit temperature.

2.4 Arrays

Arrays and array operations have undergone extensive change in the new Fortran

standard. In Fortran 90, it is possible to treat an array as a single object. This

permits array-valued expressions such as C = A + B without the need for do

loops that are required in Fortran 77 to process the elements of the arrays one

at a time. Although such statements are notationally convenient and o�er a

more natural form of expression, they are also important in utilizing the high

computational speeds of parallel and vector computers.3 Functions may now

3Another important feature of array-valued expressions is that there is no de�ned order

in which the operations must be done. The operations may be performed in any order or
simultaneously.

12

be array-valued, which was impossible to achieve in Fortran 77. Most intrinsic

functions have been extended and act elementally on arrays, as do the intrinsic

operators, such as `+' above.4 Array sections are obtained using a syntax similar

to Matlab. A(:, i) is the ith column of A. The `:' represents all elements

in the extent of the particular dimension. A(2:4, 3:5) is the 3 � 3 array

obtained from rows 2 through 4 and columns 3 through 5 of A. A stride may

also be speci�ed, achieving an e�ect similar to the step of a do loop. For example,

A(2:10:2, 2:10) is the 5�9 array obtained from rows 2, 4, 6, 8, and 10 and

columns 2 through 10 of A.

Passing arrays to subprograms is another area of improvement in the new

standard. In Fortran 77, only the extents in the last dimension can be assumed

in a subprogram. This often requires extending the argument list of a subpro-

gram to include the extents of each dimension of the array. Fortran 90 supports

assumed-shape arrays in dummy arguments in a subprogram. The extents can

be determined by the subprogram through the use of the new intrinsic func-

tion size.5 These array processing features of Fortran 90 are illustrated by the

MatrixVector program below.

program MatrixVector

implicit none

integer, parameter :: N = 3

real, dimension(N, N) :: A

real, dimension(N) :: b, c

! Fill A and b with random entries.

call random_number(A)

call random_number(b)

! Compute the matrix-vector product, A*b.

c = matrixVectorMultiply(A, b)

print *, 'The matrix-vector product is ', c

contains

function matrixVectorMultiply(A, b) result(c)

implicit none

! Assume the shape of A and b.

real, dimension(:, :), intent(in) :: A

real, dimension(:), intent(in) :: b

real, dimension(size(b)) :: c

4Most binary operations operate elementally on array operands, requiring that the two
array operands be conformable, that is, the same size and shape. For example, the binary
operator `*' forms an element-by-element product of two matrices. Scalars may also be used
in such operations, as they are �rst broadcast to a conformable array before the elemental
operation is performed.

5The rank of an array is �xed at compile-time and may not be assumed by a subprogram.

13

integer N

integer i

N = size(b)

c = 0.0

do i = 1, N

c = c + b(i) * A(:, i)

end do

end function matrixVectorMultiply

end program MatrixVector

Exercise 2.4 Derive a formula for matrix-matrix multiplication that forms the

matrix product C = AB by accessing A by columns. It is quite similar to

the matrix-vector multiplication given in the previous example. Such an al-

gorithm is column-oriented, and exploits Fortran's array storage conventions.

Write and test a program that uses this column-oriented algorithm to obtain

the matrix-matrix product. To check your results, use the intrinsic function,

matmul. How is this column-oriented multiplication algorithm similar to the

matrix-vector multiplication algorithm in the previous example?

Exercise 2.5 Similar to the previous exercise, derive a formula for matrix-

matrix multiplication that forms the matrix product C = AB by accessing B by

rows. Such an algorithm is row-oriented, and is the worst matrix multiplication

algorithm for Fortran. Write and test a program that uses this row-oriented

algorithm to obtain the matrix-matrix product. To check your results, use the

intrinsic function, matmul.

Exercise 2.6 The traditional approach to matrix multiplication forms the ma-

trix product C = AB utilizing a dot-product operation between a row of A and

a column of B. Formulate such an algorithm and write and test a program that

uses this algorithm to obtain the matrix-matrix product. Write a supporting

dotProduct6 function to form each element in the matrix product and call it

from within your matrix multiplication function. You will want to make use of

array sections to pass your dotProduct function a row of A and a column of

B. Use the intrinsic function, matmul, or your previous algorithms, to test this

dot product algorithm.

2.5 Modules

Modules represent a tremendous improvement in program readability and main-

tainability over Fortran 77's common block. However, modules o�er much more

functionality than the global access of data provided by the common block. A

module can be used to group a set of related declarations and module proce-

dures, under a single global name, providing a means of global access to con- Subprograms de-

clared within a module
are called module proce-

dures.

6Write your own function rather than using the intrinsic function dot product.

14

stants, variables, user-de�ned types, and other functions and subroutines. The

contents of a module may be made available to any program unit via the use

statement. Data hiding and encapsulation are supported through the private

and public attributes. Those items declared private are available only within

the module and are hidden from any subprogram using the module. By default,

all items within a module are public. The contains statement in a module

marks the beginning of one or more module procedures, just as it was used to

mark the beginning of one or more internal subprograms in section 2.3.

The matrixVectorMultiply function in the previous example could be placed

in a module and used in any program needing to perform matrix-vector multipli-

cation. An example of such a module is given below. One signi�cant advantage

of module procedures is their explicit interface|the Fortran 90 compiler can

detect type mismatches in calls to subprograms within a module.

module MatrixVectorOperations

integer, parameter :: N = 3 ! A global constant.

contains ! Module procedure definitions appear below.

function matrixVectorMultiply(A, b) result(c)

implicit none

! Assume the shape of A and b.

real, dimension(:, :), intent(in) :: A

real, dimension(:), intent(in) :: b

real, dimension(size(b)) :: c

integer N

integer i

N = size(b)

c = 0.0

do i = 1, N

c = c + b(i) * A(:, i)

end do

end function matrixVectorMultiply

end module MatrixVectorOperations

program MatrixVector

use MatrixVectorOperations

implicit none

real, dimension(N, N) :: A

real, dimension(N) :: b, c

! Fill A and b with random entries.

call random_number(A)

15

call random_number(b)

! Compute the matrix-vector product, A*b.

c = matrixVectorMultiply(A, b)

print *, 'The matrix-vector product is ', c

end program MatrixVector

Exercise 2.7 Create a MatrixMatrixOperationsmodule and place the column-

oriented matrix multiplication function of exercise 2.4 in this module. Test it

by using it with a main program.

2.6 Interfaces and Generic Subprograms

Interfaces refer to the how much knowledge the compiler has about an procedure

during compilation. If the interface is explicit, then the compiler can verify that

the subprogram is being called correctly. If, however, the interface is implicit,

then the Fortran 90 compiler has no information about the types and number

of the subprogram's arguments or the return value of the result for a function.

(Implicit typing is used in the calling program to determine the return result

of a function if no declaration is given.) Consequently, no type-checking can be

done to verify that a subprogram has been called correctly. Implicit interfaces

are all that are available in Fortran 77.

Subprograms such as module procedures and internal functions have an ex-

plicit interface by default, and no explicit interface block is necessary. External

subprograms have an implicit interface by default, and an interface block is nec-

essary to specify an explicit interface of an external subprogram; as mentioned

above, this allows type-checking of actual and formal arguments in a reference

to a subprogram. Examples of interface blocks for two external functions, f and

g, are given below.

interface

function f(x)

real f

real, intent(in) :: x

end function f

function g(y)

integer g

integer, intent(in) :: y

end function g

end interface

Interfaces are also necessary to de�ne a generic subprogram. Generic sub-

programs should be familiar from Fortran 77 intrinsics such as sin or operators

such as `+'. These intrinsic functions were special cases in Fortran 77 and were

overloaded to work on a variety of argument types|sin(x) will properly Overloading refers to us-
ing a generic name to

specify a function whose
behavior is dependent

upon the types of its ar-
guments.

compute the sine of its argument, whether x is single or double precision, real

16

or complex. In Fortran 90, user-de�ned subprograms can be generic in the same

sense. Generic functions and subroutines may be de�ned, similar to any other

subprogram, although the interface must be explicit. The usual way to de�ne

such a generic function is to place it in a module as in the example below.

module RationalArithmetic

type rational

integer n, d ! Numerator and denominator.

end type rational

interface operator (*)

module procedure integerRationalMultiply, &

rationalIntegerMultiply

end interface

contains

function integerRationalMultiply(i, r)

type(rational) integerRationalMultiply

integer, intent(in) :: i

type(rational), intent(in) :: r

integerRationalMultiply = rational(i * r%n, r%d)

end function integerRationalMultiply

function rationalIntegerMultiply(r, i)

type(rational) rationalIntegerMultiply

type(rational), intent(in) :: r

integer, intent(in) :: i

rationalIntegerMultiply = rational(i * r%n, r%d)

end function rationalIntegerMultiply

end module RationalArithmetic

This use of operators on derived types is a much more natural form of ex-

pression for many mathematical objects that can be modeled with user-de�ned

types. The overloading of function names and operators is handled completely

by the compiler. A reference to the `+' operator in the example above causes

the compiler to insert a call to the appropriate function based on the types of

arguments in the particular call. This function substitution can be completely

determined at compile time and incurs no run-time overhead.

Exercise 2.8 Why are two di�erent functions needed to perform integer-rational

multiplication? Write and test a program to use this module, using the over-

loaded operator `*'.

2.7 Recursive Subprograms

Another area in which Fortran 77 has been extended is recursion. Although

not possible in Fortran 77, Fortran 90 supports recursion. If a subprogram calls

17

itself, directly or indirectly, the keyword recursive must appear in the sub-

program statement.7 Recursive functions must also declare a result variable

to avoid ambiguity with array-valued functions that are directly recursive. The

result variable is used to hold the function result for each function invocation;

the function name is used to invoke the function itself. Consequently, the re-

cursive function's name should never appear on the left side of an assignment

statement. An example of a recursive factorial function is shown below.

recursive function factorial(n) result(f)

integer f

integer, intent(in) :: n

if (n <= 0) then

f = 1

else

f = n * factorial(n-1)

end if

end function factorial

Exercise 2.9 Enhance the RationalArithmetic module in the previous exer-

cise to use a greatest common divisor function to cancel common divisors from

the integer multiplier and the denominator of the rational number. Call the

function gcd, and make it recursive, based on the following relationship, valid

for 0 � m < n.

gcd(0; n) = n;

gcd(m;n) = n modm;m > 0:

Verify correct operation of the gcd function by testing it using a main program.

Exercise 2.10 Using the gcd function written in the previous exercise, extend

the `+' operator to operate correctly on rational numbers. Verify that your pro-

gram is working correctly, that is, it forms the sum of two rational numbers

whose numerator and denominator are relatively prime. An e�cient imple-

mentation should cancel the greatest common divisor in a way that keeps the

intermediate integer products as small as possible.

Exercise 2.11 Using the results of the previous exercise, you should be able

to extend the `-' operator relatively easily. Write another set of functions to

extend this operator and verify that your program works correctly as discussed

in the previous exercise.

Exercise 2.12 Relational operators may also be extended to operate on user-

de�ned types. Extend the `.eq.' operator to properly compare two rational

numbers. Recall that `==' is a synonym for the `.eq.' operator.

7The recursive keyword is required for the bene�t of the compiler and may help with the
optimization of procedure calls.

18

2.8 Dynamic Data Structures

Lack of dynamic data structures is another shortcoming of Fortran 77 that has

been overcome in Fortran 90. Linked lists, trees, graphs, and other dynamic

data structures that are allocated at runtime can be constructed using some

of Fortran 90's new capabilities. The following program indicates the basic

features of Fortran 90's pointers.

program TryPointers

integer, pointer :: p, q

integer, target :: n

integer m

n = 5

p => n

q => p

allocate(p)

p = 4

m = p + q + n

print *, "m = ", m

end program TryPointers

The program above illustrates many key concepts in the design of Fortran

90 pointers.

� The pointer attribute is used to identify variables that serve as descrip-

tors for other data objects only. In the program above, p and q are \point-

ers to integers".

� The variable n is declared with the target attribute. This indicates that

n may serve as a target to an integer pointer such as p or q. A target is

an object that may be referenced via a pointer. The target of a pointer

is very restrictive|only variables with the target or pointer attributes

may be referenced via a pointer.8

� The statement p => n is called a pointer assignment statement, and is

used to associate the target, n, with the pointer, p. This is possible because

n has been declared with the target attribute.9 In e�ect, p is an alias for

n and may be used just as n is used (p can be thought of as \pointing to"

n).10

8This restriction can aid the compiler in optimizing the code. The target attribute informs
the compiler of all variables that can serve as pointer targets. All other variables cannot be
referenced via a pointer and do not su�er from the side e�ects of pointer references.

9The other integer variable m declared in the program does not have the target attribute.
Consequently, it may not be associated with a pointer.

10A Fortran 90 pointer has three possible states: associated, disassociated, and unde�ned.
Initially, a pointer's association status is unde�ned. It may be associated using pointer as-

19

� The following statement, q => p, is di�erent. In the previous pointer

assignment statement, a pointer is associated with a non-pointer variable,

n. However, this pointer assignment statement contains variables that are

pointers on both the left and right hand sides. In this case, q is associated

with the target of p, namely n, rather than p itself.11

� The allocate statement is used to dynamically allocate space for a target

and associate the pointer with the target. Thus, allocate(p) reserves

space for an integer target that is associated with p. At this time, the

contents of the target are not de�ned. The previous target of p, n, is

una�ected. Similarly, because q is not associated with p, the target of q

is una�ected.

� The statement p = 4 de�nes the target of p to contain the integer 4 and

illustrates an important characteristic of Fortran 90's pointers|there is

no dereference operator. Instead, the pointers are resolved to their targets

before the assignment is made. This occurs in any expression involving

pointers with the exception of the pointer assignment statement described

above.

� As mentioned above, pointers are resolved to their targets in any expres-

sion not involving pointer assignment. Consequently, the statement m =

p + q + n uses the values of the targets of p and q and the value of n to

evaluate the expression. Because the values of the targets of p and q are 4

and 5, respectively, and n is 5, their sum, 14, is assigned to the the integer

m.

A more complete example of a dynamic data structure is given below which

manipulates a linked list of real numbers. Elements are allocated as needed and

deallocated after use.

program LinkedList

type node

real data

type(node), pointer :: next

end type node

type(node), pointer :: list, current, previous

integer, parameter :: N = 10

nullify(list) ! Initialize list to point to no target.

! Add the 1st element as a special case.

if (N > 0) then

allocate(list)

signment or the allocate statement. It may be disassociated using the nullify statement or
by assigning it a disassociated pointer through pointer assignment.

11This immediately implies that pointers cannot point to other pointers.

20

nullify(list%next)

call random_number(list%data)

end if

current => list

! Add N random numbers to the list.

do i = 2, N

allocate(current%next)

nullify(current%next%next)

call random_number(current%next%data)

current => current%next

end do

! Output the list, deallocating them after use.

print *, 'List elements are:'

current => list

do while (associated(current))

print *, current%data

previous => current

current => current%next

deallocate(previous)

end do

end program LinkedList

Exercise 2.13 Rewrite the do i = 2, N loop to allocate a node of the list using

a temporary pointer. Initialize the data and next components of the node and

link the node to the existing list as the last step in the loop.

Exercise 2.14 A linked list can be used to model an integer of arbitrary length.

The following program implements unsigned extended integer arithmetic using

this integer model, where the head of the linked list points to the least signi�cant

digit in the extended integer. For example, the extended integer 987654321 is

represented as the list 1! 2! 3! 4! 5! 6! 7! 8! 9! where the last

pointer in the integer is nulli�ed to mark the end of the list.

module ExtendedIntegers

! A kind value representing a single digit only.

integer, parameter :: Q = selected_int_kind(1)

private Q

type UnsignedExtendedInteger

integer(Q) digit

type(UnsignedExtendedInteger), pointer :: next

end type UnsignedExtendedInteger

type ExtendedInteger

type(UnsignedExtendedInteger), pointer :: number

end type ExtendedInteger

21

interface operator (+)

module procedure addExtendedInteger

end interface

contains

function addExtendedInteger(m, n)

type(ExtendedInteger) addExtendedInteger

type(ExtendedInteger), intent(in) :: m, n

type(ExtendedInteger) sum

type(UnsignedExtendedInteger), pointer :: current1, current2

type(UnsignedExtendedInteger), pointer :: current, previous

integer(Q) carry

integer digitSum

! Allocate space for the number component of sum.

allocate(sum%number)

nullify(sum%number%next)

! Add the first two digits of m and n as a special case.

! Associate current1 and current2 with the first digits of the numbers

! of m and n.

current1 => m%number

current2 => n%number

digitSum = current1%digit + current2%digit

! Check for carry

if (digitSum > 9) then

digitSum = digitSum - 10

carry = 1

else

carry = 0

end if

! Assign the first digit into the sum.

sum%number%digit = digitSum

previous => sum%number

current1 => current1%next

current2 => current2%next

! Begin the general addition of m and n. m and n should be

! have their ends marked with null pointers.

do while (associated(current1) .and. associated(current2))

digitSum = current1%digit + current2%digit + carry

! Check for carry

if (digitSum > 9) then

digitSum = digitSum - 10

carry = 1

else

22

carry = 0

end if

! Assign current digit into sum.

allocate(previous%next)

nullify(previous%next%next)

previous%next%digit = digitSum

previous => previous%next

current1 => current1%next

current2 => current2%next

end do

! current1, current2, or both have been exhausted. Continue with current.

if (associated(current1)) then

current => current1

else

current => current2

end if

do while (associated(current))

digitSum = current%digit + carry

! Check for carry

if (digitSum > 9) then

digitSum = digitSum - 10

carry = 1

else

carry = 0

end if

! Assign current digit into sum.

allocate(previous%next)

nullify(previous%next%next)

previous%next%digit = digitSum

previous => previous%next

current => current%next

end do

! Check for a carry that has propagated to the most significant

! place.

if (carry /= 0) then

! Assign carry digit into sum.

allocate(previous%next)

nullify(previous%next%next)

previous%next%digit = carry

end if

! Prepare to return sum.

addExtendedInteger = sum

end function addExtendedInteger

subroutine readExtendedInteger(n)

type(ExtendedInteger), intent(out) :: n

23

type(UnsignedExtendedInteger), pointer :: new

character ch

integer(Q) value

nullify(n%number) ! No list initially.

do while (.true.)

read(*, fmt="(A)", advance="no", eor=100) ch

! Determine the numerical value of the character.

select case (ch)

case('0')

value = 0

case('1')

value = 1

case('2')

value = 2

case('3')

value = 3

case('4')

value = 4

case('5')

value = 5

case('6')

value = 6

case('7')

value = 7

case('8')

value = 8

case('9')

value = 9

case default

print * , 'Input error in reading extended integer'

stop

end select

! Allocate a new node for the digit

allocate(new)

new%digit = value

if (.not. associated(n%number)) then

! List not yet started.

nullify(new%next)

else

! List already started.

new%next => n%number

end if

n%number => new

enddo

100 end subroutine readExtendedInteger

24

end module ExtendedIntegers

A subroutine to input unsigned extended integers is included in the mod-

ule. Write a subroutine to output an extended integer based on the model of

representation described above. Write a program to test your function and the

ExtendedIntegers module.

2.9 Optional and Keyword Arguments

Optional arguments permit a subprogram to accept a default value for missing

arguments in a call. In numerical computing, this is most useful for specifying a

tolerance. If speci�ed, the value may override the default tolerance; otherwise,

the default tolerance is used. Because any argument in the argument list of

a subprogram may be optional, there may be a problem matching actual and

formal arguments in a call to a subprogram with optional arguments. In this

case, keyword arguments must be used to establish unambiguously the corre-

spondence between actual and formal arguments. The RootFinders module

below illustrates some of these features.

module RootFinders

! Maximum error permitted in the approximation of a root.

real, parameter :: DEFAULT_TOLERANCE = epsilon(1.0)

! Restrict the visibility of these functions to this module.

private secant, newton

contains

! Use the secant method to find a root of f if df, the

! derivative of f, is unavailable, otherwise, use Newton's

! method. a and b are used as a starting interval for

! the secant method. The average of a and b is used as

! the initial guess for Newton's method.

function findRoot(a, b, f, df, tolerance)

implicit none

real findRoot

real, intent(in) :: a, b

real, optional, intent(in) :: tolerance

interface

function f(x)

real f

real, intent(in) :: x

end function f

function df(x)

real df

real, intent(in) :: x

end function df

end interface

optional df

25

real tol

! Initialize tol.

if (present(tolerance)) then

tol = tolerance

else

tol = DEFAULT_TOLERANCE

end if

! Select the root-finding method.

if (present(df)) then ! Use Newton's method.

findRoot = newton((a+b)/2, f, df, tol)

else ! Use secant method.

findRoot = secant(a, b, f, tol)

end if

end function findRoot

recursive function secant(a, b, f, tol) result(root)

implicit none

real root

real, intent(in) :: a, b, tol

interface

function f(x)

real f

real, intent(in) :: x

end function f

end interface

real c ! The x-intercept of the secant line.

real fa, fb, fc ! f(a), f(b), and f(c), respectively.

! Initialize fa and fb.

fa = f(a); fb = f(b)

! Compute c, the x-intercept of the secant line given by

! the two points, (a, f(a)) and (b, f(b)).

c = a - fa * ((b - a) / (fb - fa))

! Compute the value of the function at this point.

fc = f(c)

! Check for a sufficient root at c. This could cause an

! infinite loop if the round-off error in the evaluation

! of f(c) exceeds the tolerance.

if ((abs(fc) <= tol) .or. ((abs(c - b) <= tol))) then ! Root found.

root = c

else ! Go again.

! Make sure the function is non-increasing in absolute

! value for each recursive call of secant.

if (abs(fa) < abs(fb)) then ! Use a and c.

root = secant(a, c, f, tol)

else ! Use b and c.

26

root = secant(b, c, f, tol)

end if

end if

end function secant

recursive function newton(guess, f, df, tol) result(root)

implicit none

real root

real, intent(in) :: guess, tol

interface

function f(x)

real f

real, intent(in) :: x

end function f

function df(x)

real df

real, intent(in) :: x

end function df

end interface

real fGuess, dfGuess ! f(guess), df(guess), respectively.

real newGuess

! Calculate df(guess) and f(guess).

fGuess = f(guess); dfGuess = df(guess)

! Check for a sufficient root at c. This could cause an

! infinite loop if the round-off error in the evaluation

! of f(c) exceeds the tolerance.

if (abs(fGuess) <= tol) then ! Root found.

root = guess

else ! Go again.

newGuess = guess - fGuess / dfGuess

root = newton(newGuess, f, df, tol)

end if

end function newton

end module RootFinders

The findRoot function de�ned above is quite convenient in its use of op-

tional arguments. For example, x = findRoot(a, b, g, dg) uses the de-

fault tolerance and calls newton, due to the presence of the derivative, dg. x

= findRoot(a, b, g, dg, 1.0e-10) may be used to override this default

tolerance. When the derivative of the function is not available, a call such as

x = findRoot(a, b, g), uses the default tolerance and calls secant, as no

derivative is present. x = findRoot(a, b, g, tolerance=1.0e-10) over-

rides the default tolerance and calls secant. Notice that overriding the de-

fault tolerance when the derivative is not passed requires using the keyword

tolerance. If this keyword were not used, the fourth argument would be in-

correctly paired with the formal argument df, resulting in a type mismatch. A

27

test program for the RootFinders module is given below.

program Test

use RootFinders

implicit none

real a, b

real, parameter :: tol = 1.0e-6

interface

function f(x)

real f

real, intent(in) :: x

end function f

function df(x)

real df

real, intent(in) :: x

end function df

end interface

print *, 'Enter left and right endpoints'

read *, a, b

print *, 'Newton:The root of f is ', findRoot(a, b, f, df)

print *, 'Secant:The root of f is ', findRoot(a, b, f)

end program Test

function f(x)

real f

real, intent(in) :: x

f = x + exp(x)

end function f

function df(x)

real df

real, intent(in) :: x

df = 1 + exp(x)

end function df

Exercise 2.15 Compile and run the test program and module given above.

Then, rewrite secant and newton to perform their tasks non-recursively. Test

your root �nding functions with several functions. An e�cient implementa-

tion should minimize the number of function evaluations necessary during the

algorithm.

Exercise 2.16 Neither the secant method nor Newton's method are guaranteed

to converge to a root of the function in a �nite number of steps. Add another

optional argument to findRoot, specifying the maximum number of iterations to

perform. Make these changes to your iterative version of the RootFinders mod-

ule. In adding this optional argument, consider its placement in the argument

28

list so that the function may be conveniently called with or without including the

argument in the call.

2.10 Achieving Portability

Portability refers to the ease with which source code can be moved frommachine

to machine. A portable program requires little or no change to the source code

when compiled and run on a di�erent machine. Portability of numerical code is

important for several reasons.

� Numerical libraries, such as Linpack or the NAG libraries, are available.

If this code is not portable, it must be tailored to the particular imple-

mentation on which it is used.

� Access to high performance machines is sometimes limited. Often, a pro-

gram is developed and tested on a small workstation, then ported to a

high performance machine to run larger problems. Without portability,

this is not possible.

� Many small workstations such as DEC, Sun, and IBM, are often available

at a particular site on a local network. It is simply inconvenient to restrict

code to a particular implementation.

Fortran 90 introduces several new mechanisms to aid in porting numeri-

cal code to other machines. The most di�cult problem in porting numerical

programs is in the portable selection of precision. Selecting the precision of a

computation in a portable way was impossible with Fortran 77. However, with

the introduction of kind values as well as intrinsic environmental inquiry func-

tions for selecting and inquiring about precision, Fortran 90 programs should

be much easier to port to other machines.

Kind values are integer constants that can be used to further specify the

characteristics of an intrinsic type, such as integer or real. For example,

real(2) selects a real type with kind value 2. Unfortunately, kind values

are processor-dependent and are therefore not standardized. However, there

are several portable ways to select kind values based on the precision desired.

Two such functions are selected int kind and selected real kind. The

following Precision module illustrates a portable means of selecting precision

parametrically.

module Precision

integer, parameter :: Q = selected_real_kind(10, 10)

end module Precision

The selected real kind function above selects the kind value correspond-

ing to a real number with at least 10 decimal digits of precision and a decimal

exponent range of at least 10 in magnitude. The selected int kind func-

tion is similar, and an expression such as selected int kind(10) selects

29

the kind value corresponding to a integer number with magnitude in the range

(10�10; 1010). Other environmental inquiry and manipulation functions are de-

scribed in tables 1 and 2 in section 1. Advanced uses of these functions and

other portability issues are described in section 3.

Exercise 2.17 In the RootFindersmodule, add parameterized types to all vari-

ables, constants, and functions that were previously declared as real. Use the

Precision module given above, so that the precision of the entire RootFinders

module may be changed by changing a parameter in the Precision module.

[Hint: The DEFAULT TOLERANCE in the RootFinders module should use the ep-

silon corresponding to the parameterized real type. Constants of a particular

kind value may be speci�ed by using the kind value as a su�x, preceded by

the underscore, ` ', character. Using the notation of the Precisionmodule, the

DEFAULT TOLERANCE should be assigned the value epsilon(1.0 Q).12]

12Note that epsilon is an inquiry function which uses the type of its argument rather than
the speci�c value.

30

3 Advanced Numerical Experiments

3.1 Interval Arithmetic

Interval arithmetic is a technique used to determine upper bounds for the ab-

solute error in an algorithm, properly considering all roundo� errors in the

calculation. It is based on the fact that the real number system modelled by

a computer is e�ectively viewed as an interval with machine representable end-

points in which the exact result lies. All real numbers that enter into a numerical

calculation, initial, intermediate, and �nal, are most often unknown. At best,

an interval is known that contains the exact answer. Extending the arithmetic

operations used in a numerical algorithm to operate on intervals produces in-

tervals that are guaranteed to contain the exact solution. This type of analysis

can be readily implemented in Fortran 90 with its support for derived types and

generic functions and operators. It also illustrates several advanced numerical

manipulation functions new to Fortran 90 that simplify the implementation and

increase portability.

In section 1.4, the following module was used to illustrate generic functions

applied to a derived type.

module IntervalArithmetic

type interval

real a ! Left endpoint

real b ! Right endpoint

end type interval

interface operator (+)

module procedure addIntervals

end interface

contains

function addIntervals(first, second)

type(interval) addIntervals

type(interval), intent(in) :: first, second

! Numerically, the left and right endpoints of the interval

! sum should be rounded down and up, respectively, to

! ensure that numbers in the two intervals are also in the

! sum. This has been omitted to simplify the example.

addIntervals = interval(first%a + second%a, &

first%b + second%b)

end function addIntervals

end module IntervalArithmetic

As pointed out in the comments preceding the calculation of the interval

sum, this implementation is simplistic and could give incorrect results if used in

a rounding error analysis. An accurate approach is explained below.

31

Let M be the set of all machine representable reals and let � denote inter-

val addition. Then, the interval sum, [c1; c2] = [a1; a2] � [b1; b2], must be the

smallest interval containing the exact sums, a1 + b1 and a2 + b2, with machine

representable endpoints, c1 and c2. More precisely,

c1 = maxfs 2M js � a1 + b1g
c2 = minfs 2M js � a2 + b2g

where c1; c2; a1; a2; b1; b2 2 M , and the `+' operator represents exact addition

without roundo� or constraints of �nite precision.13

Exercise 3.1 The remaining exercises in this section will focus on correcting

the behavior of interval addition in the IntervalArithmeticmodule. Two nec-

essary supporting functions are roundSumDown and roundSumUp, for properly

rounding the left and right endpoints, respectively. Speci�cally, these functions

should calculate the left and right endpoints of the interval sum using the pro-

cedure described in the text above. That is,

roundSumDown(x; y) = maxfs 2M js � x+ yg
roundSumUp(x; y) = minfs 2M js � x+ yg :

For ease of exposition, let x be the smaller number in magnitude, so that jxj � jyj
and let x + y, x �d y, and x �s y denote exact, double precision, and single

precision addition operators, respectively.

Consider calculating the sum x + y using both double and single precision,

forming x �d y and x �s y. What information can be obtained regarding their

accuracy if these two sums are compared? How might this be used to properly

round the single precision sum? Let rSum be the single precision sum and dSum

be the double precision sum. State a value to be returned by roundSumDown and

roundSumUp for the following two cases: rSum < dSum and rSum > dSum. The

case rSum = dSum is treated in the next exercise. [Hint: Fortran 90's intrinsic

function nearest should be helpful.]

Exercise 3.2 Continuing with the previous exercise, consider the case where

rSum = dSum. What two possibilities exist in this case? [Hint: The most obvious

possibility is that both rSum and dSum represent the exact sum, x+y. The other

possibility occurs when two numbers such as u and v are added and u is small

relative to v.] What should be returned by the functions roundSumDown and

roundSumUp for each possibility in this case? Be sure that the interval being

calculated is not larger than necessary by examining the sign of x and y in your

analysis.

Exercise 3.3 From the previous exercises, you should now be able to write the

two supporting functions roundSumDown and roundSumUp. Correct the Inter-

valArithmetic module using these two functions and write a small program

13Similar de�nitions of other arithmetic operations on intervals can be stated.

32

to test your new IntervalArithmetic module. Comment about the portability

of your implementation. How have Fortran 90's environmental inquiry and

manipulation functions helped make your implementation portable?

3.2 Subtleties in Solving a Quadratic Equation

Solving a quadratic equation at �rst glance seems to be a trivial calculation

using the quadratic formula,

x =
�b�

p
b2 � 4ac

2a
:

However, a closer look reveals a number of numerical subtleties that, if over-

looked, could lead to grossly inaccurate approximations to the roots.

To see one of the problems associated with the numerical aspects of the

quadratic formula, work through the following exercise.

Exercise 3.4 Solve the quadratic equation,

x2 � 12:4x+ 0:494 = 0

by evaluating the quadratic formula using three-digit decimal arithmetic and

unbiased rounding14. The exact roots rounded to 6 digits are 0:0399675 and

12:3600.15

The above exercise illustrates an important numerical problem called can-

cellation or loss of signi�cance which manifests itself when subtracting values

of nearly equal magnitude.16 Cancellation occurs when the digits necessary to

accurately de�ne the di�erence have been discarded by rounding in previous

calculations due to the �nite precision of machine arithmetic. Problems arise

when this di�erence is an intermediate result which must be used to complete

the calculation|most of the signi�cant digits that remain after rounding are

eliminated by subtraction. To complicate the situation, the digits that become

signi�cant after subtraction may be accurate to only a few places due to the

previous rounding errors in the two values being subtracted. For example, sup-

pose that a calculation contains the intermediate values, 0:37294328� 101 and

0:37294300� 101, both correct only to 6 signi�cant �gures, with the last two

digits incorrect due to rounding errors in previous calculations. Assuming a

computer with 8 digit decimal arithmetic, the computed di�erence in the two

14Three-digit decimal arithmetic using unbiased rounding truncates after the third digit if

the fourth digit is 4 or less, rounds the third digit up if the last digit is 6 or more, and rounds
the third digit to an even digit if the fourth digit is exactly 5.

15Using three-digit arithmetic and unbiased rounding, you should obtain roots 0.05 and
12.4. Note that the larger calculated root is correctly rounded while the smaller calculated

root has no correct �gures.
16In the previous exercise, this occurs in calculating the smaller root.

33

numbers is 0:37294328�101�0:37294300�101 = :28�10�6. On the assumption

that the last two digits are incorrect due to previous rounding errors, this di�er-

ence contains no correct �gures, all of which have been brought to signi�cance

after subtraction.

Such severe cancellation can usually be eliminated by algebraic reformu-

lation. In the case of the quadratic equation, the cancellation observed in

the previous exercise results from the subtraction performed between �b andp
b2 � 4ac.17 This cancellation occurs when 4ac is small relative to b2, so thatp
b2 � 4ac � b. This problem may be resolved by calculating the larger root (in

absolute value) using the quadratic formula and obtaining the smaller root by

another means. The larger root (in absolute value) can be obtained from the

quadratic formula by choosing the sign of
p
b2 � 4ac so that no subtraction oc-

curs. The smaller root (in absolute value) can be obtained by observing that the

product of the roots of a quadratic equation must equal the constant term. So,

for a general quadratic equation, p(x) = ax2+ bx+ c, the product of the roots,

r1r2 = c=a. Thus, the second root may be obtained by division, circumventing

the cancellation problem in the previous exercise.

Exercise 3.5 Write a program to solve a quadratic equation using the methods

described above. You may �nd the Fortran 90 intrinsic function sign helpful in

choosing the proper sign in the quadratic formula to calculate the larger root.

As mentioned previously, the calculation of
p
b2 � 4ac is another possible

source of severe cancellation. This is illustrated in the following exercise.

Exercise 3.6 Solve the quadratic equation,

x2 � 12:4x+ 38:4 = 0

by evaluating the quadratic formula using three-digit arithmetic and unbiased

rounding. The exact roots rounded to 6 digits are 6:00000 and 6:40000. What

is the value of the expression b2 � 4ac in three-digit arithmetic? What does this

indicate about the roots?18 What is the source of the problem?

As indicated in the previous exercise, cancellation may occur in computingp
b2 � 4ac when 4ac � b2. This time, however, algebraic reformulation cannot

be used to solve the problem. Intermediate extended precision is another tech-

nique used to combat the e�ects of severe cancellation. The quantity
p
b2 � 4ac

is a prime candidate for the use of extended precision because the result of ap-

plying the square root function will bring the digits used in the double precision

17As will be shown shortly,
p
b2 � 4ac can be another source of cancellation. This is a

potentially serious problem because the application of the square root function could bring
the inaccurate low order digits to signi�cance.

18Using three-digit arithmetic and unbiased rounding, you should obtain a double root of
6.2, correct to only one signi�cant �gure.

34

calculation to signi�cance. Converting this quantity to single precision preserves

the signi�cant digits that would have been inaccurate if the entire computation

had been done in one precision only.19

Exercise 3.7 Modify your quadratic equation solver to use double precision in

calculating
p
b2 � 4ac. Fortran 90 has two type conversion functions, real and

dble, to convert numbers to single precision and double precision, respectively.

19A Fortran 90 double precision number is required to contain at least twice as many digits
in the mantissa as a single precision number. This guarantees that b

2 is representable in

double precision. The product 4ac is also immune to roundo� error on a machine with a
binary base. Thus, the two values b2 and 4ac may be computed exactly in double precision.

35

4 Complete Example Programs

The following programming examples illustrate many other features of Fortran

90 that are not present in the examples and exercises of the previous sections.

Comments about the language are also included so that the programs can be

used to learn much of Fortran 90 by example.

4.1 Rational Arithmetic

! File typical.1.f90

! The suffix .f90 permits the use of the new free source form available in

! Fortran 90.

! A module is a new feature in Fortran 90. Modules are primarily used to

! declare data, subroutines, and functions that are accessible in more than

! one program unit. Modules are a safe alternative to common in Fortran 77,

! and provide much more functionality by including more than just data.

! The data, subroutine, and function names in a module are made available

! by using the module in the program unit using the USE statement together

! with the module name.

! Case is not significant in Fortran 90.

module TypicalModule

integer, parameter :: N = 4 ! Declare an integer constant, N.

integer, parameter :: M = 50 ! Declare an integer constant, M.

private M ! Make the integer constant visible only within this module.

! Define a derived type called rational that contains two integer

! components, n and d. Derived types are similar to records in Pascal

! or structures in C. Individual components are accessed via the ``%''

! operator (see the rationalAdd function below).

type rational

integer n, d

end type rational

! Every subroutine or function has an interface which indicates the name,

! the arguments, their types, attributes, and the type and attributes of

! the function (for a function).

! There are two types of interfaces in Fortran 90, implicit interfaces

! and explicit interfaces. Implicit interfaces are used in Fortran 77

! external procedures and assume that a procedure call is correct in the

! type and number of arguments passed. Explicit interfaces, however, have

! the advantage that type-checking of actual and dummy arguments can be

! performed for procedure calls. Incorrect calls or invocations are

! detected by the compiler.

! Interfaces of subroutines and functions within a module are always

36

! explicit. However, an interface block is needed to define a generic

! procedure name or operator and the set of procedures to which the name

! applies. The following interface block extends the binary ``+''

! operator. Now, the function rationalAdd can be invoked using the

! binary operator ``+'' on two objects of type(rational).

interface operator (+)

module procedure rationalAdd

end interface

private gcd ! Use the gcd function internal to this module only.

! The contains statement indicates the presence of one or more internal

! subprograms that are included in the module and is necessary to

! separate the specification statements of the module from the

! subprogram definitions.

contains

function rationalAdd(left, right)

! To declare a variable to be of some derived type, use the type

! statement with the derived type's name in parenthesis.

type(rational) rationalAdd

! As in Fortran 77, parameter passing is by reference.

! It may be necessary for the compiler to generate temporaries in

! some cases. However, changes to these temporaries affect the actual

! argument. Fortran 90 provides the intent attribute to further

! specify and document a variable's use in the program. Possible

! intent specifications are in, out, and inout. Variables violating

! their intent are caught by the compiler.

type(rational), intent(in) :: left, right

integer k, m1, m2

type(rational) sum

k = gcd(left%d, right%d)

m1 = left%d / k

m2 = right%d / k

! To assign a value to a variable of a derived type such as sum, use

! a structure constructor as indicated below. A structure constructor

! consists of the derived type name together with the value to be

! assigned to each component of the derived type, in the order

! declared in the specification of the derived type. (A derived type

! may also be assigned by assigning values to its individual

! components.)

sum = rational(left%n * m2 + right%n * m1, left%d * m2)

k = gcd(sum%n, sum%d)

37

rationalAdd = rational(sum%n / k, sum%d / k) ! Reduce the rational.

end function rationalAdd

! Recursion is now permissible in Fortran 90. The function gcd is

! declared recursively below.

! If a function calls itself, either directly or indirectly, the

! keyword recursive must appear in the function statement. Recursive

! functions must also declare a result clause to be used rather than the

! function name. This requirement is to avoid ambiguity with

! array-valued functions that are directly recursive. The result

! variable is used to hold the function result for each function

! invocation; the function name is used to invoke the function itself.

recursive function gcd(a, b) result(divisor)

! Note that the function itself is not declared when the result

! variable is present. The type of the function is the type of

! the result variable. Thus, only the result variable may be

! declared.

integer divisor

integer, intent(in) :: a, b

integer m, n

! Multiple statements may be written on a single source line

! provided they are delimited with semicolons.

m = abs(a); n = abs(b)

if (m > n) call swap(m, n) ! Insure that m <= n.

! When the function invokes itself recursively, the result variable

! should be used to store the result of the function. The function

! name is used to invoke the function. Thus, the function name should

! not appear on the left-hand side of an assignment statement.

if (m == 0) then

divisor = n

else

divisor = gcd(mod(n, m), m)

end if

! Unlike internal subprograms, module procedures, such as gcd, may

! have internal subprograms defined within them (to one level only).

! As with module procedures, internal subprograms also have an

! explicit interface. Thus, the swap subroutine is not declared in

! the gcd function above---its interface is explicit.

contains

! The swap subroutine is internal to gcd and is not visible

! elsewhere, not even in this module.

38

subroutine swap(x, y)

integer, intent(inout) :: x, y

integer tmp

tmp = x; x = y; y = tmp

end subroutine swap

end function gcd

end module TypicalModule

! The above module can be in a different source file than the program and

! be compiled separately. The explicit interfaces of the module procedures

! guarantee that the compiler will check the actual and dummy arguments, in

! both type and number, for each module procedure called in the program.

program Typical

! A module is accessed via the use statement. With the use statement

! below, all public names (names not declared private in the module) are

! available for use in the program. Use statements must immediately

! follow the program statement. A program may use an unlimited

! number of modules.

use TypicalModule

! Note that a variable may be initialized at the time of declaration.

type(rational) :: a = rational(1, 2), b = rational(3, 4), c

! The derived type rational and its associated function, ``+'', may

! now be used between a and b.

c = a + b ! This statement is equivalent to c = rationalAdd(a, b).

! Input two rational numbers and output their sum.

print *, 'Enter two rational numbers.'

print *

! Nonadvancing output is possible using the advance specifier in the

! write statement. This permits multiple write statements to output

! a continuing line of output.

write(*, fmt = "(a)", advance = "no") 'Numerator of a : '

read *, a%n

39

write(*, fmt = "(a)", advance = "no") 'Denominator of a : '

read *, a%d

write(*, fmt = "(a)", advance = "no") 'Numerator of b : '

read *, b%n

write(*, fmt = "(a)", advance = "no") 'Denominator of b : '

read *, b%d

c = a + b

print *

print *, a%n, '/', a%d, '+', b%n, '/', b%d, '=', c%n, '/', c%d

end program Typical

4.2 Linear Equation Solvers

! File typical.2.f90

module LinearSolvers

implicit none

! The default value for the smallest pivot that will be accepted

! using the LinearSolvers subroutines. Pivots smaller than this

! threshold will cause premature termination of the linear equation

! solver and return false as the return value of the function.

real, parameter :: DEFAULT_SMALLEST_PIVOT = 1.0e-6

contains

! Use Gaussian elimination to calculate the solution to the linear

! system, A x = b. No partial pivoting is done. If the threshold

! argument is present, it is used as the smallest allowable pivot

! encountered in the computation; otherwise, DEFAULT_SMALLEST_PIVOT,

! defined in this module, is used as the default threshold. The status

! of the computation is a logical returned by the function indicating

! the existence of a unique solution (.true.), or the nonexistence of

! a unique solution or threshold passed (.false.).

! Note that this is an inappropriate method for some linear systems.

! In particular, the linear system, M x = b, where M = 10e-12 I, will

! cause this routine to fail due to the presence of small pivots.

! However, this system is perfectly conditioned, with solution x = b.

function gaussianElimination(A, b, x, threshold)

implicit none

logical gaussianElimination

real, dimension(:, :), intent(in) :: A ! Assume the shape of A.

real, dimension(:), intent(in) :: b ! Assume the shape of b.

real, dimension(:), intent(out) :: x ! Assume the shape of x.

! The optional attribute specifies that the indicated argument

40

! is not required to be present in a call to the function. The

! presence of optional arguments, such as threshold, may be checked

! using the intrinsic logical function, present (see below).

real, optional, intent(in) :: threshold

integer i, j ! Local index variables.

integer N ! Order of the linear system.

real m ! Multiplier.

real :: smallestPivot = DEFAULT_SMALLEST_PIVOT

! Pointers to the appropriate rows of the matrix during the elmination.

real, dimension(:), pointer :: pivotRow

real, dimension(:), pointer :: currentRow

! Copies of the input arguments. These copies are modified during

! the computation.

! The target attribute is used to indicate that the specified

! variable may be the target of a pointer. Rows of ACopy are targets

! of pivotRow and currentRow, defined above.

real, dimension(size(A, 1), size(A, 2)), target :: ACopy

real, dimension(size(b)) :: bCopy

! Status of the computation. The return value of the function.

logical successful

! Change the smallestPivot if the threshold argument was included.

if (present(threshold)) smallestPivot = abs(threshold)

! Setup the order of the system by using the intrinsic function size.

! size returns the number of elements in the specified dimension of

! an array or the total number of elements if the dimension is not

! specified. Also assume that a unique solution exists initially.

N = size(b)

ACopy = A

bCopy = b

successful = .true.

! Begin the Gaussian elimination algorithm.

! Note the use of array sections in the following loops. These

! eliminate the need for many do loops that are common in Fortran

! 77 code.

! Pointers are also used below and enhance the readability of the

! elimination process.

! Begin with the first row.

i = 1

! Reduce the system to upper triangular.

do while ((successful) .and. (i <= N-1))

! The following statement is called pointer assignment and uses

! the pointer assignment operator `=>'. This causes pivotRow

41

! to be an alias for the ith row of ACopy. Note that this does

! not cause any movement of data.

! Assign the pivot row.

pivotRow => ACopy(i, :)

! Verify that the current pivot is not smaller than smallestPivot.

successful = abs(pivotRow(i)) >= smallestPivot

if (successful) then

! Eliminate the entries in the pivot column below the pivot row.

do j = i+1, N

! Assign the current row.

currentRow => ACopy(j, :)

! Calculate the multiplier.

m = currentRow(i) / pivotRow(i)

! Perform the elimination step on currentRow and right

! hand side, bCopy.

currentRow = m * pivotRow - currentRow

bCopy(j) = m * bCopy(i) - bCopy(j)

end do

end if

! Move to the next row.

i = i + 1

end do

! Check the last pivot.

pivotRow => ACopy(N, :)

if (successful) successful = abs(pivotRow(N)) >= smallestPivot

if (successful) then

do i = N, 2, -1 ! Backward substitution.

! Determine the ith unknown, x(i).

x(i) = bCopy(i) / ACopy(i, i)

! Substitute the now known value of x(i), reducing the order of

! the system by 1.

bCopy = bCopy - x(i) * ACopy(:, i)

end do

end if

! Determine the value of x(1) as a special case.

if (successful) x(1) = bCopy(1) / ACopy(1, 1)

! Prepare the return value of the function.

gaussianElimination = successful

42

end function gaussianElimination

! The LU decomposition of a matrix may be represented in a compact form

! existing in a single matrix, M, if the assignments M=L and M=U are

! done (in that order). The diagonal entries in L are assumed to be

! unity so that no storage space is necessary. Instead, the diagonal

! of M is used to hold the diagonal entries of U. This is a common

! method of storing the LU decomposition of a matrix.

! The algorithm belows makes an additional assumption concerning the

! pivots or diagonal elements of U. Computation terminates if one of

! these pivots is smaller than the given or default threshold. In this

! case, the LU decomposition is not formed. Note that this algorithm

! successfully terminates if such an LU can be computed. In this case

! the coefficient matrix, A, is nonsingular. (No attempt for recovery,

! such as permutation of rows, is done.)

! Compute the LU decomposition of A, storing the result in LU so that

! A is not overwritten. If the threshold argument is present, it is used

! as the smallest allowable pivot encountered in the computation;

! otherwise, DEFAULT_SMALLEST_PIVOT, defined in this module, is used as

! the default threshold during the computation. The status of the

! computation is a logical returned by the function indicating the

! success (.true.) or failure (.false.) of the factorization

! After the computation, LU will contain the multipliers below the main

! diagonal (L) and the result after elimination on and above the main

! diagonal (U), so that A = L * U.

function LUFactor (A, LU, threshold)

implicit none

logical LUFactor

real, dimension(:, :), intent(in) :: A

real, dimension(:, :), intent(out) :: LU

real, optional, intent(in) :: threshold

integer k, i

integer N

logical successful ! Status of the computation.

real :: smallestPivot = DEFAULT_SMALLEST_PIVOT

! Reassign the smallestPivot, set the order of the system, and

! copy A into LU as it will be written to during the factorization.

if (present(threshold)) smallestPivot = abs(threshold)

N = size(A, 1)

LU = A

! Begin the LU factorization algorithm.

! The status of the computation is initially successful.

successful = .true.

k = 1 ! Begin with the first column.

do while ((successful) .and. (k <= N-1))

43

! Verify that the kth pivot is not smaller than smallestPivot.

successful = abs(LU(k, k)) >= smallestPivot

if (successful) then

! Calculate the multipliers (L) for the current column.

LU(k+1:N, k) = LU(k+1:N, k) / LU(k, k)

! Perform elimination on the upper portion of the matrix (U).

do i = k+1, N

LU(i, k+1:N) = LU(i, k+1:N) - LU(i, k) * LU(k, k+1:N)

enddo

k = k + 1 ! Move to the next column.

end if

enddo

! Prepare the return value of the function.

LUFactor = successful

end function LUFactor

! Let A = L*U where LU represents the LU decomposition of A stored in the

! format produced by LUFactor, A, L, U in R**(NxN).

! Solve the linear system, A x = b, using the LU decomposition of A stored

! in LU. Since LU is the LU decomposition of A, A is nonsingular.

! Consequently, the columns of A constitute a basis for R**N. So, there

! must exist a unique solution to the linear system A x = b.

! LUSolve returns the solution to this linear system.

function LUSolve(LU, b) result(x)

implicit none

real, dimension(:, :), intent(in) :: LU

real, dimension(:), intent(in) :: b

real, dimension(size(b)) :: x

integer k

integer N

real, dimension(size(b)) :: bCopy

! Determine the order of the system and store a copy of b in bCopy

! as it is written during the computation.

N = size(b)

bCopy = b

! Assume LU is in the form of LU and solve the system in two steps.

! First, using forward elmination to solve L y = b, then using

! backward elmination to solve U x = y. In both cases, the right

! hand side is overwritten with the solution as it is computed.

! Forward elimination. Store the solution into the right hand side.

do k = 1, N-1

bCopy(k+1:N) = bCopy(k+1:N) - bCopy(k) * LU(k+1:N, k)

44

end do

! Backward elimination. Store the solution into the right hand side.

do k = N, 2, -1

bCopy(k) = bcopy(k) / LU(k, k)

bCopy(1:k-1) = bCopy(1:k-1) - bCopy(k) * LU(1:k-1, k)

end do

! Solve for the 1st unknown as a special case.

bCopy(1) = bCopy(1) / LU(1, 1)

! Assign a return value for the function via its result variable, x.

x = bCopy

end function LUSolve

! Output A in Matlab format, using name in the Matlab assignment statement.

subroutine printMatrix(A, name)

implicit none

real, dimension(:, :) :: A ! Assume the shape of A.

character name ! Name for use in assignment, ie, name =

integer n, m, i, j

n = size(A, 1)

m = size(A, 2)

write(*, fmt="(a1,a5)", advance = "no") name, ' = ['

! Output the matrix, except for the last row, which needs no `;'.

do i = 1, n-1

! Output current row.

do j = 1, m-1

write(*, fmt="(f10.6,a2)", advance = "no") A(i, j), ', '

end do

! Output last element in row and end current row.

write(*, fmt="(f10.6,a1)") A(i, m), ';'

end do

! Output the last row.

do j = 1, m-1

write(*, fmt="(f10.6,a2)", advance = "no") A(i, j), ', '

end do

! Output last element in row and end.

write(*, fmt="(f10.6,a1)") A(i, m), ']'

end subroutine printMatrix

! Output b in Matlab format, using name in the Matlab assignment statement.

45

subroutine printVector(b, name)

implicit none

real, dimension(:) :: b ! Assume the shape of b.

character name ! Name for use in assignment, ie, name =

integer n, i

n = size(b)

write(*, fmt="(a1,a5)", advance = "no") name, ' = ['

do i = 1, n-1

write(*, fmt = "(f10.6,a2)", advance = "no") b(i), ', '

end do

write(*, fmt = "(f10.6,a2)") b(n), ']'''

end subroutine printVector

end module LinearSolvers

! A program to solve linear systems using the LinearSolvers module.

program SolveLinearSystem

! Include the module for the various linear solvers.

use LinearSolvers

implicit none

integer, parameter :: N = 5 ! Order of the linear system.

real, parameter :: TOO_SMALL = 1.0e-7 ! Threshold for pivots.

! Declare the necessary arrays and vectors to solve the linear system

! A x = b.

real, dimension(N, N) :: A ! Coefficient matrix.

real, dimension(N) :: x, b ! Vector of unknowns, and right hand side.

real, dimension(N, N) :: LU ! Matrix for LU factorization of A.

logical successful ! Status of computations.

! The intrinsic subroutine, random_number, fills a real array or scalar,

! with uniformly distributed random variates in the interval [0,1).

call random_number(A) ! Initialize the coefficient matrix.

call random_number(b) ! Initialize the right-hand side.

! Output the matrix in Matlab format for ease of checking the solution.

call printMatrix(A, 'A')

call printVector(b, 'b')

46

! Use Gaussian elmination to calcuate the solution of the linear system.

! The call below uses the default threshold specified in the

! LinearSolvers module by omitting the optional argument.

successful = gaussianElimination(A, b, x)

print *, '===================================='

print *, 'Gaussian Elimination:'

print *, '------------------------------------'

if (successful) then

call printVector(x, 'x')

print *, 'Infinity Norm of Difference = ', &

maxval(abs (matmul(A, x) - b))

else

print *, 'No unique solution or threshold passed.'

end if

! Compute the LU decomposition of A.

successful = LUFactor(A, LU)

! Calculate the solution of the linear system given the LU decomposition.

! Output the results.

print *

print *, '===================================='

print *, 'LU Factorization:'

print *, '------------------------------------'

if (successful) then

x = LUSolve(LU, b)

print *, 'LU Decomposition:'

call printMatrix(LU, 'M')

call printVector(x, 'x')

print *, 'Infinity Norm of Difference = ', &

maxval(abs (matmul(A, x) - b))

else

print *, 'No unique solution or threshold passed.'

end if

end program SolveLinearSystem

4.3 One-Dimensional Multigrid

! Full Multigrid V-cycle for a one dimensional pde, u''(x) = g(x),

! u(0) = 1, u(1) = e on [0,1].

program FMV

! u contains the approximate solution to the current problem on all grids.

! f contains the right hand side for the current problem on all grids.

! gridLevelInfo contains the starting index (into u and

! f) of the current grid as well as the dimension of the current

47

! grid.

! fullSize is the total static storage necessary to maintain

! results for all grids during execution.

! nSweepsBefore is the number of relaxation sweeps to perform

! before injection of the residual to the next coarser level.

! nSweepsAfter is the number of relaxation sweeps to perform

! after correction to the solution on the current grid.

! g is the right hand side of the de.

implicit none

integer, parameter :: K = 15 ! The number of grid levels

integer, parameter :: fullSize = 2**(K+1) + K - 2

real u(fullSize), f(fullSize)

integer gridLevelInfo(K,2)

integer nSweepsBefore, nSweepsAfter

parameter (nSweepsBefore = 1)

parameter (nSweepsAfter = 1)

integer i, n ! Index variables

integer index ! Current displacement into u and f

integer fineIndex, coarseIndex ! Displacements into u and f

integer nFine, nCoarse ! Size of fine and coarse grids

integer level ! Current grid level

real h ! Current step size

interface

function g(x)

real g

real, intent(in) :: x

end function g

end interface

! Initialization

h = 0.5 ! Begin on coarsest grid

index = 1

! Set up right hand side and displacements into the solution

! and right hand side arrays, u and f.

do i = 1, K

N = 2**i + 1 ! Size of current grid

gridLevelInfo(i,1) = index

gridLevelInfo(i,2) = N

! Initialize right hand side for all grids for the FMV

! cycle. Note that this initialization is used to solve

! the problem Au = f on coarser and coarser grids. It is

48

! not for residual correction.

call setF(f(index:index+N-1), h, g) ! Note f is a vector in R**N

index = index + N

h = h/2

enddo

! Set up the boundary conditions for the coarsest grid.

! These are copied by interpolate() into finer grids.

index = gridLevelInfo(1,1)

N = gridLevelInfo(1,2)

call setCoarseBC(u(index:index+N-1))

! Begin FMV-cycle

! Relax on coarsest grid.

! Note that this code is duplicated within the general loop. Here,

! it sets up the coarsest grid for the following loop.

! Notice that relax with one unknown is a direct solve on the

! coarsest grid.

call relax(u(index:index+N-1), f(index:index+N-1), 1)

do level = 2, K

! Retrieve intial guess from previous coarser grid using

! interpolation. Note that this information has been

! calculated either by the direct solve above or the

! ascent phase of the V-cycle in the general case.

fineIndex = gridLevelInfo(level,1)

nFine = gridLevelInfo(level,2)

coarseIndex = gridLevelInfo(level-1,1)

nCoarse = gridLevelInfo(level-1,2)

call interpolate(u(fineIndex:fineIndex+nFine-1), &

u(coarseIndex:coarseIndex+nCoarse-1))

! Begin the descent phase of a single V-cycle.

! Descend to the coarsest grid for the current problem.

do i = level, 2, -1

fineIndex = gridLevelInfo(i,1)

coarseIndex = gridLevelInfo(i-1,1)

nFine = gridLevelInfo(i,2) ! Dimension of fine grid

nCoarse = gridLevelInfo(i-1,2) ! Dimension of coarse grid

49

! Relax on current grid using the initial guess just

! interpolated from the previous coarser grid.

call relax(u(fineIndex:fineIndex+nFine-1), &

f(fineIndex:fineIndex+nFine-1), &

nSweepsBefore)

! Inject residual of current equation into next coarser

! level. Note that this overwrites the previous right

! hand side. After the call to the subroutine

! injectResidual(), the right hand side contains

! the residual, r. The solution to Ae = r, on this coarser

! grid yields the correction for the current problem at

! level i. The correction is added in the ascent phase of

! the V-cycle.

call injectResidual(u(fineIndex:fineIndex+nFine-1), &

f(fineIndex:fineIndex+nFine-1), &

f(coarseIndex:coarseIndex+nCoarse-1))

! Force a zero initial guess for the residual equation,

! Ae = r for coarse level.

call fillZeros(u(coarseIndex:coarseIndex+nCoarse-1))

enddo ! End downward phase of V-cycle

! Now at coarsest grid, N = 3.

! Solve the current problem exactly.

! Residual equations are solved yielding corrections to the

! current equation on the next finer grid.

! Notice that relax with one unknown is a direct solve on the

! coarsest grid.

index = gridLevelInfo(1,1)

N = gridLevelInfo(1,2)

call relax(u(index:index+N-1), f(index:index+N-1), 1)

! Begin ascent phase of V-cycle.

! Ascend to the finest grid (level) for the current

! problem.

do i = 2, level

coarseIndex = gridLevelInfo(i-1,1)

fineIndex = gridLevelInfo(i,1)

nCoarse = gridLevelInfo(i-1,2)

nFine = gridLevelInfo(i,2)

50

! Get correction for current problem from previous

! level using interpolation.

! Add to the current solution of the current problem.

call correct(u(fineIndex:fineIndex+nFine-1), &

u(coarseIndex:coarseIndex+nCoarse-1))

! Relax on the fine grid problem after the correction.

call relax(u(fineIndex:fineIndex+nFine-1), &

f(fineIndex:fineIndex+nFine-1), &

nSweepsAfter)

enddo ! End upward phase of V-cycle

enddo ! End nested iteration

! Out a summary of results.

index = gridLevelInfo(K,1)

N = gridLevelInfo(K,2)

call writeResults(u(index:index+N-1), K)

contains

! Set up the boundary conditions for the coarsest grid.

! These are copied by interpolate() into finer grids.

subroutine setCoarseBC(u)

implicit none

real u(0:)

integer N

N = size(u)

u(0) = 1.0

u(N-1) = exp(1.0)

end subroutine setCoarseBC

! Set the right hand size, f, using the step size h and the right

! hand side of the pde, g(x).

subroutine setF(f, h, g)

implicit none

real f(0:)

51

integer N

real h

interface

function g(x)

real g

real, intent(in) :: x

end function g

end interface

integer i

real hSquared

hSquared = h * h

N = size(f)

do i = 1, N-2

f(i) = hSquared * exp(i * h) ! Note, x = i * h

end do

end subroutine setF

! Set the solution vector, u, to zero so that the residual equation

! is solved with initial guess 0.

subroutine fillZeros(u)

implicit none

real u(0:)

u = 0.0

end subroutine fillZeros

! Relaxation method.

! The relaxation method currently used is Jacobi.

! Note that u(0) and u(N) are both 0.0.

subroutine relax(u, f, nSweeps)

implicit none

integer nSweeps

real u(0:), f(0:)

integer i, j

integer N

52

N = size(u)

do j = 1, nSweeps

do i = 1, N-2

u(i) = 0.5 * (u(i-1) + u(i+1) - f(i))

end do

end do

end subroutine relax

subroutine interpolate(uFine, uCoarse)

implicit none

! This subroutine interpolates uCoarse to uFine.

! At even-numbered fine grid points, the values are transferred

! directly from the coarse grid.

! At odd-numbered fine grid points, value is the average of the

! two adjacent coarse grid points.

! uFine(0) and uFine(nFine-1) are boundary points.

! Note that 0 and nFine-1 are even numbered fine grid points.

real uFine(0:), uCoarse(0:)

integer i

integer nFine, nCoarse

nFine = size(uFine); nCoarse = size(uCoarse)

do i = 0, nCoarse-1

uFine(2*i) = uCoarse(i)

end do

do i = 1, nFine-2, 2

uFine(i) = 0.5 * (uFine(i-1) + uFine(i+1))

end do

end subroutine interpolate

subroutine correct(uFine, uCoarse)

implicit none

! Correct the solution uFine by adding the interpolated correction

! given by uCoarse.

! Note that correct() uses the same interpolation algorithm as

! interpolate. Code was duplicated to avoid extra storage and the

! overhead of another subroutine call.

! Note that this subroutine and interpolate() could be combined if

! uFine were initialized to zero before the call to interpolate

53

! in the descent phase of each V-cycle.

real uFine(0:), uCoarse(0:)

integer i

integer nFine, nCoarse

nFine = size(uFine); nCoarse = size(uCoarse)

do i = 0, nCoarse-2

uFine(2*i) = uFine(2*i) + uCoarse(i)

uFine(2*i+1) = uFine(2*i+1) + 0.5 * &

(uCoarse(i) + uCoarse(i+1))

end do

uFine(2*(nCoarse-1)) = uFine(2*(nCoarse-1)) + uCoarse(nCoarse-1)

end subroutine correct

subroutine injectResidual(uFine, fFine, fCoarse)

implicit none

! Calculate the residual on the fine grid and inject it down to the

! coarse grid using a full weighting restriction operator.

real uFine(0:), fFine(0:)

real fCoarse(0:)

integer i ! Index variable

integer nFine, nCoarse

nFine = size(uFine); nCoarse = size(fCoarse)

! Calculate the (2*i+1)st, (2*i+2)nd, and (2*i+3)rd components of

! the residual on the fine grid.

! Inject this component of the residual into the right hand side

! for the residual equation on the coarse grid.

do i = 1, nCoarse-2

fCoarse(i) = 0.25 * (fFine(2*i-1) - &

(uFine(2*i-2) - 2 * uFine(2*i-1) + uFine(2*i)) + 2 * &

(fFine(2*i) - (uFine(2*i-1) - 2 * uFine(2*i) + &

uFine(2*i+1))) + fFine(2*i+1) - &

(uFine(2*i) - 2 * uFine(2*i+1) + uFine(2*i+2)))

end do

end subroutine injectResidual

54

subroutine writeResults(u, K)

implicit none

real u(0:)

integer K

integer N

N = size(u)

print *, '---'

print *, 'Summary of Results'

print *, '------------------'

print *, 'K =', K

print *, 'N =', N

print *, 'h =', 1.0/(N-1)

print *, 'u(0) =', u(0)

print *, 'u(0.5) =', u((N-1)/2)

print *, 'u(1) =', u(N-1)

print *, '---'

end subroutine writeResults

end ! End program FMV

! g(x) is the right hand side of the pde being solved where x is

! the independent variable.

function g(x)

real g

real, intent(in) :: x

g = exp(x)

end function g

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith,

and Jerrold L. Wagener. Fortran 90 Handbook. Intertext Publications and

McGraw-Hill, New York, 1992.

[2] Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS-Kent,

Boston, fourth edition, 1989.

[3] S. D. Conte. Elementary Numerical Analysis. McGraw-Hill Series in Infor-

mation Processing and Computers. McGraw-Hill, New York, 1965.

[4] T. M. R. Ellis. Fortran 77 Programming. Addison-Wesley, Wokingham,

England, second edition, 1990.

55

[5] Philip E. Gill, Walter Murray, and Margaret H. Wright. Numerical Lin-

ear Algebra and Optimization, volume 1. Addison-Wesley, Redwood City,

California, 1991.

[6] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-

ematics. Addison-Wesley, Reading, Massachusetts, 1989.

[7] David Kincaid and Ward Cheney. Numerical Analysis. Brooks/Cole, Bel-

mont, California, 1991.

[8] J. Stoer and Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,

New York, 1980.

56

