
DIGITAL Visual Fortran

Language Reference

Date: December, 1998

Software Version: DIGITAL Visual Fortran Version 6.0, Standard and Professional Editions

Operating Systems: Microsoft® Windows® 95, Windows 98, or Windows NT® Version 4

Digital Equipment Corporation
Maynard, Massachusetts

8/26/98 12:06 PM

Copyright Page

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Digital or an authorized sublicensor.

Copyright © 1998, Digital Equipment Corporation, All Rights Reserved.

AlphaGeneration, DEC, DEC Fortran, DIGITAL, FX!32, OpenVMS, VAX, VAX FORTRAN, and the
DIGITAL logo are trademarks of Digital Equipment Corporation.

Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.

ActiveX, Microsoft, MS, Microsoft Press, MS-DOS, NT, PowerPoint, Visual Basic, Visual C++, Visual
J++, Visual Studio, Win32, Win32s, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

CRAY is a registered trademark of Cray Research, Inc.

IBM is a registered trademark of International Business Machines, Inc.

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

IMSL is a trademark of Visual Numerics, Inc.

Intel and Pentium are registered trademarks of Intel Corporation.

OpenGL is a registered trademark of Silicon Graphics, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.; Java is a trademark of Sun
Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Introduction
This manual contains the description of the DIGITAL Visual Fortran programming language. It contains
information on language syntax and semantics, on adherence to various Fortran standards, and on
extensions to those standards.

This manual is intended for experienced applications programmers who have a basic understanding of
Fortran concepts and the Fortran 90 language.

Some familiarity with your operating system is helpful. This manual is not a Fortran or programming
tutorial.

This document contains the following major sections (this color denotes a link):

Section Description

Overview Describes language standards, language compatibility, and Fortran 90
features.

Program Structure,
Characters, and Source Forms

Describes program structure, the Fortran 90 character set, and source
forms.

Data Types, Constants, and
Variables

Describes intrinsic and derived data types, constants, variables
(scalars and arrays), and substrings.

Expressions and Assignment
Statements

Describes expressions and assignment.

Specification Statements Describes specification statements, which declare the attributes of
data objects.

Dynamic Allocation Describes dynamic allocation of data objects.

Execution Control Describes constructs and statements that can transfer control within a
program.

Program Units and Procedures Describes program units (including modules), subroutines and
functions, and procedure interfaces.

Intrinsic Procedures Contains general information on Visual Fortran intrinsic procedures.
Each intrinsic is fully described in the A-Z Reference.

Data Transfer I/O Statements Describes data transfer input/output (I/O) statements.

I/O Formatting Describes the rules for I/O formatting.

File Operation I/O Statements Describes auxiliary I/O statements you can use to perform file
operations on Windows NT and Windows 95 systems.

Compilation Control
Statements and Compiler
Directives

Describes compilation control statements and compiler directives.

Scope and Association Describes scope and association.

Obsolescent and Deleted
Language Features

Describes obsolescent language features in Fortran 90 and Fortran 95.

Additional Language Features Describes some statements and language features supported for
programs written in older versions of Fortran.

Character and Key Code
Charts

Describes the Visual Fortran character sets available on Windows NT
and Windows 95 systems.

Data Representation Models Describes data representation models for numeric intrinsic functions.

FORTRAN 77 Syntax Summarizes the syntax for features of the ANSI FORTRAN 77
Standard.

Summary of Language
Extensions

Summarizes DIGITAL Fortran extensions to the Fortran 90 Standard.

A-Z Reference Organizes the functions, subroutines, and statements available in
Visual Fortran by the operations they perform. Also has descriptions
of all Visual Fortran statements and intrinsics (arranged in
alphabetical order).

Glossary Contains abbreviated definitions of some commonly used terms in
this manual.

Other Sources of Information

This section alphabetically lists some commercially published documents that provide reference or tutorial
information on Fortran 90 and Fortran 95:

· Fortran 90 Explained by M. Metcalf and J. Reid; published by Oxford University Press, ISBN
0-19-853772-7.

· Fortran 90/95 Explained by M. Metcalf and J. Reid; published by Oxford University Press, ISBN
0-19-851888-9.

· Fortran 90/95 for Scientists and Engineers by S. Chapman; published by McGraw-Hill, ISBN
0-07-011938-4.

· Fortran 90 Handbook by J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener; published by
Intertext Publications (McGraw-Hill), ISBN 0-07-000406-4.

· Fortran 90 Programming by T. Ellis, I. Philips, and T. Lahey; published by Addison-Wesley, ISBN
0201-54446-6.

· Introduction to Fortran 90/95 by Stephen J. Chapman; published by McGraw-Hill, ISBN
0-07-011969-4.

· Programmer’s Guide to Fortran 90, Second Edition by W. Brainerd, C. Goldberg, and J. Adams;
published by Unicomp, ISBN 0-07-000248-7.

DIGITAL does not endorse these books or recommend them over other books on the same subjects.

Language Reference Conventions

This section discusses the following:

o General Conventions
o Syntax Conventions
o Platform Labels

General Conventions

The Language Reference uses the following general conventions. (Note that in most cases, blanks are not
significant in Fortran 90.) Text in this color denotes a link.

When you see this Here is what it means

Extensions to Fortran 90 Dark teal type indicates extensions to the Fortran 90 Standard. These
extensions may or may not be implemented by other compilers that
conform to the language standard.

OUT.TXT, ANOVA.EXE,
COPY,
LINK, FL32

Uppercase (capital) letters indicate filenames and MS-DOS®-level
commands used in the command console. Uppercase is also used for
command-line options (unless the application accepts only
lowercase).

! Comment line
WRITE (*,*) ’Hello &
&World’

This kind of type is used for program examples, program output, and
error messages within the text. An exclamation point marks the
beginning of a comment in sample programs. Continuation lines are
indicated by an ampersand (&) after the code at the end of a line to
be continued and before the code on the following line.

AUTOMATIC,
INTRINSIC, WRITE

Bold capital letters indicate Fortran 90 statements, functions,
subroutines, and keywords. Keywords are a required part of statement
syntax, unless enclosed in brackets as explained below.
In the sentence, "The following steps occur when a DO WHILE
statement is executed," the phrase DO WHILE is a Fortran 90
keyword.

other keywords Bold lowercase letters are used for keywords of other languages.
In the sentence, "A Fortran 90 subroutine is the equivalent of a
function of type void in C," the word void is a keyword of C.

expression Words in italics indicate placeholders for information that you must
supply. A file-name is an example of this kind of information. Italics
are also used to introduce new terms.

[optional item] Items inside single square brackets are optional. In some examples,
square brackets are used to show arrays.

{choice1 | choice2} Braces and a vertical bar indicate a choice among two or more items.
You must choose one of the items unless all of the items are also
enclosed in square brackets.

s[, s]...
A horizontal ellipsis (three dots) following an item indicates that the
item preceding the ellipsis can be repeated. In code examples, a
horizontal ellipsis means that not all of the statements are shown.

KEY NAMES Small capital letters are used for the names of keys and key
sequences, such as ENTER and CTRL+C.
A plus (+) indicates a combination of keys. For example, CTRL+E
means to hold down the CTRL key while pressing the E key.
The carriage-return key, sometimes marked with a bent arrow, is
referred to as ENTER.

The cursor arrow keys on the numeric keypad are called DIRECTION
keys. Individual DIRECTION keys are referred to by the direction of
the arrow on the key top (LEFT ARROW, RIGHT ARROW, UP ARROW,
DOWN ARROW) or the name on the key top (PAGE UP, PAGE DOWN).
The key names used in this manual correspond to the names on the
IBM® Personal Computer keys. Other machines may use different
names.

Compatibility line The projects or libraries listed are compatible with the language
element described. (See the A-Z Summary.)

Fortran This term refers to language information that is common to ANSI
FORTRAN 77, ANSI/ISO Fortran 90, and DIGITAL Fortran.

Fortran 90 This term refers to language information that is common to
ANSI/ISO Fortran 90 and DIGITAL Fortran.

Fortran 95 This term refers to language information that is common to
ANSI/ISO Fortran 95 and DIGITAL Fortran.

integer This term refers to the INTEGER(KIND=1), INTEGER(KIND=2),
INTEGER (INTEGER(KIND=4)), and INTEGER(KIND=8) data
types as a group.

real This term refers to the REAL (REAL(KIND=4)), DOUBLE
PRECISION (REAL(KIND=8)), and REAL(KIND=16) data types as
a group.

complex This term refers to the COMPLEX (COMPLEX(KIND=4)) and
DOUBLE COMPLEX (COMPLEX(KIND=8)) data types as a group.

logical This term refers to the LOGICAL(KIND=1), LOGICAL(KIND=2),
LOGICAL (LOGICAL(KIND=4)), and LOGICAL(KIND=8) data
types as a group.

Syntax Conventions

Language Reference Conventions

The Language Reference uses certain conventions for language syntax. For example, consider the
following syntax for the PARAMETER statement:

PARAMETER [(] c = expr [, c = expr]...[)]

This syntax shows that to use this statement, you must specify the following:

o The keyword PARAMETER
o An optional left parenthesis
o One or more c=expr items, where c is a named constant and expr is a value; note that a comma must

appear between c=expr items.
The three dots following the syntax means you can enter as many c=expr items as you like.

o An optional terminating right parenthesis

The dark teal brackets ([]) indicate that the optional parentheses are an extension to standard Fortran.

Platform Labels

A platform is a combination of operating system and central processing unit (CPU) that provides a distinct
environment in which to use a product (in this case, a language). For example, Microsoft® Windows® 95
on Intel® is a platform.

Information applies to all supported platforms unless it is otherwise labeled for a specific platform (or
platforms), as follows:

VMS Applies to OpenVMSTM on Alpha processors.

U*X Applies to DIGITAL UNIX® on Alpha processors.

WNT Applies to Microsoft Windows NT® on Alpha and Intel processors.

W95 Applies to Microsoft Windows 95 on Intel processors.

Alpha Applies to OpenVMS, DIGITAL UNIX, and Microsoft Windows NT on Alpha processors.
Only the Professional Edition of Visual Fortran supports Alpha processors (see System
Requirements and Optional Software in Getting Started).

x86 Applies to Microsoft Windows NT and Windows 95 on Intel processors (see System
Requirements and Optional Software in Getting Started).

Language Reference Conventions

Overview Page 1 of 9

Overview

This chapter discusses DIGITAL Fortran standards conformance and language compatibility, and
provides an overview of Fortran 90, Fortran 95, and High Performance Fortran features.

Graphic Representation of DIGITAL Fortran

Fortran 90 is a superset that includes FORTRAN 77. Fortran 95 includes Fortran 90 and most
features of FORTRAN 77. DIGITAL Fortran fully supports the FORTRAN 77 and Fortran 90
Standards, and supports many Fortran 95 features.

For more information, see:

� Language Standards Conformance
� Language Compatibility
� Fortran 90 Features
� Fortran 95 Features

Language Standards Conformance

DIGITAL Fortran conforms to American National Standard Fortran 90 (ANSI X3.198-1992)1,
American National Standard Fortran 95 (ANSI X3J3/96-007)2, and includes support for the High
Performance Fortran Language Specification.

The ANSI committee X3J3 is currently answering questions of interpretation of Fortran 90 and
Fortran 95 language features. Any answers given by the ANSI committee that are related to features
implemented in DIGITAL Fortran may result in changes in future releases of the DIGITAL Fortran
compiler, even if the changes produce incompatibilities with earlier releases of DIGITAL Fortran.

DIGITAL Fortran provides a number of extensions to the Fortran 90 Standard. In the language
reference manual, extensions are displayed in this color.

Overview Page 2 of 9

DIGITAL Fortran also includes support for programs that conform to the previous Fortran standards
(ANSI X3.9-1978 and ANSI X3.0-1966), the International Standards Organization standard ISO
1539-1980 (E), the Federal Information Processing Institute standard FIPS 69-1, and the Military
Standard 1753 Language Specification.

1This is the same as International Standards Organization standard ISO/IEC 1539:1991 (E).
2This is the same as International Standards Organization standard ISO/IEC 1539-1:1996.

Language Compatibility

DIGITAL Fortran is highly compatible with DIGITAL Fortran 77 (on DIGITAL UNIX Alpha
systems, OpenVMS Alpha systems, Windows NT Alpha systems, OpenVMS VAX systems, and
ULTRIX RISC systems). It is substantially compatible with PDP-11 FORTRAN 77.

Fortran 90 Features

Fortran 90 offers significant enhancements to FORTRAN 77. Some of the features of Fortran 90 were
implemented in earlier versions of DIGITAL Fortran. This topic defines terms and concepts of
Fortran 90 and provides an overview of new features.

Certain features of FORTRAN 77 have been replaced by more efficient statements and routines in
Fortran 90. These features are listed in Obsolescent Features.

Each section includes tables that list statements, procedures, parameters, attributes, and other features
new to Fortran 90. Italicized terms are defined in the Glossary. Each topic includes a cross-reference
to other topics that contain more detailed information.

Although most FORTRAN 77 functionality remains unchanged in Fortran 90, some features need
special handling. For more information on building Fortran programs, refer to Compatibility
Information.

For more information, see:

� New Features
� Improved Features

New Features

The following Fortran 90 features are new to Fortran:

� Free source form

Fortran 90 provides a new free source form where line positions have no special meaning.
There are no reserved columns, trailing comments can appear, and blanks have significance
under certain circumstances (for example, P R O G R A M is not allowed as an alternative for

Overview Page 3 of 9

PROGRAM).

For more information, see Free Source Form.

� Modules

Fortran 90 provides a new form of program unit called a module, which is more powerful than
(and overcomes limitations of) FORTRAN 77 block data program units.

A module is a set of declarations that are grouped together under a single, global name.
Modules let you encapsulate a set of related items such as data, procedures, and procedure
interfaces, and make them available to another program unit.

Module items can be made private to limit accessibility, provide data abstraction, and to create
more secure and portable programs.

For more information, see MODULE PROCEDURE.

� User-defined (derived) data types and operators

Fortran 90 lets you define new data types derived from any combination of the intrinsic data
types and derived types. The derived-type object can be accessed as a whole, or its individual
components can be accessed directly.

You can extend the intrinsic operators (such as + and *) to user-defined data types, and also
define new operators for operands of any type.

For more information, see Derived Data Types and Defining Generic Operators.

� Array operations and features

In Fortran 90, intrinsic operators and intrinsic functions can operate on array-valued operands
(whole arrays or array sections).

New features for arrays include whole, partial, and masked array assignment (including the
WHERE statement for selective assignment), and array-valued constants and expressions. You
can create user-defined array-valued functions, use array constructors to specify values of a
one-dimensional array, and allocate arrays dynamically (using ALLOCATABLE and
POINTER attributes).

New intrinsic procedures create multidimensional arrays, manipulate arrays, perform
operations on arrays, and support computations involving arrays (for example, SUM sums the
elements of an array).

For more information, see Arrays and Intrinsic Procedures.

� Generic user-defined procedures

In Fortran 90, user-defined procedures can be placed in generic interface blocks. This allows

Overview Page 4 of 9

the procedures to be referenced using the generic name of the block.

Selection of a specific procedure within the block is based on the properties of the argument,
the same way as specific intrinsic functions are selected based on the properties of the
argument when generic intrinsic function names are used.

For more information, see Defining Generic Names for Procedures.

� Pointers

Fortran 90 pointers are mechanisms that allow dynamic access and processing of data. They
allow arrays to be sized dynamically and they allow structures to be linked together.

A pointer can be of any intrinsic or derived type. When a pointer is associated with a target, it
can appear in most expressions and assignments.

For more information, see POINTER -- Fortran 90 and Pointer Assignments.

� Recursion

Fortran 90 procedures can be recursive if the keyword RECURSIVE is specified on the
FUNCTION or SUBROUTINE statement line.

For more information, see Program Units and Procedures.

� Interface blocks

A Fortran 90 procedure can contain an interface block. Interface blocks can be used to do the
following:

n Describe the characteristics of an external or dummy procedure

n Define a generic name for a procedure

n Define a new operator (or extend an intrinsic operator)

n Define a new form of assignment

For more information, see Procedure Interfaces.

� Extensibility and redundancy

By using user-defined data types, operators, and meanings, you can extend Fortran to suit your
needs. These new data types and their operations can be packaged in modules, which can be
used by one or more program units to provide data abstraction.

With the addition of new features and capabilities, some old features become redundant and
may eventually be removed from the language. For example, the functionality of the ASSIGN
and assigned GO TO statements can be replaced more effectively by internal procedures. The

Overview Page 5 of 9

use of certain old features of Fortran can result in less than optimal performance on newer
hardware architectures.

For more information, see your user manual or programmer’s guide. See also Obsolescent and
Deleted Language Features.

Improved Features

The following Fortran 90 features improve previous Fortran features:

� Additional features for source text

Lowercase characters are now allowed in source text. A semicolon can be used to separate
multiple statements on a single source line. Additional characters have been added to the
Fortran character set, and names can have up to 31 characters (including underscores).

For more information, see Program Structure, Characters, and Source Forms.

� Improved facilities for numerical computation

Intrinsic data types can be specified in a portable way by using a kind type parameter indicating
the precision or accuracy required. There are also new intrinsic functions that allow you to
specify numeric precision and inquire about precision characteristics available on a processor.

For more information, see Data Types, Constants, and Variables and Intrinsic Procedures.

� Optional procedure arguments

Procedure arguments can be made optional and keywords can be used when calling procedures,
allowing arguments to be listed in any order.

For more information, see Program Units and Procedures.

� Additional input/output features

Fortran 90 provides additional keywords for the OPEN and INQUIRE statements. It also
permits namelist formatting, and nonadvancing (stream) character-oriented input and output.

For more information on formatting, see Data Transfer I/O Statements and on OPEN and
INQUIRE, see File Operation I/O Statements.

� Additional control constructs

Fortran 90 provides a new control construct (CASE) and improves the DO construct. The DO
construct can now use CYCLE and EXIT statements, and can have additional (or no) control
clauses (for example, WHILE). All control constructs (CASE, DO, and IF) can now be
named.

Overview Page 6 of 9

For more information, see Execution Control.

� Additional intrinsic procedures

Fortran 90 provides many more intrinsic procedures than existed in FORTRAN 77. Many of
these new intrinsics support mathematical operations on arrays, including the construction and
transformation of arrays. New bit manipulation and numerical accuracy intrinsics have been
added.

For more information, see Program Units and Procedures.

� Additional specification statements

The following specification statements are new in Fortran 90:

n The INTENT statement

n The OPTIONAL statement

n The Fortran 90 POINTER statement

n The PUBLIC and PRIVATE statements

n The TARGET statement

� Additional way to specify attributes

Fortran 90 lets you specify attributes (such as PARAMETER, SAVE, and INTRINSIC) in type
declaration statements, as well as in specification statements.

For more information, see Type Declaration Statements.

� Scope and Association

These concepts were implicit in FORTRAN 77, but they are explicitly defined in Fortran 90. In
FORTRAN 77, the term scoping unit applies to a program unit, but Fortran 90 expands the
term to include internal procedures, interface blocks, and derived- type definitions.

For more information, see Scope and Association.

Fortran 95 Features

Fortran 95 includes Fortran 90 and most features of FORTRAN 77.

This section briefly describes the Fortran 95 language features that have been implemented by Visual
Fortran:

Overview Page 7 of 9

� The FORALL statement and construct

In Fortran 90, you could build array values element-by-element by using array constructors and
the RESHAPE and SPREAD intrinsics. The Fortran 95 FORALL statement and construct
offer an alternative method.

FORALL allows array elements, array sections, character substrings, or pointer targets to be
explicitly specified as a function of the element subscripts. A FORALL construct allows
several array assignments to share the same element subscript control.

FORALL is a generalization of WHERE. They both allow masked array assignment, but
FORALL uses element subscripts, while WHERE uses the whole array.

DIGITAL Fortran previously provided the FORALL statement and construct as language
extensions.

� PURE user-defined procedures

Pure user-defined procedures do not have side effects, such as changing the value of a variable
in a common block. To specify a pure procedure, use the PURE prefix in the function or
subroutine statement. Pure functions are allowed in specification statements.

DIGITAL Fortran previously provided pure procedures as a language extension.

� ELEMENTAL user-defined procedures

An elemental user-defined procedure is a restricted form of pure procedure. An elemental
procedure can be passed an array, which is acted upon one element at a time. To specify an
elemental procedure, use the ELEMENTAL prefix in the function or subroutine statement.

� Pointer initialization

In Fortran 90, there was no way to define the initial value of a pointer or to assign a null value
to the pointer by using a pointer assignment operation. A Fortran 90 pointer had to be explicitly
allocated, nullified, or associated with a target during execution before association status could
be determined.

Fortran 95 provides the NULL intrinsic function that can be used to nullify a pointer.

� Derived-type structure default initialization

Fortran 95 lets you specify, in derived-type definitions, default initial values for derived-type
components.

� Automatic deallocation of allocatable arrays

Arrays declared using the ALLOCATABLE attribute can now be automatically deallocated in
cases where Fortran 90 would have assigned them undefined allocation status. For more

Overview Page 8 of 9

information, see Deallocation of Allocatable Arrays.

DIGITAL Fortran previously provided this feature.

� CPU_TIME intrinsic subroutine

This new intrinsic subroutine returns a processor-dependent approximation of processor time.

� Enhanced CEILING and FLOOR intrinsic functions

KIND can now be specified for these intrinsic functions.

� Enhanced MAXLOC and MINLOC intrinsic functions

DIM can now be specified for these intrinsic functions. DIGITAL Fortran previously provided
this feature as a language extension.

� Enhanced SIGN intrinsic function

If the compiler option /assume:minus0 is specified, the SIGN function can now distinguish
between positive and negative zero (if the processor is capable of doing so).

� Printing of -0.0

If the compiler option /assume:minus0 is specified, a floating-point value of minus zero (-0.0)
can now be printed if the processor can represent it.

� Enhanced WHERE construct

The WHERE construct has been improved to allow nested WHERE constructs and a masked
ELSEWHERE statement. WHERE constructs can now be named.

� Generic identifier allowed in END INTERFACE statement

The END INTERFACE statement of an interface block defining a generic routine now can
specify a generic identifier.

� Zero-length formats

On output, when using I, B, O, Z, and F edit descriptors, the specified value of the field width
can be zero. In such cases, the compiler selects the smallest possible positive actual field width
that does not result in the field being filled with asterisks (*).

� Comments allowed in namelist input

Fortran 95 allows comments (beginning with !) in namelist input data. DIGITAL Fortran
previously provided this feature as a language extension.

� New obsolescent features

Overview Page 9 of 9

Fortran 95 deletes several language features that were obsolescent in Fortran 90, and identifies
new obsolescent features.

DIGITAL Fortran fully supports features deleted in Fortran 95.

Program Structure, Characters, and Source Forms Page 1 of 14

Program Structure, Characters, and Source Forms

This section contains information on the following topics:

� An overview of program structure, including general information on statements and names
� Character sets
� Source forms

Program Structure

A Fortran program consists of one or more program units. A program unit is usually a sequence of
statements that define the data environment and the steps necessary to perform calculations; it is
terminated by an END statement.

A program unit can be either a main program, an external subprogram, a module, or a block data
program unit. An executable program contains one main program, and, optionally, any number of the
other kinds of program units. Program units can be separately compiled.

An external subprogram is a function or subroutine that is not contained within a main program, a
module, or another subprogram. It defines a procedure to be performed and can be invoked from
other program units of the Fortran program. Modules and block data program units are not
executable, so they are not considered to be procedures. (Modules can contain module procedures,
though, which are executable.)

Modules contain definitions that can be made accessible to other program units: data and type
definitions, definitions of procedures (called module subprograms), and procedure interfaces.
Module subprograms can be either functions or subroutines. They can be invoked by other module
subprograms in the module, or by other program units that access the module.

A block data program unit specifies initial values for data objects in named common blocks. In
Fortran 90, this type of program unit can be replaced by a module program unit.

Main programs, external subprograms, and module subprograms can contain internal subprograms.
The entity that contains the internal subprogram is its host. Internal subprograms can be invoked only
by their host or by other internal subprograms in the same host. Internal subprograms must not
contain internal subprograms.

The following sections discuss Statements, Names, and Keywords.

Statements

Program statements are grouped into two general classes: executable and nonexecutable. An
executable statement specifies an action to be performed. A nonexecutable statement describes
program attributes, such as the arrangement and characteristics of data, as well as editing and data-
conversion information.

Order of Statements in a Program Unit

Program Structure, Characters, and Source Forms Page 2 of 14

The following figure shows the required order of statements in a Fortran program unit. In this figure,
vertical lines separate statement types that can be interspersed. For example, you can intersperse
DATA statements with executable constructs.

Horizontal lines indicate statement types that cannot be interspersed. For example, you cannot
intersperse DATA statements with CONTAINS statements.

Required Order of Statements

PUBLIC and PRIVATE statements are only allowed in the scoping units of modules. The following
table shows other statements restricted from different types of scoping units.

Statements Restricted in Scoping Units

Scoping Unit Restricted Statements

Main program ENTRY and RETURN statements

Module 1 ENTRY, FORMAT, OPTIONAL, and INTENT statements, statement
functions, and executable statements

Block data program
unit

CONTAINS, ENTRY, and FORMAT statements, interface blocks,
statement functions, and executable statements

Program Structure, Characters, and Source Forms Page 3 of 14

Internal
subprogram

CONTAINS and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, SAVE, and FORMAT statements,
statement functions, and executable statements

1 The scoping unit of a module does not include any module subprograms that the module contains.

Names

Names identify entities within a Fortran program unit (such as variables, function results, common
blocks, named constants, procedures, program units, namelist groups, and dummy arguments). In
FORTRAN 77, names were called "symbolic names".

A name can contain letters, digits, an underscore (_), and the dollar sign ($) special character. The
first character must be a letter or a dollar sign..

In Fortran 90, a name can contain up to 31 characters. DIGITAL Fortran allows names up to 63
characters.

The length of a module name (in MODULE and USE statements) may be restricted by your file
system.

Note: Be careful when defining names that contain dollar signs.

On OpenVMS systems, naming conventions reserve names containing dollar signs to those
created by DIGITAL. On DIGITAL UNIX, Windows NT, and Windows 95 systems, a dollar
sign can be a symbol for command or symbol substitution in various shell and utility
commands.

In an executable program, the names of the following entities are global and must be unique in the
entire program:

� Program units
� External procedures
� Common blocks
� Modules

Examples

The following examples demonstrate valid and invalid names:

Program Structure, Characters, and Source Forms Page 4 of 14

Valid
NUMBER
FIND_IT
X

Invalid Explanation
5Q Begins with a numeral.
B.4 Contains a special character other than _ or $.
_WRONG Begins with an underscore.

The following are all valid examples of using names:

 INTEGER (SHORT) K !K names an integer variable
 SUBROUTINE EXAMPLE !EXAMPLE names the subroutine
 LABEL: DO I = 1,N !LABEL names the DO block

Keywords

A keyword can either be a part of the syntax of a statement (statement keyword), or it can be the
name of a dummy argument (argument keyword). Examples of statement keywords are WRITE,
INTEGER, DO, and OPEN. Examples of argument keywords are arguments to the intrinsic
functions.

In the intrinsic function UNPACK (VECTOR, MASK, FIELD), for example, VECTOR, MASK, and
FIELD are argument keywords. They are dummy argument names, and any variable may be
substituted in their place. Dummy argument names and real argument names are discussed in
Program Units and Procedures.

Keywords are not reserved. The compiler recognizes keywords by their context. For example, a
program can have an array named IF, read, or Goto, even though this is not good programming
practice. The only exception is the keyword PARAMETER. If you plan to use variable names
beginning with PARAMETER in an assignment statement, you need to use the compiler option
/altparam.

Using keyword names for variables makes programs harder to read and understand. For readability,
and to reduce the possibility of hard-to-find bugs, avoid using names that look like parts of Fortran
statements. Rules that describe the context in which a keyword is recognized are discussed in
Program Units and Procedures.

Argument keywords are a feature of Fortran 90 that let you specify dummy argument names
when calling intrinsic procedures, or anywhere an interface (either implicit or explicit) is defined.
Using argument keywords can make a program more readable and easy to follow. This is described
more fully in Program Units and Procedures. The syntax statements in the A-Z Reference show the
dummy keywords you can use for each Fortran procedure.

Character Sets

Program Structure, Characters, and Source Forms Page 5 of 14

DIGITAL Fortran supports the following characters:

� The Fortran 90 character set which consists of the following:

n All uppercase and lowercase letters (A through Z and a through z)
n The numerals 0 through 9
n The underscore (_)
n The following special characters:

Character Name Character Name

blank or <Tab> Blank (space) or tab : Colon

= Equal sign ! Exclamation point

+ Plus sign " Quotation mark

- Minus sign % Percent sign

* Asterisk & Ampersand

/ Slash ; Semicolon

(Left parenthesis < Less than

) Right parenthesis > Greater than

, Comma ? Question mark

. Period (decimal point) $ Dollar sign (currency symbol)

’ Apostrophe

� Other printable characters

Printable characters include the tab character (09 hex), ASCII characters with codes in the
range 20(hex) through 7E(hex), and characters in certain special character sets.

Printable characters that are not in the Fortran 90 character set can only appear in comments,
character constants, Hollerith constants, character string edit descriptors, and input/output
records.

Uppercase and lowercase letters are treated as equivalent when used to specify program behavior
(except in character constants and Hollerith constants).

For more detailed information on character sets and default character types, see Data Types,
Constants, and Variables and Using National Language Support Routines. For more information on
the ASCII character set, see ASCII and Key Code Charts.

Program Structure, Characters, and Source Forms Page 6 of 14

Source Forms

Within a program, source code can be in free, fixed, or tab form. Fixed or tab forms must not be
mixed with free form in the same source program, but different source forms can be used in different
source programs.

All source forms allow lowercase characters to be used as an alternative to uppercase characters.

Several characters are indicators in source code (unless they appear within a comment or a Hollerith
or character constant). The following are rules for indicators in all source forms:

� Comment indicator

A comment indicator can precede the first statement of a program unit and appear anywhere
within a program unit. If the comment indicator appears within a source line, the comment
extends to the end of the line.

An all blank line is also a comment line.

Comments have no effect on the interpretation of the program unit.

For more information, see comment indicators in free source form, or fixed and tab source
forms.

� Statement separator

More than one statement (or partial statement) can appear on a single source line if a statement
separator is placed between the statements. The statement separator is a semicolon character
(;).

Consecutive semicolons (with or without intervening blanks) are considered to be one
semicolon.

If a semicolon is the last character on a line, or the last character before a comment, it is
ignored.

� Continuation indicator

A statement can be continued for more than one line by placing a continuation indicator on the
line. DIGITAL Fortran allows up to 511 continuation lines in a source program.

Comments can occur within a continued statement, but comment lines cannot be continued.

Within a program unit, the END statement cannot be continued, and no other statement in the
program unit can have an initial line that appears to be the program unit END statement.

For more information, see continuation indicators in free source form, or fixed and tab source

Program Structure, Characters, and Source Forms Page 7 of 14

forms.

The following table summarizes characters used as indicators in source forms:

Indicators in Source Forms

Source Item Indicator 1 Source
Form Position

Comment ! All forms Anywhere in source code

Comment line ! Free
At the beginning of the source
line

!, C, or * Fixed In column 1
Tab In column 1

Continuation line 2 & Free At the end of the source line

Any character except zero or
blank

Fixed In column 6

Any digit except zero Tab After the first tab

Statement separator ; All forms
Between statements on the
same line

Statement label 1 to 5 decimal digits Free Before a statement
Fixed In columns 1 through 5
Tab Before the first tab

A debugging statement
3

D Fixed In column 1

Tab In column 1
1 If the character appears in a Hollerith or character constant, it is not an indicator and is ignored.
2 For all forms, up to 511 continuation lines are allowed.
3 Fixed and tab forms only.

Fixed source form is the default for files with a .FOR extension. You can select free source form in
one of three ways:

� Use the file extension .F90 for your source file.
� Use the compiler option /free.
� Use the FREEFORM compiler directive in the source file.

Source form and line length can be changed at any time by using the FREEFORM, NOFREEFORM,
or FIXEDFORMLINESIZE directives. The change remains in effect until the end of the file, or until
changed again.

Program Structure, Characters, and Source Forms Page 8 of 14

Source code can be written so that it is useable for all source forms.

Statement Labels

A statement label (or statement number) identifies a statement so that other statements can refer to it,
either to get information or to transfer control. A label can precede any statement that is not part of
another statement.

A statement label must be one to five decimal digits long; blanks and leading zeros are ignored. An
all-zero statement label is invalid, and a blank statement cannot be labeled.

Labeled FORMAT and labeled executable statements are the only statements that can be referred to
by other statements. FORMAT statements are referred to only in the format specifier of an I/O
statement or in an ASSIGN statement. Two statements within a scoping unit cannot have the same
label.

Free Source Form

In free source form, statements are not limited to specific positions on a source line, and a line can
contain from 0 to 132 characters.

Blank characters are significant in free source form. The following are rules for blank characters:

� Blank characters must not appear in lexical tokens, except within a character context. For
example, there can be no blanks between the exponentiation operator **. Blank characters can
be used freely between lexical tokens to improve legibility.

� Blank characters must be used to separate names, constants, or labels from adjacent keywords,
names, constants, or labels. For example, consider the following statements:

 INTEGER NUM
 GO TO 40
 20 DO K=1,8

The blanks are required after INTEGER, TO, 20, and DO.

� Some adjacent keywords must have one or more blank characters between them. Others do not
require any; for example, BLOCK DATA can also be spelled BLOCKDATA. The following
list shows which keywords have optional or required blanks.

Optional Blanks Required Blanks
BLOCK DATA CASE DEFAULT

DOUBLE COMPLEX DO WHILE

DOUBLE PRECISIONIMPLICIT type- specifier

ELSE IF IMPLICIT NONE

END BLOCK DATA INTERFACE ASSIGNMENT

Program Structure, Characters, and Source Forms Page 9 of 14

END DO INTERFACE OPERATOR

END FILE MODULE PROCEDURE

END FORALL RECURSIVE FUNCTION

END FUNCTION RECURSIVE SUBROUTINE

END IF RECURSIVE type-specifier FUNCTION

END INTERFACE type-specifier FUNCTION

END MODULE type-specifier RECURSIVE FUNCTION

END PROGRAM

END SELECT

END SUBROUTINE

END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

For information on statement separators (;) in all forms, see Source Forms.

Comment Indicator

In free source form, the exclamation point character (!) indicates a comment if it is within a source
line, or a comment line if it is the first character in a source line.

Continuation Indicator

In free source form, the ampersand character (&) indicates a continuation line (unless it appears in a
Hollerith or character constant, or within a comment). The continuation line is the first noncomment
line following the ampersand. Although Fortran 90 permits up to 39 continuation lines in free-form
programs, DIGITAL Fortran allows up to 511 continuation lines.

The following shows a continued statement:

 TCOSH(Y) = EXP(Y) + & ! The initial statement line
 EXP(-Y) ! A continuation line

If the first nonblank character on the next noncomment line is an ampersand, the statement continues
at the character following the ampersand. For example, the preceding example can be written as
follows:

 TCOSH(Y) = EXP(Y) + &
 & EXP(-Y)

If a lexical token must be continued, the first nonblank character on the next noncomment line must
be an ampersand followed immediately by the rest of the token. For example:

Program Structure, Characters, and Source Forms Page 10 of 14

 TCOSH(Y) = EXP(Y) + EX&
 &P(-Y)

If you indent the continuation line of a character constant, an ampersand must be the first character of
the continued line; otherwise, the blanks at the beginning of the continuation line will be included as
part of the character constant. For example:

 ADVERTISER = "Davis, O’Brien, Chalmers & Peter&
 &son"

The ampersand cannot be the only nonblank character in a line, or the only nonblank character before
a comment; an ampersand in a comment is ignored.

For details on the general rules for all source forms, see Source Forms.

Fixed and Tab Source Forms

In Fortran 95, fixed source form is identified as obsolescent.

In fixed and tab source forms, there are restrictions on where a statement can appear within a line.

By default, a statement can extend to character position 72. In this case, any text following position
72 is ignored and no warning message is printed. You can specify compiler option /extend_source to
extend source lines to character position 132.

Except in a character context, blanks are not significant and can be used freely throughout the
program for maximum legibility.

Some Fortran compilers use blanks to pad short source lines out to 72 characters. By default,
DIGITAL Fortran does not. If portability is a concern, you can use the concatenation operator to
prevent source lines from being padded by other Fortran compilers (see the example in "Continuation
Indicator" below) or you can force short source lines to be padded by using the /pad_source compiler
option.

Comment Indicator

In fixed and tab source forms, the exclamation point character (!) indicates a comment if it is within a
source line. (It must not appear in column 6 of a fixed form line; that column is reserved for a
continuation indicator.)

The letter C (or c), an asterisk (*), or an exclamation point (!) indicates a comment line when it
appears in column 1 of a source line.

Continuation Indicator

In fixed and tab source forms, a continuation line is indicated by one of the following:

Program Structure, Characters, and Source Forms Page 11 of 14

� For fixed form: Any character (except a zero or blank) in column 6 of a source line

� For tab form: Any digit (except zero) after the first tab

The compiler considers the characters following the continuation indicator to be part of the previous
line. Although Fortran 90 permits up to 19 continuation lines in a fixed-form program, DIGITAL
Fortran allows up to 511 continuation lines.

If a zero or blank is used as a continuation indicator, the compiler considers the line to be an initial
line of a Fortran statement.

The statement label field of a continuation line must be blank (except in the case of a debugging
statement).

When long character or Hollerith constants are continued across lines, portability problems can occur.
Use the concatenation operator to avoid such problems. For example:

 PRINT *, ’This is a very long character constant ’//
 + ’which is safely continued across lines’

Use this same method when initializing data with long character or Hollerith constants. For example:

 CHARACTER*(*) LONG_CONST
 PARAMETER (LONG_CONST = ’This is a very long ’//
 + ’character constant which is safely continued ’//
 + ’across lines’)
 CHARACTER*100 LONG_VAL
 DATA LONG_VAL /LONG_CONST/

Hollerith constants must be converted to character constants before using the concatenation method
of line continuation.

Debugging Statement Indicator

In fixed and tab source forms, the statement label field can contain a statement label, a comment
indicator, or a debugging statement indicator.

The letter D indicates a debugging statement when it appears in column 1 of a source line. The initial
line of the debugging statement can contain a statement label in the remaining columns of the
statement label field.

If a debugging statement is continued onto more than one line, every continuation line must begin
with a D and a continuation indicator.

By default, the compiler treats debugging statements as comments. However, you can specify the
/d_lines option to force the compiler to treat debugging statements as source text to be compiled.

The following sections discuss Fixed-format lines and Tab-format lines.

Program Structure, Characters, and Source Forms Page 12 of 14

For details on the general rules for all source forms, see Source Forms.

Fixed-Format Lines

In fixed source form, a source line has columns divided into fields for statement labels, continuation
indicators, statement text, and sequence numbers. Each column represents a single character.

The column positions for each field follow:

Field Column
Statement label 1 through 5

Continuation indicator6

Statement 7 through 72 (or 132 with the /extend_source compiler option)

Sequence number 73 through 80

By default, a sequence number or other identifying information can appear in columns 73 through 80
of any fixed-format line in a DIGITAL Fortran program. The compiler ignores the characters in this
field.

If you extend the statement field to position 132, the sequence number field does not exist.

For details on the general rules for all source forms, see Source Forms.

For details on the general rules for fixed and tab source forms, see Fixed and Tab Source Forms.

Tab-Format Lines

In tab source form, you can specify a statement label field, a continuation indicator field, and a
statement field, but not a sequence number field.

The following figure shows equivalent source lines coded with tab and fixed source form.

Line Formatting Example

Program Structure, Characters, and Source Forms Page 13 of 14

The statement label field precedes the first tab character. The continuation indicator field and
statement field follow the first tab character.

The continuation indicator is any nonzero digit. The statement field can contain any Fortran
statement. A Fortran statement cannot start with a digit.

If a statement is continued, a continuation indicator must be the first character (following the first tab)
on the continuation line.

Many text editors and terminals advance the terminal print carriage to a predefined print position
when you press the <Tab> key. However, the DIGITAL Fortran compiler does not interpret the tab
character in this way. It treats the tab character in a statement field the same way it treats a blank
character. In the source listing that the compiler produces, the tab causes the character that follows to
be printed at the next tab stop (usually located at columns 9, 17, 25, 33, and so on).

Note: Do not use tabs to position sequence numbers, or the compiler may interpret the
sequence numbers as part of the statement fields in your program.

For details on the general rules for all source forms, see Source Forms.

For details on the general rules for fixed and tab source forms, see Fixed and Tab Source Forms.

Source Code Useable for All Forms

To write source code that it is useable for all source forms (free, fixed, or tab), follow these rules:

Program Structure, Characters, and Source Forms Page 14 of 14

Blanks Treat as significant (see Free Source Form).

Statement
labels

Place in column positions 1 through 5 (or before the first tab character).

Statements Start in column position 7 (or after the first tab character).

Comment
indicator

Use only !. Place anywhere except in column position 6 (or immediately after
the first tab character).

Continuation
indicator

Use only &. Place in column position 73 of the initial line and each
continuation line, and in column 6 of each continuation line (no tab character
can precede the ampersand in column 6).

The following example is valid for all source forms:

Column:

12345678... 73

! Define the user function MY_SIN

 DOUBLE PRECISION FUNCTION MY_SIN(X)
 MY_SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &
 & - X**7/FACTOR(7)
 CONTAINS
 INTEGER FUNCTION FACTOR(N)
 FACTOR = 1
 DO 10 I = N, 1, -1
 10 FACTOR = FACTOR * I
 END FUNCTION FACTOR
 END FUNCTION MY_SIN

Data Types, Constants, and Variables Page 1 of 45

Data Types, Constants, and Variables

Each constant, variable, array, expression, or function reference in a Fortran statement has a data
type. The data type of these items can be inherent in their construction, implied by convention, or
explicitly declared.

Each data type has the following properties:

� A name

The names of the intrinsic data types are predefined, while the names of derived types are
defined in derived-type definitions. Data objects (constants, variables, or parts of constants or
variables) are declared using the name of the data type.

� A set of associated values

Each data type has a set of valid values. Integer and real data types have a range of valid values.
Complex and derived types have sets of values that are combinations of the values of their
individual components.

� A way to represent constant values for the data type

A constant is a data object with a fixed value that cannot be changed during program
execution. The value of a constant can be a numeric value, a logical value, or a character string.

A constant that does not have a name is a literal constant. A literal constant must be of intrinsic
type and it cannot be array-valued.

A constant that has a name is a named constant. A named constant can be of any type,
including derived type, and it can be array-valued. A named constant has the PARAMETER
attribute and is specified in a type declaration statement or PARAMETER statement.

� A set of operations to manipulate and interpret these values

The data type of a variable determines the operations that can be used to manipulate it. Besides
intrinsic operators and operations, you can also define operators and operations.

This chapter contains information on the following topics:

� Intrinsic data types and constants
� Derived data types
� Binary, octal, hexadecimal, and Hollerith constants
� Variables, including arrays

For More Information:

� See Type Declaration Statements.

Data Types, Constants, and Variables Page 2 of 45

� See Defined Operations.
� See the PARAMETER attribute and statement
� On valid operations for data types, see Expressions.
� On ranges for numeric literal constants, see your programmer’s guide.
� On named constants, see PARAMETER.

Intrinsic Data Types

DIGITAL Fortran provides the following intrinsic data types:

� INTEGER

There are four kind parameters for data of type integer:

n INTEGER([KIND=]1) or INTEGER*1
n INTEGER([KIND=]2) or INTEGER*2
n INTEGER([KIND=]4) or INTEGER*4
n INTEGER([KIND=]8) or INTEGER*8

This kind is only available on Alpha processors.

� REAL

There are three kind parameters for data of type real:

n REAL([KIND=]4) or REAL*4
n REAL([KIND=]8) or REAL*8
n REAL([KIND=]16) or REAL*16

This kind is only available on OpenVMS and DIGITAL UNIX systems.

� DOUBLE PRECISION

No kind parameter is permitted for data declared with type DOUBLE PRECISION. This data
type is the same as REAL([KIND=]8).

� COMPLEX

There are two kind parameters for data of type complex:

n COMPLEX([KIND=]4) or COMPLEX*8
n COMPLEX([KIND=]8) or COMPLEX*16

� DOUBLE COMPLEX

No kind parameter is permitted for data declared with type DOUBLE COMPLEX. This data
type is the same as COMPLEX([KIND=]8).

� LOGICAL

Data Types, Constants, and Variables Page 3 of 45

There are four kind parameters for data of type logical:

n LOGICAL([KIND=]1) or LOGICAL*1
n LOGICAL([KIND=]2) or LOGICAL*2
n LOGICAL([KIND=]4) or LOGICAL*4
n LOGICAL([KIND=]8) or LOGICAL*8

This kind is only available on Alpha processors.

� CHARACTER

There is one kind parameter for data of type character: CHARACTER([KIND=]1).

� BYTE

This is a 1-byte value; the data type is equivalent to INTEGER([KIND=]1).

The intrinsic function KIND can be used to determine the kind type parameter of a representation
method.

For more portable programs, you should not use the forms INTEGER([KIND=]n) or REAL([KIND=]
n). You should instead define a PARAMETER constant using the SELECTED_INT_KIND or
SELECTED_REAL_KIND function, whichever is appropriate. For example, the following
statements define a PARAMETER constant for an INTEGER kind that has 9 digits:

 INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)
 ...
 INTEGER(MY_INT_KIND) :: J
 ...

The following sections describe the intrinsic data types and forms for literal constants for each type.

For More Information:

� See the KIND intrinsic function.
� On declaration statements for intrinsic data types, see Declaration Statements for Noncharacter

Types and Declaration Statements for Character Types.
� On operations for intrinsic data types, see Expressions.
� On storage requirements for intrinsic data types, see the Data Type Storage Requirements table.

Integer Data Types

Integer data types can be specified as follows:

INTEGER
INTEGER([KIND=]n)
INTEGER*n

Data Types, Constants, and Variables Page 4 of 45

n
Is kind 1, 2, 4, or 8. Kind 8 is only available on Alpha processors.

If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not specified,
integer constants are interpreted as follows:

� If the integer constant is within the default integer kind range, the kind is default integer.

� If the integer constant is outside the default integer kind range, the kind of the integer constant
is the smallest integer kind which holds the constant.

You can change the result of a default specification by using the /integer_size:size compiler option or
the INTEGER compiler directive.

The intrinsic inquiry function KIND returns the kind type parameter, if you do not know it. You can
use the intrinsic function SELECTED_INT_KIND to find the kind values that provide a given range
of integer values. The decimal exponent range is returned by the intrinsic function RANGE.

For more information on the integer data type, see Integer Constants.

Examples

The following examples show ways an integer variable can be declared.
An entity-oriented example is:

 INTEGER, DIMENSION(:), POINTER :: days, hours
 INTEGER(2), POINTER :: k, limit
 INTEGER(1), DIMENSION(10) :: min

An attribute-oriented example is:

 INTEGER days, hours
 INTEGER(2) k, limit
 INTEGER(1) min
 DIMENSION days(:), hours(:), min (10)
 POINTER days, hours, k, limit

An integer can be used in certain cases when a logical value is expected, such as in a logical
expression evaluating a condition, as in the following:

 INTEGER I, X
 READ (*,*) I
 IF (I) THEN
 X = 1
 END IF

Integer Constants

An integer constant is a whole number with no decimal point. It can have a leading sign and is
interpreted as a decimal number.

Data Types, Constants, and Variables Page 5 of 45

Integer constants take the following form:

[s]n[n...][_k]

s
Is a sign; required if negative (-), optional if positive (+).

n
Is a decimal digit (0 through 9). Any leading zeros are ignored.

k
Is the optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2), 4 for INTEGER(4), or
8 for INTEGER(8). It must be preceded by an underscore (_).

An unsigned constant is assumed to be nonnegative.

Integer constants are interpreted as decimal values (base 10) by default. To specify a constant that is
not in base 10, use the following extension syntax:

[s] [[base] #] nnn...

s
Is an optional plus (+) or minus (-) sign.

base
Is any constant from 2 through 36.

If base is omitted but # is specified, the integer is interpreted in base 16. If both base and # are
omitted, the integer is interpreted in base 10.

For bases 11 through 36, the letters A through Z represent numbers greater than 9. For
example, for base 36, A represents 10, B represents 11, C represents 12, and so on, through Z,
which represents 35. The case of the letters is not significant.

Examples

The following examples show valid and invalid integer (base 10) constants:

Valid
0
-127
+32123
47_2

Invalid Explanation
9999999999999999999 Number too large.

Data Types, Constants, and Variables Page 6 of 45

3.14 Decimal point not allowed; this is a valid REAL constant.
32,767 Comma not allowed.
33_3 3 is not a valid kind type for integers.

The following seven integers are all assigned a value equal to 3,994,575 decimal:

 I = 2#1111001111001111001111
 m = 7#45644664
 J = +8#17171717
 K = #3CF3CF
 n = +17#2DE110
 L = 3994575
 index = 36#2DM8F

You can use integer constants to assign values to data. The following table shows assignments to
different data and lists the integer and hexadecimal values in the data:

Fortran Assignment Integer Value in Data Hexadecimal Value in Data

LOGICAL(1)X
INTEGER(1)X

X = -128 -128 Z’80’
X = 127 127 Z’7F’
X = 255 -1 Z’FF’

LOGICAL(2)X
INTEGER(2)X

X = 255 255 Z’FF’
X = -32768 -32768 Z’8000’
X = 32767 32767 Z’7FFF’
X = 65535 -1 Z’FFFF’

Real Data Types

Real data types can be specified as follows:

REAL
REAL([KIND=]n)
REAL*n
DOUBLE PRECISION

n
Is kind 4, 8, or 16. Kind 16 is only available on OpenVMS and DIGITAL UNIX systems.

If a kind parameter is specified, the real constant has the kind specified. If a kind parameter is not
specified, the kind is default real.

DOUBLE PRECISION is REAL(8). No kind parameter is permitted for data declared with type
DOUBLE PRECISION.

You can change the result of a default specification by using the /real_size:size compiler option or the

Data Types, Constants, and Variables Page 7 of 45

REAL compiler directive.

The intrinsic inquiry function KIND returns the kind type parameter. The intrinsic inquiry function
RANGE returns the decimal exponent range, and the intrinsic function PRECISION returns the
decimal precision. You can use the intrinsic function SELECTED_REAL_KIND to find the kind
values that provide a given precision and exponent range.

For more information on real data types, see General Rules for Real Constants, REAL(4) Constants,
and REAL(8) or DOUBLE PRECISION Constants.

Examples

The following examples show how real variables can be declared.
An entity-oriented example is:

 REAL (KIND = high), OPTIONAL :: testval
 REAL, SAVE :: a(10), b(20,30)

An attribute-oriented example is:

 REAL (KIND = high) testval
 REAL a(10), b(20,30)
 OPTIONAL testval
 SAVE a, b

General Rules for Real Constants

A real constant approximates the value of a mathematical real number. The value of the constant can
be positive, zero, or negative.

The following is the general form of a real constant with no exponent part:

[s]n[n...][_k]

A real constant with an exponent part has one of the following forms:

[s]n[n...]E[s]nn...[_k]
[s]n[n...]D[s]nn...
[s]n[n...]Q[s]nn...

s
Is a sign; required if negative (-), optional if positive (+).

n
Is a decimal digit (0 through 9). A decimal point must appear if the real constant has no
exponent part.

k
Is the optional kind parameter: 4 for REAL(4), 8 for REAL(8), or 16 for REAL(16) (VMS, U*X).
It must be preceded by an underscore (_).

Data Types, Constants, and Variables Page 8 of 45

Rules and Behavior

Leading zeros (zeros to the left of the first nonzero digit) are ignored in counting significant digits.
For example, in the constant 0.00001234567, all of the nonzero digits, and none of the zeros, are
significant. (See the following sections for the number of significant digits each kind type parameter
typically has).

The exponent represents a power of 10 by which the preceding real or integer constant is to be
multiplied (for example, 1.0E6 represents the value 1.0 * 10**6).

A real constant with no exponent part is (by default) a single-precision (REAL(4)) constant. You can
change the default behavior by specifying the compiler option /fpconstant.

If the real constant has no exponent part, a decimal point must appear in the string (anywhere before
the optional kind parameter). If there is an exponent part, a decimal point is optional in the string
preceding the exponent part; the exponent part must not contain a decimal point.

The exponent letter E denotes a single-precision real (REAL(4)) constant, unless the optional kind
parameter specifies otherwise. For example, -9.E2_8 is a double-precision constant (which can also
be written as -9.D2).

The exponent letter D denotes a double-precision real (REAL(8)) constant.

On OpenVMS and DIGITAL UNIX systems, the exponent letter Q denotes a quad-precision real
(REAL(16)) constant.

A minus sign must appear before a negative real constant; a plus sign is optional before a positive
constant. Similarly, a minus sign must appear between the exponent letter (E, D, or Q) and a negative
exponent, whereas a plus sign is optional between the exponent letter and a positive exponent.

If the real constant includes an exponent letter, the exponent field cannot be omitted, but it can be
zero.

To specify a real constant using both an exponent letter and a kind parameter, the exponent letter
must be E, and the kind parameter must follow the exponent part.

REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The number of digits is unlimited,
but typically only the leftmost seven digits are significant.

On DIGITAL UNIX, Windows NT, and Windows 95 systems, IEEE® S_floating format is used. On
OpenVMS systems, either DIGITAL VAX F_floating or IEEE S_floating format is used, depending
on the compiler option specified.

Examples

The following examples show valid and invalid REAL(4) constants:

Data Types, Constants, and Variables Page 9 of 45

Valid
3.14159
3.14159_4
621712._4
-.00127
+5.0E3
2E-3_4

Invalid Explanation
1,234,567. Commas not allowed.

325E-47 Too small for REAL; this is a valid DOUBLE PRECISION constant.

-47.E47 Too large for REAL; this is a valid DOUBLE PRECISION constant.
625._6 6 is not a valid kind for reals.
100 Decimal point missing; this is a valid integer constant.
$25.00 Special character not allowed.

For More Information:

� See General Rules for Real Constants.
� On the format and range of REAL(4) data, see your programmer's guide.
� On compiler options affecting REAL data, see your programmer's guide.

REAL(8) or DOUBLE PRECISION Constants

A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4)
number, and greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of
digits that precede the exponent is unlimited, but typically only the leftmost 15 digits are significant.

On DIGITAL UNIX, Windows NT, and Windows 95 systems, IEEE T_floating format is used. On
OpenVMS systems, either DIGITAL VAX D_floating, G_floating, or IEEE T_floating format is
used, depending on the compiler option specified.

Examples

The following examples show valid and invalid REAL(8) or DOUBLE PRECISION constants:

Valid
123456789D+5
123456789E+5_8
+2.7843D00
-.522D-12
2E200_8

Data Types, Constants, and Variables Page 10 of 45

2.3_8
3.4E7_8

Invalid Explanation
-.25D0_2 2 is not a valid kind for reals.
+2.7182812846182 No D exponent designator is present; this is a valid single-precision constant.
1234567890D45 Too large for D_floating format; valid for G_floating and T_floating format.
123456789.D400 Too large for any double-precision format.
123456789.D-400 Too small for any double-precision format.

For More Information:

� See General Rules for Real Constants.
� On the format and range of DOUBLE PRECISION (REAL(8)) data, see your programmer's

guide.
� On compiler options affecting DOUBLE PRECISION (REAL(8)) data, see your programmer's

guide.

REAL(16) Constants (VMS, U*X)

A REAL(16) constant has more than four times the accuracy of a REAL(4) number, and a greater
range.

A REAL(16) constant occupies 16 bytes of memory. The number of digits that precede the exponent
is unlimited, but typically only the leftmost 33 digits are significant.

Examples

The following examples demonstrate valid and invalid REAL(16) constants:

Valid
123456789Q4000
-1.23Q-400
+2.72Q0
1.88_16

Invalid Explanation
1.Q5000 Too large.
1.Q-5000 Too small.

For More Information:

� See General Rules for Real Constants.
� On the format and range of REAL(16) data, see the DIGITAL Fortran User’s Guide.

Complex Data Types

Data Types, Constants, and Variables Page 11 of 45

Complex data types can be specified as follows:

COMPLEX
COMPLEX([KIND=]n)
COMPLEX*s
DOUBLE COMPLEX

n
Is kind 4 or 8.

s
Is 8 or 16. COMPLEX(4) is specified as COMPLEX*8; COMPLEX(8) is specified as
COMPLEX*16.

If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter is
specified, the kind of both parts is default real, and the constant is of type default complex.

DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for data declared with type
DOUBLE COMPLEX.

For more information on complex data types, see General Rules for Complex Constants, COMPLEX
(4) Constants, and COMPLEX(8) or DOUBLE COMPLEX Constants.

Examples

The following examples show how complex variables can be declared.
An entity-oriented example is:

 COMPLEX (4), DIMENSION (8) :: cz, cq

An attribute-oriented example is:

 COMPLEX(4) cz, cq
 DIMENSION(8) cz, cq

General Rules for Complex Constants

A complex constant approximates the value of a mathematical complex number. The constant is a
pair of real or integer values, separated by a comma, and enclosed in parentheses. The first constant
represents the real part of that number; the second constant represents the imaginary part.

The following is the general form of a complex constant:

(c,c)

c
Is as follows:

Data Types, Constants, and Variables Page 12 of 45

n For complex constants, c is an integer or REAL(4) constant.

n For double complex constants, c is an integer, REAL(4) constant, or DOUBLE
PRECISION (REAL(8)) constant. At least one of the pair must be DOUBLE
PRECISION.

Note that the comma and parentheses are required.

COMPLEX(4) Constants

A COMPLEX(4) constant is a pair of integer or single-precision real constants that represent a
complex number.

A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as a complex number.

If the real and imaginary part of a complex literal constant are both real, the kind parameter value is
that of the part with the greater decimal precision.

The rules for REAL(4) constants apply to REAL(4) constants used in COMPLEX constants. (See
General Rules for Complex Constants and REAL(4) Constants for the rules on forming REAL(4)
constants.)

The REAL(4) constants in a COMPLEX constant have one of the following formats:

� On DIGITAL UNIX, Windows NT, and Windows 95 systems: IEEE S_floating format
� On OpenVMS systems: DIGITAL VAX F_floating or IEEE S_ floating format (depending on

the compiler option specified)

Examples

The following examples demonstrate valid and invalid COMPLEX(4) constants:

Valid
(1.7039,-1.70391)
(44.36_4,-12.2E16_4)
(+12739E3,0.)
(1,2)

Invalid Explanation
(1.23,) Missing second integer or single-precision real constant.
(1.0, 2H12) Hollerith constant not allowed.

For More Information:

� See General Rules for Complex Constants.
� On the format and range of COMPLEX (COMPLEX(4)) data, see your programmer's guide.
� On compiler options affecting REAL data, see your programmer's guide.

Data Types, Constants, and Variables Page 13 of 45

COMPLEX(8) or DOUBLE COMPLEX Constants

A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a complex
number. One of the pair must be a double-precision real constant, the other can be an integer, single-
precision real, or double-precision real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is
interpreted as a complex number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision
portion of COMPLEX(8) or DOUBLE COMPLEX constants. (See General Rules for Complex
Constants and REAL(8) or DOUBLE PRECISION Constants for the rules on forming DOUBLE
PRECISION constants.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have
one of the following formats:

� On DIGITAL UNIX, Windows NT, and Windows 95 systems: IEEE T_floating format
� On OpenVMS systems: DIGITAL VAX D_floating, G_floating, or IEEE T_floating format

(depending on the compiler option specified)

Examples

The following examples demonstrate valid and invalid COMPLEX(8) or DOUBLE COMPLEX
constants:

Valid
(1.7039,-1.7039D0)
(547.3E0_8,-1.44_8)
(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

Invalid Explanation
(1.23D0,) Second constant missing.
(1D1,2H12) Hollerith constants not allowed.

(1,1.2)
Neither constant is DOUBLE PRECISION; this is a valid single-
precision constant.

For More Information:

� See General Rules for Complex Constants.
� On the format and range of DOUBLE COMPLEX data, see your programmer's guide.
� On compiler options affecting DOUBLE COMPLEX data, see your programmer's guide.

Logical Data Types

Data Types, Constants, and Variables Page 14 of 45

Logical data types can be specified as follows:

LOGICAL
LOGICAL([KIND=]n)
LOGICAL*n

n
Is kind 1, 2, 4, or 8. Kind 8 is only available on Alpha processors.

If a kind parameter is specified, the logical constant has the kind specified. If no kind parameter is
specified, the kind of the constant is default logical.

For more information on logical data types, see Logical Constants.

Examples

The following examples show how logical variables can be declared.
An entity-oriented example is:

 LOGICAL, ALLOCATABLE :: flag1, flag2
 LOGICAL (KIND = byte), SAVE :: doit, dont

An attribute-oriented example is:

 LOGICAL flag1, flag2
 LOGICAL (KIND = byte) doit, dont
 ALLOCATABLE flag1, flag2
 SAVE doit, dont

Logical Constants

A logical constant represents only the logical values true or false, and takes one of the following
forms:

.TRUE.[_k]

.FALSE.[_k]

k
Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2), 4 for LOGICAL(4),
or 8 for LOGICAL(8). It must be preceded by an underscore (_).

Logical data type ranges correspond to their comparable integer data type ranges. For example, the
LOGICAL(2) range is the same as the INTEGER(2) range.

For More Information:

For details on integer data type ranges, see your programmer’s guide.

Data Types, Constants, and Variables Page 15 of 45

Character Data Type

The character data type can be specified as follows:

CHARACTER
CHARACTER([KIND=]n)
CHARACTER*len

n
Is kind 1.

len
Is a string length (not a kind). For more information, see Declaration Statements for Character
Types.

If no kind type parameter is specified, the kind of the constant is default character.

Several Multi-Byte Character Set (MBCS) functions are available to manipulate special non-English
characters. These are described in Using National Language Support Routines.

For more information on the character data type, see Character Constants, C Strings, and Character
Substrings.

Character Constants

A character constant is a character string enclosed in delimiters (apostrophes or quotation marks). It
takes one of the following forms:

[k_]’ch[ch...]’ [C]
[k_]"ch[ch...]" [C]

k
Is the optional kind parameter: 1 (the default). It must be followed by an underscore (_). Note
that in character constants, the kind must precede the constant.

ch
Is an ASCII character.

C
Is a C string specifier. C strings can be used to define strings with nonprintable characters. For
more information, see C Strings in Character Constants.

Rules and Behavior

The value of a character constant is the string of characters between the delimiters. The value does
not include the delimiters, but does include all blanks or tabs within the delimiters.

Data Types, Constants, and Variables Page 16 of 45

If a character constant is delimited by apostrophes, use two consecutive apostrophes (’’) to place an
apostrophe character in the character constant.

Similarly, if a character constant is delimited by quotation marks, use two consecutive quotation
marks ("") to place a quotation mark character in the character constant.

The length of the character constant is the number of characters between the delimiters, but two
consecutive delimiters are counted as one character.

The length of a character constant must be in the range of 0 to 2000. Each character occupies one byte
of memory.

If a character constant appears in a numeric context (such as an expression on the right side of an
arithmetic assignment statement), it is considered a Hollerith constant.

A zero-length character constant is represented by two consecutive apostrophes or quotation marks.

Examples

The following examples demonstrate valid and invalid character constants:
Valid
"WHAT KIND TYPE? "
’TODAY’’S DATE IS: ’
"The average is: "
’’

Invalid Explanation
’HEADINGS No trailing apostrophe.
’Map Number:" Beginning delimiter does not match ending delimiter.

For More Information, see Declaration Statements for Character Types.

C Strings in Character Constants

String values in the C language are terminated with null characters (CHAR(0)) and can contain
nonprintable characters (such as backspace).

Nonprintable characters are specified by escape sequences. An escape sequence is denoted by using
the backslash (\) as an escape character, followed by a single character indicating the nonprintable
character desired.

This type of string is specified by using a standard string constant followed by the character C. The
standard string constant is then interpreted as a C-language constant. Backslashes are treated as
escapes, and a null character is automatically appended to the end of the string (even if the string
already ends in a null character).

The following table shows the escape sequences that are allowed in character constants:

Data Types, Constants, and Variables Page 17 of 45

Table: C-Style Escape Sequences

Escape Sequence Represents

\a A bell

\b A backspace

\f A formfeed

\n A new line

\r A carriage return

\t A horizontal tab

\v A vertical tab

\xhh A hexadecimal bit pattern

\ooo An octal bit pattern

\0 A null character

\\ A backslash

If a string contains an escape sequence that isn't in this table, the backslash is ignored.

A C string must also be a valid Fortran string. If the string is delimited by apostrophes, apostrophes in
the string itself must be represented by two consecutive apostrophes (’’).

For example, the escape sequence \’string causes a compiler error because Fortran interprets the
apostrophe as the end of the string. The correct form is \’’string.

If the string is delimited by quotation marks, quotation marks in the string itself must be represented
by two consecutive quotation marks ("").

The sequences \ooo and \xhh allow any ASCII character to be given as a one- to three-digit octal or a
one- to two-digit hexadecimal character code. Each octal digit must be in the range 0 to 7, and each
hexadecimal digit must be in the range 0 to F. For example, the C strings ’\010’C and ’\x08’C both
represent a backspace character followed by a null character.

The C string ’\\abcd’C is equivalent to the string ’\abcd’ with a null character appended. The
string ’’C represents the ASCII null character.

Character Substrings

A character substring is a contiguous segment of a character string. It takes one of the following
forms:

Data Types, Constants, and Variables Page 18 of 45

v ([e1]:[e2])
a (s [, s] . . .) ([e1]:[e2])

v
Is a character scalar constant, or the name of a character scalar variable or character structure
component.

e1
Is a scalar integer (or other numeric) expression specifying the leftmost character position of
the substring; the starting point.

e2
Is a scalar integer (or other numeric) expression specifying the rightmost character position of
the substring; the ending point.

a
Is the name of a character array.

s
Is a subscript expression.

Both e1 and e2 must be within the range 1,2, ..., len, where len is the length of the parent character
string. If e1 exceeds e2, the substring has length zero.

Rules and Behavior

Character positions within the parent character string are numbered from left to right, beginning at 1.

If the value of the numeric expression e1 or e2 is not of type integer, it is converted to an integer
before use (any fractional parts are truncated).

If e1 is omitted, the default is 1. If e2 is omitted, the default is len. For example, NAMES(1,3)(:7)
specifies the substring starting with the first character position and ending with the seventh character
position of the character array element NAMES(1,3).

Examples

Consider the following example:

 CHARACTER*8 C, LABEL
 LABEL = ’XVERSUSY’
 C = LABEL(2:7)

LABEL(2:7) specifies the substring starting with the second character position and ending with the
seventh character position of the character variable assigned to LABEL, so C has the value ’VERSUS’.

Consider the following example:

Data Types, Constants, and Variables Page 19 of 45

TYPE ORGANIZATION
 INTEGER ID
 CHARACTER*35 NAME
END TYPE ORGANIZATION

TYPE(ORGANIZATION) DIRECTOR
CHARACTER*25 BRANCH, STATE(50)

The following are valid substrings based on this example:

 BRANCH(3:15) ! parent string is a scalar variable
 STATE(20) (1:3) ! parent string is an array element
 DIRECTOR%NAME ! parent string is a structure component

Consider the following example:

CHARACTER(*), PARAMETER :: MY_BRANCH = "CHAPTER 204"
CHARACTER(3) BRANCH_CHAP
BRANCH_CHAP = MY_BRANCH(9:11) ! parent string is a character constant

MY_BRANCH is a character string of length 3 that has the value ’204’.

For More Information:

� See Arrays.
� See Array Elements.
� See Structure Components.

Derived Data Types

You can create derived data types from intrinsic data types or previously defined derived types.

A derived type is resolved into "ultimate" components that are either of intrinsic type or are pointers.

The set of values for a specific derived type consists of all possible sequences of component values
permitted by the definition of that derived type. Structure constructors are used to specify values of
derived types.

Nonintrinsic assignment for derived-type entities must be defined by a subroutine with an
ASSIGNMENT interface. Any operation on derived-type entities must be defined by a function with
an OPERATOR interface. Arguments and function values can be of any intrinsic or derived type.

The following is also discussed in this section:

� Derived-Type Definition
� Default Initialization
� Structure Components
� Structure Constructors

Data Types, Constants, and Variables Page 20 of 45

For More Information:

� On OPERATOR interfaces, see Defining Generic Operators.
� On ASSIGNMENT interfaces, see Defining Generic Assignment.
� On intrinsic assignment of derived types, see Derived-Type Assignment Statements.
� On record structures, see Records.

Derived-Type Definition

A derived-type definition specifies the name of a user-defined type and the types of its components.
For details on creating derived types, see Derived Type in the A to Z Reference.

Default Initialization

Default initialization occurs if initialization appears in a derived-type component definition. (This is a
Fortran 95 feature.)

The specified initialization of the component will apply even if the definition is PRIVATE.

Default initialization applies to dummy arguments with INTENT(OUT). It does not imply the
derived-type component has the SAVE attribute.

Explicit initialization in a type declaration statement overrides default initialization.

To specify default initialization of an array component, use a constant expression that includes one of
the following:

� An array constructor
� A single scalar that becomes the value of each array element

Pointers can have an association status of associated, disassociated, or undefined. If no default
initialization status is specified, the status of the pointer is undefined. To specify disassociated status
for a pointer component, use =>NULL().

Examples

You do not have to specify initialization for each component of a derived type. For example:

 TYPE REPORT
 CHARACTER (LEN=20) REPORT_NAME
 INTEGER DAY
 CHARACTER (LEN=3) MONTH
 INTEGER :: YEAR = 1995 ! Only component with default
 END TYPE REPORT ! initialization

Consider the following:

Data Types, Constants, and Variables Page 21 of 45

 TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sales", 15, "NOV", 1996)

In this case, the explicit initialization in the type declaration statement overrides the YEAR
component of NOV_REPORT.

The default initial value of a component can also be overridden by default initialization specified in
the type definition. For example:

 TYPE MGR_REPORT
 TYPE (REPORT) :: STATUS = NOV_REPORT
 INTEGER NUM
 END TYPE MGR_REPORT

 TYPE (MGR_REPORT) STARTUP

In this case, the STATUS component of STARTUP gets its initial value from NOV_REPORT,
overriding the initialization for the YEAR component.

Structure Components

A reference to a component of a derived-type structure takes the following form:

parent [%component [(s-list)]]... %component [(s-list)]

parent
Is the name of a scalar or array of derived type. The percent sign (%) is called a component
selector.

component
Is the name of a component of the immediately preceding parent or component.

s-list
Is a list of one or more subscripts. If the list contains subscript triplets or vector subscripts, the
reference is to an array section.

Each subscript must be a scalar integer (or other numeric) expression with a value that is within
the bounds of its dimension.

The number of subscripts in any s-list must equal the rank of the immediately preceding parent
or component.

Rules and Behavior

Each parent or component (except the rightmost) must be of derived type.

The parent or one of the components can have nonzero rank (be an array). Any component to the
right of a parent or component of nonzero rank must not have the POINTER attribute.

The rank of the structure component is the rank of the part (parent or component) with nonzero rank

Data Types, Constants, and Variables Page 22 of 45

(if any); otherwise, the rank is zero. The type and type parameters (if any) of a structure component
are those of the rightmost part name.

The structure component must not be referenced or defined before the declaration of the parent
object.

If the parent object has the INTENT, TARGET, or PARAMETER attribute, the structure component
also has the attribute.

Examples

The following example shows a derived-type definition with two components:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE

The following shows how to declare CONTRACT to be of type EMPLOYEE:

 TYPE(EMPLOYEE) :: CONTRACT

Note that both examples started with the keyword TYPE. The first (initial) statement of a derived-
type definition is called a derived-type statement, while the statement that declares a derived-type
object is called a TYPE statement.

The following example shows how to reference component ID of parent structure CONTRACT:

 CONTRACT%ID

The following example shows a derived type with a component that is a previously defined type:

 TYPE DOT
 REAL X, Y
 END TYPE DOT

 TYPE SCREEN
 TYPE(DOT) C, D
 END TYPE SCREEN

The following declares a variable of type SCREEN:

 TYPE(SCREEN) M

Variable M has components M%C and M%D (both of type DOT); M%C has components M%C%X
and M%C%Y of type REAL.

The following example shows a derived type with a component that is an array:

Data Types, Constants, and Variables Page 23 of 45

 TYPE CAR_INFO
 INTEGER YEAR
 CHARACTER(LEN=15), DIMENSION(10) :: MAKER
 CHARACTER(LEN=10) MODEL, BODY_TYPE*8
 REAL PRICE
 END TYPE
 ...
 TYPE(CAR_INFO) MY_CAR

Note that MODEL has a character length of 10, but BODY_TYPE has a character length of 8. You
can assign a value to a component of a structure; for example:

 MY_CAR%YEAR = 1985

The following shows an array structure component:

 MY_CAR%MAKER

In the preceding example, if a subscript list (or substring) was appended to MAKER, the reference
would not be to an array structure component, but to an array element or section.

Consider the following:

 MY_CAR%MAKER(2) (4:10)

In this case, the component is substring 4 to 10 of the second element of array MAKER.

Consider the following:

 TYPE CHARGE
 INTEGER PARTS(40)
 REAL LABOR
 REAL MILEAGE
 END TYPE CHARGE

 TYPE(CHARGE) MONTH
 TYPE(CHARGE) YEAR(12)

Some valid array references for this type follow:

 MONTH%PARTS(I) ! An array element
 MONTH%PARTS(I:K) ! An array section
 YEAR(I)%PARTS ! An array structure component (a whole array)
 YEAR(J)%PARTS(I) ! An array element
 YEAR(J)%PARTS(I:K) ! An array section
 YEAR(J:K)%PARTS(I) ! An array section
 YEAR%PARTS(I) ! An array section

The following example shows a derived type with a pointer component that is of the type being

Data Types, Constants, and Variables Page 24 of 45

defined:

 TYPE NUMBER
 INTEGER NUM

 TYPE(NUMBER), POINTER :: START_NUM => NULL()
 TYPE(NUMBER), POINTER :: NEXT_NUM => NULL()

 END TYPE

A type such as this can be used to construct linked lists of objects of type NUMBER. Note that the
pointers are given the default initialization status of disassociated.

The following example shows a private type:

 TYPE, PRIVATE :: SYMBOL
 LOGICAL TEST
 CHARACTER(LEN=50) EXPLANATION
 END TYPE SYMBOL

This type is private to the module. The module can be used by another scoping unit, but type
SYMBOL is not available.

For More Information

� On references to array elements, see Array Elements.
� On references to array sections, see Array Sections.
� On examples of derived types in modules, see Modules and Module Procedures.

Structure Constructors

A structure constructor lets you specify scalar values of a derived type. It takes the following form:

d-name (expr-list)

d-name
Is the name of the derived type.

expr-list
Is a list of expressions specifying component values. The values must agree in number and
order with the components of the derived type. If necessary, values are converted (according to
the rules of assignment), to agree with their corresponding components in type and kind
parameters.

Rules and Behavior

A structure constructor must not appear before its derived type is defined.

If a component of the derived type is an array, the shape in the expression list must conform to the

Data Types, Constants, and Variables Page 25 of 45

shape of the component array.

If a component of the derived type is a pointer, the value in the expression list must evaluate to an
object that would be a valid target in a pointer assignment statement. (A constant is not a valid target
in a pointer assignment statement.)

If all the values in a structure constructor are constant expressions, the constructor is a derived-type
constant expression.

Examples

Consider the following derived-type definition:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE

This can be used to produce the following structure constructor:

 EMPLOYEE(3472, "John Doe")

The following example shows a type with a component of derived type:

 TYPE ITEM
 REAL COST
 CHARACTER(LEN=30) SUPPLIER
 CHARACTER(LEN=20) ITEM_NAME
 END TYPE ITEM

 TYPE PRODUCE
 REAL MARKUP
 TYPE(ITEM) FRUIT
 END TYPE PRODUCE

In this case, you must use an embedded structure constructor to specify the values of that component;
for example:

 PRODUCE(.70, ITEM (.25, "Daniels", "apple"))

For More Information:

See also Pointer Assignments.

Binary, Octal, Hexadecimal, and Hollerith Constants

Binary, octal, hexadecimal, and Hollerith constants are nondecimal constants. They have no intrinsic
data type, but assume a numeric data type depending on their use.

Data Types, Constants, and Variables Page 26 of 45

Fortran 90 allows unsigned binary, octal, and hexadecimal constants to be used in DATA statements;
the constant must correspond to an integer scalar variable.

In DIGITAL Fortran, binary, octal, hexadecimal, and Hollerith constants can appear wherever
numeric constants are allowed.

Binary Constants

A binary constant is an alternative way to represent a numeric constant. A binary constant takes one
of the following forms:

B’d[d...]’
B"d[d...]"

d
Is a binary (base 2) digit (0 or 1).

You can specify up to 128 binary digits in a binary constant. Leading zeros are ignored.

Examples

The following examples demonstrate valid and invalid binary constants:

Valid
B’0101110’
B"1"

Invalid Explanation
B’0112’ The character 2 is invalid.
B10011’ No apostrophe after the B.
"1000001" No B before the first quotation mark.

Octal Constants

An octal constant is an alternative way to represent numeric constants. An octal constant takes one of
the following forms:

O'd[d...]'
O"d[d...]"

d
Is an octal (base 8) digit (0 through 7).

You can specify up to 128 bits in octal (43 octal digits) constants. Leading zeros are ignored.

Examples

Data Types, Constants, and Variables Page 27 of 45

The following examples demonstrate valid and invalid octal constants:

Valid
O’07737’
O"1"

Invalid Explanation
O’7782’ The character 8 is invalid.
O7772’ No apostrophe after the O.
"0737" No O before the first quotation mark.

For More Information:

See also Alternative Syntax for Octal and Hexadecimal Constants.

Hexadecimal Constants

A hexadecimal constant is an alternative way to represent numeric constants. A hexadecimal constant
takes one of the following forms:

Z'd[d...]'
Z"d[d...]"

d
Is a hexadecimal (base 16) digit (0 through 9, or an uppercase or lowercase letter in the range
of A to F).

You can specify up to 128 bits in hexadecimal (32 hexadecimal digits) constants. Leading zeros are
ignored.

Examples

The following examples demonstrate valid and invalid hexadecimal constants:

Valid
Z’AF9730’
Z"FFABC"
Z’84’

Invalid Explanation
Z’999.’ Decimal not allowed.
ZF9" No quotation mark after the Z.

For More Information:

See also Alternative Syntax for Octal and Hexadecimal Constants.

Data Types, Constants, and Variables Page 28 of 45

Hollerith Constants

A Hollerith constant is a string of printable ASCII characters preceded by the letter H. Before the H,
there must be an unsigned, nonzero default integer constant stating the number of characters in the
string (including blanks and tabs).

Hollerith constants are strings of 1 to 2000 characters. They are stored as byte strings, one character
per byte.

Examples

The following examples demonstrate valid and invalid Hollerith constants:

Valid
16HTODAY’S DATE IS:
1HB
4H ABC

Invalid Explanation
3HABCD Wrong number of characters.
0H Hollerith constants must contain at least one character.

Determining the Data Type of Nondecimal Constants

Binary, octal, hexadecimal, and Hollerith constants have no intrinsic data type. These constants
assume a numeric data type depending on their use.

When the constant is used with a binary operator (including the assignment operator), the data type of
the constant is the data type of the other operand. For example:

Statement Data Type of
Constant

Length of Constant (in
bytes)

INTEGER(2) ICOUNT

INTEGER(4) JCOUNT

INTEGER(4) N

REAL(8) DOUBLE

REAL(4) RAFFIA, RALPHA

RAFFIA = B’1001100111111010011’ REAL(4) 4

RAFFIA = Z’99AF2’ REAL(4) 4

RALPHA = 4HABCD REAL(4) 4

DOUBLE = B’1111111111100110011010’
REAL(8) 8

DOUBLE = Z’FFF99A’ REAL(8) 8

Data Types, Constants, and Variables Page 29 of 45

DOUBLE = 8HABCDEFGH REAL(8) 8

JCOUNT = ICOUNT + B’011101110111’ INTEGER(2) 2

JCOUNT = ICOUNT + O’777’ INTEGER(2) 2

JCOUNT = ICOUNT + 2HXY INTEGER(2) 2

IF (N .EQ. B’1010100’) GO TO 10 INTEGER(4) 4

IF (N .EQ. O’123’) GO TO 10 INTEGER(4) 4

IF (N. EQ. 1HZ) GO TO 10 INTEGER(4) 4

When a specific data type (generally integer) is required, that type is assumed for the constant. For
example:

Statement Data Type of Constant Length of Constant (in bytes)
Y(IX) = Y(O’15’) + 3. INTEGER(4) 4

Y(IX) = Y(1HA) + 3. INTEGER(4) 4

When a nondecimal constant is used as an actual argument, the following occurs:

� For binary, octal, and hexadecimal constants, INTEGER(8) is assumed on Alpha processors.
On Intel processors, a length of four bytes is used.

� For Hollerith constants, no data type is assumed.

For example:

Statement Data Type of Constant Length of Constant (in bytes)
CALL APAC(Z’34BC2’) INTEGER(4) 4

CALL APAC(9HABCDEFGHI) None 9

When a binary, octal, or hexadecimal constant is used in any other context, the default integer data
type is assumed (default integer can be affected by compiler options). In the following examples,
default integer is INTEGER(4):

Statement Data Type of Constant Length of Constant (in bytes)
IF (Z’AF77’) 1,2,3 INTEGER(4) 4

IF (2HAB) 1,2,3 INTEGER(4) 4

I = O’7777’ - Z’A39’ 1 INTEGER(4) 4

I = 1HC - 1HA INTEGER(4) 4

J = .NOT. O’73777’ INTEGER(4) 4

J = .NOT. 1HB INTEGER(4) 4
1 When two typeless constants are used in an operation, they both take default integer type.

When nondecimal constants are not the same length as the length implied by a data type, the
following occurs:

Data Types, Constants, and Variables Page 30 of 45

� Binary, octal, and hexadecimal constants

These constants can specify up to 16 bytes of data. When the length of the constant is less than
the length implied by the data type, the leftmost digits have a value of zero.

When the length of the constant is greater than the length implied by the data type, the constant
is truncated on the left. An error results if any nonzero digits are truncated.

The Data Type Storage Requirements table lists the number of bytes that each data type
requires.

� Hollerith constants

When the length of the constant is less than the length implied by the data type, blanks are
appended to the constant on the right.

When the length of the constant is greater than the length implied by the data type, the constant
is truncated on the right. If any characters other than blank characters are truncated, an error
occurs.

Each Hollerith character occupies one byte of memory.

Variables

A variable is a data object whose value can be changed at any point in a program. A variable can be
any of the following:

� A scalar

A scalar is a single object that has a single value; it can be of any intrinsic or derived (user-
defined) type.

� An array

An array is a collection of scalar elements of any intrinsic or derived type. All elements must
have the same type and kind parameters.

� A subobject designator

A subobject is part of an object. The following are subobjects:

An array element
An array section
A structure component
A character substring

For example, B(3) is a subobject (array element) designator for array B. A subobject cannot be

Data Types, Constants, and Variables Page 31 of 45

a variable if its parent object is a constant.

The name of a variable is associated with a single storage location.

Variables are classified by data type, as constants are. The data type of a variable indicates the type of
data it contains, including its precision, and implies its storage requirements. When data of any type
is assigned to a variable, it is converted to the data type of the variable (if necessary).

A variable is defined when you give it a value. A variable can be defined before program execution
by a DATA statement or a type declaration statement. During program execution, variables can be
defined or redefined in assignment statements and input statements, or undefined (for example, if an
I/O error occurs). When a variable is undefined, its value is unpredictable.

When a variable becomes undefined, all variables associated by storage association also become
undefined.

An object with subobjects, such as an array, can only be defined when all of its subobjects are
defined. Conversely, when at least one of its subobjects are undefined, the object itself, such as an
array or derived type, is undefined.

This section also discusses the Data Types of Scalar Variables and Arrays.

For More Information:

� See Type Declaration Statements.
� See the DATA statement.
� See Data Type of a Numeric Expressions.
� On storage association of variables, see Storage Association.

Data Types of Scalar Variables

The data type of a scalar variable can be explicitly declared in a type declaration statement. If no type
is declared, the variable has an implicit data type based on predefined typing rules or definitions in an
IMPLICIT statement.

An explicit declaration of data type takes precedence over any implicit type. Implicit type specified in
an IMPLICIT statement takes precedence over predefined typing rules.

See also Specification of Data Type and Implicit Typing Rules.

Specification of Data Type

Type declaration statements explicitly specify the data type of scalar variables. For example, the
following statements associate VAR1 with an 8-byte complex storage location, and VAR2 with an 8-
byte double-precision storage location:

 COMPLEX VAR1
 DOUBLE PRECISION VAR2

Data Types, Constants, and Variables Page 32 of 45

You can explicitly specify the data type of a scalar variable only once.

If no explicit data type specification appears, any variable with a name that begins with the letter in
the range specified in the IMPLICIT statement becomes the data type of the variable.

Character type declaration statements specify that given variables represent character values with the
length specified. For example, the following statements associate the variable names INLINE,
NAME, and NUMBER with storage locations containing character data of lengths 72, 12, and 9,
respectively:

 CHARACTER*72 INLINE
 CHARACTER NAME*12, NUMBER*9

In single subprograms, assumed-length character arguments can be used to process character strings
with different lengths. The assumed-length character argument has its length specified with an
asterisk, for example:

 CHARACTER*(*) CHARDUMMY

The argument CHARDUMMY assumes the length of the actual argument.

For More Information:

� See Type declaration statements.
� See Assumed-length character arguments.
� See the IMPLICIT statement.
� On character type declaration statements, see Declaration Statements for Character Types.

Implicit Typing Rules

By default, all scalar variables with names beginning with I, J, K, L, M, or N are assumed to be
default integer variables. Scalar variables with names beginning with any other letter are assumed to
be default real variables. For example:

Real Variables Integer Variables

ALPHA JCOUNT

BETA ITEM_1

TOTAL_NUM NTOTAL

Names beginning with a dollar sign ($) are implicitly INTEGER.

You can override the default data type implied in a name by specifying data type in either an
IMPLICIT statement or a type declaration statement.

Data Types, Constants, and Variables Page 33 of 45

Note: You cannot change the implicit type of a name beginning with a dollar sign in an
IMPLICIT statement.

For More Information:

� See Type declaration statements.
� See the IMPLICIT statement.

Arrays

An array is a set of scalar elements that have the same type and kind parameters. Any object that is
declared with an array specification is an array. Arrays can be declared by using a type declaration
statement, or by using a DIMENSION, COMMON, ALLOCATABLE, POINTER, or TARGET
statement.

An array can be referenced by element (using subscripts), by section (using a section subscript list),
or as a whole. A subscript list (appended to the array name) indicates which array element or array
section is being referenced.

A section subscript list consists of subscripts, subscript triplets, or vector subscripts. At least one
subscript in the list must be a subscript triplet or vector subscript.

When an array name without any subscripts appears in an intrinsic operation (for example, addition),
the operation applies to the whole array (all elements in the array).

An array has the following properties:

� Data type

An array can have any intrinsic or derived type. The data type of an array (like any other
variable) is specified in a type declaration statement or implied by the first letter of its name.
All elements of the array have the same type and kind parameters. If a value assigned to an
individual array element is not the same as the type of the array, it is converted to the array’s
type.

� Rank

The rank of an array is the number of dimensions in the array. An array can have up to seven
dimensions. A rank-one array represents a column of data (a vector), a rank-two array
represents a table of data arranged in columns and rows (a matrix), a rank-three array represents
a table of data on multiple pages (or planes), and so forth.

� Bounds

Arrays have a lower and upper bound in each dimension. These bounds determine the range of
values that can be used as subscripts for the dimension. The value of either bound can be
positive, negative, or zero.

Data Types, Constants, and Variables Page 34 of 45

The bounds of a dimension are defined in an array specification.

� Size

The size of an array is the total number of elements in the array (the product of the array’s
extents).

The extent is the total number of elements in a particular dimension. It is determined as
follows: upper bound - lower bound + 1. If the value of any of an array’s extents is zero, the
array has a size of zero.

� Shape

The shape of an array is determined by its rank and extents, and can be represented as a rank-
one array (vector) where each element is the extent of the corresponding dimension.

Two arrays with the same shape are said to be conformable. A scalar is conformable to an array
of any shape.

The name and rank of an array must be specified when the array is declared. The extent of each
dimension can be constant, but does not need to be. The extents can vary during program execution if
the array is a dummy argument array, an automatic array, an array pointer, or an allocatable array.

A whole array is referenced by the array name. Individual elements in a named array are referenced
by a scalar subscript or list of scalar subscripts (if there is more than one dimension). A section of a
named array is referenced by a section subscript.

This section also discusses:

� Whole Arrays
� Array Elements
� Array Sections
� Array Constructors

Examples

The following are examples of valid array declarations:

 DIMENSION A(10, 2, 3) ! DIMENSION statement
 ALLOCATABLE B(:, :) ! ALLOCATABLE statement
 POINTER C(:, :, :) ! POINTER statement
 REAL, DIMENSION (2, 5) :: D ! Type declaration with
 ! DIMENSION attribute

Consider the following array declaration:

INTEGER L(2:11,3)

Data Types, Constants, and Variables Page 35 of 45

The properties of array L are as follows:

Data type: INTEGER
Rank: 2 (two dimensions)
Bounds: First dimension: 2 to 11

Second dimension: 1 to 3
Size: 30; the product of the extents: 10 x 3
Shape: (/10,3/) (or 10 by 3); a vector of the extents 10 and 3

The following example shows other valid ways to declare this array:

DIMENSION L(2:11,3)
INTEGER, DIMENSION(2:11,3) :: L
COMMON L(2:11,3)

The following example shows references to array elements, array sections, and a whole array:

REAL B(10) ! Declares a rank-one array with 10 elements

INTEGER C(5,8) ! Declares a rank-two array with 5 elements in
 ! dimension one and 8 elements in dimension two
...
B(3) = 5.0 ! Reference to an array element
B(2:5) = 1.0 ! Reference to an array section consisting of
 ! elements: B(2), B(3), B(4), B(5)
...
C(4,8) = I ! Reference to an array element
C(1:3,3:4) = J ! Reference to an array section consisting of
 ! elements: C(1,3) C(1,4)
 ! C(2,3) C(2,4)
 ! C(3,3) C(3,4)
B = 99 ! Reference to a whole array consisting of
 ! elements: B(1), B(2), B(3), B(4), B(5),
 ! B(6), B(7), B(8), B(9), and B(10)

For More Information:

� See the DIMENSION attribute.
� See Intrinsic data types.
� See Derived data types.
� On array specifications, see Declaration Statements for Arrays.
� On intrinsic functions that perform array operations, see Categories of Intrinsic Functions.
� On using arrays, see Use Arrays Efficiently.

Whole Arrays

A whole array is a named array; it is either a named constant or a variable. It is referenced by using
the array name (without any subscripts).

Data Types, Constants, and Variables Page 36 of 45

If a whole array appears in a nonexecutable statement, the statement applies to the entire array. For
example:

 INTEGER, DIMENSION(2:11,3) :: L ! Specifies the type and
 ! dimensions of array L

If a whole array appears in an executable statement, the statement applies to all of the elements in the
array. For example:

 L = 10 ! The value 10 is assigned to all the
 ! elements in array L
 WRITE *, L ! Prints all the elements in array L

Array Elements

An array element is one of the scalar data items that make up an array. A subscript list (appended to
the array or array component) determines which element is being referred to. A reference to an array
element takes the following form:

array(subscript-list)

array
Is the name of the array.

subscript-list
Is a list of one or more subscripts separated by commas. The number of subscripts must equal
the rank of the array.

Each subscript must be a scalar integer (or other numeric) expression with a value that is within
the bounds of its dimension.

Rules and Behavior

Each array element inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array element cannot inherit the POINTER
attribute.

If an array element is of type character, it can be followed by a substring range in parentheses; for
example:

 ARRAY_D(1,2) (1:3) ! Elements are substrings of length 3

However, by convention, such an object is considered to be a substring rather than an array element.

The following are some valid array element references for an array declared as REAL B(10,20): B
(1,3), B(10,10), and B(5,8).

Data Types, Constants, and Variables Page 37 of 45

You can use functions and array elements as subscripts. For example:

 REAL A(3, 3)
 REAL B(3, 3), C(89), R
 B(2, 2) = 4.5 ! Assigns the value 4.5 to element B(2, 2)
 R = 7.0
 C(INT(R)*2 + 1) = 2.0 ! Element 15 of C = 2.0
 A(1,2) = B(INT(C(15)), INT(SQRT(R))) ! Element A(1,2) = element B(2,2) = 4.5

For information on forms for array specifications, see Declaration Statements for Arrays.

Array Element Order

The elements of an array form a sequence known as array element order. The position of an element
in this sequence is its subscript order value.

The elements of an array are stored as a linear sequence of values. A one-dimensional array is stored
with its first element in the first storage location and its last element in the last storage location of the
sequence. A multidimensional array is stored so that the leftmost subscripts vary most rapidly. This is
called the order of subscript progression.

The following figure shows array storage in one, two, and three dimensions:

Array Storage

Data Types, Constants, and Variables Page 38 of 45

For example, in two-dimensional array BAN, element BAN(1,2) has a subscript order value of 4; in
three-dimensional array BOS, element BOS(1,1,1) has a subscript order value of 1.

In an array section, the subscript order of the elements is their order within the section itself. For
example, if an array is declared as B(20), the section B(4:19:4) consists of elements B(4), B(8), B
(12), and B(16). The subscript order value of B(4) in the array section is 1; the subscript order value
of B(12) in the section is 3.

For More Information:

� See Array association.
� On substrings, see Character Constants.
� On arrays as structure components, see Structure Components.
� On storage sequence association, see Storage Association.

Array Sections

An array section is a portion of an array that is an array itself. It is an array subobject. A section
subscript list (appended to the array or array component) determines which portion is being referred
to. A reference to an array section takes the following form:

array(sect-subscript-list)

Data Types, Constants, and Variables Page 39 of 45

array
Is the name of the array.

sect-subscript-list
Is a list of one or more section subscripts (subscripts, subscript triplets, or vector subscripts)
indicating a set of elements along a particular dimension.

At least one of the items in the section subscript list must be a subscript triplet or vector
subscript. A subscript triplet specifies array elements in increasing or decreasing order at a
given stride. A vector subscript specifies elements in any order.

Each subscript and subscript triplet must be a scalar integer (or other numeric) expression.
Each vector subscript must be a rank-one integer expression.

Rules and Behavior

If no section subscript list is specified, the rank and shape of the array section is the same as the
parent array.

Otherwise, the rank of the array section is the number of vector subscripts and subscript triplets that
appear in the list. Its shape is a rank-one array where each element is the number of integer values in
the sequence indicated by the corresponding subscript triplet or vector subscript.

If any of these sequences is empty, the array section has a size of zero. The subscript order of the
elements of an array section is that of the array object that the array section represents.

Each array section inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array section cannot inherit the POINTER
attribute.

If an array (or array component) is of type character, it can be followed by a substring range in
parentheses. Consider the following declaration:

 CHARACTER(LEN=15) C(10,10)

In this case, an array section referenced as C(:,:) (1:3) is an array of shape (10,10), whose elements
are substrings of length 3 of the corresponding elements of C.

The following shows valid references to array sections:

 REAL, DIMENSION(20) :: B
 ...
 PRINT *, B(2:20:5) ! The section consists of elements
 ! B(2), B(7), B(12), and B(17)

 K = (/3, 1, 4/)
 B(K) = 0.0 ! Section B(K) is a rank-one array with shape (3) and
 ! size 3. (0.0 is assigned to B(1), B(3), and B(4).)

Data Types, Constants, and Variables Page 40 of 45

For More Information:

� See the INTENT attribute.
� See the PARAMETER attribute.
� See the TARGET attribute.
� See array sections as Structure components.
� See Array constructors.
� On substrings, see Character Substrings.

Subscript Triplets

A subscript triplet is a set of three values representing the lower bound of the array section, the upper
bound of the array section, and the increment (stride) between them. It takes the following form:

[first-bound] : [last-bound] [:stride]

first-bound
Is a scalar integer (or other numeric) expression representing the first value in the subscript
sequence. If omitted, the declared lower bound of the dimension is used.

last-bound
Is a scalar integer (or other numeric) expression representing the last value in the subscript
sequence. If omitted, the declared upper bound of the dimension is used.

When indicating sections of an assumed-size array, this subscript must be specified.

stride
Is a scalar integer (or other numeric) expression representing the increment between successive
subscripts in the sequence. It must have a nonzero value. If it is omitted, it is assumed to be 1.

The stride has the following effects:

� If the stride is positive, the subscript range starts with the first subscript and is incremented by
the value of the stride, until the largest value less than or equal to the second subscript is
attained.

For example, if an array has been declared as B(6,3,2), the array section specified as B
(2:4,1:2,2) is a rank-two array with shape (3,2) and size 6. It consists of the following six
elements:

B(2,1,2) B(2,2,2)
B(3,1,2) B(3,2,2)
B(4,1,2) B(4,2,2)

If the first subscript is greater than the second subscript, the range is empty.

� If the stride is negative, the subscript range starts with the value of the first subscript and is
decremented by the absolute value of the stride, until the smallest value greater than or equal to

Data Types, Constants, and Variables Page 41 of 45

the second subscript is attained.

For example, if an array has been declared as A(15), the array section specified as A(10:3:-2) is
a rank-one array with shape (4) and size 4. It consists of the following four elements:

A(10)
A(8)
A(6)
A(4)

If the second subscript is greater than the first subscript, the range is empty.

If a range specified by the stride is empty, the array section has a size of zero.

A subscript in a subscript triplet need not be within the declared bounds for that dimension if all
values used to select the array elements are within the declared bounds. For example, if an array has
been declared as A(15), the array section specified as A(4:16:10) is valid. The section is a rank-one
array with shape (2) and size 2. It consists of elements A(4) and A(14).

If the subscript triplet does not specify bounds or stride, but only a colon (:), the entire declared range
for the dimension is used.

If you leave out all subscripts, the section defaults to the entire extent in that dimension. For example:

 REAL A(10)
 A(1:5:2) = 3.0 ! Sets elements A(1), A(3), A(5) to 3.0
 A(:5:2) = 3.0 ! Same as the previous statement
 ! because the lower bound defaults to 1
 A(2::3) = 3.0 ! Sets elements A(2), A(5), A(8) to 3.0
 ! The upper bound defaults to 10
 A(7:9) = 3.0 ! Sets elements A(7), A(8), A(9) to 3.0
 ! The stride defaults to 1
 A(:) = 3.0 ! Same as A = 3.0; sets all elements of
 ! A to 3.0

Vector Subscripts

A vector subscript is a one-dimensional (rank one) array of integer values (within the declared
bounds for the dimension) that selects a section of a whole (parent) array. The elements in the section
do not have to be in order and the section can contain duplicate values.

For example, A is a rank-two array of shape (4,6). B and C are rank-one arrays of shape (2) and (3),
respectively, with the following values:

 B = (/1,4/)
 C = (/2,1,1/) ! Will result in a many-one array section

Array section A(3,B) consists of elements A(3,1) and A(3,4). Array section A(C,1) consists of
elements A(2,1), A(1,1), and A(1,1). Array section A(B,C) consists of the following elements:

A(1,2) A(1,1) A(1,1)

Data Types, Constants, and Variables Page 42 of 45

A(4,2) A(4,1) A(4,1)

An array section with a vector subscript that has two or more elements with the same value is called a
many-one array section. For example:

 REAL A(3, 3), B(4)
 INTEGER K(4)
 ! Vector K has repeated values
 K = (/3, 1, 1, 2/)
 ! Sets all elements of A to 5.0
 A = 5.0
 B = A(3, K)

The array section A(3,K) consists of the elements:

 A(3, 3) A(3, 1) A(3, 1) A(3, 2)

A many-one section must not appear on the left of the equal sign in an assignment statement, or as an
input item in a READ statement.

The following assignments to C also show examples of vector subscripts:

 INTEGER A(2), B(2), C(2)
 ...
 B = (/1,2/)
 C(B) = A(B)
 C = A((/1,2/))

An array section with a vector subscript must not be any of the following:

� An internal file

� An actual argument associated with a dummy array that is defined or redefined (if the INTENT
attribute is specified, it must be INTENT(IN))

� The target in a pointer assignment statement

If the sequence specified by the vector subscript is empty, the array section has a size of zero.

Array Constructors

An array constructor can be used to create and assign values to rank-one arrays (and array constants).
An array constructor takes the following form:

(/ac-value-list/)

ac-value-list
Is a list of one or more expressions or implied-do loops. Each ac-value must have the same
type and kind parameters, and be separated by commas.

An implied-do loop in an array constructor takes the following form:

Data Types, Constants, and Variables Page 43 of 45

(ac-value-list, do-variable = expr1, expr2 [,expr3])

do-variable
Is the name of a scalar integer variable. Its scope is that of the implied-do loop.

expr
Is a scalar integer expression. The expr1 and expr2 specify a range of values for the loop;
expr3 specifies the stride. The expr3 must be a nonzero value; if it is omitted, it is
assumed to be 1.

Rules and Behavior

The array constructed has the same type as the ac-value-list expressions.

If the sequence of values specified by the array constructor is empty (there are no expressions or the
implied-do loop produces no values), the rank-one array has a size of zero.

An ac-value is interpreted as follows:

Form of ac-
value

Result

A scalar
expression

Its value is an element of the new array.

An array
expression

The values of the elements in the expression (in array element order) are the
corresponding sequence of elements in the new array.

An implied-do
loop

It is expanded to form a list of array elements under control of the DO variable
(like a DO construct).

The following shows the three forms of an ac-value:

 C1 = (/4,8,7,6/) ! A scalar expression
 C2 = (/B(I, 1:5), B(I:J, 7:9)/) ! An array expression
 C3 = (/(I, I=1, 4)/) ! An implied-do loop

You can also mix these forms, for example:

 C4 = (/4, A(1:5), (I, I=1, 4), 7/)

If every expression in an array constructor is a constant expression, the array constructor is a constant
expression.

If the expressions are of type character, each expression must have the same character length.

If an implied-do loop is contained within another implied-do loop (nested), they cannot have the same

Data Types, Constants, and Variables Page 44 of 45

DO variable (do-variable).

To define arrays of more than one dimension, use the RESHAPE intrinsic function.

The following are alternative forms for array constructors:

� Square brackets (instead of parentheses and slashes) to enclose array constructors; for example,
the following two array constructors are equivalent:

 INTEGER C(4)
 C = (/4,8,7,6/)
 C = [4,8,7,6]

� A colon-separated triplet (instead of an implied-do loop) to specify a range of values and a
stride; for example, the following two array constructors are equivalent:

 INTEGER D(3)
 D = (/1:5:2/) ! Triplet form
 D = (/(I, I=1, 5, 2)/) ! Implied-do loop form

Examples

The following example shows an array constructor using an implied-do loop:

 INTEGER ARRAY_C(10)
 ARRAY_C = (/(I, I=30, 48, 2)/)

The values of ARRAY_C are the even numbers 30 through 48.

Implied-DO expressions and values can be mixed in the value list of an array constructor. For
example:

 INTEGER A(10)
 A = (/1, 0, (I, I = -1, -6, -1), -7, -8 /)
 !Mixed values and implied-DO in value list.

This example sets the elements of A to the values, in order, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8.

The following example shows an array constructor of derived type that uses a structure constructor:

TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=30) NAME
END TYPE EMPLOYEE

TYPE(EMPLOYEE) CC_4T(4)
CC_4T = (/EMPLOYEE(2732,"JONES"), EMPLOYEE(0217,"LEE"), &
 EMPLOYEE(1889,"RYAN"), EMPLOYEE(4339,"EMERSON")/)

The following example shows how the RESHAPE intrinsic function can be used to create a

Data Types, Constants, and Variables Page 45 of 45

multidimensional array:

 E = (/2.3, 4.7, 6.6/)
 D = RESHAPE(SOURCE = (/3.5, (/2.0, 1.0/), E/), SHAPE = (/2,3/))

D is a rank-two array with shape (2,3) containing the following elements:

 3.5 1.0 4.7
 2.0 2.3 6.6

The following shows another example:

 INTEGER B(2,3), C(8)
 ! Assign values to a (2,3) array.
 B = RESHAPE((/1, 2, 3, 4, 5, 6/),(/2,3/))
 ! Convert B to a vector before assigning values to
 ! vector C.
 C = (/ 0, RESHAPE(B,(/6/)), 7 /)

For More Information:

� See the DO construct.
� See Subscript triplets.
� See Derived types.
� See Structure constructors.
� On array element order, see Array Elements.
� On another way to assign values to arrays, see Array Assignment Statements.
� On array specifications, see Declaration Statements for Arrays.

Expressions and Assignment Statements Page 1 of 25

Expressions and Assignment Statements

This chapter contains information on the following topics:

� Expressions
� Assignment statements

Expressions

An expression represents either a data reference or a computation, and is formed from operators,
operands, and parentheses. The result of an expression is either a scalar value or an array of scalar
values.

If the value of an expression is of intrinsic type, it has a kind type parameter. (If the value is of
intrinsic type CHARACTER, it also has a length parameter.) If the value of an expression is of
derived type, it has no kind type parameter.

An operand is a scalar or array. An operator can be either intrinsic or defined. An intrinsic operator is
known to the compiler and is always available to any program unit. A defined operator is described
explicitly by a user in a function subprogram and is available to each program unit that uses the
subprogram.

The simplest form of an expression (a primary) can be any of the following:

� A constant; for example, 4.2
� A subobject of a constant; for example, ’LMNOP’ (2:4)
� A variable; for example, VAR_1
� A structure constructor; for example, EMPLOYEE(3472, "JOHN DOE")
� An array constructor; for example, (/12.0,16.0/)
� A function reference; for example, COS(X)
� Another expression in parentheses; for example, (I+5)

Any variable or function reference used as an operand in an expression must be defined at the time
the reference is executed. If the operand is a pointer, it must be associated with a target object that is
defined. An integer operand must be defined with an integer value rather than a statement label value.
All of the characters in a character data object reference must be defined.

When a reference to an array or an array section is made, all of the selected elements must be defined.
When a structure is referenced, all of the components must be defined.

In an expression that has intrinsic operators with an array as an operand, the operation is performed
on each element of the array. In expressions with more than one array operand, the arrays must be
conformable (they must have the same shape). The operation is applied to corresponding elements of
the arrays, and the result is an array of the same shape (the same rank and extents) as the operands.

In an expression that has intrinsic operators with a pointer as an operand, the operation is performed
on the value of the target associated with the pointer.

Expressions and Assignment Statements Page 2 of 25

For defined operators, operations on arrays and pointers are determined by the procedure defining the
operation.

A scalar is conformable with any array. If one operand of an expression is an array and another
operand is a scalar, it is as if the value of the scalar were replicated to form an array of the same shape
as the array operand. The result is an array of the same shape as the array operand.

The following sections describe numeric, character, relational, and logical expressions; defined
operations; a summary of operator precedence; and initialization and specification expressions.

For More Information:

� See Arrays.
� See Derived data types.
� On function subprograms that define operators, see Defining Generic Operators.
� On pointers, see the POINTER statement.

Numeric Expressions

Numeric expressions express numeric computations, and are formed with numeric operands and
numeric operators. The evaluation of a numeric operation yields a single numeric value.

The term numeric includes logical data, because logical data is treated as integer data when used in a
numeric context. (.TRUE. is -1; .FALSE. is 0.)

Numeric operators specify computations to be performed on the values of numeric operands. The
result is a scalar numeric value or an array whose elements are scalar numeric values. The following
are numeric operators:

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus (identity)

- Subtraction or unary minus (negation)

Unary operators operate on a single operand. Binary operators operate on a pair of operands. The
plus and minus operators can be unary or binary. When they are unary operators, the plus or minus
operators precede a single operand and denote a positive (identity) or negative (negation) value,
respectively. The exponentiation, multiplication, and division operators are binary operators.

Valid numeric operations must have results that are mathematically defined. For example, dividing by

Expressions and Assignment Statements Page 3 of 25

zero or raising a zero-valued base to a zero-valued or negative-valued power is invalid. Raising a
negative-valued base to a real power is also invalid.

Numeric expressions are evaluated in an order determined by a precedence associated with each
operator, as follows (see also Summary of Operator Precedence):

Operator Precedence

** Highest

* and /
 .

Unary + and -
 .

Binary + and - Lowest

Operators with equal precedence are evaluated in left-to-right order. However, exponentiation is
evaluated from right to left. For example, A**B**C is evaluated as A**(B**C). B**C is evaluated
first, then A is raised to the resulting power.

Normally, two operators cannot appear together. However, DIGITAL Fortran allows two consecutive
operators if the second operator is a plus or minus.

Examples

In the following example, the exponentiation operator is evaluated first because it takes precedence
over the multiplication operator:

A**B*C is evaluated as (A**B)*C

Ordinarily, the exponentiation operator would be evaluated first in the following example. However,
because DIGITAL Fortran allows the combination of the exponentiation and minus operators, the
exponentiation operator is not evaluated until the minus operator is evaluated:

A**-B*C is evaluated as A**(-(B*C))

Note that the multiplication operator is evaluated first, since it takes precedence over the minus
operator.

When consecutive operators are used with constants, the unary plus or minus before the constant is
treated the same as any other operator. This can produce unexpected results. In the following
example, the multiplication operator is evaluated first, since it takes precedence over the minus
operator:

X/-15.0*Y is evaluated as X/-(15.0*Y)

Using Parentheses in Numeric Expressions

Expressions and Assignment Statements Page 4 of 25

You can use parentheses to force a particular order of evaluation. When part of an expression is
enclosed in parentheses, that part is evaluated first. The resulting value is used in the evaluation of the
remainder of the expression.

In the following examples, the numbers below the operators indicate a possible order of evaluation.
Alternative evaluation orders are possible in the first three examples because they contain operators
of equal precedence that are not enclosed in parentheses. In these cases, the compiler is free to
evaluate operators of equal precedence in any order, as long as the result is the same as the result
gained by the algebraic left-to-right order of evaluation.

 4 + 3 * 2 - 6/2 = 7
 ^ ^ ^ ^
 2 1 4 3

 (4 + 3) * 2 - 6/2 = 11
 ^ ^ ^ ^
 1 2 4 3

 (4 + 3 * 2 - 6)/2 = 2
 ^ ^ ^ ^
 2 1 3 4

 ((4 + 3) * 2 - 6)/2 = 4
 ^ ^ ^ ^
 1 2 3 4

Expressions within parentheses are evaluated according to the normal order of precedence. In
expressions containing nested parentheses, the innermost parentheses are evaluated first.

Nonessential parentheses do not affect expression evaluation, as shown in the following example:

 4 + (3 * 2) - (6/2)

However, using parentheses to specify the evaluation order is often important in high-accuracy
numerical computations. In such computations, evaluation orders that are algebraically equivalent
may not be computationally equivalent when processed by a computer (because of the way
intermediate results are rounded off).

Parentheses can be used in argument lists to force a given argument to be treated as an expression,
rather than as the address of a memory item.

Data Type of Numeric Expressions

If every operand in a numeric expression is of the same data type, the result is also of that type.

Expressions and Assignment Statements Page 5 of 25

If operands of different data types are combined in an expression, the evaluation of that expression
and the data type of the resulting value depend on the ranking associated with each data type. The
following table shows the ranking assigned to each data type:

Data Type Ranking

LOGICAL(1) and BYTE Lowest

LOGICAL(2)
 .

LOGICAL(4)
 .

LOGICAL(8)1
 .

INTEGER(1)
 .

INTEGER(2)
 .

INTEGER(4)
 .

INTEGER(8)1
 .

REAL(4)
 .

REAL(8)2
 .

REAL(16)3
 .

COMPLEX(4)
 .

COMPLEX(8)4 Highest

1 Alpha only
2 DOUBLE PRECISION
3 VMS, U*X
4 DOUBLE COMPLEX

The data type of the value produced by an operation on two numeric operands of different data types
is the data type of the highest- ranking operand in the operation. For example, the value resulting
from an operation on an integer and a real operand is of real type. However, an operation involving a
COMPLEX data type and a DOUBLE PRECISION data type produces a DOUBLE COMPLEX

Expressions and Assignment Statements Page 6 of 25

result.

The data type of an expression is the data type of the result of the last operation in that expression,
and is determined according to the following conventions:

� Integer operations: Integer operations are performed only on integer operands. (Logical entities
used in a numeric context are treated as integers.) In integer arithmetic, any fraction resulting
from division is truncated, not rounded. For example, the result of 1/4 + 1/4 + 1/4 + 1/4 is
0, not 1.

� Real operations: Real operations are performed only on real operands or combinations of real,
integer, and logical operands. Any integer operands present are converted to real data type by
giving each a fractional part equal to zero. The expression is then evaluated using real
arithmetic. However, in the statement Y = (I /J)*X , an integer division operation is
performed on I and J, and a real multiplication is performed on that result and X.

If any operand is a higher-precision real (REAL(8) or REAL(16)) type, all other operands are
converted to that higher-precision real type before the expression is evaluated.

When a single-precision real operand is converted to a double-precision real operand, low-
order binary digits are set to zero. This conversion does not increase accuracy; conversion of a
decimal number does not produce a succession of decimal zeros. For example, a REAL
variable having the value 0.3333333 is converted to approximately 0.3333333134651184D0.
It is not converted to either 0.3333333000000000D0 or 0.3333333333333333D0.

� Complex operations: In operations that contain any complex operands, integer operands are
converted to real type, as previously described. The resulting single-precision or double-
precision operand is designated as the real part of a complex number and the imaginary part is
assigned a value of zero. The expression is then evaluated using complex arithmetic and the
resulting value is of complex type. Operations involving COMPLEX and DOUBLE
PRECISION operands are performed as DOUBLE COMPLEX operations; the DOUBLE
PRECISION operand is not rounded.

These rules also generally apply to numeric operations in which one of the operands is a constant.
However, if a real or complex constant is used in a higher-precision expression, additional precision
will be retained for the constant. The effect is as if a DOUBLE PRECISION (REAL(8)) or REAL(16)
(VMS, U*X) representation of the constant were given. For example, the expression 1.0D0 +
0.3333333 is treated as if it is 1.0D0 + 0.3333333000000000D0.

Character Expressions

A character expression consists of a character operator (//) that concatenates two operands of type
character. The evaluation of a character expression produces a single value of that type.

The result of a character expression is a character string whose value is the value of the left character
operand concatenated to the value of the right operand. The length of a character expression is the
sum of the lengths of the values of the operands. For example, the value of the character expression
’AB’//’CDE’ is ’ABCDE’, which has a length of five.

Expressions and Assignment Statements Page 7 of 25

Parentheses do not affect the evaluation of a character expression; for example, the following
character expressions are equivalent:

 (’ABC’//’DE’)//’F’
 ’ABC’//(’DE’//’F’)
 ’ABC’//’DE’//’F’

Each of these expressions has the value ’ ABCDEF’.

If a character operand in a character expression contains blanks, the blanks are included in the value
of the character expression. For example, ’ABC ’//’D E’//’F ’ has a value of ’ABC D EF ’.

Relational Expressions

A relational expression consists of two or more expressions whose values are compared to determine
whether the relationship stated by the relational operator is satisfied. The following are relational
operators:

Operator Relationship

.LT. or < Less than

.LE. or <= Less than or equal to

.EQ. or = = Equal to

.NE. or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal to

The result of the relational expression is .TRUE. if the relation specified by the operator is satisfied;
the result is .FALSE. if the relation specified by the operator is not satisfied.

Relational operators are of equal precedence. Numeric operators and the character operator // have a
higher precedence than relational operators.

In a numeric relational expression, the operands are numeric expressions. Consider the following
example:

 APPLE+PEACH > PEAR+ORANGE

This expression states that the sum of APPLE and PEACH is greater than the sum of PEAR and
ORANGE. If this relationship is valid, the value of the expression is .TRUE.; if not, the value is
.FALSE.

Expressions and Assignment Statements Page 8 of 25

Operands of type complex can only be compared using the equal operator (= = or .EQ.) or the not
equal operator (/= or .NE.). Complex entities are equal if their corresponding real and imaginary parts
are both equal.

In a character relational expression, the operands are character expressions. In character relational
expressions, less than (< or .LT.) means the character value precedes in the ASCII collating sequence,
and greater than (> or .GT.) means the character value follows in the ASCII collating sequence. For
example:

 ’AB’//’ZZZ’ .LT. ’CCCCC’

This expression states that ’ABZZZ’ is less than ’CCCCC’. In this case, the relation specified by the
operator is satisfied, so the result is .TRUE..

Character operands are compared one character at a time, in order, starting with the first character of
each operand. If the two character operands are not the same length, the shorter one is padded on the
right with blanks until the lengths are equal; for example:

 ’ABC’ .EQ. ’ABC ’

 ’AB’ .LT. ’C’

The first relational expression has the value .TRUE. even though the lengths of the expressions are
not equal, and the second has the value .TRUE. even though ’AB’ is longer than ’C’.

A relational expression can compare two numeric expressions of different data types. In this case, the
value of the expression with the lower-ranking data type is converted to the higher-ranking data type
before the comparison is made.

For More Information:

For details on the ranking of data types, see Data Type of Numeric Expressions.

Logical Expressions

A logical expression consists of one or more logical operators and logical, numeric, or relational
operands. The following are logical operators:

Operator Example Meaning

.AND. A .AND. B
Logical conjunction: the expression is true if both A and B are true.

.OR. A .OR. B Logical disjunction (inclusive OR): the expression is true if either A,
B, or both, are true.

.NEQV. A .NEQV. Logical inequivalence (exclusive OR): the expression is true if either A

Expressions and Assignment Statements Page 9 of 25

B or B is true, but false if both are true.

.XOR. A .XOR. B
Same as .NEQV.

.EQV. A .EQV. B Logical equivalence: the expression is true if both A and B are true, or
both are false.

.NOT.1 .NOT. A Logical negation: the expression is true if A is false and false if A is
true.

1 .NOT. is a unary operator.

Periods cannot appear consecutively except when the second operator is .NOT. For example, the
following logical expression is valid:

 A+B/(A-1) .AND. .NOT. D+B/(D-1)

Data Types Resulting from Logical Operations

Logical operations on logical operands produce single logical values (.TRUE. or .FALSE.) of logical
type.

Logical operations on integers produce single values of integer type. The operation is carried out bit-
by-bit on corresponding bits of the internal (binary) representation of the integer operands.

Logical operations on a combination of integer and logical values also produce single values of
integer type. The operation first converts logical values to integers, then operates as it does with
integers.

Logical operations cannot be performed on other data types.

Evaluation of Logical Expressions

Logical expressions are evaluated according to the precedence of their operators. Consider the
following expression:

 A*B+C*ABC == X*Y+DM/ZZ .AND. .NOT. K*B > TT

This expression is evaluated in the following sequence:

 (((A*B)+(C*ABC)) == ((X*Y)+(DM/ZZ))) .AND. (.NOT. ((K*B) > TT))

As with numeric expressions, you can use parentheses to alter the sequence of evaluation.

When operators have equal precedence, the compiler can evaluate them in any order, as long as the
result is the same as the result gained by the algebraic left-to-right order of evaluation (except for
exponentiation, which is evaluated from right to left).

Expressions and Assignment Statements Page 10 of 25

You should not write logical expressions whose results might depend on the evaluation order of
subexpressions. The compiler is free to evaluate subexpressions in any order. In the following
example, either (A(I)+1.0) or B(I)*2.0 could be evaluated first:

 (A(I)+1.0) .GT. B(I)*2.0

Some subexpressions might not be evaluated if the compiler can determine the result by testing other
subexpressions in the logical expression. Consider the following expression:

 A .AND. (F(X,Y) .GT. 2.0) .AND. B

If the compiler evaluates A first, and A is false, the compiler might determine that the expression is
false and might not call the subprogram F(X,Y).

For More Information:

For details on the precedence of numeric, relational, and logical operators, see Summary of Operator
Precedence.

Defined Operations

When operators are defined for functions, the functions can then be referenced as defined operations.

The operators are defined by using a generic interface block specifying OPERATOR, followed by the
defined operator (in parentheses).

A defined operation is not an intrinsic operation. However, you can use a defined operation to extend
the meaning of an intrinsic operator.

For defined unary operations, the function must contain one argument. For defined binary operations,
the function must contain two arguments.

Interpretation of the operation is provided by the function that defines the operation.

A Fortran 90 defined operator can contain up to 31 letters, and is enclosed in periods (.). Its name
cannot be the same name as any of the following:

� The intrinsic operators (.NOT., .AND., .OR., .XOR., .EQV., .NEQV., .EQ., .NE., .GT., .GE.,
.LT., and .LE.)

� The logical literal constants (.TRUE. or .FALSE.).

An intrinsic operator can be followed by a defined unary operator.

The result of a defined operation can have any type. The type of the result (and its value) must be
specified by the defining function.

Expressions and Assignment Statements Page 11 of 25

Examples

The following examples show expressions containing defined operators:

 .COMPLEMENT. A
 X .PLUS. Y .PLUS. Z
 M * .MINUS. N

For More Information:

� On defining generic operators, see Defining Generic Operators.
� On operator precedence, see Summary of Operator Precedence.

Summary of Operator Precedence

The following table shows the precedence of all intrinsic and defined operators:

Precedence of Expression Operators

Category Operator Precedence

Defined Unary Operators Highest

Numeric **
 .

Numeric * or /
 .

Numeric Unary + or -
 .

Numeric Binary + or -
 .

Character //
 .

Relational .EQ., .NE., .LT., .LE., .GT., .GE.
= =, /=, <, <=, >, >=

 .

Logical .NOT.
 .

Logical .AND.
 .

Logical .OR.
 .

 .

Expressions and Assignment Statements Page 12 of 25

Logical .XOR., .EQV., .NEQV.

Defined Binary Operators Lowest

Initialization and Specification Expressions

A constant expression contains intrinsic operations and parts that are all constants. An initialization
expression is a constant expression that is evaluated when a program is compiled. A specification
expression is a scalar, integer expression that is restricted to declarations of array bounds and
character lengths.

Initialization and specification expressions can appear in specification statements, with some
restrictions.

Initialization Expressions

An initialization expression must evaluate at compile time to a constant. It is used to specify an initial
value for an entity.

In an initialization expression, each operation is intrinsic and each operand is one of the following:

� A constant or subobject of a constant

� An array constructor where each element, and the bounds and strides of each implied-do are
expressions whose primaries are initialization expressions

� A structure constructor whose components are initialization expressions

� An elemental intrinsic function reference of type integer or character, whose arguments are
initialization expressions of type integer or character

� A reference to one of the following inquiry functions:

BIT_SIZE MINEXPONENT

DIGITS PRECISION

EPSILON RADIX

HUGE RANGE

ILEN SHAPE

KIND SIZE

LBOUND TINY

LEN UBOUND

Expressions and Assignment Statements Page 13 of 25

MAXEXPONENT

Each function argument must be one of the following:

n An initialization expression

n A variable whose kind type parameter and bounds are not assumed or defined by an
ALLOCATE statement, pointer assignment, or an expression that is not an initialization
expression

� A reference to one of the following transformational functions (each argument must be an
initialization expression):

REPEAT SELECTED_REAL_KIND

RESHAPE TRANSFER

SELECTED_INT_KIND TRIM

� A reference to the transformational function NULL

� An implied-do variable within an array constructor where the bounds and strides of the
corresponding implied-do are initialization expressions

� Another initialization expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point must be an initialization
expression.

In an initialization expression, the exponential operator (**) must have a power of type integer.

If an initialization expression invokes an inquiry function for a type parameter or an array bound of an
object, the type parameter or array bound must be specified in a prior specification statement (or to
the left of the inquiry function in the same statement).

Examples

The following examples show valid and invalid initialization (constant) expressions:

Valid

-1 + 3

SIZE(B) ! B is a named constant

7_2

INT(J, 4) ! J is a named constant

Expressions and Assignment Statements Page 14 of 25

SELECTED_INT_KIND (2)

Invalid Explanation

SUM(A) Not an allowed function.

A/4.1 - K**1.2
Exponential does not have integer power (A and K are named
constants).

HUGE(4.0) Argument is not an integer.

For More Information:

� See Array constructors.
� See Structure constructors.
� See Intrinsic procedures.

Specification Expressions

A specification expression is a restricted expression that is of type integer and has a scalar value. This
type of expression appears only in the declaration of array bounds and character lengths.

In a restricted expression, each operation is intrinsic and each operand is one of the following:

� A constant or subobject of a constant

� A variable that is one of the following:

n A dummy argument that does not have the OPTIONAL or INTENT (OUT) attribute (or
the subobject of such a variable)

n In a common block (or the subobject of such a variable)

n Made accessible by use or host association (or the subobject of such a variable)

� An array constructor where each element, and bounds and strides of each implied-do are
expressions whose primaries are restricted expressions

� A structure constructor whose components are restricted expressions

� An implied-do variable within an array constructor where the bounds and strides of the
corresponding implied-do are restricted expressions

� A reference to one of the following transformational functions (each argument must be a
restricted expression of type integer or character):

Expressions and Assignment Statements Page 15 of 25

REPEAT SELECTED_REAL_KIND

RESHAPE TRANSFER

SELECTED_INT_KIND TRIM

� A reference to the transformational function NULL

� A reference to one of the following inquiry functions:

BIT_SIZE NUMBER_OF_PROCESSORS

DIGITS NWORKERS

EPSILON PRECISION

HUGE PROCESSORS_SHAPE

ILEN RADIX

KIND RANGE

LBOUND SHAPE

LEN SIZE

MAXEXPONENT TINY

MINEXPONENT UBOUND

Each function argument must be one of the following:

n A restricted expression

n A variable whose kind type parameter and bounds are not assumed or defined by an
ALLOCATE statement, pointer assignment, or an expression that is not a restricted
expression

� A reference to a specification function (see below) where each argument is a restricted
expression

� Another restricted expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point must be a restricted
expression.

Specification functions can be used in specification expressions to indicate the attributes of data
objects. A specification function is a pure function. It cannot have a dummy procedure argument or

Expressions and Assignment Statements Page 16 of 25

be any of the following:

� An intrinsic function
� An internal function
� A statement function
� Defined as RECURSIVE

A variable in a specification expression must have its type and type parameters (if any) specified in
one of the following ways:

� By a previous declaration in the same scoping unit

� By the implicit typing rules currently in effect for the scoping unit

� By host or use association

If a variable in a specification expression is typed by the implicit typing rules, its appearance in any
subsequent type declaration statement must confirm the implied type and type parameters.

If a specification expression invokes an inquiry function for a type parameter or an array bound of an
object, the type parameter or array bound must be specified in a prior specification statement (or to
the left of the inquiry function in the same statement).

In a specification expression, the number of arguments for a function reference is limited to 255.

Examples

The following shows valid specification expressions:

 MAX(I) + J ! I and J are scalar integer variables
 UBOUND(ARRAY_B,20) ! ARRAY_B is an assumed-shape dummy array

For More Information:

� See Array constructors.
� See Structure constructors.
� See Intrinsic procedures.
� See Implicit typing rules.
� See Use and host association.
� See PURE procedures.

Assignment Statements

An assignment statement causes variables to be defined or redefined. This section describes the
following kinds of assignment statements: intrinsic, defined, pointer, masked array, and element
array.

The ASSIGN statement assigns a label to an integer variable. It is discussed elsewhere.

Expressions and Assignment Statements Page 17 of 25

Intrinsic Assignments

Intrinsic assignment is used to assign a value to a nonpointer variable. In the case of pointers,
intrinsic assignment is used to assign a value to the target associated with the pointer variable. The
value assigned to the variable (or target) is determined by evaluation of the expression to the right of
the equal sign.

An intrinsic assignment statement takes the following form:

variable = expression

variable
Is the name of a scalar or array of intrinsic or derived type (with no defined assignment). The
array cannot be an assumed-size array, and neither the scalar nor the array can be declared with
the PARAMETER or INTENT(IN) attribute.

expression
Is of intrinsic type or the same derived type as variable. Its shape must conform with variable.
If necessary, it is converted to the same type and kind as variable.

Rules and Behavior

Before a value is assigned to the variable, the expression part of the assignment statement and any
expressions within the variable are evaluated. No definition of expressions in the variable can affect
or be affected by the evaluation of the expression part of the assignment statement.

Note: When the run-time system assigns a value to a scalar integer or character variable and the
variable is shorter than the value being assigned, the assigned value may be truncated and
significant bits (or characters) lost. This truncation can occur without warning, and can cause
the run- time system to pass incorrect information back to the program.

If the variable is a pointer, it must be associated with a definable target. The shape of the target and
expression must conform and their type and kind parameters must match.

The following sections discuss numeric, logical, character, derived- type, and array intrinsic
assignment.

For More Information:

� See Arrays.
� See Pointers.
� See Derived data types.
� On subroutine subprograms that define assignment, see Defining Generic Assignment.

Numeric Assignment Statements

For numeric assignment statements, the variable and expression must be numeric type.

Expressions and Assignment Statements Page 18 of 25

The expression must yield a value that conforms to the range requirements of the variable. For
example, a real expression that produces a value greater than 32767 is invalid if the entity on the left
of the equal sign is an INTEGER(2) variable.

Significance can be lost if an INTEGER(4) value, which can exactly represent values of
approximately the range -2*10**9 to +2*10**9, is converted to REAL(4) (including the real part of a
complex constant), which is accurate to only about seven digits.

If the variable has the same data type as that of the expression on the right, the statement assigns the
value directly. If the data types are different, the value of the expression is converted to the data type
of the variable before it is assigned.

The following table summarizes the data conversion rules for numeric assignment statements. REAL
(16) is only available on OpenVMS and DIGITAL UNIX systems.

Conversion Rules for Numeric Assignment Statements
Scalar
Memory
Reference
(V)

Expression (E)

Integer or
Logical

REAL
(KIND=4)

REAL
(KIND=8)

REAL
(KIND=16)
(VMS, U*X)

COMPLEX
(KIND=4)

COMPLEX
(KIND=8)

Integer or
logical

Assign E to
V

Truncate E
to integer
and assign to
V

Truncate E to
integer and
assign to V

Truncated E to
integer and
assign to V

Truncate real part of
E to integer and
assign to V;
imaginary part of E
is not used

Truncate real part of
E to integer and
assign to V;
imaginary part of E
is not used

REAL
(KIND=4)

Append
fraction (.0)
to E and
assign to V

Assign E to
V

Assign MS
portion of E to
V; LS portion
of E is
rounded

Assign MS
portion of E to
V; LS portion
of E is rounded

Assign real part of E
to V; imaginary part
of E is not used

Assign MS portion
of the real part of E
to V; LS portion of
the real part of E is
rounded;
imagininary part of
E is not used

REAL
(KIND=8)

Append
fraction (.0)
to E and
assign to V

Assign E to
MS portion
of V; LS
portion of V
is 0

Assign E to V Assign MS
portion of E to
V; LS portion
of E is rounded

Assign real part of E
to MS of V; LS
portion of V is 0;
imaginary part of E
is not used

Assign real part of E
to V; imaginary part
of E is not used

REAL
(KIND=16)
(VMS, U*X)

Append
fraction (.0)
to E and
assign to V

Assign E to
MS portion
of V; LS
portion of V
is 0

Assign E to
MS portion of
V; LS portion
of V is 0

Assign E to V Assign real part of E
to MS of V; LS
portion of V is 0;
imaginary part of E
is not used

Assign real part of E
to MS portion of V;
LS portion of real
part of V is 0;
imaginary part of E
is not used

COMPLEX
(KIND=4)

Append
fraction (.0)
to E and
assign to real

Assign E to
real part of
V; imaginary
part of V is

Assign MS
portion of E to
real part of V;
LS portion of

Assign MS
portion of E to
real part of V;
LS portion of E

Assign E to V Assign MS portion
of real part of E to
real part of V; LS
portion of real part

Expressions and Assignment Statements Page 19 of 25

part of V;
imaginary
part of V is
0.0

0.0 E is rounded;
imaginary part
of V is 0.0

is rounded;
imaginary part
of V is 0.0

of E is rounded.
Assign MS portion
of imaginary part of
V; LS portion of
imaginary part of E
is rounded

COMPLEX
(KIND=8)

Append
fraction (.0)
to E and
assign to V;
imaginary
part of V is
0.0

Assign E to
MS portion
of real part
of V;
imaginary
part of V is
0.0

Assign E to
real part of V;
imaginary part
is 0.0

Assign MS
portion of E to
real part of V;
LS portion of E
is rounded;
imaginary part
of V is 0.0

Assign real part of E
to MS portion of
real part of V; LS
portion of real part
is 0. Assign
imaginary part of E
to MS portion of
imaginary part of V;
LS portions of
imaginary part is 0.

Assign E to V

MS = Most significant (high order) binary digits
LS = Least significant (low order) binary digits

Logical Assignment Statements

For logical assignment statements, the variable must be of logical type and the expression can be of
logical or numeric type.

If necessary, the expression is converted to the same type and kind as the variable.

Examples

The following examples demonstrate valid logical assignment statements:

PAGEND = .FALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A.GT.B .AND. A.GT.C .AND. A.GT.D

LOGICAL_VAR = 123 ! Moves binary value of 123 to LOGICAL_VAR

Character Assignment Statements

For character assignment statements, the variable and expression must be of character type and have
the same kind parameter.

The variable and expression can have different lengths. If the length of the expression is greater than
the length of the variable, the character expression is truncated on the right. If the length of the
expression is less than the length of the variable, the character expression is filled on the right with
blank characters.

If you assign a value to a character substring, you do not affect character positions in any part of the
character scalar variable not included in the substring. If a character position outside of the substring
has a value previously assigned, it remains unchanged. If the character position is undefined, it

Expressions and Assignment Statements Page 20 of 25

remains undefined.

Examples

The following examples demonstrate valid and invalid character assignment statements. (In the valid
examples, all variables are of type character.)

Valid

FILE = ’PROG2’

REVOL(1) =

’MAR’//’CIA’

LOCA(3:8) = ’PLANT5’

TEXT(I,J+1)(2:N-1) = NAME/ /X

Invalid Explanation

’ABC’ = CHARS
Left element must be a character variable, array element, or substring
reference.

CHARS = 25 Expression does not have a character data type.

STRING = 5HBEGIN
Expression does not have a character data type. (Hollerith constants are
numeric, not character.)

Derived-Type Assignment Statements

In derived-type assignment statements, the variable and expression must be of the same derived type.
There must be no accessible interface block with defined assignment for objects of this derived type.

The derived-type assignment is performed as if each component of the expression is assigned to the
corresponding component of the variable. Pointer assignment is performed for pointer components,
and intrinsic assignment is performed for nonpointer components.

Examples

The following example demonstrates derived-type assignment:

TYPE DATE
 LOGICAL(1) DAY, MONTH
 INTEGER(2) YEAR
END TYPE DATE

TYPE(DATE) TODAY, THIS_WEEK(7)

TYPE APPOINTMENT
...
 TYPE(DATE) APP_DATE

Expressions and Assignment Statements Page 21 of 25

END TYPE

TYPE(APPOINTMENT) MEETING

DO I = 1,7
 CALL GET_DATE(TODAY)
 THIS_WEEK(I) = TODAY
END DO
MEETING%APP_DATE = TODAY

For More Information:

� See Derived types.
� See Pointer assignments.

Array Assignment Statements

Array assignment is permitted when the array expression on the right has the same shape as the array
variable on the left, or the expression on the right is a scalar.

If the expression is a scalar, and the variable is an array, the scalar value is assigned to every element
of the array.

If the expression is an array, the variable must also be an array. The array element values of the
expression are assigned (element by element) to corresponding elements of the array variable.

A many-one array section is a vector-valued subscript that has two or more elements with the same
value. In intrinsic assignment, the variable cannot be a many-one array section because the result of
the assignment is undefined.

Examples

In the following example, X and Y are arrays of the same shape:

 X = Y

The corresponding elements of Y are assigned to those of X element by element; the first element of
Y is assigned to the first element of X, and so forth. The processor can perform the element-by-
element assignment in any order.

The following example shows a scalar assigned to an array:

 B(C+1:N, C) = 0

This sets the elements B (C+1,C), B (C+2,C),...B (N,C) to zero.

The following example causes the values of the elements of array A to be reversed:

 REAL A(20)

Expressions and Assignment Statements Page 22 of 25

 ...
 A(1:20) = A(20:1:-1)

For More Information:

� See Arrays.
� See Array constructors.
� On masked array assignment, see WHERE.
� On element array assignment, see FORALL.

Defined Assignments

Defined assignment specifies an assignment operation. It is defined by a subroutine subprogram
containing a generic interface block with the specifier ASSIGNMENT(=). The subroutine is specified
by a SUBROUTINE or ENTRY statement that has two nonoptional dummy arguments.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.

The dummy arguments represent the variable and expression, in that order. The rank (and shape, if
either or both are arrays), type, and kind parameters of the variable and expression in the assignment
statement must match those of the corresponding dummy arguments.

The dummy arguments must not both be numeric, or of type logical or character with the same kind
parameter.

If the variable in an elemental assignment is an array, the defined assignment is performed element-
by-element, in any order, on corresponding elements of the variable and expression. If the expression
is scalar, it is treated as if it were an array of the same shape as the variable with every element of the
array equal to the scalar value of the expression.

For More Information:

� See Subroutines.
� See Derived data types.
� On subroutine subprograms that define assignment, see Defining Generic Assignment.
� On intrinsic operations, see Numeric Expressions and Character Expressions.

Pointer Assignments

In ordinary assignment involving pointers, the pointer is an alias for its target. In pointer assignment,
the pointer is associated with a target. If the target is undefined or disassociated, the pointer acquires
the same status as the target. The pointer assignment statement has the following form:

pointer-object => target

pointer-object
Is a variable name or structure component declared with the POINTER attribute.

Expressions and Assignment Statements Page 23 of 25

target
Is a variable or expression. Its type and kind parameters, and rank must be the same as pointer-
object. It cannot be an array section with a vector subscript.

Rules and Behavior

If the target is a variable, it must have the POINTER or TARGET attribute, or be a subobject whose
parent object has the TARGET attribute.

If the target is an expression, the result must be a pointer.

If the target is not a pointer (it has the TARGET attribute), the pointer object is associated with the
target.

If the target is a pointer (it has the POINTER attribute), its status determines the status of the pointer
object, as follows:

� If the pointer is associated, the pointer object is associated with the same object as the target

� If the pointer is disassociated, the pointer object becomes disassociated

� If the pointer is undefined, the pointer object becomes undefined

A pointer must not be referenced or defined unless it is associated with a target that can be referenced
or defined.

When pointer assignment occurs, any previous association between the pointer object and a target is
terminated.

Pointers can also be assigned for a pointer structure component by execution of a derived-type
intrinsic assignment statement or a defined assignment statement.

Pointers can also become associated by using the ALLOCATE statement to allocate the pointer.

Pointers can become disassociated by deallocation, nullification of the pointer (using the
DEALLOCATE or NULLIFY statements), or by reference to the NULL intrinsic function.

Examples

The following are examples of pointer assignments:

 HOUR => MINUTES(1:60) ! target is an array
 M_YEAR => MY_CAR%YEAR ! target is a structure component
 NEW_ROW%RIGHT => CURRENT_ROW ! pointer object is a structure component
 PTR => M ! target is a variable
 <mark>
 POINTER_C => NULL () ! reference to NULL intrinsic
 <endmark>

Expressions and Assignment Statements Page 24 of 25

The following example shows a target as a pointer:

 INTEGER, POINTER :: P, N
 INTEGER, TARGET :: M
 INTEGER S
 M = 14
 N => M ! N is associated with M
 P => N ! P is associated with M through N
 S = P + 5

The value assigned to S is 19 (14 + 5).

You can use the intrinsic function ASSOCIATED to find out if a pointer is associated with a target or
if two pointers are associated with the same target. For example:

 REAL C (:), D(:), E(5)
 POINTER C, D
 TARGET E
 LOGICAL STATUS
 ! Pointer assignment.
 C => E
 ! Pointer assignment.
 D => E
 ! Returns TRUE; C is associated.
 STATUS = ASSOCIATED (C)
 ! Returns TRUE; C is associated with E.
 STATUS = ASSOCIATED (C, E)
 ! Returns TRUE; C and D are associated with the
 ! same target.
 STATUS = ASSOCIATED (C, D)

For More Information:

� See Arrays.
� See ALLOCATE.
� See ASSOCIATED.
� See DEALLOCATE.
� See NULLIFY.
� See NULL.
� See POINTER.
� See Defined assignments.
� On derived-type intrinsic assignments, see Intrinsic Assignments.

WHERE Statement and Construct

You can perform an array operation on selected elements by using masked array assignment. For
more information, see WHERE.

See also FORALL.

FORALL Statement and Construct

Expressions and Assignment Statements Page 25 of 25

The FORALL statement and construct is a generalization of the Fortran 90 masked array assignment.
It allows more general array shapes to be assigned, especially in construct form. For more
information, see FORALL.

See also WHERE.

Specification Statements Page 1 of 23

Specification Statements

A specification statement is a nonexecutable statement that declares the attributes of data objects. In
Fortran 90, many of the attributes that can be defined in specification statements can also be
optionally specified in type declaration statements.

The following are specification statements:

� Type declaration statement

Explicitly specifies the properties (for example: data type, rank, and extent) of data objects.

� ALLOCATABLE attribute and statement

Specifies a list of array names that are allocatable (have a deferred-shape).

� AUTOMATIC and STATIC attributes and statements

Control the storage allocation of variables in subprograms.

� COMMON statement

Defines one or more contiguous areas, or blocks, of physical storage (called common blocks).

� DATA statement

Assigns initial values to variables before program execution.

� DIMENSION attribute and statement

Specifies that an object is an array, and defines the shape of the array.

� EQUIVALENCE statement

Specifies that a storage area is shared by two or more objects in a program unit.

� EXTERNAL attribute and statement

Allows external (user-supplied) procedures to be used as arguments to other subprograms.

� IMPLICIT statement

Overrides the implicit data type of names.

� INTENT attribute and statement

Specifies the intended use of a dummy argument.

Specification Statements Page 2 of 23

� INTRINSIC attribute and statement

Allows intrinsic procedures to be used as arguments to subprograms.

� NAMELIST statement

Associates a name with a list of variables. This group name can be referenced in some
input/output operations.

� OPTIONAL attribute and statement

Allows a procedure reference to omit arguments.

� PARAMETER attribute and statement

Defines a named constant.

� POINTER attribute and statement

Specifies that an object is a pointer.

� PUBLIC and PRIVATE attributes and statements

Declare the accessibility of entities in a module.

� SAVE attribute and statement

Causes the definition and status of objects to be retained after the subprogram in which they are
declared completes execution.

� TARGET attribute and statement

Specifies a pointer target.

� VOLATILE attribute and statement

Prevents optimizations from being performed on specified objects.

For More Information:

� See BLOCK DATA.
� See PROGRAM.

Type Declaration Statements

A type declaration statement explicitly specifies the properties of data objects or functions. For more
information, see Type Declarations in the A to Z Reference.

Specification Statements Page 3 of 23

This section also discusses:
� Declaration Statements for Noncharacter Types
� Declaration Statements for Character Types
� Declaration Statements for Derived Types
� Declaration Statements for Arrays

For More Information:

� See Derived data types.
� See the DATA statement.
� See Initialization expressions.
� On specific kind parameters of intrinsic data types, see Intrinsic Data Types.
� On implicit typing, see Implicit Typing Rules.
� On explicit typing, see Specification of Data Type.

Declaration Statements for Noncharacter Types

The following table shows the data types that can appear in noncharacter type declaration statements.

Noncharacter Data Types

BYTE1

LOGICAL2

LOGICAL([KIND=]1) (or LOGICAL*1)

LOGICAL([KIND=]2) (or LOGICAL*2)

LOGICAL([KIND=]4) (or LOGICAL*4)

LOGICAL([KIND=]8) (or LOGICAL*8)3

INTEGER4

INTEGER([KIND=]1) (or INTEGER*1)

INTEGER([KIND=]2) (or INTEGER*2)

INTEGER([KIND=]4) (or INTEGER*4)

INTEGER([KIND=]8) (or INTEGER*8)3

REAL5

REAL([KIND=]4) (or REAL*4)

DOUBLE PRECISION (REAL([KIND=]8) or REAL*8)

REAL([KIND=]16) (or REAL*16)6

COMPLEX7

COMPLEX([KIND=]4) (or COMPLEX*8)

DOUBLE COMPLEX (COMPLEX([KIND=]8) or COMPLEX*16)
1 Same as INTEGER(1).

Specification Statements Page 4 of 23

2 This is treated as default logical.
3 Alpha only.
4 This is treated as default integer.
5 This is treated as default real.
6 VMS, U*X.
7 This is treated as default complex.

In noncharacter type declaration statements, you can optionally specify the name of the data object or
function as v*n, where n is the length (in bytes) of v. The length specified overrides the length
implied by the data type.

The value for n must be a valid length for the type of v. The type specifiers BYTE, DOUBLE
PRECISION, and DOUBLE COMPLEX have one valid length, so the n specifier is invalid for
them.

For an array specification, the n must be placed immediately following the array name; for example,
in an INTEGER declaration statement, IVEC*2(10) is an INTEGER(2) array of 10 elements.

Examples

In a noncharacter type declaration statement, a subsequent kind parameter overrides any initial kind
parameter. For example, consider the following statements:

 INTEGER(KIND=2) I, J, K, M12*4, Q, IVEC*4(10)
 REAL(KIND=8) WX1, WXZ, WX3*4, WX5, WX6*4
 REAL(KIND=8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5*0.0,5*1.0/

In the first statement, M12*4 and IVEC*4 override the KIND=2 specification. In the second
statement, WX3*4 and WX6*4 override the KIND=8 specification. In the third statement, QARRAY
is initialized with implicit conversion of the REAL(4) constants to a REAL(8) data type.

For More Information:

� On compiler options that can affect the defaults for numeric and logical data types, see your
programmer’s guide.

� On the general form and rules for type declaration statements, see Type Declarations.

Declaration Statements for Character Types

A CHARACTER type specifier can be immediately followed by the length of the character object or
function. It takes one of the following forms:

Keyword Forms

CHARACTER [([LEN=]len)]
CHARACTER [([LEN=]len [, [KIND=]k])]
CHARACTER [(KIND=k [, LEN=len])]

Nonkeyword Form

Specification Statements Page 5 of 23

CHARACTER*len[,]

len
Is one of the following:

n In keyword forms

The len is a specification expression or an asterisk (*). If no length is specified, the
default length is 1.

If the length evaluates to a negative value, the length of the character entity is zero.

n In nonkeyword form

The len is a specification expression or an asterisk enclosed in parentheses, or a scalar
integer literal constant (with no kind parameter). The comma is permitted only if no
double colon (::) appears in the type declaration statement.

This form can also (optionally) be specified following the name of the data object or
function (v*len). In this case, the length specified overrides any length following the
CHARACTER type specifier.

The largest valid value for len in both forms is 2147483647 (2**31-1) for DIGITAL UNIX,
Windows NT, and Windows 95 systems; 65535 for OpenVMS systems. Negative values are
treated as zero.

k
Is a scalar integer initialization expression specifying a valid kind parameter. Currently the only
kind available is 1.

Rules and Behavior

An automatic object can appear in a character declaration. The object cannot be a dummy argument,
and its length must be declared with a specification expression that is not a constant expression.

The length specified for a character-valued statement function or statement function dummy
argument of type character must be an integer constant expression.

When an asterisk length specification *(*) is used for a function name or dummy argument, it
assumes the length of the corresponding function reference or actual argument. Similarly, when an
asterisk length specification is used for a named constant, the name assumes the length of the actual
constant it represents. For example, STRING assumes a 9-byte length in the following statements:

 CHARACTER*(*) STRING
 PARAMETER (STRING = ’VALUE IS:’)

A function name must not be declared with a * length, if the function is an internal or module

Specification Statements Page 6 of 23

function, or if it is array-valued, pointer-valued, recursive, or pure.

The form CHARACTER*(*) is an obsolescent feature in Fortran 95.

Examples

In the following example, the character string last_name is given a length of 20:

 CHARACTER (LEN=20) last_name

In the following example, stri is given a length of 12, while the other two variables retain a length of
8.

 CHARACTER *8 strg, strh, stri*12

In the following example, as a dummy argument strh is given the length of an assigned string when it
is assigned, while the other two variables retain a length of 8:

 CHARACTER *8 strg, strh(*), stri

The following examples show ways to specify strings of known length:

 CHARACTER*32 string
 CHARACTER string*32

The following examples show ways to specify strings of unknown length:

 CHARACTER string*(*)
 CHARACTER*(*) string

The following example declares an array NAMES containing 100 32-character elements, an array
SOCSEC containing 100 9-character elements, and a variable NAMETY that is 10 characters long
and has an initial value of ’ABCDEFGHIJ’.

 CHARACTER*32 NAMES(100),SOCSEC(100)*9,NAMETY*10 /’ABCDEFGHIJ’/

The following example includes a CHARACTER statement declaring two 8-character variables,
LAST and FIRST.

 INTEGER, PARAMETER :: LENGTH=4
 CHARACTER*(4+LENGTH) LAST, FIRST

The following example shows a CHARACTER statement declaring an array LETTER containing 26
one-character elements. It also declares a dummy argument BUBBLE that has a passed length defined
by the calling program.

 CHARACTER LETTER(26), BUBBLE*(*)

Specification Statements Page 7 of 23

In the following example, NAME2 is an automatic object:

 SUBROUTINE AUTO_NAME(NAME1)
 CHARACTER(LEN = *) NAME1
 CHARACTER(LEN = LEN(NAME1)) NAME2

For More Information:

� See Obsolescent features in Fortran 95.
� On asterisk length specifications, see Data Types of Scalar Variables and Assumed-Length

Character Arguments.
� On the general form and rules for type declaration statements, see Type Declarations.

Declaration Statements for Derived Types

The derived-type (TYPE) declaration statement specifies the properties of objects and functions of
derived (user-defined) type.

The derived type must be defined before you can specify objects of that type in a TYPE type
declaration statement.

An object of derived type must not have the PUBLIC attribute if its type is PRIVATE.

A structure constructor specifies values for derived-type objects.

Examples

The following are examples of derived-type declaration statements:

 TYPE(EMPLOYEE) CONTRACT
 ...
 TYPE(SETS), DIMENSION(:,:), ALLOCATABLE :: SUBSET_1

The following example shows a public type with private components:

 TYPE LIST_ITEMS
 PRIVATE
 ...
 TYPE(LIST_ITEMS), POINTER :: NEXT, PREVIOUS
 END TYPE LIST_ITEMS

For More Information:

� See the TYPE statement.
� See Use and host association.
� See the PUBLIC and PRIVATE attributes.
� See Structure constructors.

Specification Statements Page 8 of 23

� On the general form and rules for type declaration statements, see Type Declarations.

Declaration Statements for Arrays

An array declaration (or array declarator) declares the shape of an array. It takes the following form:

(a-spec)

a-spec
Is one of the following array specifications:

n Explicit-shape
n Assumed-shape
n Assumed-size
n Deferred-shape

The array specification can be appended to the name of the array when the array is declared.

Examples

The following examples show array declarations:

SUBROUTINE SUB(N, C, D, Z)
 REAL, DIMENSION(N, 15) :: IARRY ! An explicit-shape array
 REAL C(:), D(0:) ! An assumed-shape array
 REAL, POINTER :: B(:,:) ! A deferred-shape array pointer
 REAL, ALLOCATABLE, DIMENSION(:) :: K ! A deferred-shape allocatable array
 REAL :: Z(N,*) ! An assumed-size array

For More Information:

For details on the general form and rules for type declaration statements, see Type Declarations.

Explicit-Shape Specifications

An explicit-shape array is declared with explicit values for the bounds in each dimension of the
array. An explicit-shape specification takes the following form:

([dl:] du[, [dl:] du]...)

dl
Is a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

du
Is a specification expression indicating the upper bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.

Specification Statements Page 9 of 23

The bounds can be specified as constant or nonconstant expressions, as follows:

� If the bounds are constant expressions, the subscript range of the array in a dimension is the set
of integer values between and including the lower and upper bounds. If the lower bound is
greater than the upper bound, the range is empty, the extent in that dimension is zero, and the
array has a size of zero.

� If the bounds are nonconstant expressions, the array must be declared in a procedure. The
bounds can have different values each time the procedure is executed, since they are
determined when the procedure is entered.

The bounds are not affected by any redefinition or undefinition of the variables in the
specification expression that occurs while the procedure is executing.

The following explicit-shape arrays can specify nonconstant bounds:

n An automatic array (the array is a local variable)
n An adjustable array (the array is a dummy argument to a subprogram)

The following are examples of explicit-shape specifications:

INTEGER I(3:8, -2:5) ! Rank-two array; range of dimension one is
... ! 3 to 8, range of dimension two is -2 to 5
SUBROUTINE SUB(A, B, C)
 INTEGER :: B, C
 REAL, DIMENSION(B:C) :: A ! Rank-one array; range is B to C

Consider the following:

 INTEGER M(10, 10, 10)
 INTEGER K(-3:6, 4:13, 0:9)

M and K are both explicit-shape arrays with a rank of 3, a size of 1000, and the same shape
(10,10,10). Array M uses the default lower bound of 1 for each of its dimensions. So, when it is
declared only the upper bound needs to be specified. Each of the dimensions of array K has a lower
bound other than the default, and the lower bounds as well as the upper bounds are declared.

Automatic Arrays

An automatic array is an explicit-shape array that is a local variable. Automatic arrays are only
allowed in function and subroutine subprograms, and are declared in the specification part of the
subprogram. At least one bound of an automatic array must be a nonconstant specification
expression. The bounds are determined when the subprogram is called.

The following example shows automatic arrays:

SUBROUTINE SUB1 (A, B)

Specification Statements Page 10 of 23

 INTEGER A, B, LOWER
 COMMON /BOUND/ LOWER
 ...
 INTEGER AUTO_ARRAY1(B)
 ...
 INTEGER AUTO_ARRAY2(LOWER:B)
 ...
 INTEGER AUTO_ARRAY3(20, B*A/2)
END SUBROUTINE

Consider the following:

 SUBROUTINE EXAMPLE (N, R1, R2)
 DIMENSION A (N, 5), B(10*N)
 ...
 N = IFIX(R1) + IFIX(R2)

When the subroutine is called, the arrays A and B are dimensioned on entry into the subroutine with
the value of the passed variable N. Later changes to the value of N have no effect on the dimensions
of array A or B.

Adjustable Arrays

An adjustable array is an explicit-shape array that is a dummy argument to a subprogram. At least
one bound of an adjustable array must be a nonconstant specification expression. The bounds are
determined when the subprogram is called.

The array specification can contain integer variables that are either dummy arguments or variables in
a common block.

When the subprogram is entered, each dummy argument specified in the bounds must be associated
with an actual argument. If the specification includes a variable in a common block, the variable must
have a defined value. The array specification is evaluated using the values of the actual arguments, as
well as any constants or common block variables that appear in the specification.

The size of the adjustable array must be less than or equal to the size of the array that is its
corresponding actual argument.

To avoid possible errors in subscript evaluation, make sure that the bounds expressions used to
declare multidimensional adjustable arrays match the bounds as declared by the caller.

In the following example, the function computes the sum of the elements of a rank-two array. Notice
how the dummy arguments M and N control the iteration:

 FUNCTION THE_SUM(A, M, N)
 DIMENSION A(M, N)
 SUMX = 0.0
 DO J = 1, N
 DO I = 1, M
 SUMX = SUMX + A(I, J)
 END DO
 END DO
 THE_SUM = SUMX

Specification Statements Page 11 of 23

 END FUNCTION

The following are examples of calls on THE_SUM:

DIMENSION A1(10,35), A2(3,56)
SUM1 = THE_SUM(A1,10,35)
SUM2 = THE_SUM(A2,3,56)

The following example shows how the array bounds determined when the procedure is entered do not
change during execution:

DIMENSION ARRAY(9,5)
L = 9
M = 5
CALL SUB(ARRAY,L,M)
END

SUBROUTINE SUB(X,I,J)
 DIMENSION X(-I/2:I/2,J)
 X(I/2,J) = 999
 J = 1
 I = 2
END

The assignments to I and J do not affect the declaration of adjustable array X as X(-4:4,5) on entry to
subroutine SUB.

For More Information:

See also Specification expressions.

Assumed-Shape Specifications

An assumed-shape array is a dummy argument array that assumes the shape of its associated actual
argument array. An assumed-shape specification takes the following form:

([dl]:[, [dl]:]...)

dl
Is a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

The rank of the array is the number of colons (:) specified.

The value of the upper bound is the extent of the corresponding dimension of the associated actual
argument array + lower-bound - 1.

Examples

Specification Statements Page 12 of 23

The following is an example of an assumed-shape specification:

INTERFACE
 SUBROUTINE SUB(M)
 INTEGER M(:, 1:, 5:)
 END SUBROUTINE
END INTERFACE
INTEGER L(20, 5:25, 10)
CALL SUB(L)

SUBROUTINE SUB(M)
 INTEGER M(:, 1:, 5:)
END SUBROUTINE

Array M has the same extents as array L, but array M has bounds (1:20, 1:21, 5:14).

Note that an explicit interface is required when calling a routine that expects an assumed-shape or
pointer array.

Consider the following:

 SUBROUTINE ASSUMED(A)
 REAL A(:, :, :)

The array A has rank 3, indicated by the three colons (:) separated by commas (,). However, the
extent of each dimension is unspecified. When the subroutine is called, A takes its shape from the
array passed to it. For example, consider the following:

 REAL X (4, 7, 9)
 ...
 CALL ASSUMED(X)

This gives A the dimensions (4, 7, 9). The actual array and the assumed-shape array must have the
same rank.

Consider the following:

 SUBROUTINE ASSUMED(A)
 REAL A(3:, 0:, -2:)
 ...

If the subroutine is called with the same actual array X(4, 7, 9), as in the previous example, the lower
and upper bounds of A would be:

A(3:6, 0:6, -2:6)

Assumed-Size Specifications

An assumed-size array is a dummy argument array that assumes the size (only) of its associated
actual argument array; the rank and extents can differ for the actual and dummy arrays. An assumed-
size specification takes the following form:

Specification Statements Page 13 of 23

([expli-shape-spec,] [expli-shape-spec,]... [dl:] *)

expli-shape-spec
Is an explicit-shape specification.

dl
Is a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

*
Is the upper bound of the last dimension.

The rank of the array is the number of explicit-shape specifications plus 1.

The size of the array is assumed from the actual argument associated with the assumed-size dummy
array as follows:

� If the actual argument is an array of type other than default character, the size of the dummy
array is the size of the actual array.

� If the actual argument is an array element of type other than default character, the size of the
dummy array is a + 1 - s , where s is the subscript order value and a is the size of the actual
array.

� If the actual argument is a default character array, array element, or array element substring,
and it begins at character storage unit b of an array with n character storage units, the size of the
dummy array is as follows:

 MAX(INT((n + 1 - b)/y), 0)

The y is the length of an element of the dummy array.

An assumed-size array can only be used as a whole array reference in the following cases:

� When it is an actual argument in a procedure reference that does not require the shape
� In the intrinsic function LBOUND

Because the actual size of an assumed-size array is unknown, an assumed-size array cannot be used
as any of the following in an I/O statement:

� An array name in the I/O list
� A unit identifier for an internal file
� A run-time format specifier

Specification Statements Page 14 of 23

Examples

The following is an example of an assumed-size specification:

 SUBROUTINE SUB(A, N)
 REAL A, N
 DIMENSION A(1:N, *)
 ...

The following example shows that you can specify lower bounds for any of the dimensions of an
assumed-size array, including the last:

 SUBROUTINE ASSUME(A)
 REAL A(-4:-2, 4:6, 3:*)

For More Information:

For details on array element order, see Array Elements.

Deferred-Shape Specifications

A deferred-shape array is an array pointer or an allocatable array.

The array specification contains a colon (:) for each dimension of the array. No bounds are specified.
The bounds (and shape) of allocatable arrays and array pointers are determined when space is
allocated for the array during program execution.

An array pointer is an array declared with the POINTER attribute. Its bounds and shape are
determined when it is associated with a target by pointer assignment, or when the pointer is allocated
by execution of an ALLOCATE statement.

In pointer assignment, the lower bound of each dimension of the array pointer is the result of the
LBOUND intrinsic function applied to the corresponding dimension of the target. The upper bound
of each dimension is the result of the UBOUND intrinsic function applied to the corresponding
dimension of the target.

A pointer dummy argument can be associated only with a pointer actual argument. An actual
argument that is a pointer can be associated with a nonpointer dummy argument.

A function result can be declared to have the pointer attribute.

An allocatable array is declared with the ALLOCATABLE attribute. Its bounds and shape are
determined when the array is allocated by execution of an ALLOCATE statement.

Examples

The following are examples of deferred-shape specifications:

Specification Statements Page 15 of 23

 REAL, ALLOCATABLE :: A(:,:) ! Allocatable array
 REAL, POINTER :: C(:), D (:,:,:) ! Array pointers

If a deferred-shape array is declared in a DIMENSION or TARGET statement, it must be given the
ALLOCATABLE or POINTER attribute in another statement. For example:

 DIMENSION P(:, :, :)
 POINTER P

 TARGET B(:,:)
 ALLOCATABLE B

If the deferred-shape array is an array of pointers, its size, shape, and bounds are set in an
ALLOCATE statement or in the pointer assignment statement when the pointer is associated with an
allocated target. A pointer and its target must have the same rank.

For example:

 REAL, POINTER :: A(:,:), B(:), C(:,:)
 INTEGER, ALLOCATABLE :: I(:)
 REAL, ALLOCATABLE, TARGET :: D(:, :), E(:)
 ...
 ALLOCATE (A(2, 3), I(5), D(SIZE(I), 12), E(98))
 C => D ! Pointer assignment statement
 B => E(25:56) ! Pointer assignment to a section
 ! of a target

For More Information:

� See the POINTER attribute.
� See the ALLOCATABLE attribute.
� See the ALLOCATE statement.
� See Pointer assignment.
� See the LBOUND intrinsic function.
� See the UBOUND intrinsic function.

ALLOCATABLE Attribute and Statement

The ALLOCATABLE attribute specifies that an array is an allocatable array with a deferred shape.
The shape of an allocatable array is determined when an ALLOCATE statement is executed,
dynamically allocating space for the array. For more information, see ALLOCATABLE in the A to Z
Reference.

AUTOMATIC and STATIC Attributes and Statements

The AUTOMATIC and STATIC attributes control the storage allocation of variables in subprograms.
For more information, see AUTOMATIC and STATIC in the A to Z Reference.

Specification Statements Page 16 of 23

COMMON Statement

A COMMON statement defines one or more contiguous areas, or blocks, of physical storage (called
common blocks) that can be accessed by any of the scoping units in an executable program.
COMMON statements also define the order in which variables and arrays are stored in each common
block, which can prevent misaligned data items. For more information, see COMMON in the A to Z
Reference.

DATA Statement

The DATA statement assigns initial values to variables before program execution. For more
information, see DATA in the A to Z Reference.

DIMENSION Attribute and Statement

The DIMENSION attribute specifies that an object is an array, and defines the shape of the array. For
more information, see DIMENSION in the A to Z Reference.

EQUIVALENCE Statement

The EQUIVALENCE statement specifies that a storage area is shared by two or more objects in a
program unit. This causes total or partial storage association of the objects that share the storage area.
For more information, see EQUIVALENCE in the A to Z Reference.

This section also discusses the following:

� Making Arrays Equivalent
� Making Substrings Equivalent
� EQUIVALENCE and COMMON Interaction

Making Arrays Equivalent

When you make an element of one array equivalent to an element of another array, the
EQUIVALENCE statement also sets equivalences between the other elements of the two arrays.
Thus, if the first elements of two equal-sized arrays are made equivalent, both arrays share the same
storage. If the third element of a 7-element array is made equivalent to the first element of another
array, the last five elements of the first array overlap the first five elements of the second array.

Two or more elements of the same array should not be associated with each other in one or more
EQUIVALENCE statements. For example, you cannot use an EQUIVALENCE statement to
associate the first element of one array with the first element of another array, and then attempt to
associate the fourth element of the first array with the seventh element of the other array.

Consider the following example:

Specification Statements Page 17 of 23

 DIMENSION TABLE (2,2), TRIPLE (2,2,2)
 EQUIVALENCE(TABLE(2,2), TRIPLE(1,2,2))

These statements cause the entire array TABLE to share part of the storage allocated to TRIPLE. The
following table shows how these statements align the arrays:

Equivalence of Array Storage

Array TRIPLE Array TABLE

Array Element Element Number Array Element Element Number

TRIPLE(1,1,1) 1

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3

TRIPLE(2,2,1) 4 TABLE(1,1) 1

TRIPLE(1,1,2) 5 TABLE(2,1) 2

TRIPLE(2,1,2) 6 TABLE(1,2) 3

TRIPLE(1,2,2) 7 TABLE(2,2) 4

TRIPLE(2,2,2) 8

Each of the following statements also aligns the two arrays as shown in the above table:

 EQUIVALENCE(TABLE, TRIPLE(2,2,1))
 EQUIVALENCE(TRIPLE(1,1,2), TABLE(2,1))

You can also make arrays equivalent with nonunity lower bounds. For example, an array defined as A
(2:3,4) is a sequence of eight values. A reference to A(2,2) refers to the third element in the sequence.
To make array A(2:3,4) share storage with array B(2:4,4), you can use the following statement:

 EQUIVALENCE(A(3,4), B(2,4))

The entire array A shares part of the storage allocated to array B. The following table shows how
these statements align the arrays. The arrays can also be aligned by the following statements:

EQUIVALENCE(A, B(4,1))
EQUIVALENCE(B(3,2), A(2,2))

Equivalence of Arrays with Nonunity Lower Bounds

Specification Statements Page 18 of 23

Array B Array A

Array Element Element Number Array Element Element Number

B(2,1) 1

B(3,1) 2

B(4,1) 3 A(2,1) 1

B(2,2) 4 A(3,1) 2

B(3,2) 5 A(2,2) 3

B(4,2) 6 A(3,2) 4

B(2,3) 7 A(2,3) 5

B(3,3) 8 A(3,3) 6

B(4,3) 9 A(2,4) 7

B(2,4) 10 A(3,4) 8

B(3,4) 11

B(4,4) 12

Only in the EQUIVALENCE statement can you identify an array element with a single subscript
(the linear element number), even though the array was defined as multidimensional. For example,
the following statements align the two arrays as shown in the above table:

 DIMENSION B(2:4,1:4), A(2:3,1:4)
 EQUIVALENCE(B(6), A(4))

Making Substrings Equivalent

When you make one character substring equivalent to another character substring, the
EQUIVALENCE statement also sets associations between the other corresponding characters in the
character entities; for example:

 CHARACTER NAME*16, ID*9
 EQUIVALENCE(NAME(10:13), ID(2:5))

These statements cause character variables NAME and ID to share space (see the following figure).
The arrays can also be aligned by the following statement:

 EQUIVALENCE(NAME(9:9), ID(1:1))

Specification Statements Page 19 of 23

Equivalence of Substrings

If the character substring references are array elements, the EQUIVALENCE statement sets
associations between the other corresponding characters in the complete arrays.

Character elements of arrays can overlap at any character position. For example, the following
statements cause character arrays FIELDS and STAR to share storage (see the following figure).

CHARACTER FIELDS(100)*4, STAR(5)*5
EQUIVALENCE(FIELDS(1)(2:4), STAR(2)(3:5))

Equivalence of Character Arrays

Specification Statements Page 20 of 23

Specification Statements Page 21 of 23

The EQUIVALENCE statement cannot assign the same storage location to two or more substrings
that start at different character positions in the same character variable or character array. The
EQUIVALENCE statement also cannot assign memory locations in a way that is inconsistent with
the normal linear storage of character variables and arrays.

EQUIVALENCE and COMMON Interaction

A common block can extend beyond its original boundaries if variables or arrays are associated with
entities stored in the common block. However, a common block can only extend beyond its last
element; the extended portion cannot precede the first element in the block.

Examples

The following two figures demonstrate valid and invalid extensions of the common block,
respectively.

A Valid Extension of a Common Block

An Invalid Extension of a Common Block

The second example is invalid because the extended portion, B(1), precedes the first element of the
common block.

The following example shows a valid EQUIVALENCE statement and an invalid EQUIVALENCE
statement in the context of a common block.

 COMMON A, B, C
 DIMENSION D(3)
 EQUIVALENCE(B, D(1)) ! Valid, because common block is extended
 ! from the end.

Specification Statements Page 22 of 23

 COMMON A, B, C
 DIMENSION D(3)
 EQUIVALENCE(B, D(3)) ! Invalid, because D(1) would extend common
 ! block to precede A’s location.

EXTERNAL Attribute and Statement

The EXTERNAL attribute allows an external or dummy procedure to be used as an actual argument.
For more information, see EXTERNAL in the A to Z Reference.

IMPLICIT Statement

The IMPLICIT statement overrides the default implicit typing rules for names. For more
information, see IMPLICIT in the A to Z Reference.

INTENT Attribute and Statement

The INTENT attribute specifies the intended use of one or more dummy arguments. For more
information, see INTENT in the A to Z Reference.

INTRINSIC Attribute and Statement

The INTRINSIC attribute allows the specific name of an intrinsic procedure to be used as an actual
argument. Certain specific function names cannot be used; these are indicated in Functions Not
Allowed as Actual Arguments in the A to Z Reference.

For more information, see INTRINSIC in the A to Z Reference.

NAMELIST Statement

The NAMELIST statement associates a name with a list of variables. This group name can be
referenced in some input/output operations. For more information, see NAMELIST in the A to Z
Reference.

OPTIONAL Attribute and Statement

The OPTIONAL attribute permits dummy arguments to be omitted in a procedure reference. For
more information, see OPTIONAL in the A to Z Reference.

PARAMETER Attribute and Statement

The PARAMETER attribute defines a named constant. For more information, see PARAMETER in
the A to Z Reference.

Specification Statements Page 23 of 23

POINTER Attribute and Statement

The POINTER attribute specifies that an object is a pointer (a dynamic variable). For more
information, see POINTER in the A to Z Reference.

PUBLIC and PRIVATE Attributes and Statements

The PRIVATE and PUBLIC attributes specify the accessibility of entities in a module. (These
attributes are also called accessibility attributes.) For more information, see PUBLIC and PRIVATE
in the A to Z Reference.

SAVE Attribute and Statement

The SAVE attribute causes the values and definition of objects to be retained after execution of a
RETURN or END statement in a subprogram. For more information, see SAVE in the A to Z
Reference.

TARGET Attribute and Statement

The TARGET attribute specifies that an object can become the target of a pointer. For more
information, see TARGET in the A to Z Reference.

VOLATILE Attribute and Statement

The VOLATILE attribute specifies that the value of an object is entirely unpredictable, based on
information local to the current program unit. For more information, see VOLATILE in the A to Z
Reference.

Dynamic Allocation Page 1 of 6

Dynamic Allocation

Data objects can be static or dynamic. If a data object is static, a fixed amount of memory storage is
created for it at compile time and is not freed until the program exits. If a data object is dynamic,
memory storage for the object can be created (allocated), altered, or freed (deallocated) as a program
executes.

In Fortran 90, pointers, allocatable arrays, and automatic arrays are dynamic data objects.

No storage space is created for a pointer until it is allocated with an ALLOCATE statement or until
it is assigned to a allocated target. A pointer can be dynamically disassociated from a target by using a
NULLIFY statement.

An ALLOCATE statement can also be used to create storage for an allocatable array. A
DEALLOCATE statement is used to free the storage space reserved in a previous ALLOCATE
statement.

Automatic arrays differ from allocatable arrays in that they are automatically allocated and
deallocated whenever you enter or leave a procedure, respectively.

Note: Dynamic memory allocation is limited by several factors, including swap file size and
memory requirements of other applications that are running. Dynamic allocations that are too
large or otherwise attempt to use the protected memory of other applications result in General
Protection Fault errors. If you encounter an unexpectedly low limit, you might need to reset
your virtual memory size through the Control Panel or redefine the swap file size.

Some programming techniques can help minimize memory requirements, such as using one
large array instead of two or more individual arrays. Allocated arrays that are no longer needed
should be deallocated.

This chapter contains information on the following topics:

� The ALLOCATE Statement
� The DEALLOCATE Statement
� The NULLIFY Statement

For More Information:

� See Pointer Assignments.
� See Automatic arrays.
� See the NULL intrinsic function, which can also be used to disassociate a pointer.

ALLOCATE Statement

The ALLOCATE statement dynamically creates storage for allocatable arrays and pointer targets.
The storage space allocated is uninitialized. For more information, see ALLOCATE in the A to Z
Reference.

Dynamic Allocation Page 2 of 6

This section also discusses the following:

� Allocation of Allocatable Arrays
� Allocation of Pointer Targets

Allocation of Allocatable Arrays

The bounds (and shape) of an allocatable array are determined when it is allocated. Subsequent
redefinition or undefinition of any entities in the bound expressions does not affect the array
specification.

If the lower bound is greater than the upper bound, that dimension has an extent of zero, and the array
has a size of zero. If the lower bound is omitted, it is assumed to be 1.

When an array is allocated, it is definable. If you try to allocate a currently allocated allocatable array,
an error occurs.

The intrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:

 REAL, ALLOCATABLE :: E(:,:)
 ...
 IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7))

Allocation Status

During program execution, the allocation status of an allocatable array is one of the following:

� Not currently allocated

The array was never allocated or the last operation on it was a deallocation. Such an array must
not be referenced or defined.

� Currently allocated

The array was allocated by an ALLOCATE statement. Such an array can be referenced,
defined, or deallocated.

If an allocatable array has the SAVE attribute, it has an initial status of "not currently allocated". If
the array is then allocated, its status changes to "currently allocated". It keeps that status until the
array is deallocated.

If an allocatable array does not have the SAVE attribute, it has the status of "not currently allocated"
at the beginning of each invocation of the procedure. If the array’s status changes to "currently
allocated", it is deallocated if the procedure is terminated by execution of a RETURN or END
statement.

Dynamic Allocation Page 3 of 6

Examples

The following example shows a program that performs virtual memory allocation. This program uses
Fortran 90 standard-conforming statements instead of calling an operating system memory allocation
routine.

Allocating Virtual Memory

! Program accepts an integer and displays square root values

 INTEGER(4) :: N
 READ (5,*) N ! Reads an integer value
 CALL MAT(N)
 END

! Subroutine MAT uses the typed integer value to display the square
! root values of numbers from 1 to N (the number read)

 SUBROUTINE MAT(N)
 REAL(4), ALLOCATABLE :: SQR(:) ! Declares SQR as a one-dimensional
 ! allocatable array
 ALLOCATE (SQR(N)) ! Allocates array SQR

 DO J=1,N
 SQR(J) = SQRT(FLOATJ(J)) ! FLOATJ converts integer to REAL
 ENDDO

 WRITE (6,*) SQR ! Displays calculated values
 DEALLOCATE (SQR) ! Deallocates array SQR
 END SUBROUTINE MAT

For More Information:

� See ALLOCATED.
� See ALLOCATE.

Allocation of Pointer Targets

When a pointer is allocated, the pointer is associated with a target and can be used to reference or
define the target. (The target can be an array or a scalar, depending on how the pointer was declared.)

Other pointers can become associated with the pointer target (or part of the pointer target) by pointer
assignment.

In contrast to allocatable arrays, a pointer can be allocated a new target even if it is currently
associated with a target. The previous association is broken and the pointer is then associated with the
new target.

If the previous target was created by allocation, it becomes inaccessible unless it can still be referred
to by other pointers that are currently associated with it.

The intrinsic function ASSOCIATED can be used to determine whether a pointer is currently

Dynamic Allocation Page 4 of 6

associated with a target. (The association status of the pointer must be defined.) For example:

 REAL, TARGET :: TAR(0:50)
 REAL, POINTER :: PTR(:)
 PTR => TAR
 ...
 IF (ASSOCIATED(PTR,TAR))...

For More Information:

� See POINTER.
� See Pointer assignments.
� See ASSOCIATED.

DEALLOCATE Statement

The DEALLOCATE statement frees the storage allocated for allocatable arrays and pointer targets
(and causes the pointers to become disassociated). For more information, see DEALLOCATE in the
A to Z Reference.

This section also discusses the following:

� Deallocation of Allocatable Arrays
� Deallocation of Pointer Targets

Deallocation of Allocatable Arrays

If the DEALLOCATE statement specifies an array that is not currently allocated, an error occurs.

If an allocatable array with the TARGET attribute is deallocated, the association status of any pointer
associated with it becomes undefined.

If a RETURN or END statement terminates a procedure, an allocatable array has one of the
following allocation statuses:

� It keeps its previous allocation and association status if the following is true:

n It has the SAVE attribute.

n It is in the scoping unit of a module that is accessed by another scoping unit which is
currently executing.

n It is accessible by host association.

� It remains allocated if it is accessed by use association.

� Otherwise, its allocation status is deallocated.

Dynamic Allocation Page 5 of 6

The intrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:

SUBROUTINE TEST
 REAL, ALLOCATABLE, SAVE :: F(:,:)

 REAL, ALLOCATABLE :: E(:,:,:)
 ...
 IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7,14))
END SUBROUTINE TEST

Note that when subroutine TEST is exited, the allocation status of F is maintained because F has the
SAVE attribute. Since E does not have the SAVE attribute, it is deallocated. On the next invocation
of TEST, E will have the status of "not currently allocated".

For More Information:

� See Host association.
� See TARGET.
� See RETURN.
� See END.
� See SAVE.

Deallocation of Pointer Targets

A pointer must not be deallocated unless it has a defined association status. If the DEALLOCATE
statement specifies a pointer that has undefined association status, or a pointer whose target was not
created by allocation, an error occurs.

A pointer must not be deallocated if it is associated with an allocatable array, or it is associated with a
portion of an object (such as an array element or an array section).

If a pointer is deallocated, the association status of any other pointer associated with the target (or
portion of the target) becomes undefined.

Execution of a RETURN or END statement in a subprogram causes the pointer association status of
any pointer declared (or accessed) in the procedure to become undefined, unless any of the following
applies to the pointer:

� It has the SAVE attribute.

� It is in the scoping unit of a module that is accessed by another scoping unit which is currently
executing.

� It is accessible by host association.

� It is in blank common.

Dynamic Allocation Page 6 of 6

� It is in a named common block that appears in another scoping unit that is currently executing.

� It is the return value of a function declared with the POINTER attribute.

If the association status of a pointer becomes undefined, it cannot subsequently be referenced or
defined.

Examples

The following example shows deallocation of a pointer:

 INTEGER ERR
 REAL, POINTER :: PTR_A(:)
 ...
 ALLOCATE (PTR_A(10), STAT=ERR)
 ...
 DEALLOCATE(PTR_A)

For More Information:

� See POINTER.
� See COMMON.
� See NULL.
� See Host association.
� See TARGET.
� See RETURN.
� See END.
� See SAVE.

NULLIFY Statement

The NULLIFY statement disassociates a pointer from its target. For more information, see
NULLIFY in the A to Z Reference.

Execution Control Page 1 of 10

Execution Control

A program normally executes statements in the order in which they are written. Executable control
constructs and statements modify this normal execution by transferring control to another statement
in the program, or by selecting blocks (groups) of constructs and statements for execution or
repetition.

In Fortran 90, control constructs (CASE, DO, and IF) can be named. The name must be a unique
identifier in the scoping unit, and must appear on the initial line and terminal line of the construct. On
the initial line, the name is separated from the statement keyword by a colon (:).

A block can contain any executable Fortran statement except an END statement. You can transfer
control out of a block, but you cannot transfer control into another block.

DO loops cannot partially overlap blocks. The DO statement and its terminal statement must appear
together in a statement block.

This chapter contains information on the following topics:

� Branch statements
� The CALL statement
� The CASE construct
� The CONTINUE statement
� The DO construct
� The END statement
� The IF construct and statementt
� The PAUSE statement
� The RETURN statement
� The STOP statement

Branch Statements

Branching affects the normal execution sequence by transferring control to a labeled statement in the
same scoping unit. The transfer statement is called the branch statement, while the statement to
which the transfer is made is called the branch target statement.

Any executable statement can be a branch target statement, except for the following:

� CASE statement
� ELSE statement
� ELSE IF statement

Certain restrictions apply to the following statements:

Execution Control Page 2 of 10

Statement Restriction

DO terminal statement The branch must be taken from within its nonblock DO construct1.

END DO The branch must be taken from within its block DO construct.

END IF The branch should be taken from within its IF construct2.

END SELECT The branch must be taken from within its CASE construct.

1 If the terminal statement is shared by more than one nonblock DO construct, the branch can only be taken from
within the innermost DO construct
2 You can branch to an END IF statement from outside the IF construct, but this is an obsolescent feature in Fortran
90 (see Obsolescent Language Features in Fortran 90).

The following branch statements are described in this section:

� Unconditional GO TO
� Computed GO TO
� Assigned GO TO (the ASSIGN statement is also described here)
� Arithmetic IF

For More Information:

� See IF constructs.
� See CASE constructs.
� See DO constructs.

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same branch target statement every time
it executes. For more information, see GOTO -- Unconditional in the A to Z Reference.

Computed GO TO Statement

The computed GO TO statement transfers control to one of a set of labeled branch target statements
based on the value of an expression. For more information, see GOTO -- Computed in the A to Z
Reference.

The ASSIGN and Assigned GO TO Statements

The ASSIGN statement assigns a label to an integer variable. Subsequently, this variable can be used
as a branch target statement by an assigned GO TO statement or as a format specifier in a formatted
input/output statement. For more information, see ASSIGN and GOTO -- Assigned in the A to Z
Reference.

Execution Control Page 3 of 10

Arithmetic IF Statement

The arithmetic IF statement conditionally transfers control to one of three statements, based on the
value of an arithmetic expression. For more information, see IF -- Arithmetic in the A to Z Reference.

CALL Statement

The CALL statement transfers control to a subroutine subprogram. For more information, see CALL
in the A to Z Reference.

CASE Constructs

The CASE construct conditionally executes one block of constructs or statements depending on the
value of a scalar expression in a SELECT CASE statement. For more information, see CASE in the
A to Z Reference.

CONTINUE Statement

The CONTINUE statement is primarily used to terminate a labeled DO construct when the construct
would otherwise end improperly with either a GO TO, arithmetic IF, or other prohibited control
statement. For more information, see CONTINUE in the A to Z Reference.

DO Constructs

The DO construct controls the repeated execution of a block of statements or constructs. For more
information, see DO in the A to Z Reference.

This section also discusses the following topics:

� Forms for DO Constructs
� Execution of DO Constructs
� DO WHILE Statement
� CYCLE Statement
� EXIT Statement

Forms for DO Constructs

A DO construct can be in block or nonblock form. For more information, see DO in the A to Z
Reference.

Execution of DO Constructs

The range of a DO construct includes all the statements and constructs that follow the DO statement,
up to and including the terminal statement. If the DO construct contains another construct, the inner

Execution Control Page 4 of 10

(nested) construct must be entirely contained within the DO construct.

Execution of a DO construct differs depending on how the loop is controlled, as follows:

� If there is no loop control (a simple DO construct), statements in the DO range are repeated
until the DO statement is terminated explicitly by a statement within the range.

� If loop control is a DO WHILE statement, the DO range is repeated as long as a specified
condition remains true. Once the condition is evaluated as false, the DO construct terminates.
(For more information, see the DO WHILE statement.)

� If loop control is specified as do-var = expr1, expr2 [,expr3], an iteration count specifies the
number of times the DO range is executed. (For more information, see Iteration Loop Control.)

This section also discusses the following topics:

� Nested DO Constructs
� Extended Range

Iteration Loop Control

DO iteration loop control takes the following form:

do-var = expr1, expr2 [, expr3]

do-var
Is the name of a scalar variable of type integer or real. It cannot be the name of an array element
or structure component.

expr
Is a scalar numeric expression of type integer or real. If it is not the same type as do-var, it is
converted to that type.

Rules and Behavior

A DO variable or expression of type real is an obsolescent feature in Fortran 90, which has been
deleted in Fortran 95. DIGITAL Fortran fully supports features deleted in Fortran 95.

The following steps are performed in iteration loop control:

1. The expressions expr1, expr2, and expr3 are evaluated to respectively determine the initial,
terminal, and increment parameters.

The increment parameter (expr3) is optional and must not be zero. If an increment parameter is
not specified, it is assumed to be of type default integer with a value of 1.

2. The DO variable (do-var) becomes defined with the value of the initial parameter (expr1).

Execution Control Page 5 of 10

3. The iteration count is determined as follows:

 MAX(INT((expr2 - expr1 + expr3)/expr3), 0)

The iteration count is zero if either of the following is true:

 expr1 > expr2 and expr3 > 0
 expr1 < expr2 and expr3 < 0

4. The iteration count is tested. If the iteration count is zero, the loop terminates and the DO
construct becomes inactive. (The compiler option /f66 can affect this.) If the iteration count is
nonzero, the range of the loop is executed.

5. The iteration count is decremented by one, and the DO variable is incremented by the value of
the increment parameter, if any.

After termination, the DO variable retains its last value (the one it had when the iteration count was
tested and found to be zero).

The DO variable must not be redefined or become undefined during execution of the DO range.

If you change variables in the initial, terminal, or increment expressions during execution of the DO
construct, it does not affect the iteration count. The iteration count is fixed each time the DO
construct is entered.

Examples

The following example specifies 25 iterations:

 DO 100 K=1,50,2

K=49 during the final iteration, K=51 after the loop.

The following example specifies 27 iterations:

 DO 350 J=50,-2,-2

J=-2 during the final iteration, J=-4 after the loop.

The following example specifies 9 iterations:

 DO NUMBER=5,40,4

NUMBER=37 during the final iteration, NUMBER=41 after the loop. The terminating statement of

Execution Control Page 6 of 10

this DO loop must be END DO.

For More Information:

For details on obsolescent features in Fortran 90 and Fortran 95, as well as features deleted in Fortran
95, see Obsolescent and Deleted Language Features.

Nested DO Constructs

A DO construct can contain one or more complete DO constructs (loops). The range of an inner
nested DO construct must lie completely within the range of the next outer DO construct. Nested
nonblock DO constructs can share a labeled terminal statement.

The following figure shows correctly and incorrectly nested DO constructs:

Nested DO Constructs

Execution Control Page 7 of 10

In a nested DO construct, you can transfer control from an inner construct to an outer construct.
However, you cannot transfer control from an outer construct to an inner construct.

If two or more nested DO constructs share the same terminal statement, you can transfer control to
that statement only from within the range of the innermost construct. Any other transfer to that
statement constitutes a transfer from an outer construct to an inner construct, because the shared
statement is part of the range of the innermost construct.

Extended Range

A DO construct has an extended range if both of the following are true:

� The DO construct contains a control statement that transfers control out of the construct.

� Another control statement returns control back into the construct after execution of one or more
statements.

The range of the construct is extended to include all executable statements between the destination
statement of the first transfer and the statement that returns control to the construct.

The following rules apply to a DO construct with extended range:

� A transfer into the range of a DO statement is permitted only if the transfer is made from the
extended range of that DO statement.

� The extended range of a DO statement must not change the control variable of the DO
statement.

The following figure shows valid and invalid extended range control transfers:

Control Transfers and Extended Range

Execution Control Page 8 of 10

DO WHILE Statement

The DO WHILE statement executes the range of a DO construct while a specified condition remains
true. For more information, see DO WHILE in the A to Z Reference.

CYCLE Statement

The CYCLE statement interrupts the current execution cycle of the innermost (or named) DO
construct. For more information, see CYCLE in the A to Z Reference.

EXIT Statement

The EXIT statement terminates execution of a DO construct. For more information, see EXIT in the

Execution Control Page 9 of 10

A to Z Reference.

END Statement

The END statement marks the end of a program unit. For more information, see END in the A to Z
Reference.

IF Construct and Statement

The IF construct conditionally executes one block of statements or constructs.

The IF statement conditionally executes one statement.

The decision to transfer control or to execute the statement or block is based on the evaluation of a
logical expression within the IF statement or construct.

For More Information:

See Arithmetic IF Statement.

IF Construct

The IF construct conditionally executes one block of constructs or statements depending on the
evaluation of a logical expression. For more information, see IF construct in the A to Z Reference.

IF Statement

The IF statement conditionally executes one statement based on the value of a logical expression. For
more information, see IF -- Logical in the A to Z Reference.

PAUSE Statement

The PAUSE statement temporarily suspends program execution until the user or system resumes
execution. For more information, see PAUSE in the A to Z Reference.

For alternate methods of pausing while reading from and writing to a device, see READ and WRITE
in the A to Z Reference.

RETURN Statement

The RETURN statement transfers control from a subprogram to the calling program unit. For more
information, see RETURN in the A to Z Reference.

STOP Statement

Execution Control Page 10 of 10

The STOP statement terminates program execution before the end of the program unit. For more
information, see STOP in the A to Z Reference.

Program Units and Procedures Page 1 of 30

Program Units and Procedures

A Fortran 90 program consists of one or more program units. The principal kinds of program units
are: the main program, external subprograms (user-written functions and subroutines), modules, and
block data program units.

A procedure can be invoked during program execution to perform a specific task. There are several
kinds of procedures, as follows:

Kind of
Procedure Description

External
Procedure

A procedure that is not part of any other program unit.

Module
Procedure

A procedure defined within a module

Internal
Procedure

A procedure (other than a statement function) contained within a main
program, function, or subroutine

Intrinsic
Procedure

A procedure defined by the Fortran language

Dummy
Procedure

A dummy argument specified as a procedure or appearing in a procedure
reference

Statement
function

A computing procedure defined by a single statement

A function is invoked in an expression and returns a single value (function result) that is used to
evaluate the expression. A subroutine is invoked in a CALL statement or by a defined assignment
statement, and does not return a particular value.

Recursion (direct or indirect) is permitted for functions and subroutines.

A procedure interface refers to the properties of a procedure that interact with or are of concern to the
calling program. A procedure interface can be explicitly defined in interface blocks. All program
units, except block data program units, can contain interface blocks.

This chapter contains information on the following topics:

� Main program
� Modules and module procedures
� Block data program units
� Functions, subroutines, and statement functions
� External procedures
� Internal procedures

Program Units and Procedures Page 2 of 30

� Argument association
� Procedure interfaces
� The CONTAINS statement
� The ENTRY statement

For More Information:

� See Program structure.
� See Intrinsic procedures.
� See Scope.
� See RECURSIVE.

Main Program

A main program is a program unit whose first statement is not a SUBROUTINE, FUNCTION,
MODULE, or BLOCK DATA statement. Program execution always begins with the first executable
statement in the main program, so there must be exactly one main program unit in every executable
program. For more information, see PROGRAM in the A to Z Reference.

Modules and Module Procedures

A module program unit contains specifications and definitions that can be made accessible to other
program units. For the module to be accessible, the other program units must reference the module in
a USE statement, and the module entities must be public. For more information, see MODULE in the
A to Z Reference.

A module procedure is a procedure declared and defined in a module, between its CONTAINS and
END statements. For more information, see MODULE PROCEDURE in the A to Z Reference.

This section also discusses:

� Module References
� USE Statement

Module References

A module is referenced in a USE statement. If a module reference appears in a program unit, the
program unit can access the public definitions, specifications, and procedures in the module.

Entities in a module are public by default, unless the USE statement specifies otherwise or the
PRIVATE attribute is specified for the module entities.

A module reference causes use association between the using program unit and the entities in the
module.

For More Information:

Program Units and Procedures Page 3 of 30

� See the USE statement.
� See the PRIVATE and PUBLIC attributes.
� See Use association.

USE Statement

The USE statement gives a program unit accessibility to public entities in a module. For more
information, see USE in the A to Z Reference.

Examples

Entities in modules can be accessed either through their given name, or through aliases declared in
the USE statement of the main program unit. For example:

 USE MODULE_LIB, XTABS => CROSSTABS

This statement accesses the routine called CROSSTABS in MODULE_LIB by the name XTABS. This way,
if two modules have routines called CROSSTABS, one program can use them both simultaneously by
assigning a local name in its USE statement.

When a program or subprogram renames a module entity, the local name (XTABS, in the preceding
example) is accessible throughout the scope of the program unit that names it.

The ONLY option also allows public variables to be renamed. Consider the following:

 USE MODULE_A, ONLY: VARIABLE_A => VAR_A

In this case, the host program accesses only VAR_A from module A, and refers to it by the name
VARIABLE_A.

Consider the following example:

 MODULE FOO
 integer foos_integer
 PRIVATE
 integer foos_secret_integer
 END MODULE FOO

PRIVATE, in this case, makes the PRIVATE attribute the default for the entire module FOO. To
make foos_integer accessible to other program units, add the line:

 PUBLIC :: foos_integer

Alternatively, to make only foos_secret_integer inaccessible outside the module, rewrite the
module as follows:

 MODULE FOO
 integer foos_integer
 integer, private::foos_secret_integer
 END MODULE FOO

Program Units and Procedures Page 4 of 30

Block Data Program Units

A block data program unit provides initial values for nonpointer variables in named common blocks.
For more information, see BLOCK DATA in the A to Z Reference.

Examples

An example of a block data program unit follows:

 BLOCK DATA WORK
 COMMON /WRKCOM/ A, B, C (10,10)
 DATA A /1.0/, B /2.0/, C /100*0.0/
 END BLOCK DATA WORK

Functions, Subroutines, and Statement Functions

Functions, subroutines, and statement functions are user-written subprograms that perform computing
procedures. The computing procedure can be either a series of arithmetic operations or a series of
Fortran statements. A single subprogram can perform a computing procedure in several places in a
program, to avoid duplicating a series of operations or statements in each place.

The following table shows the statements that define these subprograms, and how control is
transferred to the subprogram:

Subprogram Defining Statements Control Transfer Method

Function FUNCTION or ENTRY Function reference1

Subroutine SUBROUTINE or ENTRY CALL statement2

Statement function Statement function definition Function reference

1 A function can also be invoked by a defined operation (see Defining Generic Operators).
2 A subroutine can also be invoked by a defined assignment (see Defining Generic Assignment).

A function reference is used in an expression to invoke a function; it consists of the function name
and its actual arguments. The function reference returns a value to the calling expression which is
used to evaluate the expression.

The following topics are discussed in this section:

� General rules for function and subroutine subprograms
� Functions
� Subroutines
� Statement functions

For More Information:

Program Units and Procedures Page 5 of 30

� See the ENTRY statement.
� See the CALL statement.

General Rules for Function and Subroutine Subprograms

A subprogram can be an external, module, or internal subprogram. The END statement for an internal
or module subprogram must be END SUBROUTINE [name] for a subroutine, or END FUNCTION
[name] for a function. In an external subprogram, the SUBROUTINE and FUNCTION keywords
are optional.

If a subprogram name appears after the END statement, it must be the same as the name specified in
the SUBROUTINE or FUNCTION statement.

Function and subroutine subprograms can change the values of their arguments, and the calling
program can use the changed values.

A SUBROUTINE or FUNCTION statement can be optionally preceded by an OPTIONS
statement.

Dummy arguments (except for dummy pointers or dummy procedures) can be specified with an intent
and can be made optional.

For More Information:

� See RECURSIVE.
� See PURE procedures.
� See user-defined ELEMENTAL procedures.
� See Module procedures.
� See Internal procedures.
� See External procedures.
� See Optional arguments.
� See INTENT.

Recursion

A recursive procedure is a function or subroutine that references itself, either directly or indirectly.
For more information, see RECURSIVE in the A to Z Reference.

Pure Procedures

A pure procedure is a user-defined procedure that has no side effects. Pure procedures are a feature of
Fortran 95.

For more information, see PURE in the A to Z Reference.

Elemental Procedures

Program Units and Procedures Page 6 of 30

An elemental procedure is a user-defined procedure that is a restricted form of pure procedure. For
more information, see PURE and ELEMENTAL in the A to Z Reference.

Functions

A function subprogram is invoked in an expression and returns a single value (a function result) that
is used to evaluate the expression. For more information, see FUNCTION in the A to Z Reference.

This section also discusses the following:

� The RESULT Keyword
� Function References

RESULT Keyword

If you use the RESULT keyword in a FUNCTION statement, you can specify a local variable name
for the function result. For more information, see RESULT in the A to Z Reference.

Function References

Functions are invoked by a function reference in an expression or by a defined operation.

A function reference takes the following form:

fun ([a-arg [, a-arg]...])

fun
Is the name of the function subprogram.

a-arg
Is an actual argument optionally preceded by [keyword=], where keyword is the name of a
dummy argument in the explicit interface for the function. The keyword is assigned a value
when the procedure is invoked.

Each actual argument must be a variable, an expression, or the name of a procedure. (It must
not be the name of an internal procedure, statement function, or the generic name of a
procedure.)

Rules and Behavior

When a function is referenced, each actual argument is associated with the corresponding dummy
argument by its position in the argument list or by the name of its keyword. The arguments must
agree in type and kind parameters.

Execution of the function produces a result that is assigned to the function name or to the result
name, depending on whether the RESULT keyword was specified.

Program Units and Procedures Page 7 of 30

The program unit uses the result value to complete the evaluation of the expression containing the
function reference.

If positional arguments and argument keywords are specified, the argument keywords must appear
last in the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

If a dummy argument is specified with the INTENT attribute, its use may be limited. A dummy
argument whose intent is not specified is subject to the limitations of its associated actual argument.

An actual argument associated with a dummy procedure must be the specific name of a procedure, or
be another dummy procedure. Certain specific intrinsic function names must not be used as actual
arguments (see Functions Not Allowed as Actual Arguments).

Examples

Consider the following example:

 X = 2.0
 NEW_COS = COS(X) ! A function reference

Intrinsic function COS calculates the cosine of 2.0. The value -0.4161468 is returned (in place of
COS(X)) and assigned to NEW_COS.

For More Information:

� See the INTENT attribute.
� See Defining Generic Operators.
� See Dummy Procedure Arguments.
� See Intrinsic Procedures.
� See Optional arguments.
� See the RESULT keyword.
� See the FUNCTION statement.
� On procedure arguments, see Argument Association.

Subroutines

A subroutine subprogram is invoked in a CALL statement or by a defined assignment statement, and
does not return a particular value. For more information, see SUBROUTINE in the A to Z Reference.

Statement Functions

A statement function is a procedure defined by a single statement in the same program unit in which
the procedure is referenced. For more information, see Statement Function in the A to Z Reference.

Program Units and Procedures Page 8 of 30

External Procedures

External procedures (functions or subroutines) are defined by external subprograms that are not part
of any other program unit. External procedures can also be defined by means other than Fortran 90.

External procedures can be invoked by the main program or any procedure of an executable program,
and they can be optionally preceded by an OPTIONS statement.

In Fortran 90, external procedures can include internal subprograms (defining internal procedures).
An internal subprogram begins with a CONTAINS statement.

An external procedure can reference itself (directly or indirectly).

The interface of an external procedure is implicit unless an interface block is supplied for the
procedure.

For More Information:

� See Functions, Subroutines, and Statement Functions.
� See Procedure Interfaces.
� On passing arguments, see your programmer’s guide.

Internal Procedures

An internal procedure is defined by an internal subprogram. Internal procedures can appear in the
main program, in an external subprogram, or in a module subprogram. The program unit in which the
internal procedure appears is called its host.

An internal procedure takes the following form:

CONTAINS
internal-subprogram
[internal-subprogram]...

internal-subprogram
Is a function or subroutine subprogram that defines the procedure. An internal subprogram
must not contain any other internal subprograms.

Rules and Behavior

Internal procedures are the same as external procedures, except for the following:

� An internal procedure is local to its host.

� An internal procedure has access to host entities by host association.

� An internal procedure must not be argument-associated with a dummy procedure.

Program Units and Procedures Page 9 of 30

� An internal procedure must not contain an ENTRY statement.

An internal procedure can reference itself (directly or indirectly); it can be referenced in the execution
part of its host and in the execution part of any internal procedure contained in the same host
(including itself).

The interface of an internal procedure is always explicit.

Examples

The following example shows an internal procedure:

PROGRAM COLOR_GUIDE
...
CONTAINS
 FUNCTION HUE(BLUE) ! An internal procedure
 ...
 END FUNCTION HUE
END PROGRAM

The following example program contains an internal subroutine find, which performs calculations
that the main program then prints. The variables a, b, and c declared in the host program are also
known to the internal subroutine.

 program INTERNAL
 ! shows use of internal subroutine and CONTAINS statement
 real a,b,c
 call find
 print *, c
 contains
 subroutine find
 read *, a,b
 c = sqrt(a**2 + b**2)
 end subroutine find
 end

For More Information:

� See Functions, Subroutines, and Statement Functions.
� See Host association.
� See Procedure Interfaces.
� See CONTAINS.

Argument Association

Procedure arguments provide a way for different program units to access the same data.

When a procedure is referenced in an executable program, the program unit invoking the procedure
can use one or more actual arguments to pass values to the procedure’s dummy arguments. The
dummy arguments are associated with their corresponding actual arguments when control passes to
the subprogram.

Program Units and Procedures Page 10 of 30

In general, when control is returned to the calling program unit, the last value assigned to a dummy
argument is assigned to the corresponding actual argument.

An actual argument can be a variable, expression, or procedure name. The type and kind parameters,
and rank of the actual argument must match those of its associated dummy argument.

A dummy argument is either a dummy data object, a dummy procedure, or an alternate return
specifier (*). Except for alternate return specifiers, dummy arguments can be optional.

If argument keywords are not used, argument association is positional. The first dummy argument
becomes associated with the first actual argument, and so on. If argument keywords are used,
arguments are associated by the keyword name, so actual arguments can be in a different order than
dummy arguments. A keyword is required for an argument only if a preceding optional argument is
omitted or if the argument sequence is changed.

A scalar dummy argument can be associated with only a scalar actual argument.

If a dummy argument is an array, it must be no larger than the array that is the actual argument. You
can use adjustable arrays to process arrays of different sizes in a single subprogram.

A dummy argument referenced as a subprogram must be associated with an actual argument that has
been declared EXTERNAL or INTRINSIC in the calling routine.

If a scalar dummy argument is of type character, its length must not be greater than the length of its
associated actual argument.

If the character dummy argument’s length is specified as *(*) (assumed length), it uses the length of
the associated actual argument.

Once an actual argument has been associated with a dummy argument, no action can be taken that
affects the value or availability of the actual argument, except indirectly through the dummy
argument. For example, if the following statement is specified:

 CALL SUB_A (B(2:6), B(4:10))

B(4:6) must not be defined, redefined, or become undefined through either dummy argument, since it
is associated with both arguments. However, B(2:3) is definable through the first argument, and B
(7:10) is definable through the second argument.

Similarly, if any part of the actual argument is defined through a dummy argument, the actual
argument can only be referenced through that dummy argument during execution of the procedure.
For example, if the following statements are specified:

 MODULE MOD_A
 REAL :: A, B, C, D
 END MODULE MOD_A

 PROGRAM TEST

Program Units and Procedures Page 11 of 30

 USE MOD_A
 CALL SUB_1 (B)
 ...
 END PROGRAM TEST

 SUBROUTINE SUB_1 (F)
 USE MOD_A
 ...
 WRITE (*,*) F
 END SUBROUTINE SUB_1

Variable B must not be directly referenced during the execution of SUB_1 because it is being defined
through dummy argument F. However, B can be indirectly referenced through F (and directly
referenced when SUB_1 completes execution).

The following sections provide more details on arguments:

� Optional arguments

� The different kinds of arguments:

n Array arguments

n Pointer arguments

n Assumed-length character arguments

n Character constant and Hollerith arguments

n Alternate return arguments

n Dummy procedure arguments

� References to generic procedures

� References to non-Fortran procedures (%DESCR %REF, %VAL, and %LOC)

For More Information:

� On argument keywords in subroutine references, see CALL.
� On argument keywords in function references, see Function References.

Optional Arguments

Dummy arguments can be made optional if they are declared with the OPTIONAL attribute. In this
case, an actual argument does not have to be supplied for it in a procedure reference.

If argument keywords are not used, argument association is positional. The first dummy argument
becomes associated with the first actual argument, and so on. If argument keywords are used,
arguments are associated by the keyword name, so actual arguments can be in a different order than
dummy arguments. A keyword is required for an argument only if a preceding optional argument is

Program Units and Procedures Page 12 of 30

omitted or if the argument sequence is changed.

Positional arguments (if any) must appear first in an actual argument list, followed by keyword
arguments (if any). If an optional argument is the last positional argument, it can simply be omitted if
desired.

However, if the optional argument is to be omitted but it is not the last positional argument, keyword
arguments must be used for any subsequent arguments in the list.

Optional arguments must have explicit procedure interfaces so that appropriate argument associations
can be made.

The PRESENT intrinsic function can be used to determine if an actual argument is associated with
an optional dummy argument in a particular reference.

The following example shows optional arguments:

 PROGRAM RESULT
 TEST_RESULT = LGFUNC(A, B=D)
 ...
 CONTAINS
 FUNCTION LGFUNC(G, H, B)
 OPTIONAL H, B
 ...
 END FUNCTION
 END

In the function reference, A is a positional argument associated with required dummy argument G.
The second actual argument D is associated with optional dummy argument B by its keyword name
(B). No actual argument is associated with optional argument H.

The following shows another example:

 ! Arguments can be passed out of order, but must be
 ! associated with the correct dummy argument.
 CALL EXT1 (Z=C, X=A, Y=B)
 . . .
 END

 SUBROUTINE EXT1(X,Y,Z)
 REAL X, Y
 REAL, OPTIONAL :: Z
 . . .
 END SUBROUTINE

In this case, argument A is associated with dummy argument X by explicit assignment. Once EXT1
executes and returns, A is no longer associated with X, B is no longer associated with Y, and C is no
longer associated with Z.

For More Information:

� See the OPTIONAL attribute.

Program Units and Procedures Page 13 of 30

� See the PRESENT intrinsic function.
� On general rules for procedure argument association, see Argument association.
� On argument keywords in subroutine references, see CALL.
� On argument keywords in function references, see Function References.

Array Arguments

Arrays are sequences of elements. Each element of an actual array is associated with the element of
the dummy array that has the same position in array element order.

If the dummy argument is an explicit-shape or assumed-size array, the size of the dummy argument
array must not exceed the size of the actual argument array.

The type and kind parameters of an explicit-shape or assumed-size dummy argument must match the
type and kind parameters of the actual argument, but their ranks need not match.

If the dummy argument is an assumed-shape array, the size of the dummy argument array is equal to
the size of the actual argument array. The associated actual argument must not be an assumed-size
array or a scalar (including a designator for an array element or an array element substring).

If the actual argument is an array section with a vector subscript, the associated dummy argument
must not be defined.

The declaration of an array used as a dummy argument can specify the lower bound of the array.

Although most types of arrays can be used as dummy arguments, allocatable arrays cannot be dummy
arguments. Allocatable arrays can be actual arguments.

Dummy argument arrays declared as assumed-shape, deferred-shape, or pointer arrays require an
explicit interface visible to the caller.

For More Information:

� See Arrays.
� See Array association.
� On general rules for procedure argument association, see Argument association.
� On array element order, see Array Elements.
� On explicit-shape arrays, see Explicit-Shape Specifications.
� On assumed-shape arrays, see Assumed-Shape Specifications.
� On assumed-size arrays, see Assumed-Size Specifications.

Pointer Arguments

An argument is a pointer if it is declared with the POINTER attribute.

A dummy argument that is a pointer can be associated only with an actual argument that is a pointer.
However, an actual argument that is a pointer can be associated with a nonpointer dummy argument.

Program Units and Procedures Page 14 of 30

If both the dummy and actual arguments are pointers, an explicit interface is required.

When a procedure is invoked, the dummy argument pointer receives the pointer association status of
the actual argument. If the actual argument is currently associated, the dummy argument becomes
associated with the same target.

The pointer association status of the dummy argument can change during the execution of the
procedure, and any such changes are reflected in the actual argument.

If a pointer actual argument is an array, the corresponding pointer dummy argument must be a
deferred-shape array.

A pointer actual argument can correspond to a nonpointer dummy argument if the actual argument is
associated.

If the actual argument has the TARGET attribute, any pointers associated with it do not become
associated with the corresponding dummy argument when the procedure is invoked, but remain
associated with the actual argument.

If the dummy argument has the TARGET attribute, any pointer associated with it becomes undefined
when execution of the procedure completes.

For More Information:

� See POINTER.
� See Pointer assignments.
� See the TARGET attribute.
� On general rules for procedure argument association, see Argument association.

Assumed-Length Character Arguments

An assumed-length character argument is a dummy argument that assumes the length attribute of its
corresponding actual argument. An asterisk (*) specifies the length of the dummy character argument.

A character array dummy argument can also have an assumed length. The length of each element in
the dummy argument is the length of the elements in the actual argument. The assumed length and
the array declarator together determine the size of the assumed-length character array.

The following example shows an assumed-length character argument:

 INTEGER FUNCTION ICMAX(CVAR)
 CHARACTER*(*) CVAR
 ICMAX = 1
 DO I=2,LEN(CVAR)
 IF (CVAR(I:I) .GT. CVAR(ICMAX:ICMAX)) ICMAX=I
 END DO
 RETURN
 END

Program Units and Procedures Page 15 of 30

The function ICMAX finds the position of the character with the highest ASCII code value. It uses
the length of the assumed-length character argument to control the iteration. Intrinsic function LEN
determines the length of the argument.

The length of the dummy argument is determined each time control transfers to the function. The
length of the actual argument can be the length of a character variable, array element, substring, or
expression. Each of the following function references specifies a different length for the dummy
argument:

 CHARACTER VAR*10, CARRAY(3,5)*20
 ...
 I1 = ICMAX(VAR)
 I2 = ICMAX(CARRAY(2,2))
 I3 = ICMAX(VAR(3:8))
 I4 = ICMAX(CARRAY(1,3)(5:15))
 I5 = ICMAX(VAR(3:4)//CARRAY(3,5))

For More Information:

� See the LEN intrinsic function.
� On general rules for procedure argument association, see Argument association.

Character Constant and Hollerith Arguments

If an actual argument is a character constant (for example, ’ABCD’), the corresponding dummy
argument must be of type character. If an actual argument is a Hollerith constant (for example,
4HABCD), the corresponding dummy argument must have a numeric data type.

The following example shows character and Hollerith constants being used as actual arguments:

 SUBROUTINE S(CHARSUB, HOLLSUB, A, B)
 EXTERNAL CHARSUB, HOLLSUB
 ...
 CALL CHARSUB(A, ’STRING’)
 CALL HOLLSUB(B, 6HSTRING)

The subroutines CHARSUB and HOLLSUB are themselves dummy arguments of the subroutine S.
Therefore, the actual argument ’STRING’ in the call to CHARSUB must correspond to a character
dummy argument, and the actual argument 6HSTRING in the call to HOLLSUB must correspond to
a numeric dummy argument.

For More Information:

For details on general rules for procedure argument association, see Argument association.

Alternate Return Arguments

Alternate return dummy arguments can appear in a subroutine argument list to transfer control to

Program Units and Procedures Page 16 of 30

other statements. The alternate return is indicated by an asterisk (*). (An alternate return is an
obsolescent feature in Fortran 90 and Fortran 95.)

There can be any number of alternate returns in a subroutine argument list, and they can be in any
position in the list.

An actual argument associated with an alternate return dummy argument is called an alternate return
specifier; it is indicated by an asterisk (*), or ampersand (&) followed by the label of an executable
branch target statement in the same scoping unit as the CALL statement.

Alternate returns cannot be declared optional.

In Fortran 90, you can also use the RETURN statement to specify alternate returns.

The following example shows alternate return actual and dummy arguments:

 CALL MINN(X, Y, *300, *250, Z)

 SUBROUTINE MINN(A, B, *, *, C)

For More Information:

� On general rules for procedure argument association, see Argument association.
� See the SUBROUTINE statement.
� See the CALL statement.
� See the RETURN statement.
� On obsolescent features in Fortran 90 and Fortran 95, see Obsolescent and Deleted Language

Features.

Dummy Procedure Arguments

If an actual argument is a procedure, its corresponding dummy argument is a dummy procedure.
Dummy procedures can appear in function or subroutine subprograms.

The actual argument must be the specific name of an external, module, intrinsic, or another dummy
procedure. If the specific name is also a generic name, only the specific name is associated with the
dummy argument. Not all specific intrinsic procedures can appear as actual arguments. (For more
information, see Functions Not Allowed as Actual Arguments.)

The actual argument and corresponding dummy procedure must both be subroutines or both be
functions.

If the interface of the dummy procedure is explicit, the type and kind parameters, and rank of the
associated actual procedure must be the same as that of the dummy procedure.

If the interface of the dummy procedure is implicit and the procedure is referenced as a subroutine,
the actual argument must be a subroutine or a dummy procedure.

Program Units and Procedures Page 17 of 30

If the interface of the dummy procedure is implicit and the procedure is referenced as a function or is
explicitly typed, the actual argument must be a function or a dummy procedure.

Dummy procedures can be declared optional, but they must not be declared with an intent.

The following is an example of a procedure used as an argument:

 REAL FUNCTION LGFUNC(BAR)
 INTERFACE
 REAL FUNCTION BAR(Y)
 REAL, INTENT(IN) :: Y
 END
 END INTERFACE
 ...
 LGFUNC = BAR(2.0)
 ...
 END FUNCTION LGFUNC

For More Information:

For details on general rules for procedure argument association, see Argument association.

References to Generic Procedures

Generic procedures are procedures with different specific names that can be accessed under one
generic (common) name. In FORTRAN 77, generic procedures were limited to intrinsic procedures.
In Fortran 90, you can use generic interface blocks to specify generic properties for intrinsic and user-
defined procedures.

If you refer to a procedure by using its generic name, the selection of the specific routine is based on
the number of arguments and the type and kind parameters, and rank of each argument.

All procedures given the same generic name must be subroutines, or all must be functions. Any two
must differ enough so that any invocation of the procedure is unambiguous.

The following sections describe references to generic intrinsic functions and show an example of
using intrinsic function names.

For More Information:

� See Unambiguous Generic Procedure References.
� See Intrinsic procedures.
� On the rules for resolving ambiguous procedure references, see Resolving Procedure

References.
� On user-defined generic procedures, see Defining Generic Names for Procedures.

References to Generic Intrinsic Functions

The generic intrinsic function name COS lists four specific intrinsic functions that calculate cosines:

Program Units and Procedures Page 18 of 30

COS, DCOS, QCOS, CCOS, and CDCOS. These functions return different values: REAL(4),
REAL(8), REAL(16) (VMS, U*X), COMPLEX(4), and COMPLEX(8), respectively.

If you invoke the cosine function by using the generic name COS, the compiler selects the
appropriate routine based on the arguments that you specify. For example, if the argument is REAL
(4), COS is selected; if it is REAL(8), DCOS is selected; and if it is COMPLEX(4), CCOS is
selected.

You can also explicitly refer to a particular routine. For example, you can invoke the double-precision
cosine function by specifying DCOS.

Procedure selection occurs independently for each generic reference, so you can use a generic
reference repeatedly in the same program unit to access different intrinsic procedures.

You cannot use generic function names to select intrinsic procedures if you use them as follows:

� The name of a statement function
� A dummy argument name, a common block name, or a variable or array name

When an intrinsic function is passed as an actual argument to a procedure, its specific name must be
used, and when called, its arguments must be scalar. Not all specific intrinsic functions can appear as
actual arguments. (For more information, see Functions Not Allowed as Actual Arguments.)

Generic procedure names are local to the program unit that refers to them, so they can be used for
other purposes in other program units.

Normally, an intrinsic procedure name refers to the Fortran 90 library procedure with that name.
However, the name can refer to a user-defined procedure when the name appears in an EXTERNAL
statement.

Note: If you call an intrinsic procedure by using the wrong number of arguments or an
incorrect argument type, the compiler assumes you are referring to an external procedure. For
example, intrinsic procedure SIN requires one argument; if you specify two arguments, such as
SIN(10,4), the compiler assumes SIN is external and not intrinsic.

Except when used in an EXTERNAL statement, intrinsic procedure names are local to the program
unit that refers to them, so they can be used for other purposes in other program units. The data type
of an intrinsic procedure does not change if you use an IMPLICIT statement to change the implied
data type rules.

Intrinsic and user-defined procedures cannot have the same name if they appear in the same program
unit.

Examples

The following example shows the local and global properties of an intrinsic function name. It uses
intrinsic function SIN as follows:

Program Units and Procedures Page 19 of 30

� The name of a statement function
� The generic name of an intrinsic function
� The specific name of an intrinsic function
� The name of a user-defined function

Using and Redefining an Intrinsic Function Name

 ! Compare ways of computing sine

 PROGRAM SINES
 DOUBLE PRECISION X, PI
 PARAMETER (PI=3.141592653589793238D0)
 COMMON V(3)

 ! Define SIN as a statement function

 SIN(X) = COS(PI/2-X)
 DO X = -PI, PI, 2*PI/100

 ! Reference the statement function SIN

 WRITE (6,100) X, V, SIN(X)
 END DO
 CALL COMPUT(X)
 100 FORMAT (5F10.7)
 END

 SUBROUTINE COMPUT(Y)
 DOUBLE PRECISION Y

 ! Use intrinsic function SIN as an actual argument

 INTRINSIC SIN
 COMMON V(3)

 ! Define generic reference to double-precision sine

 V(1) = SIN(Y)

 ! Use intrinsic function SIN as an actual argument

 CALL SUB(REAL(Y),SIN)
 END

 SUBROUTINE SUB(A,S)

 ! Declare SIN as name of a user function

 EXTERNAL SIN

 ! Declare SIN as type DOUBLE PRECISION

 DOUBLE PRECISION SIN
 COMMON V(3)

Program Units and Procedures Page 20 of 30

 ! Evaluate intrinsic function SIN

 V(2) = S(A)

 ! Evaluate user-defined SIN function

 V(3) = SIN(A)
 END

 ! Define the user SIN function

 DOUBLE PRECISION FUNCTION SIN(X)
 INTEGER FACTOR
 SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &
 - X**7/FACTOR(7)
 END

 INTEGER FUNCTION FACTOR(N)
 FACTOR = 1
 DO I=N,1,-1
 FACTOR = FACTOR * I
 END DO
 END

 The statement function named SIN is defined in terms of the generic function name COS. Because
the argument of COS is double precision, the double-precision cosine function is evaluated. The
statement function SIN is itself single precision.

 The statement function SIN is called.

 The name SIN is declared intrinsic so that the single-precision intrinsic sine function can be passed
as an actual argument at 5.

 The generic function name SIN is used to refer to the double-precision sine function.

 The single-precision intrinsic sine function is used as an actual argument.

 The name SIN is declared a user-defined function name.

 The type of SIN is declared double precision.

 The single-precision sine function passed at 5 is evaluated.

 The user-defined SIN function is evaluated.

 The user-defined SIN function is defined as a simple Taylor series using a user-defined function
FACTOR to compute the factorial function.

For More Information:

� See the EXTERNAL attribute.
� See the INTRINSIC attribute.
� See Intrinsic procedures.

Program Units and Procedures Page 21 of 30

� On the scope of names, see Names.

References to Elemental Intrinsic Procedures

An elemental intrinsic procedure has scalar dummy arguments that can be called with scalar or array
actual arguments. If actual arguments are array-valued, they must have the same shape. There are
many elemental intrinsic functions, but only one elemental intrinsic subroutine (MVBITS).

If the actual arguments are scalar, the result is scalar. If the actual arguments are array-valued, the
scalar-valued procedure is applied element-by-element to the actual argument, resulting in an array
that has the same shape as the actual argument.

The values of the elements of the resulting array are the same as if the scalar-valued procedure had
been applied separately to the corresponding elements of each argument.

For example, if A and B are arrays of shape (5,6), MAX(A, 0.0, B) is an array expression of shape
(5,6) whose elements have the value MAX(A (i, j), 0.0, B (i, j)), where i = 1, 2,..., 5, and j = 1, 2,..., 6.

A reference to an elemental intrinsic procedure is an elemental reference if one or more actual
arguments are arrays and all array arguments have the same shape.

Examples

Consider the following:

 REAL, DIMENSION (2) :: a, b
 a(1) = 4; a(2) = 9
 b = SQRT(a) ! sets b(1) = SQRT(a(1)), and b(2) = SQRT(a(2))

For More Information:

� See Arrays.
� On elemental procedures, see Intrinsic Procedures.

References to Non-Fortran Procedures

To facilitate references to non-Fortran procedures, DIGITAL Fortran provides the following built-in
functions:

� To pass actual arguments:

n %REF

n %VAL

n %DESCR (VMS only)

Program Units and Procedures Page 22 of 30

� To compute the internal address of a storage item

n %LOC

Procedure Interfaces

A procedure interface specifies the name and characteristics of a procedure, the name and attributes
of each dummy argument, and the generic identifier (if any) by which the procedure can be
referenced. The characteristics of a procedure are fixed, but the remainder of the interface can change
in different scoping units.

If these properties are all known within the scope of the calling program, the procedure interface is
explicit; otherwise it is implicit. The following table shows which procedures have implicit or
explicit interfaces:

Kind of Procedure Interface

External procedure Implicit 1

Module Procedure Explicit

Internal Procedure Explicit

Intrinsic Procedure Explicit

Dummy Procedure Implicit 1

Statement function Implicit

1 Unless an interface block is supplied for the procedure.

The interface of a recursive subroutine or function is explicit within the subprogram that defines it.

An explicit interface can appear in a procedure's definition, in an interface block, or both. (Internal
procedures must not appear in an interface block.)

The following sections describe when explicit interfaces are required, how to define explicit
interfaces, and how to define generic names, operators, and assignment.

Examples

An example of an interface block follows:

 INTERFACE
 SUBROUTINE Ext1 (x, y, z)
 REAL, DIMENSION (100,100) :: x, y, z
 END SUBROUTINE Ext1

Program Units and Procedures Page 23 of 30

 SUBROUTINE Ext2 (x, z)
 REAL x
 COMPLEX (KIND = 2) z (2000)
 END SUBROUTINE Ext2

 FUNCTION Ext3 (p, q)
 LOGICAL Ext3
 INTEGER p (1000)
 LOGICAL q (1000)
 END FUNCTION Ext3
 END INTERFACE

Determining When Procedures Require Explicit Interfaces

A procedure must have an explicit interface in the following cases:

� If the procedure has any of the following:

n An optional dummy argument

n A dummy argument that is an assumed-shape array, a pointer, or a target

n A result that is array-valued or a pointer (functions only)

n A result whose length is neither assumed nor a constant (character functions only)

� If a reference to the procedure appears as follows:

n With an argument keyword

n As a reference by its generic name

n As a defined assignment (subroutines only)

n In an expression as a defined operator (functions only)

n In a context that requires it to be pure

� If the procedure is elemental

For More Information:

� See Optional arguments.
� See Array arguments.
� See Pointer arguments.
� On argument keywords in subroutine references, see CALL.
� On argument keywords in function references, see Function references.
� On user-defined generic procedures, see Defining Generic Names for Procedures.
� On defined operators, see Defining Generic Operators.
� On defined assignment, see Defining Generic Assignment.

Program Units and Procedures Page 24 of 30

Defining Explicit Interfaces

Interface blocks define explicit interfaces for external or dummy procedures. They can also be used to
define a generic name for procedures, a new operator for functions, and a new form of assignment for
subroutines.

For more information on interface blocks, see INTERFACE in the A to Z Reference.

Defining Generic Names for Procedures

An interface block can be used to specify a generic name to reference all of the procedures within the
interface block.

The initial line for such an interface block takes the following form:

INTERFACE generic-name

generic-name
Is the generic name. It can be the same as any of the procedure names in the interface block, or
the same as any accessible generic name (including a generic intrinsic name).

This kind of interface block can be used to extend or redefine a generic intrinsic procedure.

The procedures that are given the generic name must be the same kind of subprogram: all must be
functions, or all must be subroutines.

Any procedure reference involving a generic procedure name must be resolvable to one specific
procedure; it must be unambiguous. For more information, see Unambiguous Generic Procedure
References.

The following is an example of a procedure interface block defining a generic name:

INTERFACE GROUP_SUBS
 SUBROUTINE INTEGER_SUB (A, B)
 INTEGER, INTENT(INOUT) :: A, B
 END SUBROUTINE INTEGER_SUB

 SUBROUTINE REAL_SUB (A, B)
 REAL, INTENT(INOUT) :: A, B
 END SUBROUTINE REAL_SUB

 SUBROUTINE COMPLEX_SUB (A, B)
 COMPLEX, INTENT(INOUT) :: A, B
 END SUBROUTINE COMPLEX_SUB
END INTERFACE

The three subroutines can be referenced by their individual specific names or by the group name
GROUP_SUBS.

Program Units and Procedures Page 25 of 30

The following example shows a reference to INTEGER_SUB:

INTEGER V1, V2
CALL GROUP_SUBS (V1, V2)

Consider the following:

 INTERFACE LINE_EQUATION

 SUBROUTINE REAL_LINE_EQ(X1,Y1,X2,Y2,M,B)
 REAL,INTENT(IN) :: X1,Y1,X2,Y2
 REAL,INTENT(OUT) :: M,B
 END SUBROUTINE REAL_LINE_EQ

 SUBROUTINE INT_LINE_EQ(X1,Y1,X2,Y2,M,B)
 INTEGER,INTENT(IN) :: X1,Y1,X2,Y2
 INTEGER,INTENT(OUT) :: M,B
 END SUBROUTINE INT_LINE_EQ

 END INTERFACE

In this example, LINE_EQUATION is the generic name which can be used for either
REAL_LINE_EQ or INT_LINE_EQ. Fortran selects the appropriate subroutine according to the
nature of the arguments passed to LINE_EQUATION. Even when a generic name exists, you can
always invoke a procedure by its specific name. In the previous example, you can call
REAL_LINE_EQ by its specific name (REAL_LINE_EQ), or its generic name LINE_EQUATION.

For More Information:

For details on interface blocks, see INTERFACE.

Defining Generic Operators

An interface block can be used to define a generic operator. The only procedures allowed in the
interface block are functions that can be referenced as defined operations.

The initial line for such an interface block takes the following form:

INTERFACE OPERATOR (op)

op
Is one of the following:

n A defined unary operator (one argument)
n A defined binary operator (two arguments)
n An extended intrinsic operator (number of arguments must be consistent with the

intrinsic uses of that operator)

The functions within the interface block must have one or two nonoptional arguments with intent IN,
and the function result must not be of type character with assumed length. A defined operation is

Program Units and Procedures Page 26 of 30

treated as a reference to the function.

The following shows the form (and an example) of a defined unary and defined binary operation:

Operation Form Example

Defined Unary .defined-operator. operand1 .MINUS. C

Defined Binary operand2 .defined-operator. operand3 B .MINUS. C

1 The operand corresponds to the function’s dummy argument.
2 The left operand corresponds to the first dummy argument of the function.
3 The right operand corresponds to the second argument.

For intrinsic operator symbols, the generic properties include the intrinsic operations they represent.
Both forms of each relational operator have the same interpretation, so extending one form
(such as >=) defines both forms (>= and .GE.).

The following is an example of a procedure interface block defining a new operator:

 INTERFACE OPERATOR(.BAR.)
 FUNCTION BAR(A_1)
 INTEGER, INTENT(IN) :: A_1
 INTEGER :: BAR
 END FUNCTION BAR
 END INTERFACE

The following example shows a way to reference function BAR by using the new operator:

 INTEGER B
 I = 4 + (.BAR. B)

The following is an example of a procedure interface block with a defined operator extending an
existing operator:

 INTERFACE OPERATOR(+)
 FUNCTION LGFUNC (A, B)
 LOGICAL, INTENT(IN) :: A(:), B(SIZE(A))
 LOGICAL :: LGFUNC(SIZE(A))
 END FUNCTION LGFUNC
 END INTERFACE

The following example shows two equivalent ways to reference function LGFUNC:

 LOGICAL, DIMENSION(1:10) :: C, D, E
 N = 10
 E = LGFUNC(C(1:N), D(1:N))
 E = C(1:N) + D(1:N)

Program Units and Procedures Page 27 of 30

For More Information:

� See INTENT.
� On interface blocks, see INTERFACE.
� On intrinsic operators, see Expressions.
� On defined operators and operations, see Defined Operations.

Defining Generic Assignment

An interface block can be used to define generic assignment. The only procedures allowed in the
interface block are subroutines that can be referenced as defined assignments.

The initial line for such an interface block takes the following form:

INTERFACE ASSIGNMENT (=)

The subroutines within the interface block must have two nonoptional arguments, the first with intent
OUT or INOUT, and the second with intent IN.

A defined assignment is treated as a reference to a subroutine. The left side of the assignment
corresponds to the first dummy argument of the subroutine; the right side of the assignment
corresponds to the second argument.

The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the equal
sign are of the same derived type.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.

Any procedure reference involving generic assignment must be resolvable to one specific procedure;
it must be unambiguous. For more information, see Unambiguous Generic Procedure References.

The following is an example of a procedure interface block defining assignment:

 INTERFACE ASSIGNMENT (=)
 SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)
 INTEGER, INTENT(OUT) :: NUM
 LOGICAL, INTENT(IN) :: BIT(:)
 END SUBROUTINE BIT_TO_NUMERIC

 SUBROUTINE CHAR_TO_STRING (STR, CHAR)
 USE STRING_MODULE ! Contains definition of type STRING
 TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string
 CHARACTER(*), INTENT(IN) :: CHAR
 END SUBROUTINE CHAR_TO_STRING
 END INTERFACE

The following example shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:

Program Units and Procedures Page 28 of 30

 CALL BIT_TO_NUMERIC(X, (NUM(I:J)))
 X = NUM(I:J)

The following example shows two equivalent ways to reference subroutine CHAR_TO_STRING:

 CALL CHAR_TO_STRING(CH, ’432C’)
 CH = ’432C’

For More Information:

� See Defined Assignments.
� See INTENT.
� On interface blocks, see INTERFACE.

CONTAINS Statement

For information on the CONTAINS statement, see CONTAINS in the A to Z Reference.

ENTRY Statement

The ENTRY statement provides multiple entry points within a subprogram. It is not executable and
must precede any CONTAINS statement (if any) within the subprogram. For more information, see
ENTRY in the A to Z Reference.

This section also discusses:

� ENTRY Statements in Function Subprograms
� ENTRY Statements in Subroutine Subprograms

ENTRY Statements in Function Subprograms

If the ENTRY statement is contained in a function subprogram, it defines an additional function. The
name of the function is the name specified in the ENTRY statement, and its result variable is the
entry name or the name specified by RESULT (if any).

If the entry result variable has the same characteristics as the FUNCTION statement’s result variable,
their result variables identify the same variable, even if they have different names. Otherwise, the
result variables are storage associated and must all be nonpointer scalars of intrinsic type, in one of
the following groups:

Group
1

Type default integer, default real, double precision real, default complex, double
complex, or default logical

Group
2

Type REAL(16) (VMS, U*X)

Group Type default character (with identical lengths)

Program Units and Procedures Page 29 of 30

3

All entry names within a function subprogram are associated with the name of the function
subprogram. Therefore, defining any entry name or the name of the function subprogram defines all
the associated names with the same data type. All associated names with different data types become
undefined.

If RESULT is specified in the ENTRY statement and RECURSIVE is specified in the FUNCTION
statement, the interface of the function defined by the ENTRY statement is explicit within the
function subprogram.

Examples

The following example shows a function subprogram that computes the hyperbolic functions SINH,
COSH, and TANH:

REAL FUNCTION TANH(X)
 TSINH(Y) = EXP(Y) - EXP(-Y)
 TCOSH(Y) = EXP(Y) + EXP(-Y)

 TANH = TSINH(X)/TCOSH(X)
 RETURN

 ENTRY SINH(X)
 SINH = TSINH(X)/2.0
 RETURN

 ENTRY COSH(X)
 COSH = TCOSH(X)/2.0
 RETURN
END

For More Information:

See the RESULT keyword.

ENTRY Statements in Subroutine Subprograms

If the ENTRY statement is contained in a subroutine subprogram, it defines an additional subroutine.
The name of the subroutine is the name specified in the ENTRY statement.

If RECURSIVE is specified on the SUBROUTINE statement, the interface of the subroutine
defined by the ENTRY statement is explicit within the subroutine subprogram.

Examples

The following example shows a main program calling a subroutine containing an ENTRY statement:

PROGRAM TEST
 ...

Program Units and Procedures Page 30 of 30

 CALL SUBA(A, B, C) ! A, B, and C are actual arguments
 ... ! passed to entry point SUBA
END
SUBROUTINE SUB(X, Y, Z)
 ...
 ENTRY SUBA(Q, R, S) ! Q, R, and S are dummy arguments
 ... ! Execution starts with this statement
END SUBROUTINE

The following example shows an ENTRY statement specifying alternate returns:

CALL SUBC(M, N, *100, *200, P)
...
SUBROUTINE SUB(K, *, *)
 ...
 ENTRY SUBC(J, K, *, *, X)
 ...
 RETURN 1
 RETURN 2
END

Note that the CALL statement for entry point SUBC includes actual alternate return arguments. The
RETURN 1 statement transfers control to statement label 100 and the RETURN 2 statement transfers
control to statement label 200 in the calling program.

Intrinsic Procedures Page 1 of 17

Intrinsic Procedures

Intrinsic procedures are functions and subroutines that are included in the Fortran 90 library. There
are four classes of these intrinsic procedures, as follows:

� Elemental procedures

These procedures have scalar dummy arguments that can be called with scalar or array actual
arguments. There are many elemental intrinsic functions and one elemental intrinsic subroutine
(MVBITS).

If the arguments are all scalar, the result is scalar. If an actual argument is array-valued, the
intrinsic procedure is applied to each element of the actual argument, resulting in an array that
has the same shape as the actual argument.

If there is more than one array-valued argument, they must all have the same shape.

Many algorithms involving arrays can now be written conveniently as a series of computations
with whole arrays. For example, consider the following:

 a = b + c
 ... ! a, b, c, and s are all arrays of similar shape
 s = sum(a)

The above statements can replace entire DO loops.

Consider the following:

 real, dimension (5,5) x,y
 . . . !Assign values to x.
 y = sin(x) !Pass the entire array as an argument.

In this example, since the SIN(X) function is an elemental procedure, it operates element-by-
element on the array x when you pass it the name of the whole array.

� Inquiry functions

These functions have results that depend on the properties of their principal argument, not the
value of the argument (the argument value can be undefined).

� Transformational functions

These functions have one or more array-valued dummy or actual arguments, an array result, or
both. The intrinsic function is not applied elementally to an array-valued actual argument;
instead it changes (transforms) the argument array into another array.

� Nonelemental procedures

Intrinsic Procedures Page 2 of 17

These procedures must be called with only scalar arguments; they return scalar results. All
subroutines (except MVBITS) are nonelemental.

Intrinsic procedures are invoked the same way as other procedures, and follow the same rules of
argument association.

The intrinsic procedures have generic (or common) names, and many of the intrinsic functions have
specific names. (Some intrinsic functions are both generic and specific.)

In general, generic functions accept arguments of more than one data type; the data type of the result
is the same as that of the arguments in the function reference. For elemental functions with more than
one argument, all arguments must be of the same type (except for the function MERGE).

When an intrinsic function is passed as an actual argument to a procedure, its specific name must be
used, and when called, its arguments must be scalar. Not all specific intrinsic functions are allowed as
actual arguments in all circumstances. Functions Not Allowed as Actual Arguments lists specific
functions that cannot be passed as actual arguments.

This chapter also contains information on the following topics:

� Argument keywords in intrinsic procedures
� Overview of intrinsic procedures

The A to Z Reference contains the descriptions of all intrinsics listed in alphabetical order. Each
reference entry indicates whether the procedure is inquiry, elemental, transformational, or
nonelemental, and whether it is a function or a subroutine.

For More Information:

� See Argument association.
� See the MERGE intrinsic function.
� See Optional arguments.
� See Language Summary Tables.
� See Data representation models.
� On generic intrinsic procedures, see References to Generic Intrinsic Functions.
� On elemental references to intrinsic procedures, see References to Elemental Intrinsic

Procedures.

Argument Keywords in Intrinsic Procedures

For all intrinsic procedures, the arguments shown are the names you must use as keywords when
using the keyword form for actual arguments. For example, a reference to function CMPLX(X, Y,
KIND) can be written as follows:

Intrinsic Procedures Page 3 of 17

Using positional arguments: CMPLX(F, G, L)

Using argument keywords: CMPLX(KIND=L, Y=G, X=F)

Note that argument keywords can be written in any order.

Some argument keywords are optional (denoted by square brackets). The following describes some of
the most commonly used optional arguments:

BACK Specifies that a string scan is to be in reverse order (right to left).

DIM Specifies a selected dimension of an array argument.

KIND Specifies the kind type parameter of the function result.

MASK Specifies that a mask can be applied to the elements of the argument array to exclude the
elements that are not to be involved in an operation.

For More Information:

� On argument keywords in subroutine references, see CALL.
� On argument keywords in function references, see Function references.

Overview of Intrinsic Procedures

This section describes the categories of generic intrinsic functions (including a summarizing table),
lists the intrinsic subroutines, and provides general information on bit functions.

Intrinsic procedures are fully described (in alphabetical order) in the A to Z Reference.

Categories of Intrinsic Functions

Generic intrinsic functions can be divided into categories, as shown in the following table:

Categories of Intrinsic Functions

Category Subcategory Description

Numeric Computation Elemental functions that perform type conversions or simple
numeric operations: ABS, AIMAG, AINT, AMAX0,
AMIN0, ANINT, CEILING, CMPLX, CONJG, DBLE,
DCMPLX, DFLOAT, DIM, DPROD, FLOAT, FLOOR,
IFIX, IMAG , INT, MAX, MAX1, MIN, MIN1, MOD,
MODULO, NINT, QEXT, QFLOAT, RAN, REAL, SIGN,
SNGL, ZEXT

Intrinsic Procedures Page 4 of 17

Manipulation1 Elemental functions that return values related to the
components of the model values associated with the actual
value of the argument: EXPONENT, FRACTION,
NEAREST, RRSPACING, SCALE, SET_EXPONENT,
SPACING

Inquiry1 Functions that return scalar values from the models
associated with the type and kind parameters of their
arguments2: DIGITS, EPSILON, HUGE, ILEN,
MAXEXPONENT, MINEXPONENT, PRECISION,
RADIX, RANGE, SIZEOF, TINY

Transformational Functions that perform vector and matrix multiplication:
DOT_PRODUCT, MATMUL

System Functions that return information about a process or
processor: PROCESSORS_SHAPE, NWORKERS,
NUMBER_OF_PROCESSORS, SECNDS

Kind type Functions that return kind type parameters: KIND,
SELECTED_INT_KIND, SELECTED_ REAL_KIND

Mathematical Functions that perform mathematical operations: ACOS,
ACOSD, ASIN, ASIND, ATAN, ATAND, ATAN2,
ATAN2D, COS, COSD, COSH, COTAN, COTAND, EXP,
LOG, LOG10, SIN, SIND, SINH, SQRT, TAN, TAND,
TANH

Bit Manipulation Elemental functions that perform single-bit processing, and
logical and shift operations; and allow bit subfields to be
referenced: AND, BTEST, IAND, IBCHNG, IBCLR, IBITS,
IBSET, IEOR, IOR, ISHA, ISHC, ISHFT, ISHFTC, ISHL,
LSHIFT, NOT, OR, RSHIFT, XOR

Inquiry Function that lets you determine parameter s (the bit size) in
the bit model4: BIT_SIZE

Representation Functions that return information on bit representation of
integers: LEADZ, POPCNT, POPPAR, TRAILZ

Character Comparison Elemental functions that make a lexical comparison of the
character-string arguments and return a default logical result:
LGE, LGT, LLE, LLT

Conversion Elemental functions that take character arguments and return
integer, ASCII, or character values3: ACHAR, CHAR,
IACHAR, ICHAR

String handling Functions that perform operations on character strings, return

Intrinsic Procedures Page 5 of 17

lengths of arguments, and search for certain arguments:
ADJUSTL, ADJUSTR, INDEX, LEN_TRIM, REPEAT,
SCAN, TRIM, VERIFY

Inquiry Function that returns length of argument: LEN

Array Construction Functions that construct new arrays from the elements of
existing array: MERGE, PACK, SPREAD, UNPACK

Inquiry Functions that let you determine if an array argument is
allocated, and return the size or shape of an array, and the
lower and upper bounds of subscripts along each dimension:
ALLOCATED, LBOUND, SHAPE, SIZE, UBOUND

Location Transformational functions that find the geometric locations
of the maximum and minimum values of an array:
MAXLOC, MINLOC

Manipulation Transformational functions that shift an array, transpose an
array, or change the shape of an array: CSHIFT, EOSHIFT,
RESHAPE, TRANSPOSE

Reduction Transformational functions that perform operations on
arrays. The functions "reduce" elements of a whole array to
produce a scalar result, or they can be applied to a specific
dimension of an array to produce a result array with a rank
reduced by one: ALL, ANY, COUNT, MAXVAL,
MINVAL, PRODUCT

Miscellaneous Functions that do the following:

l Check for argument presence (PRESENT)
l Check for pointer association (ASSOCIATED)
l Return a logical value of an argument (LOGICAL)
l Convert a bit pattern (TRANSFER)
l Return the class of a floating-point argument

(FP_CLASS)
l Test for Not-a-Number values (ISNAN)
l Count actual arguments passed to a routine

(IARGCOUNT)
l Return a pointer to an actual argument list for a routine

(IARGPTR)
l Return the internal address of a storage item (LOC)
l Check for end-of-file (EOF)
l Allocate memory (MALLOC)
l Return a disassociated pointer (NULL)
l Let you use assembler instructions in an executable

program (ASM)
l Return the upper 64 bits of a 128-bit unsigned result

(MULT_HIGH)

Intrinsic Procedures Page 6 of 17

1 All of the numeric manipulation, and many of the numeric inquiry functions are defined by the model sets for
integers and reals.
2 The value of the argument does not have to be defined.
3 The DIGITAL Fortran processor character set is ASCII, so ACHAR = CHAR and IACHAR = ICHAR.
4 For more information on bit functions, see Bit functions.

The following table summarizes the generic intrinsic functions and indicates whether they are
elemental, inquiry, or transformational functions, if applicable. Optional arguments are shown within
square brackets.

Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

ABS (A) E The absolute value of an argument

ACHAR (I) E The character in the specified position of the
ASCII character set

ACOS (X) E The arc cosine (in radians) of the argument

ACOSD (X) E The arc cosine (in degrees) of the argument

ADJUSTL (STRING) E The specified string with leading blanks
removed and placed at the end of the string

ADJUSTR (STRING) E The specified string with trailing blanks
removed and placed at the beginning of the
string

AIMAG (Z) E The imaginary part of a complex argument

AINT (A [,KIND]) E A real value truncated to a whole number

ALL (MASK [,DIM]) T .TRUE. if all elements of the masked array are
true

ALLOCATED (ARRAY) I The allocation status of the argument array

AMAX0 (A1, A2 [, A3,...]) E The maximum value in a list of integers
(returned as a real value)

AMIN0 (A1, A2 [, A3,...]) E The minimum value in a list of integers
(returned as a real value)

AND (I, J) E See IAND

ANINT (A [, KIND]) E A real value rounded to a whole number

ANY (MASK [,DIM]) T .TRUE. if any elements of the masked array are

Intrinsic Procedures Page 7 of 17

true

ASIN (X) E The arc sine (in radians) of the argument

ASIND (X) E The arc sine (in degrees) of the argument

ASM (STRING [,A,...) 1 N A value stored in the appropriate register by the
user

ASSOCIATED (POINTER
[,TARGET])

I .TRUE. if the pointer argument is associated or
the pointer is associated with the specified
target

ATAN (X) E The arc tangent (in radians) of the argument

ATAND (X) E The arc tangent (in degrees) of the argument

ATAN2 (Y, X) E The inverse arc tangent (in radians) of the
arguments

ATAN2D (Y, X) E The inverse arc tangent (in degrees) of the
arguments

BIT_SIZE (I) I Returns the number of bits (s) in the bit model

BTEST (I, POS) E .TRUE. if the specified position of argument I is
one

CEILING (A [,KIND]) E The smallest integer greater than or equal to the
argument value

CHAR (I [,KIND]) E The character in the specified position of the
processor character set

CMPLX (X [,Y] [,KIND]) E The corresponding complex value of the
argument

CONJG (Z) E The conjugate of a complex number

COS (X) E The cosine (in radians) of the argument

COSD (X) E The cosine (in degrees) of the argument

COSH (X) E The hyperbolic cosine of the argument

COTAN (X) E The cotangent (in radians) of the argument

COTAND (X) E The cotangent (in degrees) of the argument

COUNT (MASK [,DIM]) T The number of .TRUE. elements in the argument
array

CSHIFT (ARRAY, SHIFT [,DIM]) T An array that has the elements of the argument

Intrinsic Procedures Page 8 of 17

array circularly shifted

DBLE (A) E The corresponding double precision value of the
argument

DCMPLX (X, Y) E The corresponding double complex value of the
argument

DFLOAT (A) E The corresponding double precision value of the
integer argument

DIGITS (X) I The number of significant digits in the model for
the argument

DIM (X, Y) E The positive difference between the two
arguments

DOT_PRODUCT (VECTOR_A,
VECTOR_B)

T The dot product of two rank-one arrays (also
called a vector multiply function)

DPROD (X, Y)
E

The double precision product of two real
arguments

EOF (A) I .TRUE. or .FALSE. depending on whether a file
is beyond the end-of-file record

EOSHIFT (ARRAY, SHIFT
[,BOUNDARY] [,DIM])

T An array that has the elements of the argument
array end-off shifted

EPSILON (X) I The number that is almost negligible when
compared to one

EXP (X) E The exponential value for the argument

EXPONENT (X) E The value of the exponent part of a real
argument

FLOAT (X) E The corresponding real value of the integer
argument

FLOOR (A [,KIND]) E The largest integer less than or equal to the
argument value

FP_CLASS (X) E The class of the IEEE floating-point argument

FRACTION (X) E The fractional part of a real argument

HUGE (X) I The largest number in the model for the
argument

IACHAR (C) E The position of the specified character in the
ASCII character set

Intrinsic Procedures Page 9 of 17

IAND (I, J) E The logical AND of the two arguments

IARGCOUNT ()2 I The count of actual arguments passed to the
current routine.

IARGPTR () I A pointer to the actual argument list for the
current routine.

IBCLR (I, POS) E The specified position of argument I cleared (set
to zero)

IBCHNG (I, POS) E The reversed value of a specified bit

IBITS (I, POS, LEN) E The specified substring of bits of argument I

IBSET (I, POS) E The specified bit in argument I set to one

ICHAR (C) E The position of the specified character in the
processor character set

IEOR (I, J) E The logical exclusive OR of the corresponding
bit arguments

IFIX (X) E The corresponding integer value of the real
argument rounded as if it were an implied
conversion in an assignment

ILEN (I) I The length (in bits) in the two's complement
representation of an integer

IMAG (Z) E See AIMAG

INDEX (STRING, SUBSTRING
[,BACK])

E The position of the specified substring in a
character expression

INT (A [,KIND]) E The corresponding integer value (truncated) of
the argument

IOR (I, J) E The logical inclusive OR of the corresponding
bit arguments

ISHA (I, SHIFT) E Argument I shifted left or right by a specified
number of bits

ISHC (I, SHIFT) E Argument I rotated left or right by a specified
number of bits

ISHFT (I, SHIFT) E The logical end-off shift of the bits in argument
I

ISHFTC (I, SHIFT [,SIZE]) E The logical circular shift of the bits in argument
I

Intrinsic Procedures Page 10 of 17

ISHL (I, SHIFT) E Argument I logically shifted left or right by a
specified number of bits

ISNAN (X) E Tests for Not-a-Number (NaN) values

KIND (X) I The kind type parameter of the argument

LBOUND (ARRAY [,DIM]) I The lower bounds of an array (or one of its
dimensions)

LEADZ (I) E The number of leading zero bits in an integer

LEN (STRING) I The length (number of characters) of the
argument character string

LEN_TRIM (STRING) E The length of the specified string without
trailing blanks

LGE (STRING_A, STRING_B) E A logical value determined by a > or =
comparison of the arguments

LGT (STRING_A, STRING_ B) E A logical value determined by a > comparison of
the arguments

LLE (STRING_A, STRING_B) E A logical value determined by a < or =
comparison of the arguments

LLT (STRING_A, STRING_ B) E A logical value determined by a < comparison of
the arguments

LOC (A) I The internal address of the argument.

LOG (X) E The natural logarithm of the argument

LOG10 (X) E The common logarithm (base 10) of the
argument

LOGICAL (L [,KIND]) E The logical value of the argument converted to a
logical of type KIND

LSHIFT (I, POSITIVE_SHIFT) E See ISHFT

MALLOC (I) E The starting address for the block of memory
allocated

MATMUL (MATRIX_A,
MATRIX_B)

T The result of matrix multiplication (also called a
matrix multiply function)

MAX (A1, A2 [, A3,...]) E The maximum value in the set of arguments

MAX1 (A1, A2 [, A3,...]) E The maximum value in the set of real arguments
(returned as an integer)

Intrinsic Procedures Page 11 of 17

MAXEXPONENT (X) I The maximum exponent in the model for the
argument

MAXLOC (ARRAY [,DIM]
[,MASK])

T The rank-one array that has the location of the
maximum element in the argument array

MAXVAL (ARRAY [,DIM]
[,MASK])

T The maximum value of the elements in the
argument array

MERGE (TSOURCE, FSOURCE,
MASK)

E An array that is the combination of two
conformable arrays (under a mask)

MIN (A1, A2 [, A3,...]) E The minimum value in the set of arguments

MIN1 (A1, A2 [, A3,...]) E The minimum value in the set of real arguments
(returned as an integer)

MINEXPONENT (X) I The minimum exponent in the model for the
argument

MINLOC (ARRAY [,DIM] [,MASK]) T The rank-one array that has the location of the
minimum element in the argument array

MINVAL (ARRAY [,DIM] [,MASK]) T The minimum value of the elements in the
argument array

MOD (A, P) E The remainder of the arguments (has the sign of
the first argument)

MODULO (A, P) E The modulo of the arguments (has the sign of
the second argument)

MULT_HIGH (I, J) 1 E The upper (leftmost) 64 bits of the 128-bit
unsigned result

NEAREST (X, S) E The nearest different machine-representable
number in a given direction

NINT (A [,KIND]) E A real value rounded to the nearest integer

NOT (I) E The logical complement of the argument

NULL ([MOLD]) T A disassociated pointer

NUMBER_OF_PROCESSORS () I The total number of processors (peers) available
to the program

NWORKERS () 3 I The number of executing processes

OR (I, J) E See IOR

PACK (ARRAY, MASK [,VECTOR]) T
A packed array of rank one (under amask)

Intrinsic Procedures Page 12 of 17

POPCNT (I) E The number of 1 bits in an integer

POPPAR (I) E The parity of an integer

PRECISION (X) I The decimal precision (real or complex) of the
argument

PRESENT (A) I .TRUE. if an actual argument has been provided
for an optional dummy argument

PROCESSORS_SHAPE () I The shape of an implementation-dependent
hardware processor array

PRODUCT (ARRAY [,DIM]
[,MASK])

T The product of the elements of the argument
array

QEXT (A)4 E The corresponding REAL(16) precision value of
the argument.

QFLOAT (A)4 E The corresponding REAL(16) precision value of
the integer argument.

RADIX (X) I The base of the model for the argument

RAN (I)
N

The next number from a sequence of
pseudorandom numbers (uniformly distributed
in the range 0 to 1)

RANGE (X) I The decimal exponent range of the model for the
argument

REAL (A [,KIND]) E The corresponding real value of the argument

REPEAT (STRING, NCOPIES) T The concatenation of zero or more copies of the
specified string

RESHAPE (SOURCE, SHAPE [,PAD]
[,ORDER])

T An array that has a different shape than the
argument array, but the same elements

RRSPACING (X) E The reciprocal of the relative spacing near the
argument

RSHIFT (I, NEGATIVE_SHIFT) E See ISHFT

SCALE (X, I) E The value of the exponent part (of the model for
the argument) changed by a specified value

SCAN (STRING, SET [,BACK]) E The position of the specified character (or set of
characters) within a string

SECNDS (X) E The system time of day (or elapsed time) as a

Intrinsic Procedures Page 13 of 17

floating-point value in seconds

SELECTED_INT_KIND (R) T The integer kind parameter of the argument

SELECTED_REAL_KIND ([P] [,R])
T

The real kind parameter of the argument; one of
the optional arguments must be specified

SET_EXPONENT (X, I) E The value of the exponent part (of the model for
the argument) set to a specified value

SHAPE (SOURCE) I The shape (rank and extents) of an array or
scalar

SIGN (A, B) E A value with the sign transferred from its second
argument

SIN (X) E The sine (in radians) of the argument

SIND (X) E The sine (in degrees) of the argument

SINH (X) E The hyperbolic sine of the argument

SIZE (ARRAY [,DIM]) I The size (total number of elements) of the
argument array (or one of its dimensions)

SIZEOF (X) I The bytes of storage used by the argument

SNGL (X) E The corresponding real value of the argument

SPACING (X) E The value of the absolute spacing of model
numbers near the argument

SPREAD (SOURCE, DIM, NCOPIES) T
A replicated array that has an added dimension

SQRT (X) E The square root of the argument

SUM (ARRAY [,DIM] [,MASK]) T The sum of the elements of the argument array

TAN (X) E The tangent (in radians) of the argument

TAND (X) E The tangent (in degrees) of the argument

TANH (X) E The hyperbolic tangent of the argument

TINY (X) I The smallest positive number in the model for
the argument

TRAILZ (I) E The number of trailing zero bits in an integer

TRANSFER (SOURCE, MOLD
[,SIZE])

T The bit pattern of SOURCE converted to the
type and kind parameters of MOLD

TRANSPOSE (MATRIX) T The matrix transpose for the rank-two argument

Intrinsic Procedures Page 14 of 17

array

TRIM (STRING) T The argument with trailing blanks removed

UBOUND (ARRAY [,DIM]) I The upper bounds of an array (or one of its
dimensions)

UNPACK (VECTOR, MASK, FIELD) T An array (under a mask) unpacked from a rank-
one array

VERIFY (STRING, SET [,BACK]) E The position of the first character in a string that
does not appear in the given set of characters

XOR (I, J) E See IEOR

ZEXT (X) E A zero-extended value of the argument

1 Alpha only
2 VMS only
3 Included for compatibility with older versions of DIGITAL Fortran 77.
4 VMS, U*X

Key to Classes

E-Elemental
I-Inquiry
T-Transformational
N-Nonelemental

Intrinsic Subroutines

The following table lists the intrinsic subroutines. All these subroutines are nonelemental except for
MVBITS.

Intrinsic Subroutines

Subroutine Value Returned

CPU_TIME (TIME) The processor time in seconds

DATE (BUF) The ASCII representation of the current date (in dd-
mmm-yy form)

DATE_AND_TIME ([DATE] [,TIME]
[,ZONE] [,VALUES])

Date and time information from the real-time clock

ERRSNS ([IO_ERR] [,SYS_ERR]
[,STAT] [,UNIT] [,COND])

Information about the most recently detected error
condition

EXIT ([STATUS]) Image exit status is optionally returned; the program is

Intrinsic Procedures Page 15 of 17

terminated, all files closed, and control is returned to the
operating system

FREE (A) Frees memory that is currently allocated

IDATE (I, J, K) Three integer values representing the current month,
day, and year

MVBITS (FROM, FROMPOS, LEN,
TO, TOPOS)1

A sequence of bits (bit field) is copied from one
location to another

RANDOM_NUMBER (HARVEST) A pseudorandom number taken from a sequence of
pseudorandom numbers uniformly distributed within
the range 0 <= x < 1

RANDOM_SEED ([SIZE] [,PUT]
[,GET])

The initialization or retrieval of the pseudorandom
number generator seed value

RANDU (I1, I2, X) A pseudorandom number as a single- precision value
(within the range 0.0 to 1.0)

SYSTEM_CLOCK ([COUNT]
[,COUNT_RATE] [,COUNT_MAX])

Data from the processors real-time clock

TIME (BUF) The ASCII representation of the current time (in
hh:mm:ss form)

1 An elemental subroutine.

Bit Functions

Integer data types are represented internally in binary twos complement notation. Bit positions in the
binary representation are numbered from right (least significant bit) to left (most significant bit); the
rightmost bit position is numbered 0.

The intrinsic functions IAND, IOR, IEOR, and NOT operate on all of the bits of their argument (or
arguments). Bit 0 of the result comes from applying the specified logical operation to bit 0 of the
argument. Bit 1 of the result comes from applying the specified logical operation to bit 1 of the
argument, and so on for all of the bits of the result.

The functions ISHFT and ISHFTC shift binary patterns.

The functions IBSET, IBCLR, BTEST, and IBITS and the subroutine MVBITS operate on bit
fields.

A bit field is a contiguous group of bits within a binary pattern. Bit fields are specified by a starting
bit position and a length. A bit field must be entirely contained in its source operand.

For example, the integer 47 is represented by the following:

Intrinsic Procedures Page 16 of 17

Binary pattern: 0...0101111
Bit position: n...6543210

Where n is the number of bit positions in the numeric storage unit.

You can refer to the bit field contained in bits 3 through 6 by specifying a starting position of 3 and a
length of 4.

Negative integers are represented in twos complement notation. For example, the integer -47 is
represented by the following:

Binary pattern: 1...1010001
Bit position: n...6543210

Where n is the number of bit positions in the numeric storage unit.

The value of bit position n is as follows:

 1 for a negative number
 0 for a non-negative number

All the high-order bits in the pattern from the last significant bit of the value up to bit n are the same
as bit n.

IBITS and MVBITS operate on general bit fields. Both the starting position of a bit field and its
length are arguments to these intrinsics. IBSET, IBCLR, and BTEST operate on 1-bit fields. They
do not require a length argument.

For IBSET, IBCLR, and BTEST, the bit position range is as follows:

� 0 to 63 for INTEGER(8) (Alpha only) and LOGICAL(8) (Alpha only)
� 0 to 31 for INTEGER(4) and LOGICAL(4)
� 0 to 15 for INTEGER(2) and LOGICAL(2)
� 0 to 7 for BYTE, INTEGER(1), and LOGICAL(1)

For IBITS, the bit position can be any number. The length range is 0 to 63 on Alpha processors; 0 to
31 on Intel processors.

The following example demonstrates IBSET, IBCLR, and BTEST:

 I = 4
 J = IBSET (I,5)
 PRINT *, ’J = ’,J
 K = IBCLR (J,2)
 PRINT *, ’K = ’,K
 PRINT *, ’Bit 2 of K is ’,BTEST(K,2)
 END

The results are: J = 36, K = 32, and Bit 2 of K is F.

Intrinsic Procedures Page 17 of 17

For optimum selection of performance and memory requirements, DIGITAL Fortran provides the
following integer data types:

Data Type Storage Required (in bytes)

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8)1 8

1 Alpha only

The bit manipulation functions each have a generic form that operates on all of these integer types
and a specific form for each type.

When you specify the intrinsic functions that refer to bit positions or that shift binary patterns within
a storage unit, be careful that you do not create a value that is outside the range of integers
representable by the data type. If you shift by an amount greater than or equal to the size of the object
you're shifting, the result is 0.

Consider the following:

 INTEGER(2) I,J
 I = 1
 J = 17
 I = ISHFT(I,J)

The variables I and J have INTEGER(2) type. Therefore, the generic function ISHFT maps to the
specific function IISHFT, which returns an INTEGER(2) result. INTEGER(2) results must be in the
range -32768 to 32767, but the value 1, shifted left 17 positions, yields the binary pattern 1 followed
by 17 zeros, which represents the integer 131072. In this case, the result in I is 0.

The previous example would be valid if I was INTEGER(4), because ISHFT would then map to the
specific function JISHFT, which returns an INTEGER(4) value.

If ISHFT is called with a constant first argument, the result will either be the default integer size or
the smallest integer size that can contain the first argument, whichever is larger.

Data Transfer I/O Statements Page 1 of 45

Data Transfer I/O Statements

Input/Output (I/O) statements can be used for data transfer, file connection, file inquiry, and file
positioning.

This section discusses data transfer and contains information on the following topics:

� An overview of records and files
� Components of data transfer statements

� Data transfer input statements:
n READ statements
n ACCEPT statements

� Data transfer output statements:
n WRITE statements
n PRINT and TYPE statements
n REWRITE statements

File connection, file inquiry, and file positioning I/O statements are discussed in File Operation I/O
Statements (WNT and W95).

See also Improve Overall I/O Performance in the Programmer’s Guide..

Records and Files

A record is a sequence of values or a sequence of characters. There are three kinds of Fortran records,
as follows:

� Formatted

A record containing formatted data that requires translation from internal to external form.
Formatted I/O statements have explicit format specifiers (which can specify list-directed
formatting) or namelist specifiers (for namelist formatting). Only formatted I/O statements can
read formatted data.

� Unformatted

A record containing unformatted data that is not translated from internal form. An unformatted
record can also contain no data. The internal representation of unformatted data is processor-
dependent. Only unformatted I/O statements can read unformatted data.

� Endfile

The last record of a file. An endfile record can be explicitly written to a sequential file by an
ENDFILE statement.

Data Transfer I/O Statements Page 2 of 45

A file is a sequence of records. There are two types of Fortran files, as follows:

� External

A file that exists in a medium (such as computer disks or terminals) external to the executable
program.

Records in an external file must be either all formatted or all unformatted. There are three ways
to access records in external files: sequential, keyed access (VMS only), and direct access.

In sequential access, records are processed in the order in which they appear in the file. In
direct access, records are selected by record number, so they can be processed in any order. In
keyed access, records are processed by key-field value.

� Internal

Memory (internal storage) that behaves like a file. This type of file provides a way to transfer
and convert data in memory from one format to another. The contents of these files are stored
as scalar character variables.

For More Information:

For details on formatted and unformatted data transfers and external file access methods, see your
programmer’s guide.

Components of Data Transfer Statements

Data transfer statements take one of the following forms:

io-keyword (io-control-list) [io-list]
io-keyword format [, io-list]

io-keyword
Is one of the following: ACCEPT, PRINT (or TYPE), READ, REWRITE, or WRITE.

io-control-list
Is one or more of the following input/output (I/O) control specifiers:

[UNIT=]io-unit ADVANCE ERR KEYID (VMS only)

[FMT=]format END IOSTAT REC

[NML=]group EOR KEY[con] (VMS only) SIZE

io-list
Is an I/O list, which can contain variables (except for assumed-size arrays) or implied-do lists.
Output statements can contain constants or expressions.

Data Transfer I/O Statements Page 3 of 45

format
Is the nonkeyword form of a control-list format specifier (no FMT=).

If a format specifier ([FMT=]format) or namelist specifier ([NML=]group) is present, the data
transfer statement is called a formatted I/O statement; otherwise, it is an unformatted I/O statement.

If a record specifier (REC=) is present, the data transfer statement is a direct-access I/O statement;
otherwise, it is a sequential- access I/O statement.

If an error, end-of-record, or end-of-file condition occurs during data transfer, file positioning and
execution are affected, and certain control-list specifiers (if present) become defined. (For more
information, see Branch Specifiers.)

Following sections describe the I/O control list and I/O lists.

I/O Control List

The I/O control list specifies one or more of the following:

� The I/O unit to act upon ([UNIT=]io-unit)

This specifier must be present; the rest are optional.

� The format (explicit or list-directed) to use for data editing; if explicit, the keyword form must
appear ([FMT=]format)

� The namelist group name to act upon ([NML=]group)
� The number of a record to access (REC)
� The name of a variable that contains the completion status of an I/O operation (IOSTAT)
� The label of the statement that receives control if an error (ERR), end-of-file (END), or end-of-

record (EOR) condition occurs
� The key field (KEY[con]) and key of reference (KEYID) to access a keyed-access record (VMS

only)
� Whether you want to use advancing or nonadvancing I/O (ADVANCE)
� The number of characters read from a record (SIZE) by a nonadvancing READ statement

No control specifier can appear more than once, and the list must not contain both a format specifier
and namelist group name specifier.

Control specifiers can take any of the following forms:

� Keyword form

When the keyword form (for example, UNIT=io-unit) is used for all control-list specifiers in an
I/O statement, the specifiers can appear in any order.

� Nonkeyword form

Data Transfer I/O Statements Page 4 of 45

When the nonkeyword form (for example, io-unit) is used for all control-list specifiers in an
I/O statement, the io-unit specifier must be the first item in the control list. If a format specifier
or namelist group name specifier is used, it must immediately follow the io-unit specifier.

� Mixed form

When a mix of keyword and nonkeyword forms is used for control- list specifiers in an I/O
statement, follow the rules specified for the nonkeyword form.

The following sections describe the control-list specifiers in detail:

� Unit Specifier
� Format Specifier
� Namelist Specifier
� Record Specifier
� I/O Status Specifier
� Branch Specifiers
� Advance Specifier
� Character Count Specifier

Unit Specifier

The unit specifier identifies the I/O unit to be accessed. It takes the following form:

[UNIT=]io-unit

io-unit
For external files, it identifies a logical unit and is one of the following:

n A scalar integer expression that refers to a specific file, I/O device, or pipe. If necessary,
the value is converted to integer data type before use. The integer is in the range 0
through 2**31-1.

n An asterisk (*). This is the default (or implicit) external unit, which is preconnected for
formatted sequential access.

For internal files, io-unit identifies a scalar or array character variable that is an internal file. An
internal file is designated internal storage space (a variable buffer) that is used with formatted
(including list-directed) sequential READ and WRITE statements.

The io-unit must be specified in a control list. If the keyword UNIT is omitted, the io-unit must be
first in the control list.

A unit number is assigned either explicitly through an OPEN statement or implicitly by the system. If
a READ statement implicitly opens a file, the file’s status is STATUS=’OLD’. If a WRITE statement
implicitly opens a file, the file’s status is as follows:

� On OpenVMS systems: STATUS=’NEW’

Data Transfer I/O Statements Page 5 of 45

� On DIGITAL UNIX, Windows NT, and Windows 95 systems: STATUS=’UNKNOWN’

If the internal file is a scalar character variable, the file has only one record; its length is equal to that
of the variable.

If the internal file is an array character variable, the file has a record for each element in the array;
each record’s length is equal to one array element.

An internal file can be read only if the variable has been defined and a value assigned to each record
in the file. If the variable representing the internal file is a pointer, it must be associated; if the
variable is an allocatable array, it must be currently allocated.

Before data transfer, an internal file is always positioned at the beginning of the first character of the
first record.

For More Information:

� See the OPEN statement.
� On implicit logical assignments, see your programmer’s guide.
� On using internal files, see your programmer’s guide.

Format Specifier

The format specifier indicates the format to use for data editing. It takes the following form:

[FMT=]format

format
Is one of the following:

n The statement label of a FORMAT statement

The FORMAT statement must be in the same scoping unit as the data transfer statement.

n An asterisk (*), indicating list-directed formatting

n A scalar default integer variable that has been assigned the label of a FORMAT
statement (through an ASSIGN statement)

The FORMAT statement must be in the same scoping unit as the data transfer statement.

n A character expression (which can be an array or character constant) containing the run-
time format

A default character expression must evaluate to a valid format specification. If the
expression is an array, it is treated as if all the elements of the array were specified in
array element order and were concatenated.

Data Transfer I/O Statements Page 6 of 45

n The name of a numeric array (or array element) containing the format

If the keyword FMT is omitted, the format specifier must be the second specifier in the control list;
the io-unit specifier must be first.

If a format specifier appears in a control list, a namelist group specifier must not appear.

For More Information:

� See the FORMAT statement.
� See the interaction between FORMAT statements and I/O lists.
� On list-directed input, see Rules for List-Directed Sequential READ Statements; output, see

Rules for List-Directed Sequential WRITE Statements.

Namelist Specifier

The namelist specifier indicates namelist formatting and identifies the namelist group for data
transfer. It takes the following form:

[NML=]group

group
Is the name of a namelist group previously declared in a NAMELIST statement.

If the keyword NML is omitted, the namelist specifier must be the second specifier in the control list;
the io-unit specifier must be first.

If a namelist specifier appears in a control list, a format specifier must not appear.

For More Information:

For details on namelist input, see Rules for Namelist Sequential READ Statements; output, see Rules
for Namelist Sequential WRITE Statements.

Record Specifier

The record specifier identifies the number of the record for data transfer in a file connected for direct
access. It takes the following form:

REC=r

r
Is a scalar numeric expression indicating the record number. The value of the expression must
be greater than or equal to 1, and less than or equal to the maximum number of records allowed
in the file.

If necessary, the value is converted to integer data type before use.

Data Transfer I/O Statements Page 7 of 45

If REC is present, no END specifier, * format specifier, or namelist group name can appear in the
same control list.

For More Information:

See Alternative Syntax for a Record Specifier.

Key-Field-Value Specifier (VMS only)

The key-field-value specifier identifies the key field of a record that you want to access in an indexed
file. The key-field value is equal to the contents of a key field. The key field can be used to access
records in indexed files because it determines their location.

A key field has attributes, such as the number, direction, length, byte offset, and type of the field. The
attributes of the key field are specified at file creation. Records in an indexed file have the same
attributes for their key fields.

A key-field-value specifier takes the following form:

KEY[con] = val

con
Is a selection condition keyword specifying how to compare val with key-field values. The
keyword can be any of the following:

In Ascending-Key Files:

Keyword Meaning

EQ
The key-field value must be equal to val. KEYEQ is the same as specifying
KEY without the optional con.

GE The key-field value must be greater than or equal to val.

GT The key-field value must be greater than val.

NXT
The key-field value must be the next value of the key equal to or greater than
val.

NXTNE The key-field value must be the next value of the key strictly greater than val.

In Descending-Key Files:

Keyword Meaning

EQ
The key-field value must be equal to val. KEYEQ is the same as specifying
KEY without the optional con.

LE The key-field value must be less than or equal to val.

Data Transfer I/O Statements Page 8 of 45

LT The key-field value must be less than val.

NXT The key-field value must be the next value of the key equal to or less than val.

NXTNE
The key-field value must be the next value of the key that is strictly less than
val.

val
Is an integer or character expression. The expression must match the type of key defined for the
file. For an integer key, you must pass an integer expression; it cannot contain real or complex
data. For a character key, you can pass either a CHARACTER expression or a BYTE array that
contains CHARACTER data.

The specifiers KEY, KEYEQ, KEYNXT, and KEYNXTNE are interchangeable between
ascending-key files and descending-key files. However, KEYNXT and KEYNXTNE are interpreted
differently depending on the direction of the keys in the file, as follows:

In Ascending-Key Files In Descending-Key Files

Specifier: Is Equivalent to Specifier:

KEYNXT KEYGE KEYLE

KEYNXTNE KEYGT KEYLT

The specifiers KEYGE and KEYGT can only be used with ascending-key files, while the specifiers
KEYLE and KEYLT can only be used with descending-key files. Any other use of these key
specifiers causes a run-time error to occur.

When a program must be able to use either ascending-key or descending-key files, you should use
KEYNXT and KEYNXTNE.

The Selection Process

To select key-field integer values, the process compares values using the signed integers themselves.

To select key-field character values, the process compares values by using the ASCII collating
sequence. 1 The comparative length of val and a key-field value, as well as any specified selection
condition, determine the kind of selection that occurs. The selection can be exact, generic, or
approximate-generic, as follows:

� Exact selections occur when the expression in val is equal in length to the expression in the key
field of the currently accessed record, and the con keyword specifies a unique selection
condition.

� Generic selections occur when the expression in val is shorter than the expression in the key
field of the currently accessed record, and the con keyword specifies a unique selection
condition.

Data Transfer I/O Statements Page 9 of 45

The process compares all the characters in val, from left to right, with the same amount of
characters in the key field (also from left to right). Remaining key-field characters are ignored.

For example, consider that a record’s key field is 10 characters long and the following
statement is entered:

 READ (3, KEYEQ = ’ABCD’)

In this case, the process can select a record with a key-field value ’ABCDEFGHIJ’.

� An approximate-generic selection occurs when the expression in val is shorter than the
expression in the key field, and the con keyword does not specify a unique selection condition.

As with generic selections, the process uses only the leftmost characters in the key field to
compare values. It selects the first key field that satisfies the generic selection criterion.

For example, consider that a record’s key field is 5 characters long and the following statement
is entered:

 READ (3, KEYGT = ’ABCD’)

In this case, the process can select the key-field value ’ABCEx’ (and not the key-field value
’ABCDA’).

If val is longer than the key-field value, no selection is made and a run-time error occurs.

1 Other collating sequences are available. For more information, see the Guide to OpenVMS File
Applications.

Key-of-Reference Specifier (VMS only)

The key-of-reference specifier can optionally accompany the key- field-value specifier. The key-of-
reference specifier indicates the key-field index that is searched to find the designated key-field value.
It takes the following form:

KEYID = kn

kn
Is an integer expression indicating the key-field index. This expression is called the key of
reference. Its value must be in the range 0 to 254.

A value of zero indicates the primary key, a value of 1 indicates the first alternate key, a value
of 2 indicates the second alternate key, and so forth.

If no kn is indicated, the default number is the last specification given in a keyed I/O statement for
that I/O unit.

Data Transfer I/O Statements Page 10 of 45

For More Information:

See the key-field-value specifier.

I/O Status Specifier

The I/O status specifier designates a variable to store a value indicating the status of a data transfer
operation. It takes the following form:

IOSTAT=i-var

i-var
Is a scalar integer variable. When a data transfer statement is executed, i-var is set to one of the
following values:

A positive
integer

Indicating an error condition occurred.

A negative
integer

Indicating an end-of-file or end-of-record condition occurred. The negative
integers differ depending on which condition occurred.

Zero Indicating no error, end-of-file, or end-of-record condition occurred.

Execution continues with the statement following the data transfer statement, or the statement
identified by a branch specifier (if any).

An end-of-file condition occurs only during execution of a sequential READ statement; an end-of-
record condition occurs only during execution of a nonadvancing READ statement.

For More Information:

For details on the error numbers returned by IOSTAT, see your programmer's guide.

Branch Specifiers

A branch specifier identifies a branch target statement that receives control if an error, end-of-file, or
end-of-record condition occurs. There are three branch specifiers, taking the following forms:

ERR=label
END=label
EOR=label

label
Is the label of the branch target statement that receives control when the specified condition
occurs.

The branch target statement must be in the same scoping unit as the data transfer statement.

Data Transfer I/O Statements Page 11 of 45

The following rules apply to these specifiers:

� ERR

The error specifier can appear in a sequential access READ or WRITE statement, a direct-
access READ statement, an indexed READ statement (VMS only), or a REWRITE statement.

If an error condition occurs, the position of the file is indeterminate, and execution of the
statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a positive integer value.
If SIZE was specified (in a nonadvancing READ statement), the SIZE variable becomes
defined as an integer value. If a label was specified, execution continues with the labeled
statement.

� END

The end-of-file specifier can appear only in a sequential access READ statement.

An end-of-file condition occurs when no more records exist in a file during a sequential read,
or when an end-of-file record produced by the ENDFILE statement is encountered. End-of-file
conditions do not occur in indexed (VMS only) or direct-access READ statements.

If an end-of-file condition occurs, the file is positioned after the end-of-file record, and
execution of the statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value.
If a label was specified, execution continues with the labeled statement.

� EOR

The end-of-record specifier can appear only in a formatted, sequential access READ statement
that has the specifier ADVANCE=’NO’(nonadvancing input).

An end-of-record condition occurs when a nonadvancing READ statement tries to transfer data
from a position after the end of a record.

If an end-of-record condition occurs, the file is positioned after the current record, and
execution of the statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value.
If PAD=’YES’ was specified for file connection, the record is padded with blanks (as
necessary) to satisfy the input item list and the corresponding data edit descriptor. If SIZE was
specified, the SIZE variable becomes defined as an integer value. If a label was specified,
execution continues with the labeled statement.

If one of the conditions occurs, no branch specifier appears in the control list, but an IOSTAT

Data Transfer I/O Statements Page 12 of 45

specifier appears, execution continues with the statement following the I/O statement. If neither a
branch specifier nor an IOSTAT specifier appears, the program terminates.

For More Information:

� On the IOSTAT specifier, see I/O Status Specifier and Using the IOSTAT Specifier and
Fortran Exit Codes.

� On branch target statements, see Branch Statements and Using the END, EOR, and ERR
Branch Specifiers.

� On error processing, see your programmer’s guide.

Advance Specifier

The advance specifier determines whether nonadvancing I/O occurs for a data transfer statement. It
takes the following form:

ADVANCE=c-expr

c-expr
Is a scalar character expression that evaluates to ’YES’ for advancing I/O or ’NO’ for
nonadvancing I/O. The default value is ’YES’.

Trailing blanks in the expression are ignored.

The ADVANCE specifier can appear only in a formatted, sequential data transfer statement that
specifies an external unit. It must not be specified for list-directed or namelist data transfer.

Advancing I/O always positions a file at the end of a record, unless an error condition occurs.
Nonadvancing I/O can position a file at a character position within the current record.

For More Information:

For details on advancing and nonadvancing I/O, see your programmer’s guide.

Character Count Specifier

The character count specifier defines a variable to contain the count of how many characters are read
when a nonadvancing READ statement terminates. It takes the following form:

SIZE=i-var

i-var
Is a scalar default integer variable.

If PAD=’YES’ was specified for file connection, blanks inserted as padding are not counted.

The SIZE specifier can appear only in a formatted, sequential READ statement that has the specifier
ADVANCE=’NO’ (nonadvancing input). It must not be specified for list-directed or namelist data

Data Transfer I/O Statements Page 13 of 45

transfer.

I/O Lists

In a data transfer statement, the I/O list specifies the entities whose values will be transferred. The I/O
list is either an implied- do list or a simple list of variables (except for assumed-size arrays).

In input statements, the I/O list cannot contain constants and expressions because these do not specify
named memory locations that can be referenced later in the program.

However, constants and expressions can appear in the I/O lists for output statements because the
compiler can use temporary memory locations to hold these values during the execution of the I/O
statement.

If an input item is a pointer, it must be currently associated with a definable target; data is transferred
from the file to the associated target. If an output item is a pointer, it must be currently associated
with a target; data is transferred from the target to the file.

If an input or output item is an array, it is treated as if the elements (if any) were specified in array
element order. For example, if ARRAY_A is an array of shape (2,1), the following input statements
are equivalent:

 READ *, ARRAY_A
 READ *, ARRAY_A(1,1), ARRAY_A(2,1)

However, no element of that array can affect the value of any expression in the input list, nor can any
element appear more than once in an input list. For example, the following input statements are
invalid:

 INTEGER B(50)
 ...
 READ *, B(B)
 READ *, B(B(1):B(10))

If an input or output item is an allocatable array, it must be currently allocated.

If an input or output item is a derived type, the following rules apply:

� Any derived-type component must be in the scoping unit containing the I/O statement.
� The derived type must not have a pointer component.
� In a formatted I/O statement, a derived type is treated as if all of the components of the

structure were specified in the same order as in the derived-type definition.
� In an unformatted I/O statement, a derived type is treated as a single object.

The following sections describe simple list items in I/O lists, and implied-do lists in I/O lists.

Simple List Items in I/O Lists

Data Transfer I/O Statements Page 14 of 45

In a data transfer statement, a simple list of items takes the following form:

item [, item]...

item
Is one of the following:

n For input statements: a variable name

The variable must not be an assumed-size array, unless one of the following appears in
the last dimension: a subscript, a vector subscript, or a section subscript specifying an
upper bound.

n For output statements: a variable name, expression, or constant

Any expression must not attempt further I/O operations on the same logical unit. For
example, it must not refer to a function subprogram that performs I/O on the same
logical unit.

The data transfer statement assigns values to (or transfers values from) the list items in the order in
which the items appear, from left to right.

When multiple array names are used in the I/O list of an unformatted input or output statement, only
one record is read or written, regardless of how many array name references appear in the list.

Examples

The following example shows a simple I/O list:

 WRITE (6,10) J, K(3), 4, (L+4)/2, N

When you use an array name reference in an I/O list, an input statement reads enough data to fill
every item of the array. An output statement writes all of the values in the array.

Data transfer begins with the initial item of the array and proceeds in the order of subscript
progression, with the leftmost subscript varying most rapidly. The following statement defines a two-
dimensional array:

 DIMENSION ARRAY(3,3)

If the name ARRAY appears with no subscripts in a READ statement, that statement assigns values
from the input record(s) to ARRAY(1,1), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and so on
through ARRAY(3,3).

An input record contains the following values:

Data Transfer I/O Statements Page 15 of 45

 1,3,721.73

The following example shows how variables in the I/O list can be used in array subscripts later in the
list:

 DIMENSION ARRAY(3,3)
 ...
 READ (1,30) J, K, ARRAY(J,K)

When the READ statement is executed, the first input value is assigned to J and the second to K,
establishing the subscript values for ARRAY(J,K). The value 721.73 is then assigned to ARRAY
(1,3). Note that the variables must appear before their use as array subscripts.

Consider the following derived-type definition and structure declaration:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE
 ...
 TYPE(EMPLOYEE) :: CONTRACT ! A structure of type EMPLOYEE

The following statements are equivalent:

 READ *, CONTRACT

 READ *, CONTRACT%ID, CONTRACT%NAME

The following shows more examples:

 ! A variable and array element in iolist:
 REAL b(99)
 READ (*, 300) n, b(n) ! n and b(n) are the iolist
 300 FORMAT (I2, F10.5) ! FORMAT statement telling what form the input data has

 ! A derived type and type element in iolist:
 TYPE YOUR_DATA
 REAL a
 CHARACTER(30) info
 COMPLEX cx
 END TYPE YOUR_DATA
 TYPE (YOUR_DATA) yd1, yd2
 yd1.a = 2.3
 yd1.info = "This is a type demo."
 yd1.cx = (3.0, 4.0)
 yd2.cx = (4.5, 6.7)
 ! The iolist follows the WRITE (*,500).
 WRITE (*, 500) yd1, yd2.cx
 ! The format statement tells how the iolist will be output.
 500 FORMAT (F5.3, A21, F5.2, ’,’, F5.2, ’ yd2.cx = (’, F5.2,
 ’,’,F5.2, ’)’)
 ! The output looks like:
 ! 2.300This is a type demo 3.00, 4.00 yd2.cx = (4.50, 6.70)

The following example uses an array and an array section:

Data Transfer I/O Statements Page 16 of 45

 ! An array in the iolist:
 INTEGER handle(5)
 DATA handle / 5*0 /
 WRITE (*, 99) handle
 99 FORMAT (5I5)
 ! An array section in the iolist.
 WRITE (*, 100) handle(2:3)
 100 FORMAT (2I5)

The following shows another example:

PRINT *,’(I5)’, 2*3 ! The iolist is the expression 2*3.

The following example uses a namelist:

 ! Namelist I/O:
 INTEGER int1
 LOGICAL log1
 REAL r1
 CHARACTER (20) char20
 NAMELIST /mylist/ int1, log1, r1, char20
 int1 = 1
 log1 = .TRUE.
 r1 = 1.0
 char20 = ’NAMELIST demo’
 OPEN (UNIT = 4, FILE = ’MYFILE.DAT’, DELIM = ’APOSTROPHE’)
 WRITE (UNIT = 4, NML = mylist)
 ! Writes the following:
 ! &MYLIST
 ! INT1 = 1,
 ! LOG1 = T,
 ! R1 = 1.000000 ,
 ! CHAR20 = ’NAMELIST demo ’
 ! /
 REWIND(4)
 READ (4, mylist)

For More Information:

For details on the general rules for I/O lists, see I/O Lists.

Implied-Do Lists in I/O Lists

In a data transfer statement, an implied-do list acts as though it were a part of an I/O statement within
a DO loop. It takes the following form:

(list, do-var = expr1, expr2 [,expr3])

list
Is a list of variables, expressions, or constants (see Simple List Items in I/O Lists).

do-var
Is the name of a scalar integer or real variable. The variable must not be one of the input items
or output items in list.

Data Transfer I/O Statements Page 17 of 45

expr
Are scalar numeric expressions of type integer or real. They do not all have to be the same type,
or the same type as the DO variable.

The implied-do loop is initiated, executed, and terminated in the same way as a DO construct.

The list is the range of the implied-do loop. Items in that list can refer to do-var, but they must not
change the value of do-var.

Two nested implied-do lists must not have the same (or an associated) DO variable.

Use an implied-do list to do the following:

� Specify iteration of part of an I/O list
� Transfer part of an array
� Transfer array items in a sequence different from the order of subscript progression

If the I/O statement containing an implied-do list terminates abnormally (with an END, EOR, or
ERR branch or with an IOSTAT value other than zero), the DO variable becomes undefined.

Examples

The following two output statements are equivalent:

 WRITE (3,200) (A,B,C, I=1,3) ! An implied-do list

 WRITE (3,200) A,B,C,A,B,C,A,B,C ! A simple item list

The following example shows nested implied-do lists. Execution of the innermost list is repeated
most often:

 WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)

The inner DO loop is executed 10 times for each iteration of the outer loop; the second subscript (L)
advances from 1 through 10 for each increment of the first subscript (K). This is the reverse of the
normal array element order. Note that K is incremented by 2, so only the odd-numbered rows of the
array are output.

In the following example, the entire list of the implied-do list (P(1), Q(1,1), Q(1,2)...,Q(1,10)) are
read before I is incremented to 2:

 READ (5,999) (P(I), (Q(I,J), J=1,10), I=1,5)

The following example uses fixed subscripts and subscripts that vary according to the implied-do list:

 READ (3,5555) (BOX(1,J), J=1,10)

Data Transfer I/O Statements Page 18 of 45

Input values are assigned to BOX(1,1) through BOX(1,10), but other elements of the array are not
affected.

The following example shows how a DO variable can be output directly:

 WRITE (6,1111) (I, I=1,20)

Integers 1 through 20 are written.

Consider the following:

 INTEGER mydata(25)
 READ (10, 9000) (mydata(I), I=6,10,1)
 9000 FORMAT (5I3)

In this example, the iolist specifies to put the input data into elements 6 through 10 of the array called
mydata. The third value in the implied-DO loop, the increment, is optional. If you leave it out, the
increment value defaults to 1.

For More Information:

� See DO constructs.
� On the general rules for I/O lists, see I/O Lists.

READ Statements

The READ statement is a data transfer input statement. Data can be input from external sequential,
keyed-access (VMS only) or direct-access records, or from internal records. (For more information, see
READ in the A to Z Reference.)

This section discusses the following topics:

� Forms for Sequential READ Statements
� Forms for Direct-Access READ Statements
� Forms and Rules for Internal READ Statements

Forms for Sequential READ Statements

Sequential READ statements transfer input data from external sequential-access records. The
statements can be formatted with format specifiers (which can use list-directed formatting) or
namelist specifiers (for namelist formatting), or they can be unformatted.

A sequential READ statement takes one of the following forms:

Formatted

READ (eunit, format [, advance] [, size] [, iostat] [, err] [, end] [, eor]) [io-list]

Data Transfer I/O Statements Page 19 of 45

READ form [, io-list]

Formatted: List-Directed

READ (eunit, * [, iostat] [, err] [, end]) [io-list]
READ * [, io-list]

Formatted: Namelist

READ (eunit, nml-group [, iostat] [, err] [, end])
READ nml

Unformatted

READ (eunit [, iostat] [, err] [, end]) [io-list]

For more information, see READ in the A to Z Reference.

This section discusses the following topics:

l Rules for Formatted Sequential READ Statements
l Rules for List-Directed Sequential READ Statements
l Rules for Namelist Sequential READ Statements
l Rules for Unformatted Sequential READ Statements

For More Information:

� See I/O control-list specifiers.
� See I/O lists.

Rules for Formatted Sequential READ Statements

Formatted, sequential READ statements translate data from character to binary form by using format
specifications for editing (if any). The translated data is assigned to the entities in the I/O list in the
order in which the entities appear, from left to right.

Values can be transferred to objects of intrinsic or derived types. For derived types, values of intrinsic
types are transferred to the components of intrinsic types that ultimately make up these structured
objects.

For data transfer, the file must be positioned so that the record read is a formatted record or an end-
of-file record.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the input record
is padded with blanks. However, if PAD=’NO’ was specified for file connection, the input list and file
specification must not require more characters from the record than it contains. If more characters are

Data Transfer I/O Statements Page 20 of 45

required and nonadvancing input is in effect, an end-of-record condition occurs.

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Examples

The following example shows formatted, sequential READ statements:

 READ (*, ’(B)’, ADVANCE=’NO’) C

 READ (FMT="(E2.4)", UNIT=6, IOSTAT=IO_STATUS) A, B, C

For More Information:

� See READ.
� See Forms for Sequential READ Statements.

Rules for List-Directed Sequential READ Statements

List-directed, sequential READ statements translate data from character to binary form by using the
data types of the corresponding I/O list item to determine the form of the data. The translated data is
then assigned to the entities in the I/O list in the order in which they appear, from left to right.

If a slash (/) is encountered during execution, the READ statement is terminated, and any remaining
input list items are unchanged.

If the file is connected for unformatted I/O, list-directed data transfer is prohibited.

List-Directed Records

A list-directed external record consists of a sequence of values and value separators. A value can be
any of the following:

� A constant

Each constant must be a literal constant of type integer, real, complex, logical, or character; or
a nondelimited character string. Binary, octal, hexadecimal, Hollerith, and named constants are
not permitted.

In general, the form of the constant must be acceptable for the type of the list item. The data
type of the constant determines the data type of the value and the translation from external to
internal form. The following rules also apply:

n A numeric list item can correspond only to a numeric constant, and a character list item
can correspond only to a character constant. If the data types of a numeric list element
and its corresponding numeric constant do not match, conversion is performed according
to the rules for arithmetic assignment (see the table in Numeric Assignment Statements).

n A complex constant has the form of a pair of real or integer constants separated by a

Data Transfer I/O Statements Page 21 of 45

comma and enclosed in parentheses. Blanks can appear between the opening parenthesis
and the first constant, before and after the separating comma, and between the second
constant and the closing parenthesis.

n A logical constant represents true values (.TRUE. or any value beginning with T, .T, t, or
.t) or false values (.FALSE. or any value beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation marks if the
corresponding I/O list item is of type default character, and the following is true:

n The character string does not contain a blank, comma, or slash.
n The character string is not continued across a record boundary.
n The first nonblank character in the string is not an apostrophe or a quotation mark.
n The leading character is not a string of digits followed by an asterisk.

A nondelimited character string is terminated by the first blank, comma, slash, or end-of-record
encountered. Apostrophes and quotation marks within nondelimited character strings are
transferred as is.

� A null value

A null value is specified by two consecutive value separators (such as ,,) or a nonblank initial
value separator. (A value separator before the end of the record does not signify a null value.)

A null value indicates that the corresponding list element remains unchanged. A null value can
represent an entire complex constant, but cannot be used for either part of a complex constant.

� A repetition of a null value (r*) or a constant (r*constant), where r is an unsigned, nonzero,
integer literal constant with no kind parameter, and no embedded blanks.

A value separator is any number of blanks, or a comma or slash, preceded or followed by any number
of blanks. When any of these appear in a character constant, they are considered part of the constant,
not value separators.

The end of a record is equivalent to a blank character, except when it occurs in a character constant.
In this case, the end of the record is ignored, and the character constant is continued with the next
record (the last character in the previous record is immediately followed by the first character of the
next record).

Blanks at the beginning of a record are ignored unless they are part of a character constant continued
from the previous record. In this case, the blanks at the beginning of the record are considered part of
the constant.

Examples

Suppose the following statements are specified:

 CHARACTER*14 C
 DOUBLE PRECISION T

Data Transfer I/O Statements Page 22 of 45

 COMPLEX D,E
 LOGICAL L,M
 READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B

Then suppose the following external record is read:

 4 6.3 (3.4,4.2), (3, 2) , T,F,,3*14.6 ,’ABC,DEF/GHI’’JK’/

The following values are assigned to the I/O list items:

I/O List Item Value Assigned

I 4

R 6.3

D (3.4,4.2)

E (3.0,2.0)

L .TRUE.

M .FALSE.

J Unchanged

K 14

S 14.6

T 14.6D0

C ABC,DEF/GHI’ JK

A Unchanged

B Unchanged

The following example shows list-directed input and output:

 REAL a
 INTEGER i
 COMPLEX c
 LOGICAL up, down
 DATA a /2358.2E-8/, i /91585/, c /(705.60,819.60)/
 DATA up /.TRUE./, down /.FALSE./
 OPEN (UNIT = 9, FILE = ’listout’, STATUS = ’NEW’)
 WRITE (9, *) a, i
 WRITE (9, *) c, up, down
 REWIND (9)
 READ (9, *) a, i
 READ (9, *) c, up, down
 WRITE (*, *) a, i
 WRITE (*, *) c, up, down

Data Transfer I/O Statements Page 23 of 45

 END

The preceding program produces the following output:

 2.3582001E-05 91585
 (705.6000,819.6000) T F

For More Information:

� See READ.
� See Forms for Sequential READ Statements.
� On the literal constant forms of intrinsic data types, see Intrinsic Data Types.
� On list-directed output, see Rules for List-Directed Sequential WRITE Statements.

Rules for Namelist Sequential READ Statement

Namelist, sequential READ statements translate data from external to internal form by using the data
types of the objects in the corresponding NAMELIST statement to determine the form of the data.
The translated data is assigned to the specified objects in the namelist group in the order in which
they appear, from left to right.

If a slash (/) is encountered during execution, the READ statement is terminated, and any remaining
input list items are unchanged.

If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Namelist Records

A namelist external record takes the following form:

&group-name object = value [, object = value].../

group-name
Is the name of the group containing the objects to be given values. The name must have been
previously defined in a NAMELIST statement in the scoping unit. The name cannot contain
embedded blanks and must be contained within a single record.

object
Is the name (or subobject designator) of an entity defined in the NAMELIST declaration of the
group name. The object name must not contain embedded blanks except within the parentheses
of a subscript or substring specifier. Each object must be contained in a single record.

value
Is any of the following:

n A constant

Each constant must be a literal constant of type integer, real, complex, logical, or
character; or a nondelimited character string. Binary, octal, hexadecimal, Hollerith, and

Data Transfer I/O Statements Page 24 of 45

named constants are not permitted.

In general, the form of the constant must be acceptable for the type of the list item. The
data type of the constant determines the data type of the value and the translation from
external to internal form. The following rules also apply:

n A numeric list item can correspond only to a numeric constant, and a character list
item can correspond only to a character constant. If the data types of a numeric list
element and its corresponding numeric constant do not match, conversion is
performed according to the rules for arithmetic assignment (see the table in
Numeric Assignment Statements).

n A complex constant has the form of a pair of real or integer constants separated by
a comma and enclosed in parentheses. Blanks can appear between the opening
parenthesis and the first constant, before and after the separating comma, and
between the second constant and the closing parenthesis.

n A logical constant represents true values (.TRUE. or any value beginning with T,
.T, t, or .t) or false values (.FALSE. or any value beginning with F, .F, f, or .f).

n A null value

A null value is specified by two consecutive value separators (such as ,,) or a nonblank
initial value separator. (A value separator before the end of the record does not signify a
null value.)

A null value indicates that the corresponding list element remains unchanged. A null
value can represent an entire complex constant, but cannot be used for either part of a
complex constant.

n A repetition of a null value (r*) or a constant (r*constant), where r is an unsigned,
nonzero, integer literal constant with no kind parameter, and no embedded blanks.

Blanks can precede or follow the beginning ampersand (&), follow the group name, precede or follow
the equal sign, or precede the terminating slash.

Comments (beginning with ! only) can appear anywhere in namelist input. The comment extends to
the end of the source line.

If an entity appears more than once within the input record for a namelist data transfer, the last value
is the one that is used.

If there is more than one object=value pair, they must be separated by value separators.

A value separator is any number of blanks, or a comma or slash, preceded or followed by any number
of blanks. When any of these appear in a character constant, they are considered part of the constant,
not value separators.

The end of a record is equivalent to a blank character, except when it occurs in a character constant.

Data Transfer I/O Statements Page 25 of 45

In this case, the end of the record is ignored, and the character constant is continued with the next
record (the last character in the previous record is immediately followed by the first character of the
next record).

Blanks at the beginning of a record are ignored unless they are part of a character constant continued
from the previous record. In this case, the blanks at the beginning of the record are considered part of
the constant.

Prompting for Namelist Group Information

During execution of a program containing a namelist READ statement, you can specify a question
mark character (?) or a question mark character preceded by an equal sign (=?) to get information
about the namelist group. The ? or =? must follow one or more blanks.

If specified for a unit capable of both input and output, the ? causes display of the group name and the
objects in that group. The =? causes display of the group name, objects within that group, and the
current values for those objects (in namelist output form). If specified for another type of unit, the
symbols are ignored.

For example, consider the following statements:

 NAMELIST /NLIST/ A,B,C
 REAL A /1.5/
 INTEGER B /2/
 CHARACTER*5 C /’ABCDE’/

 READ (5,NML=NLIST)
 WRITE (6,NML=NLIST)
 END

During execution, if a blank followed by ? is entered on a terminal device, the following values are
displayed:

 &NLIST
 A
 B
 C
 /

If a blank followed by =? is entered, the following values are displayed:

 &NLIST
 A = 1.500000 ,
 B = 2,
 C = ABCDE
 /

Examples

Suppose the following statements are specified:

Data Transfer I/O Statements Page 26 of 45

 NAMELIST /CONTROL/ TITLE, RESET, START, STOP, INTERVAL
 CHARACTER*10 TITLE
 REAL(KIND=8) START, STOP
 LOGICAL(KIND=4) RESET
 INTEGER(KIND=4) INTERVAL
 READ (UNIT=1, NML=CONTROL)

The NAMELIST statement associates the group name CONTROL with a list of five objects. The
corresponding READ statement reads the following input data from unit 1:

&CONTROL
 TITLE=’TESTT002AA’,
 INTERVAL=1,
 RESET=.TRUE.,
 START=10.2,
 STOP =14.5
/

The following values are assigned to objects in group CONTROL:

Namelist Object Value Assigned

TITLE TESTT002AA

RESET T

START 10.2

STOP 14.5

INTERVAL 1

It is not necessary to assign values to all of the objects declared in the corresponding NAMELIST
group. If a namelist object does not appear in the input statement, its value (if any) is unchanged.

Similarly, when character substrings and array elements are specified, only the values of the specified
variable substrings and array elements are changed. For example, suppose the following input is read:

&CONTROL TITLE(9:10)=’BB’ /

The new value for TITLE is TESTT002BB; only the last two characters in the variable change.

The following example shows an array as an object:

 DIMENSION ARRAY_A(20)
 NAMELIST /ELEM/ ARRAY_A
 READ (UNIT=1,NML=ELEM)

Suppose the following input is read:

Data Transfer I/O Statements Page 27 of 45

&ELEM
ARRAY_A=1.1, 1.2, , 1.4
/

The following values are assigned to the ARRAY_A elements:

Array Element Value Assigned

ARRAY_A(1) 1.1

ARRAY_A(2) 1.2

ARRAY_A(3) Unchanged

ARRAY_A(4) 1.4

ARRAY_A(5)...ARRAY(20) Unchanged

When a list of values is assigned to an array element, the assignment begins with the specified array
element, rather than with the first element of the array. For example, suppose the following input is
read:

&ELEM
ARRAY_A(3)=34.54, 45.34, 87.63, 3*20.00
/

New values are assigned only to array ARRAY_A elements 3 through 8. The other element values
are unchanged.

The following shows another example:

 INTEGER a, b
 NAMELIST /mynml/ a, b
 ...
 ! The following are all valid namelist variable assignments:
 &mynml a = 1 /
 $mynml a = 1 $
 $mynml a = 1 $end
 &mynml a = 1 &
 &mynml a = 1 $END
 &mynml
 a = 1
 b = 2
 /

For More Information:

l See the NAMELIST statement.
l See Rules for Formatted Sequential READ Statements.
l See an Alternative Form for Namelist External Records.
l On namelist output, see Rules for Namelist Sequential WRITE Statements.

Data Transfer I/O Statements Page 28 of 45

Rules for Unformatted Sequential READ Statements

Unformatted, sequential READ statements transfer binary data (without translation) between the
current record and the entities specified in the I/O list. Only one record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an unformatted record or an
end-of-file record.

The unformatted, sequential READ statement reads a single record. Each value in the record must be
of the same type as the corresponding entity in the input list, unless the value is real or complex.

If the value is real or complex, one complex value can correspond to two real list entities, or two real
values can correspond to one complex list entity. The corresponding values and entities must have the
same kind parameter.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields. If the number of I/O list items is greater than the number of fields in an
input record, an error occurs.

If a statement contains no I/O list, it skips over one full record, positioning the file to read the
following record on the next execution of a READ statement.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.

Examples

The following example shows an unformatted, sequential READ statement:

READ (UNIT=6, IOSTAT=IO_STATUS) A, B, C

For More Information:

� See READ.
� See Forms for Sequential READ Statements.

Forms for Direct-Access READ Statements

Direct-access READ statements transfer input data from external records with direct access. (The
attributes of a direct-access file are established by the OPEN statement.)

A direct-access READ statement can be formatted or unformatted, and takes one of the following
forms:

Data Transfer I/O Statements Page 29 of 45

Formatted

READ (eunit, format, rec [,iostat] [,err]) [io-list]

Unformatted

READ (eunit, rec [,iostat] [,err]) [io-list]

For more information, see READ in the A to Z Reference.

This section discusses the following topics:

l Rules for Formatted Direct-Access READ Statements
l Rules for Unformatted Direct-Access READ Statements

For More Information:

� See I/O control-list specifiers.
� See I/O lists.
� On file sharing, see your programmer’s guide.

Rules for Formatted Direct-Access READ Statements

Formatted, direct-access READ statements translate data from character to binary form by using
format specifications for editing (if any). The translated data is assigned to the entities in the I/O list
in the order in which the entities appear, from left to right.

Values can be transferred to objects of intrinsic or derived types. For derived types, values of intrinsic
types are transferred to the components of intrinsic types that ultimately make up these structured
objects.

For data transfer, the file must be positioned so that the record read is a formatted record or an end-
of-file record.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the input record
is padded with blanks. However, if PAD=’NO’ was specified for file connection, the input list and file
specification must not require more characters from the record than it contains. If more characters are
required and nonadvancing input is in effect, an end-of-record condition occurs.

If the format specification specifies another record, the record number is increased by one as each
subsequent record is read by that input statement.

Examples

The following example shows a formatted, direct-access READ statement:

Data Transfer I/O Statements Page 30 of 45

 READ (2, REC=35, FMT=10) (NUM(K), K=1,10)

Rules for Unformatted Direct-Access READ Statements

Unformatted, direct-access READ statements transfer binary data (without translation) between the
current record and the entities specified in the I/O list. Only one record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an unformatted record or an
end-of-file record.

The unformatted, sequential READ statement reads a single record. Each value in the record must be
of the same type as the corresponding entity in the input list, unless the value is real or complex.

If the value is real or complex, one complex value can correspond to two real list entities, or two real
values can correspond to one complex list entity. The corresponding values and entities must have the
same kind parameter.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields. If the number of I/O list items is greater than the number of fields in an
input record, an error occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.

Examples

The following example shows unformatted, direct-access READ statements:

 READ (1, REC=10) LIST(1), LIST(8)
 READ (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms for Indexed READ Statements (VMS only)

Indexed READ statements transfer input data from external records that have keyed access.

In an indexed file, a series of records can be read in key value sequence by using an indexed READ
statement and sequential READ statements. The first record in the sequence is read by using the
indexed statement, the rest are read by using the sequential READ statements.

An indexed READ statement can be formatted or unformatted, and takes one of the following forms:

Formatted

READ (eunit, format, key [,keyid] [,iostat] [,err]) [io-list]

Data Transfer I/O Statements Page 31 of 45

Unformatted

READ (eunit, key [,keyid] [,err]) [io-list]

For more information, see READ in the A to Z Reference.

This section discusses the following topics:

� Rules for Formatted Indexed READ Statements (VMS only)
� Rules for Unformatted Indexed READ Statements (VMS only)

For More Information:

� See I/O control-list specifiers.
� See I/O lists.

Rules for Formatted Indexed READ Statements (VMS only)

Formatted, indexed READ statements translate data from character to binary form by using format
specifications for editing (if any). The translated data is assigned to the entities in the I/O list in the
order in which the entities appear, from left to right.

If the I/O list and format specifications indicate that additional records are to be read, the statement
reads the additional records sequentially by using the current key-of-reference value.

If KEYID is omitted, the key-of-reference value is the same as the most recent specification. If
KEYID is omitted from the first indexed READ statement, the key of reference is the primary key.

If the specified key value is shorter than the key field referenced, the key value is matched against the
leftmost characters of the appropriate key field until a match is found. The record supplying the
match is then read. If the key value is longer than the key field referenced, an error occurs.

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Examples

Suppose the following statement is specified:

 READ (3, KAT(25), KEY=’ABCD’) A,B,C,D

The READ statement retrieves a record with a key value of ’ABCD’ in the primary key from the file
connected to I/O unit 3. It then uses the format contained in the array item KAT(25) to read the first
four fields from the record into variables A,B,C, and D.

Rules for Unformatted Indexed READ Statements (VMS only)

Unformatted, indexed READ statements transfer binary data (without translation) between the

Data Transfer I/O Statements Page 32 of 45

current record and the entities specified in the I/O list. Only one record is read.

If the number of I/O list items is less than the number of fields in the record being read, the unused
fields in the record are discarded. If the number of I/O list items is greater than the number of fields,
an error occurs.

If a specified key value is shorter than the key field referenced, the key value is matched against the
leftmost characters of the appropriate key field until a match is found. The record supplying the
match is then read. If the specified key value is longer than the key field referenced, an error occurs.

If the file is connected for formatted I/O, unformatted data transfer is prohibited.

Examples

Suppose the following statements are specified:

 OPEN (UNIT=3, STATUS=’OLD’,
1 ACCESS=’KEYED’, ORGANIZATION=’INDEXED’,
2 FORM=’UNFORMATTED’,
3 KEY=(1:5,30:37,18:23))
 READ (3,KEY=’SMITH’) ALPHA, BETA

The READ statement reads from the file connected to I/O unit 3 and retrieves the record with the
value ’SMITH’ in the primary key field (bytes 1 through 5). The first two fields of the record retrieved
are placed in variables ALPHA and BETA, respectively.

Suppose the following statement is specified:

 READ (3,KEYGE=’XYZDEF’,KEYID=2,ERR=99) IKEY

In this case, the READ statement retrieves the first record having a value equal to or greater than
’XYZDEF’ in the second alternate key field (bytes 18 through 23). The first field of that record is
placed in variable IKEY.

Forms and Rules for Internal READ Statements

Internal READ statements transfer input data from an internal file.

An internal READ statement can only be formatted. It must include format specifiers (which can use
list-directed formatting). Namelist formatting is not permitted.

An internal READ statement takes the following form:

READ (iunit, format [,iostat] [,err] [,end]) [io-list]

For more information on syntax, see READ in the A to Z Reference.

Formatted, internal READ statements translate data from character to binary form by using format

Data Transfer I/O Statements Page 33 of 45

specifications for editing (if any). The translated data is assigned to the entities in the I/O list in the
order in which the entities appear, from left to right.

This form of READ statement behaves as if the format begins with a BN edit descriptor. (You can
override this behavior by explicitly specifying the BZ edit descriptor.)

Values can be transferred to objects of intrinsic or derived types. For derived types, values of intrinsic
types are transferred to the components of intrinsic types that ultimately make up these structured
objects.

Before data transfer occurs, the file is positioned at the beginning of the first record. This record
becomes the current record.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the input record
is padded with blanks. However, if PAD=’NO’ was specified for file connection, the input list and file
specification must not require more characters from the record than it contains.

In list-directed formatting, character strings have no delimiters.

Examples

The following program segment reads a record and examines the first character to determine whether
the remaining data should be interpreted as decimal, octal, or hexadecimal. It then uses internal
READ statements to make appropriate conversions from character string representations to binary.

INTEGER IVAL
CHARACTER TYPE, RECORD*80
CHARACTER*(*) AFMT, IFMT, OFMT, ZFMT
PARAMETER (AFMT=’(Q,A)’, IFMT= ’(I10)’, OFMT= ’(O11)’, &
 ZFMT= ’(Z8)’)
ACCEPT AFMT, ILEN, RECORD
TYPE = RECORD(1:1)
IF (TYPE .EQ. ’D’) THEN
 READ (RECORD(2:MIN(ILEN, 11)), IFMT) IVAL
ELSE IF (TYPE .EQ. ’O’) THEN
 READ (RECORD(2:MIN(ILEN, 12)), OFMT) IVAL
ELSE IF (TYPE .EQ. ’X’) THEN
 READ (RECORD(2:MIN(ILEN, 9)),ZFMT) IVAL
ELSE
 PRINT *, ’ERROR’
END IF
END

For More Information:

� See I/O control-list specifiers.
� See I/O lists.
� On list-directed input, see Rules for List-Directed Sequential READ Statements.
� On using internal files, see your programmer’s guide.

Data Transfer I/O Statements Page 34 of 45

ACCEPT Statement

The ACCEPT statement is a data transfer input statement. This statement is the same as a formatted,
sequential READ statement, except that an ACCEPT statement must never be connected to user-
specified I/O units.

For more information, see ACCEPT in the A to Z Reference.

WRITE Statements

The WRITE statement is a data transfer output statement. Data can be output to external sequential,
keyed-access (VMS only) or direct-access records, or to internal records. (For more information, see
WRITE in the A to Z Reference.)

This section discusses the following topics:

� Forms for Sequential WRITE Statements
� Forms for Direct-Access WRITE Statements
� Forms and Rules for Internal WRITE Statements

Forms for Sequential WRITE Statements

Sequential WRITE statements transfer output data to external sequential access records. The
statements can be formatted by using format specifiers (which can use list-directed formatting) or
namelist specifiers (for namelist formatting), or they can be unformatted.

A sequential WRITE statement takes one of the following forms:

Formatted

WRITE (eunit, format [,advance] [,iostat] [,err]) [io-list]

Formatted: List-Directed

WRITE (eunit, * [,iostat] [,err]) [io-list]

Formatted: Namelist

WRITE (eunit, nml-group [,iostat] [,err])

Unformatted

WRITE (eunit [,iostat] [,err]) [io-list]

For more information, see WRITE in the A to Z Reference.

Data Transfer I/O Statements Page 35 of 45

This section discusses the following topics:

l Rules for Formatted Sequential WRITE Statements
l Rules for List-Directed Sequential WRITE Statements
l Rules for Namelist Sequential WRITE Statements
l Rules for Unformatted Sequential WRITE Statements

For More Information:

� See I/O control-list specifiers.
� See I/O lists.

Rules for Formatted Sequential WRITE Statements

Formatted, sequential WRITE statements translate data from binary to character form by using
format specifications for editing (if any). The translated data is written to an external file that is
connected for sequential access.

Values can be transferred from objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred from the components of intrinsic types that ultimately make up these
structured objects.

The output list and format specification must not specify more characters for a record than the record
size. (Record size is specified by RECL in an OPEN statement.)

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Examples

The following example shows formatted, sequential WRITE statements:

 WRITE (UNIT=8, FMT=’(B)’, ADVANCE=’NO’) C

 WRITE (*, "(F6.5)", ERR=25, IOSTAT=IO_STATUS) A, B, C

For More Information:

� See WRITE.
� See Forms for Sequential WRITE Statements.

Rules for List-Directed Sequential WRITE Statements

List-directed, sequential WRITE statements transfer data from binary to character form by using the
data types of the corresponding I/O list item to determine the form of the data. The translated data is
then written to an external file.

In general, values transferred as output have the same forms as values transferred as input.

Data Transfer I/O Statements Page 36 of 45

The following table shows the default output formats for each intrinsic data type:

Default Formats for List-Directed Output

Data Type Output Format

BYTE I5

LOGICAL(1) L2

LOGICAL(2) L2

LOGICAL(4) L2

LOGICAL(8) 1 L2

INTEGER(1) I5

INTEGER(2) I7

INTEGER(4) I12

INTEGER(8) 1 I22

REAL(4) 1PG15.7E2

REAL(8) T_floating 1PG24.15E3

REAL(8) D_floating 1PG24.16E2

REAL(8) G_floating 1PG24.15E3

REAL(16) 2 1PG43.33E4

COMPLEX(4) ’(’,1PG14.7E2, ’, ’,1PG14.7E2, ’) ’

COMPLEX(8) T_floating ’(’,1PG23.15E3, ’, ’,1PG23.15E3, ’) ’

COMPLEX(8) D_floating ’(’,1PG23.16E2, ’, ’,1PG23.16E2, ’) ’

COMPLEX(8) G_floating ’(’,1PG23.15E3, ’, ’,1PG23.15E3, ’) ’

CHARACTER Aw 3

1 Alpha only.
2 VMS, U*X.
3 Where w is the length of the character expression.

By default, character constants are not delimited by apostrophes or quotation marks, and each internal
apostrophe or quotation mark is represented externally by one apostrophe or quotation mark.

Data Transfer I/O Statements Page 37 of 45

This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:

� If the file is opened with the DELIM=’QUOTE’ specifier, character constants are delimited by
quotation marks and each internal quotation mark is represented externally by two consecutive
quotation marks.

� If the file is opened with the DELIM=’APOSTROPHE’ specifier, character constants are
delimited by apostrophes and each internal apostrophe is represented externally by two
consecutive apostrophes.

Each output statement writes one or more complete records.

A literal character constant or complex constant can be longer than an entire record. In the case of
complex constants, the end of the record can occur between the comma and the imaginary part, if the
imaginary part and closing right parenthesis cannot fit in the current record.

Each output record begins with a blank character for carriage control, except for literal character
constants that are continued from the previous record.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, list-directed data transfer is prohibited.

Examples

Suppose the following statements are specified:

 DIMENSION A(4)
 DATA A/4*3.4/
 WRITE (1,*) ’ARRAY VALUES FOLLOW’
 WRITE (1,*) A,4

The following records are then written to external unit 1:

ARRAY VALUES FOLLOW
 3.400000 3.400000 3.400000 3.400000 4

The following shows another example:

 INTEGER i, j
 REAL a, b
 LOGICAL on, off
 CHARACTER(20) c
 DATA i /123456/, j /500/, a /28.22/, b /.0015555/
 DATA on /.TRUE./, off/.FALSE./
 DATA c /’Here’’s a string’/
 WRITE (*, *) i, j
 WRITE (*, *) a, b, on, off
 WRITE (*, *) c
 END

Data Transfer I/O Statements Page 38 of 45

The preceding example produces the following output:

 123456 500
 28.22000 1.555500E-03 T F
Here’s a string

For More Information:

� See Rules for Formatted Sequential WRITE Statements.
� On list-directed input, see Rules for List-Directed Sequential READ Statements.

Rules for Namelist Sequential WRITE Statements

Namelist, sequential WRITE statements translate data from internal to external form by using the
data types of the objects in the corresponding NAMELIST statement to determine the form of the
data. The translated data is then written to an external file.

In general, values transferred as output have the same forms as values transferred as input.

By default, character constants are not delimited by apostrophes or quotation marks, and each internal
apostrophe or quotation mark is represented externally by one apostrophe or quotation mark.

This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:

� If the file is opened with the DELIM=’QUOTE’ specifier, character constants are delimited by
quotation marks and each internal quotation mark is represented externally by two consecutive
quotation marks.

� If the file is opened with the DELIM=’APOSTROPHE’ specifier, character constants are
delimited by apostrophes and each internal apostrophe is represented externally by two
consecutive apostrophes.

Each output statement writes one or more complete records.

A literal character constant or complex constant can be longer than an entire record. In the case of
complex constants, the end of the record can occur between the comma and the imaginary part, if the
imaginary part and closing right parenthesis cannot fit in the current record.

Each output record begins with a blank character for carriage control, except for literal character
constants that are continued from the previous record.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Examples

Data Transfer I/O Statements Page 39 of 45

Consider the following statements:

CHARACTER*19 NAME(2)/2*’ ’/
REAL PITCH, ROLL, YAW, POSITION(3)
LOGICAL DIAGNOSTICS
INTEGER ITERATIONS
NAMELIST /PARAM/ NAME, PITCH, ROLL, YAW, POSITION, &
 DIAGNOSTICS, ITERATIONS
...
READ (UNIT=1,NML=PARAM)
WRITE (UNIT=2,NML=PARAM)

Suppose the following input is read:

&PARAM
 NAME(2)(10:)=’HEISENBERG’,
 PITCH=5.0, YAW=0.0, ROLL=5.0,
 DIAGNOSTICS=.TRUE.
 ITERATIONS=10
/

The following is then written to the file connected to unit 2:

&PARAM
NAME = ’ ’, ’ HEISENBERG’,
PITCH = 5.000000 ,
ROLL = 5.000000 ,
YAW = 0.0000000E+00,
POSITION = 3*0.0000000E+00,
DIAGNOSTICS = T,
ITERATIONS = 10
/

Note that character values are not enclosed in apostrophes unless the output file is opened with
DELIM=’APOSTROPHE’. The value of POSITION is not defined in the namelist input, so the
current value of POSITION is written.

The following example declares a number of variables, which are placed in a namelist, initialized,
and then written to the screen with namelist I/O:

 INTEGER(1) int1
 INTEGER int2, int3, array(3)
 LOGICAL(1) log1
 LOGICAL log2, log3
 REAL real1
 REAL(8) real2
 COMPLEX z1, z2
 CHARACTER(1) char1
 CHARACTER(10) char2

 NAMELIST /example/ int1, int2, int3, log1, log2, log3, &
 & real1, real2, z1, z2, char1, char2, array

 int1 = 11
 int2 = 12

Data Transfer I/O Statements Page 40 of 45

 int3 = 14
 log1 = .TRUE.
 log2 = .TRUE.
 log3 = .TRUE.
 real1 = 24.0
 real2 = 28.0d0
 z1 = (38.0,0.0)
 z2 = (316.0d0,0.0d0)
 char1 = ’A’
 char2 = ’0123456789’
 array(1) = 41
 array(2) = 42
 array(3) = 43
 WRITE (*, example)

Output of the preceding example is:

 &EXAMPLE
 INT1 = 11,
 INT2 = 12,
 INT3 = 14,
 LOG1 = T,
 LOG2 = T,
 LOG3 = T,
 REAL1 = 24.00000 ,
 REAL2 = 28.0000000000000 ,
 Z1 = (38.00000,0.0000000E+00),
 Z2 = (316.0000,0.0000000E+00),
 CHAR1 = A,
 CHAR2 = 0123456789,
 ARRAY = 41, 42, 43
 /

For More Information:

l See the NAMELIST statement.
l See Rules for Formatted Sequential WRITE Statements.
l On namelist input, see Rules for Namelist Sequential READ Statements.

Rules for Unformatted Sequential WRITE Statements

Unformatted, sequential WRITE statements transfer binary data (without translation) between the
entities specified in the I/O list and the current record. Only one record is written.

Objects of intrinsic or derived types can be transferred.

This form of WRITE statement writes exactly one record. If there is no I/O item list, the statement
writes one null record.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.

Examples

The following example shows an unformatted, sequential WRITE statement:

Data Transfer I/O Statements Page 41 of 45

 WRITE (UNIT=6, IOSTAT=IO_STATUS) A, B, C

Forms for Direct-Access WRITE Statements

Direct-access WRITE statements transfer output data to external records with direct access. (The
attributes of a direct-access file are established by the OPEN statement.)

A direct-access WRITE statement can be formatted or unformatted, and takes one of the following
forms:

Formatted

WRITE (eunit, format, rec [,iostat] [,err]) [io-list]

Unformatted

WRITE (eunit, rec [,iostat] [,err]) [io-list]

For more information, see WRITE in the A to Z Reference.

This section discusses the following topics:

l Rules for Formatted Direct-Access WRITE Statements
l Rules for Unformatted Direct-Access WRITE Statements

For More Information:

� See I/O control-list specifiers.
� See I/O lists.

Rules for Formatted Direct-Access WRITE Statements

Formatted, direct-access WRITE statements translate data from binary to character form by using
format specifications for editing (if any). The translated data is written to an external file that is
connected for direct access.

Values can be transferred from objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred from the components of intrinsic types that ultimately make up these
structured objects.

If the values specified by the I/O list do not fill a record, blank characters are added to fill the record.
If the I/O list specifies too many characters for the record, an error occurs.

If the format specification specifies another record, the record number is increased by one as each
subsequent record is written by that output statement.

Data Transfer I/O Statements Page 42 of 45

Examples

The following example shows a formatted, direct-access WRITE statement:

 WRITE (2, REC=35, FMT=10) (NUM(K), K=1,10)

Rules for Unformatted Direct-Access WRITE Statements

Unformatted, direct-access WRITE statements transfer binary data (without translation) between the
entities specified in the I/O list and the current record. Only one record is written.

Objects of intrinsic or derived types can be transferred.

If the values specified by the I/O list do not fill a record, blank characters are added to fill the record.
If the I/O list specifies too many characters for the record, an error occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.

Examples

The following example shows unformatted, direct-access WRITE statements:

 WRITE (1, REC=10) LIST(1), LIST(8)

 WRITE (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms for Indexed WRITE Statements (VMS only)

Indexed WRITE statements transfer output data to external records that have keyed access. (The
OPEN statement establishes the characteristics of an indexed file.)

Indexed WRITE statements always write a new record. You should use the REWRITE statement to
update an existing record.

The syntax of an indexed WRITE statement is similar to a sequential WRITE statement, but an
indexed WRITE statement refers to an I/O unit connected to an indexed file, whereas the sequential
WRITE statement refers to an I/O unit connected to a sequential file.

An indexed WRITE statement can be formatted or unformatted, and takes one of the following
forms:

Formatted

WRITE (eunit, format, [,iostat] [,err]) [io-list]

Data Transfer I/O Statements Page 43 of 45

Unformatted

WRITE (eunit, [,iostat] [,err]) [io-list]

For more information, see WRITE in the A to Z Reference.

This section discusses the following topics:

� Rules for Formatted Indexed READ Statements (VMS only)
� Rules for Unformatted Indexed READ Statements (VMS only)

For More Information:

� See I/O control-list specifiers.
� See I/O lists.

Rules for Formatted Indexed WRITE Statements (VMS only)

Formatted, indexed WRITE statements translate data from binary to character form by using format
specifications for editing (if any). The translated data is written to an external file that is connected
for keyed access.

No key parameters are required in the list of control parameters, because all necessary key
information is contained in the output record.

When you use a formatted indexed WRITE statement to write an INTEGER key, the key is
translated from internal binary form to external character form. A subsequent attempt to read the
record by using an integer key may not match the key field in the record.

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Examples

Consider the following example (which assumes that the first 10 bytes of a record are a character
key):

 WRITE (4,100) KEYVAL, (RDATA(I), I=1, 20)
100 FORMAT (A10, 20F15.7)

The WRITE statement writes the translated values of each of the 20 elements of the array RDATA to
a new formatted record in the indexed file connected to I/O unit 4. KEYVAL is the key by which the
record is accessed.

Rules for Unformatted Indexed WRITE Statements (VMS only)

Unformatted, indexed WRITE statements transfer binary data (without translation) between the
entities specified in the I/O list and the current record.

Data Transfer I/O Statements Page 44 of 45

No key parameters are required in the list of control parameters, because all necessary key
information is contained in the output record.

If the values specified by the I/O list do not fill a fixed-length record being written, the unused
portion of the record is filled with zeros. If the values specified do not fit in the record, an error
occurs.

Since derived data types of sequence type usually have a fixed record format, you can write to
indexed files by using a sequence derived-type structure that models the file’s record format. This lets
you perform the I/O operation with a single derived-type variable instead of a potentially long I/O list.
Nonsequence derived types should not be used for this purpose.

If the file is connected for formatted I/O, unformatted data transfer is prohibited.

Examples

The following example shows an unformatted, indexed WRITE statement:

 WRITE (UNIT=8, IOSTAT=IO_STATUS) A, B, C

Forms and Rules for Internal WRITE Statements

Internal WRITE statements transfer output data to an internal file.

An internal WRITE statement can only be formatted. It must include format specifiers (which can
use list-directed formatting). Namelist formatting is not permitted.

An internal WRITE statement takes the following form:

WRITE (iunit, format [,iostat] [,err]) [io-list]

For more information on syntax, see WRITE in the A to Z Reference.

Formatted, internal WRITE statements translate data from binary to character form by using format
specifications for editing (if any). The translated data is written to an internal file.

Values can be transferred from objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred from the components of intrinsic types that ultimately make up these
structured objects.

If the number of characters written in a record is less than the length of the record, the rest of the
record is filled with blanks. The number of characters to be written must not exceed the length of the
record.

Character constants are not delimited by apostrophes or quotation marks, and each internal
apostrophe or quotation mark is represented externally by one apostrophe or quotation mark.

Data Transfer I/O Statements Page 45 of 45

Examples

The following example shows an internal WRITE statement:

 INTEGER J, K, STAT_VALUE
 CHARACTER*50 CHAR_50
 ...
 WRITE (FMT=*, UNIT=CHAR_50, IOSTAT=STAT_VALUE) J, K

For More Information:

l See I/O control-list specifiers.
l See I/O lists.
l On list-directed output, see Rules for List-Directed Sequential WRITE Statements.
l On using internal files, see your programmer’s guide.

PRINT and TYPE Statements

The PRINT statement is a data transfer output statement. TYPE is a synonym for PRINT. All forms
and rules for the PRINT statement also apply to the TYPE statement.

The PRINT statement is the same as a formatted, sequential WRITE statement, except that the
PRINT statement must never transfer data to user-specified I/O units.

For more information, see PRINT in the A to Z Reference.

REWRITE Statement

The REWRITE statement is a data transfer output statement that rewrites the current record.

A REWRITE statement can be formatted or unformatted. For more information, see REWRITE in
the A to Z Reference.

I/O Formatting Page 1 of 51

I/O Formatting

A format appearing in an input or output (I/O) statement specifies the form of data being transferred
and the data conversion (editing) required to achieve that form. The format specified can be explicit
or implicit.

Explicit format is indicated in a format specification that appears in a FORMAT statement or a
character expression (the expression must evaluate to a valid format specification).

The format specification contains edit descriptors, which can be data edit descriptors, control edit
descriptors, or string edit descriptors.

Implicit format is determined by the processor and is specified using list-directed or namelist
formatting.

List-directed formatting is specified with an asterisk (*); namelist formatting is specified with a
namelist group name.

List-directed formatting can be specified for advancing sequential files and internal files. Namelist
formatting can be specified only for advancing sequential files.

This chapter contains information on the following topics:

� Format specifications
� Data edit descriptors
� Control edit descriptors
� Character string edit descriptors
� Nested and group repeat specifications
� Variable Format Expressions
� Printing of formatted records
� Interaction between FORMAT statements and I/O lists

For More Information:

� On list-directed input, see Rules for List-Directed Sequential READ Statements; outout, see
Rules for List-Directed Sequential WRITE Statements.

� On namelist input, see Rules for Namelist Sequential READ Statements; output, see Rules for
Namelist Sequential WRITE Statements.

Format Specifications

A format specification can appear in a FORMAT statement or character expression. In a FORMAT
statement, it is preceded by the keyword FORMAT. A format specification takes the following form:

(format-list)

format-list

I/O Formatting Page 2 of 51

Is a list of one or more of the following edit descriptors, separated by commas or slashes (/):

Data edit descriptors: I, B, O, Z, F, E, EN, ES, D, G, L, and A

Control edit descriptors: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, $, \, and Q

String edit descriptors: H, 'c', and "c", where c is a character constant

A comma can be omitted in the following cases:

n Between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit
descriptor

n Before a slash (/) edit descriptor when the optional repeat specification is not present
n After a slash (/) edit descriptor
n Before or after a colon (:) edit descriptor

Edit descriptors can be nested and a repeat specification can precede data edit descriptors, the
slash edit descriptor, or a parenthesized list of edit descriptors.

Rules and Behavior

A FORMAT statement must be labeled.

Named constants are not permitted in format specifications.

If the associated I/O statement contains an I/O list, the format specification must contain at least one
data edit descriptor or the control edit descriptor Q.

Blank characters can precede the initial left parenthesis, and additional blanks can appear anywhere
within the format specification. These blanks have no meaning unless they are within a character
string edit descriptor.

When a formatted input statement is executed, the setting of the BLANK specifier (for the relevant
logical unit) determines the interpretation of blanks within the specification. If the BN or BZ edit
descriptors are specified for a formatted input statement, they supersede the default interpretation of
blanks. (For more information on BLANK defaults, see BLANK Specifier in OPEN statements.)

For formatted input, use the comma as an external field separator. The comma terminates the input of
fields (for noncharacter data types) that are shorter than the number of characters expected. It can also
designate null (zero-length) fields.

The first character of a record transmitted to a line printer or terminal is typically used for carriage
control; it is not printed. The first character of such a record should be a blank, 0, 1, $, +, or ASCII
NUL. Any other character is treated as a blank.

A format specification cannot specify more output characters than the external record can contain.
For example, a line printer record cannot contain more than 133 characters, including the carriage
control character.

I/O Formatting Page 3 of 51

The following table summarizes the edit descriptors that can be used in format specifications.

Summary of Edit Descriptors

Code Form Effect

A A[w] Transfers character or Hollerith values.

B Bw[.m] Transfers binary values.

BN BN Ignores embedded and trailing blanks in a numeric input field.

BZ BZ Treats embedded and trailing blanks in a numeric input field as zeros.

D Dw.d Transfers real values with D exponents.

E Ew.d[Ee] Transfers real values with E exponents.

EN
ENw.d
[Ee]

Transfers real values with engineering notation.

ES
ESw.d
[Ee]

Transfers real values with scientific notation.

F Fw.d Transfers real values with no exponent.

G Gw.d[Ee] Transfers values of all intrinsic types.

H
nHch
[ch...]

Transfers characters following the H edit descriptor to an output record.

I Iw[.m] Transfers decimal integer values.

L Lw
Transfers logical values: on input, transfers characters; on output, transfers T
or F.

O Ow[.m] Transfers octal values.

P kP Interprets certain real numbers with a specified scale factor.

Q Q Returns the number of characters remaining in an input record.

S S
Reinvokes optional plus sign (+) in numeric output fields; counters the
action of SP and SS.

SP SP Writes optional plus sign (+) into numeric output fields.

SS SS Suppresses optional plus sign (+) in numeric output fields.

T Tn Tabs to specified position.

TL TLn Tabs left the specified number of positions.

I/O Formatting Page 4 of 51

TR TRn Tabs right the specified number of positions.

X nX Skips the specified number of positions.

Z Zw[.m] Transfers hexadecimal values.

$ $ Suppresses trailing carriage return during interactive I/O.

: : Terminates format control if there are no more items in the I/O list.

/ [r]/ Terminates the current record and moves to the next record.

\ \ Continues the same record; same as $.

'c' 1 'c'
Transfers the character literal constant (between the delimiters) to an output
record.

1 These delimiters can also be quotation marks (").

Character Format Specifications

In data transfer I/O statements, a format specifier ([FMT=]format) can be a character expression that
is a character array, character array element, or character constant. This type of format is also called a
run-time format because it can be constructed or altered during program execution.

The expression must evaluate to a character string whose leading part is a valid format specification
(including the enclosing parentheses).

Variable format expressions must not appear in this kind of format specification.

If the expression is a character array element, the format specification must be contained entirely
within that element.

If the expression is a character array, the format specification can continue past the first element into
subsequent consecutive elements.

If the expression is a character constant delimited by apostrophes, use two consecutive apostrophes
(’’) to represent an apostrophe character in the format specification; for example:

 PRINT ’("NUM can’’t be a real number")’

Similarly, if the expression is a character constant delimited by quotation marks, use two consecutive
quotation marks ("") to represent a quotation mark character in the format specification.

To avoid using consecutive apostrophes or quotation marks, you can put the character constant in an
I/O list instead of a format specification, as follows:

 PRINT "(A)", "NUM can’t be a real number"

I/O Formatting Page 5 of 51

The following shows another character format specification:

 WRITE (6, ’(I12, I4, I12)’) I, J, K

In the following example, the format specification changes with each iteration of the DO loop:

SUBROUTINE PRINT(TABLE)
REAL TABLE(10,5)
CHARACTER*5 FORCHR(0:5), RPAR*1, FBIG, FMED, FSML
DATA FORCHR(0),RPAR /’(’,’)’/
DATA FBIG,FMED,FSML /’F8.2,’,’F9.4,’,’F9.6,’/
DO I=1,10
 DO J=1,5
 IF (TABLE(I,J) .GE. 100.) THEN
 FORCHR(J) = FBIG
 ELSE IF (TABLE(I,J) .GT. 0.1) THEN
 FORCHR(J) = FMED
 ELSE
 FORCHR(J) = FSML
 END IF
 END DO
 FORCHR(5)(5:5) = RPAR
 WRITE (6,FORCHR) (TABLE(I,J), J=1,5)
END DO
END

The DATA statement assigns a left parenthesis to character array element FORCHR(0), and (for later
use) a right parenthesis and three F edit descriptors to character variables.

Next, the proper F edit descriptors are selected for inclusion in the format specification. The selection
is based on the magnitude of the individual elements of array TABLE.

A right parenthesis is added to the format specification just before the WRITE statement uses it.

Note: Format specifications stored in arrays are recompiled at run time each time they are used.
If a Hollerith or character run-time format is used in a READ statement to read data into the
format itself, that data is not copied back into the original array, and the array is unavailable for
subsequent use as a run-time format specification.

Examples

The following example shows a format specification:

 WRITE (*, 9000) int1, real1(3), char1
 9000 FORMAT (I5, 3F4.5, A16)
 ! I5, 3F5.2, A16 is the format list.

In the following example, the integer-variable name MYFMT refers to the FORMAT statement
9000, as assigned just before the FORMAT statement.

 ASSIGN 9000 TO MYFMT

I/O Formatting Page 6 of 51

 9000 FORMAT (I5, 3F4.5, A16)
 ! I5, 3F5.2, A16 is the format list.
 WRITE (*, MYFMT) iolist

The following shows a format example using a character expression:

 WRITE (*, ’(I5, 3F5.2, A16)’)iolist
 ! I5, 3F4.5, A16 is the format list.

In the following example, the format list is put into an 80-character variable called MYLIST:

 CHARACTER(80) MYLIST
 MYLIST = ’(I5, 3F5.2, A16)’
 WRITE (*, MYLIST) iolist

Consider the following two-dimensional array:

 1 2 3
 4 5 6

In this case, the elements are stored in memory in the order: 1, 4, 2, 5, 3, 6 as follows:

 CHARACTER(6) array(3)
 DATA array / ’(I5’, ’,3F5.2’, ’,A16)’ /
 WRITE (*, array) iolist

In the following example, the WRITE statement uses the character array element array(2) as the
format specifier for data transfer:

 CHARACTER(80) array(5)
 array(2) = ’(I5, 3F5.2, A16)’
 WRITE (*, array(2)) iolist

For More Information:

� See data edit descriptors.
� See control edit descriptors.
� See character string edit descriptors.
� See nested and group repeats.
� See printing of formatted records.

Data Edit Descriptors

A data edit descriptor causes the transfer or conversion of data to or from its internal representation.

The part of a record that is input or output and formatted with data edit descriptors (or character string
edit descriptors) is called a field.

The following topics are discussed in this section:

� Forms for Data Edit Descriptors
� General Rules for Numeric Editing

I/O Formatting Page 7 of 51

� Integer Editing
� Real and Complex Editing
� Logical Editing (L)
� Character Editing (A)
� Default Widths for Data Edit Descriptors
� Terminating Short Fields of Input Data

Forms for Data Edit Descriptors

A data edit descriptor takes one of the following forms:

[r]c
[r]cw
[r]cw.m
[r]cw.d
[r]cw.d[Ee]

r
Is a repeat specification. The range of r is 1 through 2147483647 (2**31-1). If r is omitted, it is
assumed to be 1.

c
Is one of the following format codes: I, B, O, Z, F, E, EN, ES, D, G, L, or A.

w
Is the total number of digits in the field (the field width). The range of w is 1 through
2147483647 (2**31- 1) on Alpha processors; 1 through 32767 (2**15-1) on Intel processors. If
omitted, the system applies default values (see Default Widths for Data Edit Descriptors).

m
Is the minimum number of digits that must be in the field (including leading zeros). The range
of m is 0 through 32767 (2**15-1) on Alpha processors; 0 through 255 (2**8-1) on Intel
processors.

d
Is the number of digits to the right of the decimal point (the significant digits). The range of d is
0 through 32767 (2**15-1) on Alpha processors; 0 through 255 (2**8-1) on Intel processors.

The number of significant digits is affected if a scale factor is specified for the data edit
descriptor.

E
Identifies an exponent field.

e
Is the number of digits in the exponent. The range of e is 1 through 32767 (2**15-1) on Alpha
processors; 1 through 255 (2**8-1) on Intel processors.

I/O Formatting Page 8 of 51

Rules and Behavior

FORTRAN 77, Fortran 90, and Fortran 95 allow the field width to be omitted only for the A
descriptor. However, DIGITAL Fortran allows the field width to be omitted for any data edit
descriptor.

The r, w, m, d, and e must all be positive, unsigned, default integer literal constants; or variable
format expressions -- no kind parameter can be specified. They must not be named constants.

Actual useful ranges for r, w, m, d, and e may be constrained by record sizes (RECL=) and the file
system.

The data edit descriptors have the following specific forms:

Integer: Iw[.m], Bw[.m], Ow[.m], and Zw[.m]

Real and complex: Fw.d, Ew.d[Ee], ENw.d[Ee], ESw.d[Ee], Dw.d, and Gw.d[Ee]

Logical: Lw

Character: A[w]

The d must be specified with F, E, D, and G field descriptors even if d is zero. The decimal point is
also required. You must specify both w and d, or omit them both.

A repeat specification can simplify formatting. For example, the following two statements are
equivalent:

20 FORMAT (E12.4,E12.4,E12.4,I5,I5,I5,I5)
20 FORMAT (3E12.4,4I5)

Examples

 ! This WRITE outputs three integers, each in a five-space field
 ! and four reals in pairs of F7.2 and F5.2 values.
 INTEGER(2) int1, int2, int3
 REAL(4) r1, r2, r3, r4
 DATA int1, int2, int3 /143, 62, 999/
 DATA r1, r2, r3, r4 /2458.32, 43.78, 664.55, 73.8/
 WRITE (*,9000) int1, int2, int3, r1, r2, r3, r4
 9000 FORMAT (3I5, 2(1X, F7.2, 1X, F5.2))

The following output is produced:

 143 62 999 2458.32 43.78 664.55 73.80

For More Information:

� See General rules for numeric editing.

I/O Formatting Page 9 of 51

� See Nested and group repeats.

General Rules for Numeric Editing

The following rules apply to input and output data for numeric editing (data edit descriptors I, B, O,
Z, F, E, EN, ES, D, and G).

Rules for Input Processing

Leading blanks in the external field are ignored. If BLANK=’NULL’ is in effect (or the BN edit
descriptor has been specified) embedded and trailing blanks are ignored; otherwise, they are treated
as zeros. An all-blank field is treated as a value of zero.

The following table shows how blanks are interpreted by default:

Type of Unit or File Default

An explicitly OPENed unit BLANK='NULL'

An internal file BLANK=’NULL'

A preconnected file1 BLANK=’NULL'

1 For interactive input from preconnected files, you should explicitly specify the BN or BZ edit descriptor to ensure
desired behavior.

A minus sign must precede a negative value in an external field; a plus sign is optional before a
positive value.

In input records, constants can include any valid kind parameter. Named constants are not permitted.

If the data field in a record contains fewer than w characters, an input statement will read characters
from the next data field in the record. You can prevent this by padding the short field with blanks or
zeros, or by using commas to separate the input data. The comma terminates the data field, and can
also be used to designate null (zero-length) fields. For more information, see Terminating Short
Fields of Input Data.

Rules for Output Processing

The field width w must be large enough to include any leading plus or minus sign, and any decimal
point or exponent. For example, the field width for an E data edit descriptor must be large enough to
contain the following:

� For positive numbers: d+5 or d+e+3 characters
� For negative numbers: d+6 or d+e+4 characters

A positive or zero value (zero is allowed for I, B, O, Z, and F descriptors) can have a plus sign,
depending on which sign edit descriptor is in effect. If a value is negative, the leftmost nonblank

I/O Formatting Page 10 of 51

character is a minus sign.

If the value is smaller than the field width specified, leading blanks are inserted (the value is right-
justified). If the value is too large for the field width specified, the entire output field is filled with
asterisks (*).

When the value of the field width is zero, the compiler selects the smallest possible positive actual
field width that does not result in the field being filled with asterisks.

For More Information:

� See Forms for data edit descriptors.
� On format specifications, in general, see Format Specifications.
� On compiler options, see your programmer’s guide.

Integer Editing

Integer editing is controlled by the I (decimal), B (binary), O (octal), and Z (hexadecimal) data edit
descriptors.

I Editing

The I edit descriptor transfers decimal integer values. It takes the following form:

Iw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the
field width). The m has no effect on input, only output.

The specified I/O list item must be of type integer or logical.

The G edit descriptor can be used to edit integer data; it follows the same rules as Iw.

Rules for Input Processing

On input, the I data edit descriptor transfers w characters from an external field and assigns their
integer value to the corresponding I/O list item. The external field data must be an integer constant.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the I edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Input Value
I4 2788 2788
I3 -26 -26
I9 ^^^^^^312 312

I/O Formatting Page 11 of 51

Rules for Output Processing

On output, the I data edit descriptor transfers the value of the corresponding I/O list item, right-
justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by a sign (a plus sign is optional for positive
values, a minus sign is required for negative values), followed by an unsigned integer constant with
no leading zeros.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is padded
with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the I edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
I3 284 284
I4 -284 -284
I4 0 ^^^0
I5 174 ^^174
I2 3244 **
I3 -473 ***
I7 29.812 An error; the decimal point is invalid
I4.0 0 ^^^^
I4.2 1 ^^01
I4.4 1 0001

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.

B Editing

The B data edit descriptor transfers binary (base 2) values. It takes the following form:

Bw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the
field width). The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

On input, the B data edit descriptor transfers w characters from an external field and assigns their
binary value to the corresponding I/O list item. The external field must contain only binary digits (0

I/O Formatting Page 12 of 51

or 1) or blanks.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the B edit descriptor:

Format Input Value
B4 1001 9
B1 1 1
B2 0 0

Rules for Output Processing

On output, the B data edit descriptor transfers the binary value of the corresponding I/O list item,
right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of
binary digits) with no leading zeros. A negative value is transferred in internal form.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is padded
with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the B edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
B4 9 1001
B2 0 ^0

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.

O Editing

The O data edit descriptor transfers octal (base 8) values. It takes the following form:

Ow[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the
field width). The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

I/O Formatting Page 13 of 51

On input, the O data edit descriptor transfers w characters from an external field and assigns their
octal value to the corresponding I/O list item. The external field must contain only octal digits (0
through 7) or blanks.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the O edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Input Value
O5 32767 32767
O4 16234 1623
O3 97^ An error; the 9 is invalid in octal notation

Rules for Output Processing

On output, the O data edit descriptor transfers the octal value of the corresponding I/O list item, right-
justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of
octal digits) with no leading zeros. A negative value is transferred in internal form without a leading
minus sign.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is padded
with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the O edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
O6 32767 ^77777
O12 -32767 ^37777700001
O2 14261 **
O4 27 ^^33
O5 10.5 41050
O4.2 7 ^^07
O4.4 7 0007

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.

Z Editing

The Z data edit descriptor transfers hexadecimal (base 16) values. It takes the following form:

I/O Formatting Page 14 of 51

Zw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the
field width). The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

On input, the Z data edit descriptor transfers w characters from an external field and assigns their
hexadecimal value to the corresponding I/O list item. The external field must contain only
hexadecimal digits (0 though 9 and A (a) through F(f)) or blanks.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the Z edit descriptor:

Format Input Value
Z3 A94 A94
Z5 A23DEF A23DE
Z5 95.AF2 An error; the decimal point is invalid

Rules for Output Processing

On output, the Z data edit descriptor transfers the hexadecimal value of the corresponding I/O list
item, right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of
hexadecimal digits) with no leading zeros. A negative value is transferred in internal form without a
leading minus sign.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is padded
with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the Z edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
Z4 32767 7FFF
Z9 -32767 ^FFFF8001
Z2 16 10
Z4 -10.5 ****
Z3.3 2708 A94
Z6.4 2708 ^^0A94

For More Information:

I/O Formatting Page 15 of 51

� See Forms for data edit descriptors.
� See General rules for numeric editing.

Real and Complex Editing

Real and complex editing is controlled by the F, E, D, EN, ES, and G data edit descriptors.

If no field width (w) is specified for a real data edit descriptor, the system supplies default values.

Real data edit descriptors can be affected by specified scale factors.

Note: Do not use the real data edit descriptors when attempting to parse textual input. These
descriptors accept some forms that are purely textual as valid numeric input values. For
example, input values D, E, E1, +, -, and . are all treated as value 0.0.

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.
� On the scale factor, see Scale Factor Editing (P).
� On system default values for data edit descriptors , see Default Widths for Data Edit

Descriptors.

F Editing

The F data edit descriptor transfers real values. It takes the following form:

Fw.d

The value of d (the number of places after the decimal point) must not exceed the value of w (the
field width).

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex
type.

Rules for Input Processing

On input, the F data edit descriptor transfers w characters from an external field and assigns their real
value to the corresponding I/O list item. The external field data must be an integer or real constant.

If the input field contains only an exponent letter or decimal point, it is treated as a zero value.

If the input field does not contain a decimal point or an exponent, it is treated as a real number of w
digits, with d digits to the right of the decimal point. (Leading zeros are added, if necessary.)

If the input field contains a decimal point, the location of that decimal point overrides the location
specified by the F descriptor.

I/O Formatting Page 16 of 51

If the field contains an exponent, that exponent is used to establish the magnitude of the value before
it is assigned to the list element.

The following shows input using the F edit descriptor:

Format Input Value
F8.5 123456789 123.45678
F8.5 -1234.567 -1234.56
F8.5 24.77E+2 2477.0
F5.2 1234567.89 123.45

Rules for Output Processing

On output, the F data edit descriptor transfers the real value of the corresponding I/O list item, right-
justified and rounded to d decimal positions, to an external field that is w characters long.

The w must be greater than or equal to d+3 to allow for the following:
� A sign (optional if the value is positive and descriptor SP is not in effect)
� At least one digit to the left of the decimal point
� The decimal point
� The d digits to the right of the decimal point

The following shows output using the F edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
F8.5 2.3547188 ^2.35472
F9.3 8789.7361 ^8789.736
F2.1 51.44 **
F10.4 -23.24352 ^^-23.2435
F5.2 325.013 ******
F5.2 -.2 -0.20

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.

E and D Editing

The E and D data edit descriptors transfer real values in exponential form. They take the following
form:

Ew.d[Ee]
Dw.d

For the E edit descriptor, the value of d (the number of places after the decimal point) plus e (the
number of digits in the exponent) must not exceed the value of w (the field width).

I/O Formatting Page 17 of 51

For the D edit descriptor, the value of d must not exceed the value of w.

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex
type.

Rules for Input Processing

On input, the E and D data edit descriptors transfer w characters from an external field and assigns
their real value to the corresponding I/O list item. The E and D descriptors interpret and assign input
data in the same way as the F data edit descriptor.

The following shows input using the E and D edit descriptors (the symbol ^ represents a nonprinting
blank character):

Format Input Value
E9.3 734.432E3 734432.0
E12.4 ^^1022.43E 1022.43E-6
E15.3 52.3759663^^^^^ 52.3759663
E12.5 210.5271D+101 210.5271E10
BZ,D10.2 12345^^^^^ 12345000.0D0
D10.2 ^^123.45^^ 123.45D0
D15.3 367.4981763D+04 3.674981763D+06

1 If the I/O list item is single-precision real, the E edit descriptor treats the D exponent indicator as an E indicator.

Rules for Output Processing

On output, the E and D data edit descriptors transfer the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long.

The w should be greater than or equal to d+7 to allow for the following:
� A sign (optional if the value is positive and descriptor SP is not in effect)
� An optional zero to the left of the decimal point
� The decimal point
� The d digits to the right of the decimal point
� The exponent

The exponent takes one of the following forms:

Edit
Descriptor

Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponent

Ew.d |exp| <= 99 E+nn E-nn

99 < |exp| <= 999 +nnn -nnn

Ew.dEe |exp| <= 10e - 1 E+n1n2...ne E-n1n2...ne

Dw.d |exp| <= 99 D+nn or E+nn D-nn or E-nn

I/O Formatting Page 18 of 51

99 < |exp| <= 999 +nnn -nnn

If the exponent value is too large to be converted into one of these forms, an error occurs.

The exponent field width (e) is optional for the E edit descriptor; if omitted, the default value is 2. If
e is specified, the w should be greater than or equal to d+e+5.

Note: The w can be as small as d+5 or d+e+3, if the optional fields for the sign and the zero are
omitted.

The following shows output using the E and D edit descriptors (the symbol ^ represents a nonprinting
blank character):

Format Value Output
E11.2 475867.222 ^^^0.48E+06
E11.5 475867.222 0.47587E+06
E12.3 0.00069 ^^^0.690E
E10.3 -0.5555 -0.556E+00
E5.3 56.12 *****
E14.5E4 -1.001 -0.10010E+0001
E13.3E6 0.000123 0.123E-000003
D14.3 0.0363 ^^^^^0.363D-01
D23.12 5413.87625793 ^^^^^0.541387625793D+04
D9.6 1.2 *********

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.
� On the scale factor, see Scale Factor Editing (P).

EN Editing

The EN data edit descriptor transfers values by using engineering notation. It takes the following
form:

ENw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the number of digits in the
exponent) must not exceed the value of w (the field width).

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex
type.

Rules for Input Processing

On input, the EN data edit descriptor transfers w characters from an external field and assigns their
real value to the corresponding I/O list item. The EN descriptor interprets and assigns input data in
the same way as the F data edit descriptor.

I/O Formatting Page 19 of 51

The following shows input using the EN edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Input Value
EN11.3 ^^5.321E+00 5.32100
EN11.3 -600.00E-03 -.60000
EN12.3 ^^^3.150E-03 .00315
EN12.3 ^^^3.829E+03 3829.0

Rules for Output Processing

On output, the EN data edit descriptor transfers the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long. The
real value is output in engineering notation, where the decimal exponent is divisible by 3 and the
absolute value of the significand is greater than or equal to 1 and less than 1000 (unless the output
value is zero).

The w should be greater than or equal to d+9 to allow for the following:
� A sign (optional if the value is positive and descriptor SP is not in effect)
� One to three digits to the left of the decimal point
� The decimal point
� The d digits to the right of the decimal point
� The exponent

The exponent takes one of the following forms:

Edit
Descriptor

Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponent

ENw.d |exp| <= 99 E+nn E-nn

99 < |exp| <= 999 +nnn -nnn

ENw.dEe |exp| <= 10e - 1 E+n1n2...ne E-n1n2...ne

If the exponent value is too large to be converted into one of these forms, an error occurs.

The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, the w
should be greater than or equal to d+e+5.

The following shows output using the EN edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output
EN11.2 475867.222 ^475.87E+03
EN11.5 475867.222 ***********
EN12.3 0.00069 ^690.000E-06
EN10.3 -0.5555 **********

I/O Formatting Page 20 of 51

EN11.2 0.0 ^000.00E-03

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.

ES Editing

The ES data edit descriptor transfers values by using scientific notation. It takes the following form:

ESw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the number of digits in the
exponent) must not exceed the value of w (the field width).

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex
type.

Rules for Input Processing

On input, the ES data edit descriptor transfers w characters from an external field and assigns their
real value to the corresponding I/O list item. The ES descriptor interprets and assigns input data in
the same way as the F data edit descriptor.

The following shows input using the ES edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Input Value
ES11.3 ^^5.321E+00 5.32100
ES11.3 -6.000E-03 -.60000
ES12.3 ^^^3.150E-03 .00315
ES12.3 ^^^3.829E+03 3829.0

Rules for Output Processing

On output, the ES data edit descriptor transfers the real value of the corresponding I/O list item, right-
justified and rounded to d decimal positions, to an external field that is w characters long. The real
value is output in scientific notation, where the absolute value of the significand is greater than or
equal to 1 and less than 10 (unless the output value is zero).

The w should be greater than or equal to d+7 to allow for the following:
� A sign (optional if the value is positive and descriptor SP is not in effect)
� One digit to the left of the decimal point
� The decimal point
� The d digits to the right of the decimal point
� The exponent

The exponent takes one of the following forms:

I/O Formatting Page 21 of 51

Edit
Descriptor

Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponent

ESw.d |exp| <= 99 E+nn E-nn

99 < |exp| <= 999 +nnn -nnn

ESw.dEe |exp| <= 10e - 1 E+n1n2...ne E-n1n2...ne

If the exponent value is too large to be converted into one of these forms, an error occurs.

The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, the w
should be greater than or equal to d+e+5.

The following shows output using the ES edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
ES11.2 473214.356 ^^^4.73E+05
ES11.5 473214.356 4.73214E+05
ES12.3 0.00069 ^^^6.900E-04
ES10.3 -0.5555 -5.555E-01
ES11.2 0.0 ^0.000E+00

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.

G Editing

The G data edit descriptor generally transfers values of real type, but it can be used to transfer values
of any intrinsic type. It takes the following form:

Gw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the number of digits in the
exponent) must not exceed the value of w (the field width).

The specified I/O list item can be of any intrinsic type.

When used to specify I/O for integer, logical, or character data, the edit descriptor follows the same
rules as Iw, Lw, and Aw, respectively, and d and e have no effect.

Rules for Real Input Processing

On input, the G data edit descriptor transfers w characters from an external field and assigns their real

I/O Formatting Page 22 of 51

value to the corresponding I/O list item. The G descriptor interprets and assigns input data in the
same way as the F data edit descriptor.

Rules for Real Output Processing

On output, the G data edit descriptor transfers the real value of the corresponding I/O list item, right-
justified and rounded to d decimal positions, to an external field that is w characters long.

The form in which the value is written is a function of the magnitude of the value, as described in the
following table:

Table: Effect of Data Magnitude on G Format Conversions

Data Magnitude Effective Conversion

0 < m < 0.1 - 0.5 x 10-d-1 Ew.d[Ee]

m = 0 F(w - n).(d -1), n(’b’)

0.1 - 0.5 x 10-d-1 <= m < 1 - 0.5 x 10-d F(w - n).d, n(’b’)

1 - 0.5 x 10-d <= m < 10 - 0.5 x 10-d+1 F(w - n).(d -1), n(’b’)

10 - 0.5 x 10-d+1 <= m < 100 - 0.5 x 10-d+2 F(w - n).(d -2), n(’b’)

. .

. .

. .

10d-2 - 0.5 x 10-2 <= m < 10d-1 - 0.5 x 10-1 F(w - n).1, n(’b’)

10d-1 - 0.5 x 10-1 <= m < 10d - 0.5 (w - n).0, n(’b’)

m >= 10d - 0.5 Ew.d[Ee]

The ’b’ is a blank following the numeric data representation. For Gw.d, n(’b’) is 4 blanks. For Gw.dEe,
n(’b’) is e+2 blanks.

The w should be greater than or equal to d+7 to allow for the following:
� A sign (optional if the value is positive and descriptor SP is not in effect)
� One digit to the left of the decimal point
� The decimal point
� The d digits to the right of the decimal point
� The 4-digit or e+2-digit exponent

I/O Formatting Page 23 of 51

If e is specified, the w should be greater than or equal to d+e+5.

The following shows output using the G edit descriptor and compares it to output using equivalent F
editing (the symbol ^ represents a nonprinting blank character):

Value Format Output with G Format Output with F
 0.01234567 G13.6 ^0.123457E-01 F13.6 ^^^^^0.012346
 -0.12345678 G13.6 -0.123457^^^^ F13.6 ^^^^-0.123457
 1.23456789 G13.6 ^^1.23457^^^^ F13.6 ^^^^^1.234568
 12.34567890 G13.6 ^^12.3457^^^^ F13.6 ^^^^12.345679
 123.45678901 G13.6 ^^123.457^^^^ F13.6 ^^^123.456789
 -1234.56789012 G13.6 ^-1234.57^^^^ F13.6 ^-1234.567890
 12345.67890123 G13.6 ^^12345.7^^^^ F13.6 ^12345.678901
 123456.78901234 G13.6 ^^123457.^^^^ F13.6 123456.789012
-1234567.89012345 G13.6 -0.123457E+07 F13.6 *************

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.
� See the I data edit descriptor.
� See the L data edit descriptor.
� See the A data edit descriptor.
� On the scale factor, see Scale Factor Editing (P).

Complex Editing

A complex value is an ordered pair of real values. Complex editing is specified by a pair of real edit
descriptors, using any combination of the forms: Fw.d, Ew.d[Ee], Dw.d, ENw.d[Ee], ESw.d[Ee], or
Gw.d[Ee].

Rules for Input Processing

On input, the two successive fields are read and assigned to the corresponding complex I/O list item
as its real and imaginary part, respectively.

The following shows input using complex editing:

Format Input Value
F8.5,F8.5 1234567812345.67 123.45678, 12345.67
E9.1,F9.3 734.432E8123456789 734.432E8, 123456.789

Rules for Output Processing

On output, the two parts of the complex value are transferred under the control of repeated or
successive real edit descriptors. The two parts are transferred consecutively without punctuation or
blanks, unless control or character string edit descriptors are specified between the pair of real edit
descriptors.

I/O Formatting Page 24 of 51

The following shows output using complex editing (the symbol ^ represents a nonprinting blank
character):

Format Value Output
2F8.5 2.3547188, 3.456732 ^2.35472 ^3.45673
E9.2,’^,^’,E5.3 47587.222, 56.123 ^0.48E+06^,^*****

For More Information:

� See Forms for data edit descriptors.
� See General rules for numeric editing.
� On complex constants, see General Rules for Complex Constants.

Logical Editing (L)

The L data edit descriptor transfers logical values. It takes the following form:

Lw

The specified I/O list item must be of type logical or integer.

The G edit descriptor can be used to edit logical data; it follows the same rules as Lw.

Rules for Input Processing

On input, the L data edit descriptor transfers w characters from an external field and assigns their
logical value to the corresponding I/O list item. The value assigned depends on the external field data,
as follows:

� .TRUE. is assigned if the first nonblank character is .T, T, .t, or t. The logical constant .TRUE.
is an acceptable input form.

� .FALSE. is assigned if the first nonblank character is .F, F. .f, or f, or the entire field is filled
with blanks. The logical constant .FALSE. is an acceptable input form.

If an other value appears in the external field, an error occurs.

Rules for Output Processing

On output, the L data edit descriptor transfers the following to an external field that is w characters
long: w - 1 blanks, followed by a T or F (if the value is .TRUE. or .FALSE., respectively).

The following shows output using the L edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
L5 .TRUE. ^^^^T

I/O Formatting Page 25 of 51

L1 .FALSE. F

For More Information:

See Forms for data edit descriptors.

Character Editing (A)

The A data edit descriptor transfers character or Hollerith values. It takes the following form:

A[w]

If the corresponding I/O list item is of type character, character data is transferred. If the list item is of
any other type, Hollerith data is transferred.

The G edit descriptor can be used to edit character data; it follows the same rules as Aw.

Rules for Input Processing

On input, the A data edit descriptor transfers w characters from an external field and assigns them to
the corresponding I/O list item.

The maximum number of characters that can be stored depends on the size of the I/O list item, as
follows:

� For character data, the maximum size is the length of the corresponding I/O list item.

� For noncharacter data, the maximum size depends on the data type, as shown in the following
table:

Size Limits for Noncharacter Data Using A Editing

I/O List Element Maximum Number of Characters

BYTE 1

LOGICAL(1) or LOGICAL*1 1

LOGICAL(2) or LOGICAL*2 2

LOGICAL(4) or LOGICAL*4 4

LOGICAL(8) or LOGICAL*8 81

INTEGER(1) or INTEGER*1 1

INTEGER(2) or INTEGER*2 2

INTEGER(4) or INTEGER*4 4

I/O Formatting Page 26 of 51

INTEGER(8) or INTEGER*8 81

REAL(4) or REAL*4 4

DOUBLE PRECISION 8

REAL(8) or REAL*8 8

REAL(16) or REAL*16 162

COMPLEX(4) or COMPLEX*8 83

DOUBLE COMPLEX 163

COMPLEX(8) or COMPLEX*16 163

1 Alpha only
2 VMS, U*X
3 Complex values are treated as pairs of real numbers, so complex editing requires a pair of real edit descriptors. (See
Complex Editing.)

If w is equal to or greater than the length (len) of the input item, the rightmost characters are assigned
to that item. The leftmost excess characters are ignored.

If w is less than len, or less than the number of characters that can be stored, w characters are assigned
to the list item, left-justified, and followed by trailing blanks.

The following shows input using the A edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Input Value Data Type
A6 PAGE^# # CHARACTER(LEN=1)
A6 PAGE^# E^# CHARACTER(LEN=3)
A6 PAGE^# PAGE^# CHARACTER(LEN=6)
A6 PAGE^# PAGE^#^^ CHARACTER(LEN=8)
A6 PAGE^# # LOGICAL(1)
A6 PAGE^# ^# INTEGER(2)
A6 PAGE^# GE^# REAL(4)
A6 PAGE^# PAGE^#^^ REAL(8)

Rules for Output Processing

On output, the A data edit descriptor transfers the contents of the corresponding I/O list item to an
external field that is w characters long.

If w is greater than the size of the list item, the data is transferred to the output field, right-justified,
with leading blanks. If w is less than or equal to the size of the list item, the leftmost w characters are
transferred.

The following shows output using the A edit descriptor (the symbol ^ represents a nonprinting blank

I/O Formatting Page 27 of 51

character):

Format Value Output
A5 OHMS ^OHMS
A5 VOLTS VOLTS
A5 AMPERES AMPER

For More Information:

See Forms for data edit descriptors.

Default Widths for Data Edit Descriptors

If w (the field width) is omitted for the data edit descriptors, the system applies default values. For the
real data edit descriptors, the system also applies default values for d (the number of characters to the
right of the decimal point), and e (the number of characters in the exponent).

These defaults are based on the data type of the I/O list item, and are listed in the following table:

Default Widths for Data Edit Descriptors

Edit Descriptor Data Type of I/O List Item 1 w

I, B, O, Z, G BYTE 7

INTEGER(1), LOGICAL(1) 7

INTEGER(2), LOGICAL(2) 7

INTEGER(4), LOGICAL(4) 12

INTEGER(8), LOGICAL(8) 23

O, Z REAL(4) 12

REAL(8) 23

REAL(16) 44

CHARACTER*len MAX(7, 3*len)

L, G
LOGICAL(1), LOGICAL(2) LOGICAL(4), LOGICAL
(8)

2

F, E, EN, ES, G, D REAL(4), COMPLEX(4) 15 d: 7 e: 2

REAL(8), COMPLEX(8) 25 d: 16 e: 2

REAL(16) 42 d: 33 e: 3

A 2, G LOGICAL(1) 1

I/O Formatting Page 28 of 51

,

LOGICAL(2), INTEGER(2) 2

LOGICAL(4), INTEGER(4) 4

LOGICAL(8), INTEGER(8) 8

REAL(4), COMPLEX(4) 4

REAL(8), COMPLEX(8) 8

REAL(16) 16

CHARACTER*len len

1 INTEGER(8) and LOGICAL(8) are only available on Alpha processors. REAL(16) is only available on OpenVMS
and DIGITAL UNIX systems.
2 The default is the actual length of the corresponding I/O list item.

Terminating Short Fields of Input Data

On input, an edit descriptor such as Fw.d specifies that w characters (the field width) are to be read
from the external field.

If the field contains fewer than w characters, the input statement will read characters from the next
data field in the record. You can prevent this by padding the short field with blanks or zeros, or by
using commas to separate the input data.

Padding Short Fields

You can use the OPEN statement specifier PAD=’YES' to indicate blank padding for short fields of
input data. However, blanks can be interpreted as blanks or zeros, depending on which default
behavior is in effect at the time. Consider the following:

 READ (*, ’(I5)’) J

If 3 is input for J, the value of J will be 30000 or 3 depending on which default behavior is in effect
(BLANK=’NULL’ or BLANK=’ZERO'). This can give unexpected results.

To ensure that the desired behavior is in effect, explicitly specify the BN or BZ edit descriptor. For
example, the following ensures that blanks are interpreted as blanks (and not as zeros):

 READ (*, ’(BN, I5)’) J

Using Commas to Separate Input Data

You can use a comma to terminate a short data field. The comma has no effect on the d part (the
number of characters to the right of the decimal point) of the specification.

I/O Formatting Page 29 of 51

The comma overrides the w specified for the I, B, O, Z, F, E, D, EN, ES, G, and L edit descriptors.
For example, suppose the following statements are executed:

 READ (5,100) I,J,A,B
 100 FORMAT (2I6,2F10.2)

Suppose a record containing the following values is read:

1, -2, 1.0, 35

The following assignments occur:

I = 1
J = -2
A = 1.0
B = 0.35

A comma can only terminate fields less than w characters long. If a comma follows a field of w or
more characters, the comma is considered part of the next field.

A null (zero-length) field is designated by two successive commas, or by a comma after a field of w
characters. Depending on the field descriptor specified, the resulting value assigned is 0, 0.0, 0.D0, or
.FALSE. .

For More Information:

For details on input processing, see General Rules for Numeric Editing.

Control Edit Descriptors

A control edit descriptor either directly determines how text is displayed or affects the conversions
performed by subsequent data edit descriptors.

The following topics are discussed in this section:

� Forms for Control Edit Descriptors
� Positional Editing
� Sign Editing
� Blank Editing
� Scale Factor Editing (P)
� Slash Editing (/)
� Colon Editing (:)
� Dollar Sign ($) and Backslash (\) Editing
� Character Count Editing (Q)

Forms for Control Edit Descriptors

I/O Formatting Page 30 of 51

A control edit descriptor takes one of the following forms:

c
cn
nc

c
Is one of the following format codes: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, \, $, and Q.

n
Is a number of character positions. It must be a positive default integer literal constant; or
variable format expression -- no kind parameter can be specified. It cannot be a named constant.

The range of n is 1 through 2147483647 (2**31-1) on Alpha processors; 1 through 32767
(2**15-1) on Intel processors. Actual useful ranges may be constrained by record sizes
(RECL=) and the file system.

Rules and Behavior

In general, control edit descriptors are nonrepeatable. The only exception is the slash (/) edit
descriptor, which can be preceded by a repeat specification.

The control edit descriptors have the following specific forms:

Positional: Tn, TLn, TRn, and nX

Sign: S, SP, and SS

Blank interpretation: BN and BZ

Scale factor: kP

Miscellaneous: :, /, \, $, and Q

The P edit descriptor is an exception to the general control edit descriptor syntax. It is preceded by a
scale factor, rather than a character position specifier.

Control edit descriptors can be grouped in parentheses and preceded by a group repeat specification.

For More Information:

� See Group repeat specifications.
� On format specifications, in general, see Format Specifications.

Positional Editing

The T, TL, TR, and X edit descriptors specify the position where the next character is transferred to

I/O Formatting Page 31 of 51

or from a record.

On output, these descriptors do not themselves cause characters to be transferred and do not affect the
length of the record. If characters are transferred to positions at or after the position specified by one
of these descriptors, positions skipped and not previously filled are filled with blanks. The result is as
if the entire record was initially filled with blanks.

The TR and X edit descriptors produce the same results.

For More Information:

See Forms for Control Edit Descriptors.

T Editing

The T edit descriptor specifies a character position in an I/O record. It takes the following form:

Tn

The n is a positive integer literal constant (with no kind parameter) indicating the character position
of the record, relative to the left tab limit.

On input, the T descriptor positions the external record at the character position specified by n. On
output, the T descriptor indicates that data transfer begins at the nth character position of the external
record.

Examples

In the following examples, the symbol ^ represents a nonprinting blank character.

Suppose a file has a record containing the value ABC^^^XYZ, and the following statements are
executed:

 READ (11,10) VALUE1, VALUE2
 10 FORMAT (T7,A3,T1,A3)

The values read first are XYZ, then ABC.

Suppose the following statements are executed:

 PRINT 25
25 FORMAT (T51,’COLUMN 2’,T21,’COLUMN 1’)

The following line is printed at the positions indicated:

Position 20 Position 50
 | |
 COLUMN 1 COLUMN 2

I/O Formatting Page 32 of 51

Note that the first character of the record printed was reserved as a control character. (For more
information, see Printing of Formatted Records.)

TL Editing

The TL edit descriptor specifies a character position to the left of the current position in an I/O
record. It takes the following form:

TLn

The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the left of the current character.

If n is greater than or equal to the current position, the next character accessed is the first character of
the record.

TR Editing

The TR edit descriptor specifies a character position to the right of the current position in an I/O
record. It takes the following form:

TRn

The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the right of the current character.

X Editing

The X edit descriptor specifies a character position to the right of the current position in an I/O
record. It takes the following form:

nX

The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the right of the current character.

On output, the X edit descriptor does not output any characters when it appears at the end of a format
specification; for example:

 WRITE (6,99) K
99 FORMAT (’^K=’,I6,5X)

Note that the symbol ^ represents a nonprinting blank character. This example writes a record of only
9 characters. To cause n trailing blanks to be output at the end of a record, specify a format of n(’^’).

I/O Formatting Page 33 of 51

Sign Editing

The S, SP, and SS edit descriptors control the output of the optional plus (+) sign within numeric
output fields. These descriptors have no effect during execution of input statements.

Within a format specification, a sign editing descriptor affects all subsequent I, F, E, EN, ES, D, and
G descriptors until another sign editing descriptor occurs.

Examples

 INTEGER i
 REAL r

 ! The following statements write:
 ! 251 +251 251 +251 251
 i = 251
 WRITE (*, 100) i, i, i, i, i
 100 FORMAT (I5, SP, I5, SS, I5, SP, I5, S, I5)

 ! The following statements write:
 ! 0.673E+4 +.673E+40.673E+4 +.673E+40.673E+4
 r = 67.3E2
 WRITE (*, 200) r, r, r, r, r
 200 FORMAT (E8.3E1, 1X, SP, E8.3E1, SS, E8.3E1, 1X, SP, &
 & E8.3E1, S, E8.3E1)

For More Information:

See Forms for Control Edit Descriptors.

SP Editing

The SP edit descriptor causes the processor to produce a plus sign in any subsequent position where
it would be otherwise optional. It takes the following form:

SP

SS Editing

The SS edit descriptor causes the processor to suppress a plus sign in any subsequent position where
it would be otherwise optional. It takes the following form:

SS

S Editing

The S edit descriptor restores the plus sign as optional for all subsequent positive numeric fields. It
takes the following form:

S

I/O Formatting Page 34 of 51

The S edit descriptor restores to the processor the discretion of producing plus characters on an
optional basis.

Blank Editing

The BN and BZ descriptors control the interpretation of embedded and trailing blanks within numeric
input fields. These descriptors have no effect during execution of output statements.

Within a format specification, a blank editing descriptor affects all subsequent I, B, O, Z, F, E, EN,
ES, D, and G descriptors until another blank editing descriptor occurs.

The blank editing descriptors override the effect of the BLANK specifier during execution of a
particular input data transfer statement. (For more information, see the BLANK specifier in OPEN
statements.)

For More Information:

See Forms for Control Edit Descriptors.

BN Editing

The BN edit descriptor causes the processor to ignore all embedded and trailing blanks in numeric
input fields. It takes the following form:

BN

The input field is treated as if all blanks have been removed and the remainder of the field is right-
justified. An all-blank field is treated as zero.

Examples

If an input field formatted as a six-digit integer (I6) contains ’2 3 4’, it is interpreted as ’ 234’.

Consider the following code:

 READ (*, 100) n
 100 FORMAT (BN, I6)

If you enter any one of the following three records and terminate by pressing Enter, the READ
statement interprets that record as the value 123:

 123
 123
 123 456

Because the repeatable edit descriptor associated with the I/O list item n is I6, only the first six
characters of each record are read (three blanks followed by 123 for the first record, and 123 followed
by three blanks for the last two records). Because blanks are ignored, all three records are interpreted

I/O Formatting Page 35 of 51

as 123.

The following example shows the effect of BN editing with an input record that has fewer characters
than the number of characters specified by the edit descriptors and iolist. Suppose you enter 123 and
press Enter in response to the following READ statement:

 READ (*, ’(I6)’) n

The I/O system is looking for six characters to interpret as an integer number. You have entered only
three, so the first thing the I/O system does is to pad the record 123 on the right with three blanks.
With BN editing in effect, the nonblank characters (123) are right-aligned, so the record is equal to
123.

BZ Editing

The BZ edit descriptor causes the processor to interpret all embedded and trailing blanks in numeric
input fields as zeros. It takes the following form:

BZ

Examples

The input field ’ 23 4 ’ would be interpreted as ’ 23040’. If ’ 23 4’ were entered, the formatter would
add one blank to pad the input to the six-digit integer format (I6), but this extra space would be
ignored, and the input would be interpreted as ’ 2304 ’. The blanks following the E or D in real-
number input are ignored, regardless of the form of blank interpretation in effect.

Suppose you enter 123 and press Enter in response to the following READ statement:

 READ (*, ’(I6)’) n

The I/O system is looking for six characters to interpret as an integer number. You have entered only
three, so the first thing the I/O system does is to pad the record 123 on the right with three blanks. If
BZ editing is in effect, those three blanks are interpreted as zeros, and the record is equal to 123000.

Scale-Factor Editing (P)

The P edit descriptor specifies a scale factor, which moves the location of the decimal point in real
values and the two real parts of complex values. It takes the following form:

kP

The k is a signed (sign is optional if positive), integer literal constant specifying the number of
positions, to the left or right, that the decimal point is to move (the scale factor). The range of k is -
128 to 127.

At the beginning of a formatted I/O statement, the value of the scale factor is zero. If a scale editing
descriptor is specified, the scale factor is set to the new value, which affects all subsequent real edit

I/O Formatting Page 36 of 51

descriptors until another scale editing descriptor occurs.

To reinstate a scale factor of zero, you must explicitly specify 0 P.

Format reversion does not affect the scale factor. (For more information on format reversion, see
Interaction Between Format Specifications and I/O Lists.)

Rules for Input Processing

On input, a positive scale factor moves the decimal point to the left, and a negative scale factor
moves the decimal point to the right. (On output, the effect is the reverse.)

On input, when an input field using an F, E, D, EN, ES, or G real edit descriptor contains an explicit
exponent, the scale factor has no effect. Otherwise, the internal value of the corresponding I/O list
item is equal to the external field data multiplied by 10-k. For example, a 2P scale factor multiplies an
input value by .01, moving the decimal point two places to the left. A -2P scale factor multiplies an
input value by 100, moving the decimal point two places to the right.

The following shows input using the P edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Input Value
3PE10.5 ^^^37.614^ .037614
3PE10.5 ^^37.614E2 3761.4
-3PE10.5 ^^^^37.614 37614.0

The scale factor must precede the first real edit descriptor associated with it, but it need not
immediately precede the descriptor. For example, the following all have the same effect:

 (3P, I6, F6.3, E8.1)
 (I6, 3P, F6.3, E8.1)
 (I6, 3PF6.3, E8.1)

Note that if the scale factor immediately precedes the associated real edit descriptor, the comma
separator is optional.

Rules for Output Processing

On output, a positive scale factor moves the decimal point to the right, and a negative scale factor
moves the decimal point to the left. (On input, the effect is the reverse.)

On output, the effect of the scale factor depends on which kind of real editing is associated with it, as
follows:

� For F editing, the external value equals the internal value of the I/O list item multiplied by 10k.
This changes the magnitude of the data.

� For E and D editing, the external decimal field of the I/O list item is multiplied by 10k, and k is

I/O Formatting Page 37 of 51

subtracted from the exponent. This changes the form of the data.

A positive scale factor decreases the exponent; a negative scale factor increases the exponent.

For a positive scale factor, k must be less than d + 2 or an output conversion error occurs.

� For G editing, the scale factor has no effect if the magnitude of the data to be output is within
the effective range of the descriptor (the G descriptor supplies its own scaling).

If the magnitude of the data field is outside G descriptor range, E editing is used, and the scale
factor has the same effect as E output editing.

� For EN and ES editing, the scale factor has no effect.

The following shows output using the P edit descriptor (the symbol ^ represents a nonprinting blank
character):

Format Value Output
1PE12.3 -270.139 ^^-2.701E+02
1P,E12.2 -270.139 ^^^-2.70E+02
-1PE12.2 -270.139 ^^^-0.03E+04

Examples

The following shows a FORMAT statement containing a scale factor:

 DIMENSION A(6)
 DO 10 I=1,6
10 A(I) = 25.
 WRITE (6, 100) A
100 FORMAT(’ ’, F8.2, 2PF8.2, F8.2)

The preceding statements produce the following results:

 25.00 2500.00 2500.00
 2500.00 2500.00 2500.00

The following code uses scale-factor editing when reading:

 READ (*, 100) a, b, c, d
 100 FORMAT (F10.6, 1P, F10.6, F10.6, -2P, F10.6)

 WRITE (*, 200) a, b, c, d
 200 FORMAT (4F11.3)

If the following data is entered:

 12340000 12340000 12340000 12340000
 12.34 12.34 12.34 12.34
 12.34e0 12.34e0 12.34e0 12.34e0
 12.34e3 12.34e3 12.34e3 12.34e3

I/O Formatting Page 38 of 51

The program’s output is:

 12.340 1.234 1.234 1234.000
 12.340 1.234 1.234 1234.000
 12.340 12.340 12.340 12.340
 12340.000 12340.000 12340.000 12340.000

The next code shows scale-factor editing when writing:

 a = 12.34

 WRITE (*, 100) a, a, a, a, a, a
 100 FORMAT (1X, F9.4, E11.4E2, 1P, F9.4, E11.4E2, &
 & -2P, F9.4, E11.4E2)

This program’s output is:

 12.3400 0.1234E+02 123.4000 1.2340E+01 0.1234 0.0012E+04

For More Information:

See Forms for Control Edit Descriptors.

Slash Editing (/)

The slash edit descriptor terminates data transfer for the current record and starts data transfer for a
new record. It takes the following form:

[r]/

The r is a repeat specification. It must be a positive default integer literal constant; no kind parameter
can be specified.

The range of r is 1 through 2147483647 (2**31-1) on Alpha processors; 1 through 32767 (2**15-1)
on Intel processors. If r is omitted, it is assumed to be 1.

Multiple slashes cause the system to skip input records or to output blank records, as follows:

� When n consecutive slashes appear between two edit descriptors, n - 1 records are skipped on
input, or n - 1 blank records are output. The first slash terminates the current record. The
second slash terminates the first skipped or blank record, and so on.

� When n consecutive slashes appear at the beginning or end of a format specification, n records
are skipped or n blank records are output, because the opening and closing parentheses of the
format specification are themselves a record initiator and terminator, respectively. For example,
suppose the following statements are specified:

 WRITE (6,99)
99 FORMAT (’1’,T51,’HEADING LINE’//T51,’SUBHEADING LINE’//)

I/O Formatting Page 39 of 51

The following lines are written:

 Column 50, top of page
 |
 HEADING LINE
(blank line)
 SUBHEADING LINE
(blank line)
(blank line)

Note that the first character of the record printed was reserved as a control character (see
Printing of Formatted Records).

Examples

 ! The following statements write spreadsheet column and row labels:
 WRITE (*, 100)
 100 FORMAT (’ A B C D E’ &
 & /,’ 1’,/,’ 2’,/,’ 3’,/,’ 4’,/,’ 5’)

This example generates the following output:

 A B C D E
 1
 2
 3
 4
 5

For More Information:

See Forms for Control Edit Descriptors.

Colon Editing (:)

The colon edit descriptor terminates format control if no more items are in the I/O list.

Examples

Suppose the following statement are specified:

 PRINT 1,3
 PRINT 2,13
1 FORMAT (’ I=’,I2,’ J=’,I2)
2 FORMAT (’ K=’,I2,:,’ L=’,I2)

The following lines are written (the symbol ^ represents a nonprinting blank character):

I=^3^J=
K=13

I/O Formatting Page 40 of 51

 ! The following example writes a= 3.20 b= .99
 REAL a, b, c, d
 DATA a /3.2/, b /.9871515/
 WRITE (*, 100) a, b
 100 FORMAT (’ a=’, F5.2, :, ’ b=’, F5.2, :, &
 & ’ c=’, F5.2, :, ’ d=’, F5.2)
 END

For More Information:

See Forms for Control Edit Descriptors.

Dollar-Sign ($) and Backslash (\) Editing

The dollar sign and backslash edit descriptors modify the output of carriage control specified by the
first character of the record. They only affect carriage control for formatted files, and have no effect
on input.

If the first character of the record is a blank or a plus sign (+), the dollar sign and backslash
descriptors suppress carriage return (after printing the record).

For terminal device I/O, when this trailing carriage return is suppressed, a response follows output on
the same line. For example, suppose the following statements are specified:

 TYPE 100
100 FORMAT (’ ENTER RADIUS VALUE ’,$)
 ACCEPT 200, RADIUS
200 FORMAT (F6.2)

The following prompt is displayed:

 ENTER RADIUS VALUE

Any response (for example, "12.") is then displayed on the same line:

 ENTER RADIUS VALUE 12.

If the first character of the record is 0, 1, or ASCII NUL, the dollar sign and backslash descriptors
have no effect.

Consider the following:

 CHARACTER(20) MYNAME
 WRITE (*,9000)
9000 FORMAT (’0Please type your name:’,\)
 READ (*,9001) MYNAME
9001 FORMAT (A20)
 WRITE (*,9002) ’ ’,MYNAME
9002 FORMAT (1X,A20)

I/O Formatting Page 41 of 51

This example advances two lines, prompts for input, awaits input on the same line as the prompt, and
prints the input.

For More Information:

See Forms for Control Edit Descriptors.

Character Count Editing (Q)

The character count edit descriptor returns the remaining number of characters in the current input
record.

The corresponding I/O list item must be of type integer or logical. For example, suppose the
following statements are specified:

 READ (4,1000) XRAY, KK, NCHRS, (ICHR(I), I=1,NCHRS)
1000 FORMAT (E15.7,I4,Q,(80A1))

Two fields are read into variables XRAY and KK. The number of characters remaining in the record
is stored in NCHRS, and exactly that many characters are read into the array ICHR. (This instruction
can fail if the record is longer than 80 characters.)

If you place the character count descriptor first in a format specification, you can determine the length
of an input record.

On output, the character count edit descriptor causes the corresponding I/O list item to be skipped.

Examples

Consider the following:

 CHARACTER ICHAR(80)
 READ (4, 1000) XRAY, K, NCHAR, (ICHAR(I), I= 1, NCHAR)
 1000 FORMAT (E15.7, I4, Q, 80A1)

The preceding input statement reads the variables XRAY and K. The number of characters remaining
in the record is NCHAR, specified by the Q edit descriptor. The array ICHAR is then filled by
reading exactly the number of characters left in the record. (Note that this instruction will fail if
NCHAR is greater than 80, the length of the array ICHAR.) By placing Q in the format specification,
you can determine the actual length of an input record.

Note that the length returned by Q is the number of characters left in the record, not the number of
reals or integers or other data types. The length returned by Q can be used immediately after it is read
and can be used later in the same format statement or in a variable format expression. (See Variable
Format Expressions.)

Assume the file Q.DAT contains:

I/O Formatting Page 42 of 51

1234.567Hello, Q Edit

The following program reads in the number REAL1, determines the characters left in the record, and
reads those into STR:

 CHARACTER STR(80)
 INTEGER LENGTH
 REAL REAL1
 OPEN (UNIT = 10, FILE = ’Q.DAT’)
 READ (10, 100) REAL1, LENGTH, (STR(I), I=1, LENGTH)
 100 FORMAT (F8.3, Q, 80A1)
 WRITE(*,’(F8.3,2X,I2,2X,<LENGTH>A1)’) REAL1, LENGTH, (STR(I), &
 & I= 1, LENGTH)
 END

The output on the screen is:

1234.567 13 Hello, Q Edit

A READ statement that contains only a Q edit descriptor advances the file to the next record. For
example, consider that Q.DAT contains the following data:

abcdefg
abcd

Consider it is then READ with the following statements:

 OPEN (10, FILE = "Q.DAT")
 READ(10, 100) LENGTH
 100 FORMAT(Q)
 WRITE(*,’(I2)’) LENGTH
 READ(10, 100) LENGTH
 WRITE(*,’(I2)’) LENGTH
 END

The output to the screen would be:

7
4

For More Information:

See Forms for Control Edit Descriptors.

Character String Edit Descriptors

Character string edit descriptors control the output of character strings. The character string edit
descriptors are the character constant and H edit descriptor.

I/O Formatting Page 43 of 51

Although no string edit descriptor can be preceded by a repeat specification, a parenthesized group of
string edit descriptors can be preceded by a repeat specification (see Nested and Group Repeat
Specifications).

Character Constant Editing

The character constant edit descriptor causes a character string to be output to an external record. It
takes one of the following forms:

’string’
"string"

The string is a character literal constant; no kind parameter can be specified. Its length is the number
of characters between the delimiters; two consecutive delimiters are counted as one character.

To include an apostrophe in a character constant that is enclosed by apostrophes, place two
consecutive apostrophes (’’) in the format specification; for example:

50 FORMAT (’TODAY’’S^DATE^IS:^’,I2,’/’,I2,’/’,I2)

Note that the symbol ^ represents a nonprinting blank character.

Similarly, to include a quotation mark in a character constant that is enclosed by quotation marks,
place two consecutive quotation marks ("") in the format specification.

On input, the character constant edit descriptor transfers length of string characters to the edit
descriptor.

Examples

Consider the following ’(3I5)’ format in the WRITE statement:

 WRITE (10, ’(3I5)’) I1, I2, I3

This is equivalent to:

 WRITE (10, 100) I1, I2, I3
 100 FORMAT(3I5)

The following shows another example:

 ! These WRITE statements both output ABC’DEF
 ! (The leading blank is a carriage-control character).
 WRITE (*, 970)
 970 FORMAT (’ ABC’’DEF’)
 WRITE (*, ’(’’ ABC’’’’DEF’’)’)
 ! The following WRITE also outputs ABC’DEF. No carriage-
 ! control character is necessary for list-directed I/O.
 WRITE (*,*) ’ABC’’DEF’

I/O Formatting Page 44 of 51

Alternatively, if the delimiter is quotation marks, the apostrophe in the character constant ABC’DEF
requires no special treatment:

 WRITE (*,*) "ABC’DEF"

For More Information:

� See Character constants.
� On format specifications, in general, see Format Specifications.

H Editing

The H edit descriptor transfers data between the external record and the H edit descriptor itself. The
H edit descriptor is an obsolescent Fortran 90 feature, which has been deleted in Fortran 95.
DIGITAL Fortran fully supports features deleted in Fortran 95.

An H edit descriptor has the form of a Hollerith constant, as follows:

nHstring

n
Is an unsigned, positive default integer literal constant (with no kind parameter) indicating the
number of characters in string (including blanks and tabs).

The range of n is 1 through 2147483647 (2**31-1) on Alpha processors; 1 through 32767
(2**15-1) on Intel processors. Actual useful ranges may be constrained by record sizes
(RECL=) and the file system.

string
Is a string of printable ASCII characters.

On input, the H edit descriptor transfers n characters from the external field to the edit descriptor. The
first character appears immediately after the letter H. Any characters in the edit descriptor before
input are replaced by the input characters.

On output, the H edit descriptor causes n characters following the letter H to be output to an external
record.

Examples

 ! These WRITE statements both print "Don’t misspell ’Hollerith’"
 ! (The leading blanks are carriage-control characters).
 ! Hollerith formatting does not require you to embed additional
 ! single quotation marks as shown in the second example.
 !
 WRITE (*, 960)
 960 FORMAT (27H Don’t misspell ’Hollerith’)
 WRITE (*, 961)
 961 FORMAT (’ Don’’t misspell ’’Hollerith’’’)

I/O Formatting Page 45 of 51

For More Information:

� See Obsolescent and Deleted Language Features.
� On format specifications, in general, see Format Specifications.

Nested and Group Repeat Specifications

Format specifications can include nested format specifications enclosed in parentheses; for example:

15 FORMAT (E7.2,I8,I2,(A5,I6))

35 FORMAT (A6,(L8(3I2)),A)

A group repeat specification can precede a nested group of edit descriptors. For example, the
following statements are equivalent, and the second statement shows a group repeat specification:

50 FORMAT (I8,I8,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7,I5,I5)

50 FORMAT (2I8,3(F8.3,E15.7),2I5)

If a nested group does not show a repeat count, a default count of 1 is assumed.

Normally, the string edit descriptors and control edit descriptors cannot be repeated (except for slash),
but any of these descriptors can be enclosed in parentheses and preceded by a group repeat
specification. For example, the following statements are valid:

76 FORMAT (’MONTHLY’,3(’TOTAL’))

100 FORMAT (I8,4(T7),A4)

For More Information:

� On repeat specifications for data edit descriptors, see Forms for Data Edit Descriptors.
� On group repeat specifications and format reversion, see Interaction Between Format

Specifications and I/O Lists.

Variable Format Expressions

A variable format expression is a numeric expression enclosed in angle brackets (< >) that can be
used in a FORMAT statement.

The numeric expression can be any valid Fortran expression, including function calls and references
to dummy arguments.

If the expression is not of type integer, it is converted to integer type before being used.

I/O Formatting Page 46 of 51

If the value of a variable format expression does not obey the restrictions on magnitude applying to
its use in the format, an error occurs.

Variable format expressions cannot be used with the H edit descriptor, and they are not allowed in
character format specifications.

Variable format expressions are evaluated each time they are encountered in the scan of the format. If
the value of the variable used in the expression changes during the execution of the I/O statement, the
new value is used the next time the format item containing the expression is processed.

Examples

Consider the following statement:

FORMAT (I<J+1>)

When the format is scanned, the preceding statement performs an I (integer) data transfer with a field
width of J+1. The expression is reevaluated each time it is encountered in the normal format scan.

Consider the following statements:

 DIMENSION A(5)
 DATA A/1.,2.,3.,4.,5./

 DO 10 I=1,10
 WRITE (6,100) I
100 FORMAT (I<MAX(I,5)>)
10 CONTINUE

 DO 20 I=1,5
 WRITE (6,101) (A(I), J=1,I)
101 FORMAT (<I>F10.<I-1>)
20 CONTINUE
 END

On execution, these statements produce the following output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 1.
 2.0 2.0
 3.00 3.00 3.00
 4.000 4.000 4.000 4.000
 5.0000 5.0000 5.0000 5.0000 5.0000

I/O Formatting Page 47 of 51

file://D:\TEMP\~hhE6E2.htm 10/6/98

The following shows another example:

 WRITE(6,20) INT1
 20 FORMAT(I<MAX(20,5)>)

 WRITE(6,FMT=30) REAL2(10), REAL3
 30 FORMAT(<J+K>X, <2*M>F8.3)

The value of the expression is reevaluated each time an input/output item is processed during the
execution of the READ, WRITE, or PRINT statement. For example:

 INTEGER width, value
 width=2
 READ (*,10) width, value
 10 FORMAT(I1, I <width>)
 PRINT *, value
 END

When given input 3123, the program will print 123 and not 12.

For More Information:

For details on the synchronization of I/O lists with formats, see Interaction Between Format
Specifications and I/O Lists.

Printing of Formatted Records

On output, if a file was opened with CARRIAGECONTROL=’FORTRAN’ in effect or the file is
being processed by the fortpr format utility, the first character of a record transmitted to a line
printer or terminal is typically a character that is not printed, but used to control vertical spacing.

The following table lists the valid control characters for printing:

Control Characters for Printing

Character Meaning Effect

+ Overprinting
Outputs the record (at the current position in the current
line) and a carriage return.

- One line feed
Outputs the record (at the beginning of the following
line) and a carriage return.

0 Two line feeds
Outputs the record (after skipping a line) and a carriage
return.

1 Next page
Outputs the record (at the beginning of a new page) and
a carriage return.

I/O Formatting Page 48 of 51

$ Prompting
Outputs the record (at the beginning of the following
line), but no carriage return.

ASCII
NUL1

Overprinting with no
advance

Outputs the record (at the current position in the current
line), but no carriage return.

1 Specify as CHAR(0).

Any other character is interpreted as a blank and is deleted from the print line. If you do not specify a
control character for printing, the first character of the record is not printed.

Interaction Between Format Specifications and I/O Lists

Format control begins with the execution of a formatted I/O statement. Each action of format control
depends on information provided jointly by the next item in the I/O list (if one exists) and the next
edit descriptor in the format specification.

Both the I/O list and the format specification are interpreted from left to right, unless repeat
specifications or implied-do lists appear.

If an I/O list specifies at least one list item, at least one data edit descriptor (I, B, O, Z, F, E, EN, ES,
D, G, L, or A) or the Q edit descriptor must appear in the format specification; otherwise, an error
occurs.

Each data edit descriptor (or Q edit descriptor) corresponds to one item in the I/O list, except that an
I/O list item of type complex requires the interpretation of two F, E, EN, ES, D, or G edit
descriptors. No I/O list item corresponds to a control edit descriptor (X, P, T, TL, TR, SP, SS, S,
BN, BZ, $, or :), or a character string edit descriptor (H and character constants). For character string
edit descriptors, data transfer occurs directly between the external record and the format specification.

When format control encounters a data edit descriptor in a format specification, it determines whether
there is a corresponding I/O list item specified. If there is such an item, it is transferred under control
of the edit descriptor, and then format control proceeds. If there is no corresponding I/O list item,
format control terminates.

If there are no other I/O list items to be processed, format control also terminates when the following
occurs:

� A colon edit descriptor is encountered.
� The end of the format specification is reached.

If additional I/O list items remain, part or all of the format specification is reused in format reversion.

In format reversion, the current record is terminated and a new one is initiated. Format control then
reverts to one of the following (in order) and continues from that point:

1. The group repeat specification whose opening parenthesis matches the next-to-last closing
parenthesis of the format specification

I/O Formatting Page 49 of 51

2. The initial opening parenthesis of the format specification

Format reversion has no effect on the scale factor (P), the sign control edit descriptors (S, SP, or SS),
or the blank interpretation edit descriptors (BN or BZ).

Examples

The data in file FOR002.DAT is to be processed 2 records at a time. Each record starts with a number
to be put into an element of a vector B, followed by 5 numbers to be put in a row in matrix A.

FOR002.DAT contains the following data:

001 0101 0102 0103 0104 0105
002 0201 0202 0203 0204 0205
003 0301 0302 0303 0304 0305
004 0401 0402 0403 0404 0405
005 0501 0502 0503 0504 0505
006 0601 0602 0603 0604 0605
007 0701 0702 0703 0704 0705
008 0801 0802 0803 0804 0805
009 0901 0902 0903 0904 0905
010 1001 1002 1003 1004 1005

The following example shows how several different format specifications interact with I/O lists to
process data in file FOR002.DAT:

Interaction Between Format Specifications and I/O Lists

 INTEGER I, J, A(2,5), B(2)

 OPEN (unit=2, access=’sequential’, file=’FOR002.DAT’)

 READ (2,100) (B(I), (A(I,J), J=1,5),I=1,2)

 100 FORMAT (2 (I3, X, 5(I4,X), /))

 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)
 999 FORMAT (’ B is ’, 2(I3, X), ’; A is’, /
 1 (’ ’, 5 (I4, X)))

 READ (2,200) (B(I), (A(I,J), J=1,5),I=1,2)
 200 FORMAT (2 (I3, X, 5(I4,X), :/))

 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

 READ (2,300) (B(I), (A(I,J), J=1,5),I=1,2)
 300 FORMAT ((I3, X, 5(I4,X)))

 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

 READ (2,400) (B(I), (A(I,J), J=1,5),I=1,2)
 400 FORMAT (I3, X, 5(I4,X))

I/O Formatting Page 50 of 51

 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

 END

 This statement reads B(1); then A(1,1) through A(1,5); then B(2) and A(2,1) through A(2,5).

The first record read (starting with 001) starts the processing of the I/O list.

 There are two records, each in the format I3, X, 5(I4, X). The slash (/) forces the reading of the
second record after A(1,5) is processed. It also forces the reading of the third record after A(2,5) is
processed; no data is taken from that record.

 This statement produces the following output:

B is 1 2 ; A is
 101 102 103 104 105
 201 202 203 204 205

 This statement reads the record starting with 004. The slash (/) forces the reading of the next record
after A(1,5) is processed. The colon (:) stops the reading after A(2,5) is processed, but before the
slash (/) forces another read.

 This statement produces the following output:

B is 4 5 ; A is
 401 402 403 404 405
 501 502 503 504 505

 This statement reads the record starting with 006. After A(1,5) is processed, format reversion
causes the next record to be read and starts format processing at the left parenthesis before the I3.

 This statement produces the following output:

B is 6 7 ; A is
 601 602 603 604 605
 701 702 703 704 705

 This statement reads the record starting with 008. After A(1,5) is processed, format reversion
causes the next record to be read and starts format processing at the left parenthesis before the I4.

 This statement produces the following output:

B is 8 90 ; A is
 801 802 803 804 805
 9010 9020 9030 9040 100

The record 009 0901 0902 0903 0904 0905 is processed with I4 as "009 " for B(2), which is 90. X
skips the next "0". Then "901 " is processed for A(2,1), which is 9010, "902 " for A(2,2), "903 " for A
(2,3), and "904 " for A(2,4). The repeat specification of 5 is now exhausted and the format ends.

I/O Formatting Page 51 of 51

Format reversion causes another record to be read and starts format processing at the left parenthesis
before the I4, so "010 " is read for A(2,5), which is 100.

For More Information:

� See Data edit descriptors.
� See Control edit descriptors.
� See the Q edit descriptor.
� See Character string edit descriptors.
� On the scale factor, see Scale Factor Editing (P).

File Operation I/O Statements (WNT, W95, U*X) Page 1 of 44

File Operation I/O Statements (WNT, W95, U*X)

The following are file connection, inquiry, and positioning I/O statements on Windows NT, Windows
95, and DIGITAL UNIX Systems:

� BACKSPACE

Positions a sequential file at the beginning of the preceding record.

� CLOSE

Terminates the connection between a logical unit and a file or device.

� DELETE

Deletes a record from a relative file.

� ENDFILE

Writes an end-of-file record to a sequential file and positions the file after this record.

� INQUIRE

Requests information on the status of specified properties of a file or logical unit.

� OPEN

Connects a Fortran logical unit to a file or device; declares attributes for read and write
operations.

� REWIND

Positions a sequential file at the beginning of the file.

� UNLOCK

Frees a record in a relative or sequential file that was locked by a previous READ statement.

The following table summarizes I/O statement specifiers:

I/O Specifiers

Specifier Values Description Used with:

ACCESS=access ’SEQUENTIAL’,
’DIRECT’, or ’APPEND’

Specifies the method of
file access.

INQUIRE,
OPEN

File Operation I/O Statements (WNT, W95, U*X) Page 2 of 44

ACTION=permission ’READ’, ’WRITE’ or
’READWRITE’ (default
is ’READWRITE’)

Specifies file I/O
mode.

INQUIRE,
OPEN

ADVANCE=ad_switch ’NO’ or ’YES’ (default is
’YES’)

Specifies formatted
sequential data input as
advancing, or non-
advancing.

READ

ASSOCIATEVARIABLE=var Integer variable Specifies a variable to
be updated to reflect
the record number of
the next sequential
record in the file.

OPEN

BINARY=bin ’NO’ or ’YES’ Returns whether file
format is binary.

INQUIRE

BLANK=blank_control ’NULL’ or ’ZERO’
(default is ’NULL’)

Specifies whether
blanks are ignored in
numeric fields or
interpreted as zeros.

INQUIRE,
OPEN

BLOCKSIZE=blocksize Positive integer variable
or expression

Specifies or returns the
internal buffer size
used in I/O.

INQUIRE,
OPEN

BUFFERCOUNT=bc Numeric expression Specifies the number
of buffers to be
associated with the unit
for multibuffered I/O.

OPEN

BUFFERED=bf ’YES’ or ’NO’ (default is
’NO’)

Specifies run-time
library behavior
following WRITE
operations.

INQUIRE,
OPEN

CARRIAGECONTROL=
control

’FORTRAN’, ’LIST’, or
’NONE’

Specifies carriage
control processing.

INQUIRE,
OPEN

CONVERT=form ’LITTLE_ENDIAN’,
’BIG_ENDIAN’,
’CRAY’, ’FDX’, ’FGX’,
’IBM’, ’VAXD’, ’VAXG’,
or ’NATIVE’ (default is
’NATIVE’)

Specifies a numeric
format for unformatted
data.

INQUIRE,
OPEN

DEFAULTFILE=var Character expression Specifies a default file
pathname string.

INQUIRE,
OPEN

DELIM=delimiter ’APOSTROPHE’, Specifies the INQUIRE,

File Operation I/O Statements (WNT, W95, U*X) Page 3 of 44

’QUOTE’ or ’NONE’
(default is ’NONE’)

delimiting character for
list-directed or
namelist data.

OPEN

DIRECT=dir ’NO’ or ’YES’ Returns whether file is
connected for direct
access.

INQUIRE

DISPOSE=dis (or DISP=dis) ’KEEP’, ’SAVE’,
’DELETE’, ’PRINT’,
’PRINT/DELETE’,
’SUBMIT’, or
’SUBMIT/DELETE’
(default is ’DELETE’ for
scratch files; ’KEEP’ for
all other files)

Specifies the status of a
file after the unit is
closed.

OPEN,
CLOSE

formatlist Character variable or
expression

Lists edit descriptors.
Used in FORMAT
statements and format
specifiers (the
FMT=formatspec
option) to describe the
format of data.

FORMAT,
PRINT,
READ,
WRITE

END=endlabel Integer between 1 and
99999

When an end of file is
encountered, transfers
control to the statement
whose label is
specified.

READ

EOR=eorlabel Integer between 1 and
99999

When an end of record
is encountered,
transfers to the
statement whose label
is specified.

READ

ERR=errlabel Integer between 1 and
99999

Specifies the label of
an executable
statement where
execution is transferred
after an I/O error.

All except
PRINT

EXIST=ex .TRUE. or .FALSE. Returns whether a file
exists and can be
opened.

INQUIRE

FILE=file (or NAME=name) Character variable or Specifies the name of a INQUIRE,

File Operation I/O Statements (WNT, W95, U*X) Page 4 of 44

expression. Length and
format of the name are
determined by the
operating system

file OPEN

[FMT=]formatspec Character variable or
expression

Specifies an editlist to
use to format data.

PRINT,
READ,
WRITE

FORM=form ’FORMATTED’,
’UNFORMATTED’, or
’BINARY’

Specifies a file’s
format.

INQUIRE,
OPEN

FORMATTED=fmt ’NO’ or ’YES’ Returns whether a file
is connected for
formatted data transfer.

INQUIRE

IOFOCUS=iof .TRUE. or .FALSE.
(default is .TRUE.
unless unit ’*’ is
specified)

Specifies whether a
unit is the active
window in a QuickWin
application.

INQUIRE,
OPEN

iolist List of variables of any
type, character
expression, or
NAMELIST

Specifies items to be
input or output.

PRINT,
READ,
WRITE

IOSTAT=iostat Integer variable Specifies a variable
whose value indicates
whether an I/O error
has occurred.

All except
PRINT

MAXREC=var Numeric expression Specifies the maximum
number of records that
can be transferred to or
from a direct access
file.

OPEN

MODE=permission ’READ’, ’WRITE’ or
’READWRITE’ (default
is ’READWRITE’)

Same as ACTION. INQUIRE,
OPEN

NAMED=var .TRUE. or .FALSE. Returns whether a file
is named.

INQUIRE

NEXTREC=nr Integer variable Returns where the next
record can be read or
written in a file.

INQUIRE

[NML=]nmlspec Namelist name Specifies a namelist PRINT,

File Operation I/O Statements (WNT, W95, U*X) Page 5 of 44

group to be input or
output.

READ,
WRITE

NUMBER=num Integer variable Returns the number of
the unit connected to a
file.

INQUIRE

OPENED=od .TRUE. or .FALSE. Returns whether a file
is connected.

INQUIRE

ORGANIZATION=org ’SEQUENTIAL’ or
’RELATIVE’ (default is
’SEQUENTIAL’)

Specifies the internal
organization of a file.

INQUIRE,
OPEN

PAD=pad_switch ’YES’ or ’NO’ (default is
’YES’)

Specifies whether an
input record is padded
with blanks when the
input list or format
requires more data than
the record holds, or
whether the input
record is required to
contain the data
indicated.

INQUIRE,
OPEN

POSITION=file_pos ’ASIS’, ’REWIND’ or
’APPEND’ (default is
’ASIS’)

Specifies position in a
file.

INQUIRE,
OPEN

READ=rd ’NO’ or ’YES’ Returns whether a file
can be read.

INQUIRE

READONLY Specifies that only
READ statements can
refer to this
connection.

OPEN

READWRITE=rdwr ’NO’ or ’YES’ Returns whether a file
can be both read and
written to.

INQUIRE

REC=rec Positive integer variable
or expression

Specifies the first (or
only) record of a file to
be read from, or
written to.

READ,
WRITE

RECL=length (or
RECORDSIZE=length)

Positive integer variable
or expression

Specifies the record
length in direct access
files, or the maximum
record length in
sequential files.

INQUIRE,
OPEN

File Operation I/O Statements (WNT, W95, U*X) Page 6 of 44

RECORDTYPE=typ ’FIXED’, ’VARIABLE’,
’SEGMENTED’,
’STREAM’,
’STREAM_LF’, or
’STREAM_CR’

Specifies the type of
records in a file.

INQUIRE,
OPEN

SEQUENTIAL=seq ’NO’ or ’YES’ Returns whether file is
connected for
sequential access.

INQUIRE

SHARE=share ’COMPAT’,
’DENYNONE’,
’DENYWR’,
’DENYRD’, or
’DENYRW’ (default is
’DENYNONE’)

Controls how other
processes can
simultaneously access
a file on networked
systems.

INQUIRE,
OPEN

SHARED Specifies that a file is
connected for shared
access by more than
one program executing
simultaneously.

OPEN

SIZE=size Integer variable Returns the number of
characters read in a
nonadvancing READ
before an end-of-record
condition occurred.

READ

STATUS=status ’OLD’, ’NEW’,
’UNKNOWN’ or
’SCRATCH’ (default is
’UNKNOWN’)

Specifies the status of a
file on opening and/or
closing.

CLOSE,
OPEN

TITLE=name Character expression Specifies the name of a
child window in a
QuickWin application.

OPEN

UNFORMATTED=unf ’NO’ or ’YES’ Returns whether a file
is connected for
unformatted data
transfer.

INQUIRE

[UNIT=]unitspec Integer variable or
expression

Specifies the unit to
which a file is
connected.

All except
PRINT

USEROPEN=fname Name of a user-written
function

Specifies an external
function that controls
the opening of a file.

OPEN

File Operation I/O Statements (WNT, W95, U*X) Page 7 of 44

WRITE=rd ’NO’ or ’YES’ Returns whether a file
can be written to.

INQUIRE

For More Information:

� See Data transfer I/O statements.
� On control specifiers, see I/O Control List.
� On record position, advancement, and transfer, see your programmer’s guide.

BACKSPACE Statement

The BACKSPACE statement positions a file at the beginning of the preceding record, making it
available for subsequent I/O processing. For more information, see BACKSPACE in the A to Z
Reference.

CLOSE Statement

The CLOSE statement disconnects a file from a unit. For more information, see CLOSE in the A to Z
Reference.

DELETE Statement

The DELETE statement deletes a record from a relative file. For more information, see DELETE in
the A to Z Reference.

ENDFILE Statement

The ENDFILE statement writes an end-of-file record to a sequential file and positions the file after
this record (the terminal point). For more information, see ENDFILE in the A to Z Reference.

INQUIRE Statement

The INQUIRE statement returns information on the status of specified properties of a file or logical
unit. For more information, see INQUIRE in the A to Z Reference.

The following are inquiry specifiers:

� ACCESS
� ACTION
� BINARY
� BLANK
� BLOCKSIZE
� CARRIAGECONTROL
� CONVERT
� DELIM

File Operation I/O Statements (WNT, W95, U*X) Page 8 of 44

� DIRECT
� EXIST
� FORM
� FORMATTED
� IOFOCUS
� MODE
� NAME
� NAMED
� NEXTREC
� NUMBER
� OPENED
� ORGANIZATION
� PAD
� POSITION
� READ
� READWRITE
� RECL
� RECORDTYPE
� SEQUENTIAL
� SHARE
� UNFORMATTED
� WRITE

For More Information:

� See the UNIT control specifier.
� See the ERR control specifier.
� See the IOSTAT control specifier.
� See the RECL specifier in OPEN statements.
� See the FILE specifier in OPEN statements.
� See the DEFAULTFILE specifier in OPEN statements.

ACCESS Specifier

The ACCESS specifier asks how a file is connected. It takes the following form:

ACCESS = acc

acc
Is a scalar default character variable that is assigned one of the following values:

'SEQUENTIAL' If the file is connected for sequential access

'DIRECT' If the file is connected for direct access

'UNDEFINED' If the file is not connected

ACTION Specifier

File Operation I/O Statements (WNT, W95, U*X) Page 9 of 44

The ACTION specifier asks which I/O operations are allowed for a file. It takes the following form:

ACTION = act

act
Is a scalar default character variable that is assigned one of the following values:

'READ' If the file is connected for input only

'WRITE' If the file is connected for output only

'READWRITE' If the file is connected for both input and output

'UNDEFINED' If the file is not connected

BINARY Specifier (WNT, W95)

The BINARY specifier asks whether a file is connected to a binary file. It takes the following form:

BINARY = bin

bin
Is a scalar default character variable that is assigned one of the following values:

'YES' If the file is connected to a binary file

'NO' If the file is connected to a nonbinary file

'UNKNOWN' If the file is not connected

BLANK Specifier

The BLANK specifier asks what type of blank control is in effect for a file. It takes the following
form:

BLANK = blnk

blnk
Is a scalar default character variable that is assigned one of the following values:

'NULL' If null blank control is in effect for the file

'ZERO' If zero blank control is in effect for the file

'UNDEFINED' If the file is not connected, or it is not connected for formatted data
transfer

File Operation I/O Statements (WNT, W95, U*X) Page 10 of 44

BLOCKSIZE Specifier (WNT, W95)

The BLOCKSIZE specifier asks about the I/O buffer size. It takes the following form:

BLOCKSIZE = bks

bks
Is a scalar default integer variable.

The bks is assigned the current size of the I/O buffer. If the unit or file is not connected, the
value assigned is zero.

BUFFERED Specifier

The BUFFERED specifier asks whether whether run-time buffering is in effect. It takes the
following form:

BUFFERED = bf

bf
Is a scalar default character variable that is assigned one of the following values:

’NO’ If the file or unit is connected and buffering is not in effect.

'YES' If the file or unit is connected and buffering is in effect.

'UNKNOWN' If the file or unit is not connected.

CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier asks what type of carriage control is in effect for a file. It
takes the following form:

CARRIAGECONTROL = cc

cc
Is a scalar default character variable that is assigned one of the following values:

'FORTRAN' If the file is connected with Fortran carriage control in effect

'LIST' If the file is connected with implied carriage control in effect

'NONE' If the file is connected with no carriage control in effect

'UNKNOWN' If the file is not connected

File Operation I/O Statements (WNT, W95, U*X) Page 11 of 44

CONVERT Specifier

The CONVERT specifier asks what type of data conversion is in effect for a file. It takes the
following form:

CONVERT = fm

fm
Is a scalar default character variable that is assigned one of the following values:

’LITTLE_ENDIAN’ If the file is connected with little endian integer and IEEE® floating-
point data conversion in effect

'BIG_ENDIAN' If the file is connected with big endian integer and IEEE floating-
point data conversion in effect

'CRAY' If the file is connected with big endian integer and CRAY® floating-
point data conversion in effect

'FDX' If the file is connected with little endian integer and DIGITAL VAXTM

F_floating, D_floating, and IEEE X_floating data conversion in
effect

'FGX' If the file is connected with little endian integer and DIGITAL VAX
F_floating, G_floating, and IEEE X_floating data conversion in
effect

'IBM' If the file is connected with big endian integer and IBM® System\370
floating-point data conversion in effect

'VAXD ' If the file is connected with little endian integer and DIGITAL VAX
F_floating, D_floating, and H_floating in effect

'VAXG' If the file is connected with little endian integer and DIGITAL VAX
F_floating, G_floating, and H_floating in effect

'NATIVE' If the file is connected with no data conversion in effect

'UNKNOWN' If the file or unit is not connected for unformatted data transfer

DELIM Specifier

The DELIM specifier asks how character constants are delimited in list-directed and namelist output.
It takes the following form:

DELIM = del

del
Is a scalar default character variable that is assigned one of the following values:

File Operation I/O Statements (WNT, W95, U*X) Page 12 of 44

’APOSTROPHE’ If apostrophes are used to delimit character constants in list-directed and
namelist output

'QUOTE' If quotation marks are used to delimit character constants in list-directed
and namelist output

'NONE' If no delimiters are used

'UNDEFINED' If the file is not connected, or is not connected for formatted data
transfer

DIRECT Specifier

The DIRECT specifier asks whether a file is connected for direct access. It takes the following form:

DIRECT = dir

dir
Is a scalar default character variable that is assigned one of the following values:

'YES' If the file is connected for direct access

'NO' If the file is not connected for direct access

'UNKNOWN' If the file is not connected

EXIST Specifier

The EXIST specifier asks whether a file exists and can be opened. It takes the following form:

EXIST = ex

ex
Is a scalar default logical variable that is assigned one of the following values:

.TRUE. If the specified file exists and can be opened, or if the specified unit exists

.FALSE. If the specified file or unit does not exist or if the file exists but cannot be opened

The unit exists if it is a number in the range allowed by the processor.

FORM Specifier

The FORM specifier asks whether a file is connected for binary (WNT, W95), formatted, or

File Operation I/O Statements (WNT, W95, U*X) Page 13 of 44

unformatted data transfer. It takes the following form:

FORM = fm

fm
Is a scalar default character variable that is assigned one of the following values:

'FORMATTED' If the file is connected for formatted data transfer

'UNFORMATTED' If the file is connected for unformatted data transfer

'BINARY' If the file is connected for binary data transfer

'UNDEFINED' If the file is not connected

FORMATTED Specifier

The FORMATTED specifier asks whether a file is connected for formatted data transfer. It takes the
following form:

FORMATTED = fmt

fmt
Is a scalar default character variable that is assigned one of the following values:

'YES' If the file is connected for formatted data transfer

'NO' If the file is not connected for formatted data transfer

'UNKNOWN' If the processor cannot determine whether the file is connected for
formatted data transfer

IOFOCUS Specifier (WNT, W95)

The IOFOCUS specifier asks if the indicated unit is the active window in a QuickWin application. It
takes the following form:

IOFOCUS = iof

iof
Is a scalar default logical variable that is assigned one of the following values:

.TRUE. If the specified unit is the active window in a QuickWin application

.FALSE. If the specified unit is not the active window in a QuickWin application

File Operation I/O Statements (WNT, W95, U*X) Page 14 of 44

If you use this specifier with a non-Windows application, an error occurs.

MODE Specifier (WNT, W95)

MODE is a nonstandard synonym for ACTION.

NAME Specifier

The NAME specifier returns the name of a file. It takes the following form:

NAME = nme

nme
Is a scalar default character variable that is assigned the name of the file to which the unit is
connected. If the file does not have a name, nme is undefined.

The value assigned to nme is not necessarily the same as the value given in the FILE specifier.
However, the value that is assigned is always valid for use with the FILE specifier in an OPEN
statement, unless the value has been truncated in a way that makes it unacceptable. (Values are
truncated if the declaration of nme is too small to contain the entire value.)

Note: The FILE and NAME specifiers are synonyms when used with the OPEN statement,
but not when used with the INQUIRE statement.

For More Information:

For details on the maximum size of file pathnames, see the appropriate manual in your operating
system documentation set.

NAMED Specifier

The NAMED specifier asks whether a file is named. It takes the following form:

NAMED = nmd

nmd
Is a scalar default logical variable that is assigned one of the following values:

.TRUE. If the file has a name

.FALSE. If the file does not have a name

NEXTREC Specifier

File Operation I/O Statements (WNT, W95, U*X) Page 15 of 44

The NEXTREC specifier asks where the next record can be read or written in a file connected for
direct access. It takes the following form:

NEXTREC = nr

nr
Is a scalar default integer variable that is assigned a value as follows:

n If the file is connected for direct access and a record (r) was previously read or written,
the value assigned is r + 1.

n If no record has been read or written, the value assigned is 1.

n If the file is not connected for direct access, or if the file position cannot be determined
because of an error condition, the value assigned is zero.

NUMBER Specifier

The NUMBER specifier asks the number of the unit connected to a file. It takes the following
form:

NUMBER = num

num
Is a scalar default integer variable.

The num is assigned the number of the unit currently connected to the specified file. If there is no unit
connected to the file, the value assigned is -1.

OPENED Specifier

The OPENED specifier asks whether a file is connected. It takes the following form:

OPENED = od

od
Is a scalar default logical variable that is assigned one of the following values:

.TRUE. If the specified file or unit is connected

.FALSE. If the specified file or unit is not connected

ORGANIZATION Specifier

The ORGANIZATION specifier asks how the file is organized. It takes the following form:

File Operation I/O Statements (WNT, W95, U*X) Page 16 of 44

ORGANIZATION = org

org
Is a scalar default character variable that is assigned one of the following values:

’SEQUENTIAL’ If the file is a sequential file

'RELATIVE' If the file is a relative file

'UNKNOWN' If the processor cannot determine the file's organization

PAD Specifier

The PAD specifier asks whether blank padding was specified for the file. It takes the following form:

PAD = pd

pd
Is a scalar default character variable that is assigned one of the following values:

'NO' If the file or unit was connected with PAD='NO'

'YES' If the file or unit is not connected, or it was connected with PAD=’YES'

POSITION Specifier

The POSITION specifier asks the position of the file. It takes the following form:

POSITION = pos

pos
Is a scalar default character variable that is assigned one of the following values:

'REWIND' If the file is connected with its position at its initial point

'APPEND' If the file is connected with its position at its terminal point (or before its
end-of-file record, if any)

'ASIS' If the file is connected without changing its position

'UNDEFINED' If the file is not connected, or is connected for direct access data transfer

For More Information:

File Operation I/O Statements (WNT, W95, U*X) Page 17 of 44

For details on record position, advancement, and transfer, see your programmer’s guide.

READ Specifier

The READ specifier asks whether a file can be read. It takes the following form:

READ = rd

rd
Is a scalar default character variable that is assigned one of the following values:

'YES' If the file can be read

'NO' If the file cannot be read

'UNKNOWN' If the processor cannot determine whether the file can be read

READWRITE Specifier

The READWRITE specifier asks whether a file can be both read and written to. It takes the
following form:

READWRITE = rdwr

rdwr
Is a scalar default character variable that is assigned one of the following values:

'YES' If the file can be both read and written to

'NO' If the file cannot be both read and written to

'UNKNOWN' If the processor cannot determine whether the file can be both read and
written to

RECL Specifier

The RECL specifier asks the maximum record length for a file. It takes the following form:

RECL = rcl

rcl
Is a scalar default integer variable that is assigned a value as follows:

n If the file or unit is connected, the value assigned is the maximum record length allowed.

File Operation I/O Statements (WNT, W95, U*X) Page 18 of 44

n If the file does not exist, or is not connected, the value assigned is zero.

The assigned value is expressed in 4-byte units if the file is currently (or was previously) connected
for unformatted data transfer; otherwise, the value is expressed in bytes.

RECORDTYPE Specifier

The RECORDTYPE specifier asks which type of records are in a file. It takes the following form:

RECORDTYPE = rtype

rtype
Is a scalar default character variable that is assigned one of the following values:

’FIXED’ If the file is connected for fixed-length records

'VARIABLE ' If the file is connected for variable-length records

'SEGMENTED' If the file is connected for unformatted sequential data transfer using
segmented records

'STREAM' If the file's records are not terminated

'STREAM_CR' If the file's records are terminated with a carriage return

'STREAM_LF' If the file's records are terminated with a line feed

'UNKNOWN' If the file is not connected

SEQUENTIAL Specifier

The SEQUENTIAL specifier asks whether a file is connected for sequential access. It takes the
following form:

SEQUENTIAL = seq

seq
Is a scalar default character variable that is assigned one of the following values:

'YES' If the file is connected for sequential access

'NO' If the file is not connected for sequential access

'UNKNOWN' If the processor cannot determine whether the file is connected for
sequential access

File Operation I/O Statements (WNT, W95, U*X) Page 19 of 44

SHARE Specifier (WNT, W95)

The SHARE specifier asks the current share status of a file or unit. It takes the following form:

SHARE = shr

shr
Is a scalar default character variable that is assigned one of the following values:

’DENYRW’ If the file is connected for deny-read/write mode

'DENYWR' If the file is connected for deny-write mode

'DENYRD' If the file is connected for deny-read mode

'DENYNONE' If the file is connected for deny-none mode

'UNKNOWN' If the file or unit is not connected

UNFORMATTED Specifier

The UNFORMATTED specifier asks whether a file is connected for unformatted data transfer. It
takes the following form:

UNFORMATTED = unf

unf
Is a scalar default character variable that is assigned one of the following values:

'YES' If the file is connected for unformatted data transfer

'NO' If the file is not connected for unformatted data transfer

'UNKNOWN' If the processor cannot determine whether the file is connected for
unformatted data transfer

WRITE Specifier

The WRITE specifier asks whether a file can be written to. It takes the following form:

WRITE = wr

wr
Is a scalar default character variable that is assigned one of the following values:

File Operation I/O Statements (WNT, W95, U*X) Page 20 of 44

'YES' If the file can be written to

'NO' If the file cannot be written to

'UNKNOWN' If the processor cannot determine whether the file can be written to

OPEN Statement

The OPEN statement connects an external file to a unit, creates a new file and connects it to a unit,
creates a preconnected file, or changes certain properties of a connection. For more information, see
OPEN in the A to Z Reference.

The following table summarizes the OPEN statement specifiers:

OPEN Statement Specifiers and Values on Windows NT and Windows 95 Systems

Specifier Values Function Default

ACCESS ’SEQUENTIAL’
’DIRECT’
’APPEND’

Access mode 'SEQUENTIAL'

ACTION
(or MODE 1)

'READ'
'WRITE'
'READWRITE'

File access 'READWRITE'

ASSOCIATEVARIABLE var Next direct
access record

No default

BLANK 'NULL'
'ZERO'

Interpretation
of blanks

'NULL'

BLOCKSIZE n_expr Physical block
size

Filesystem default

BUFFERCOUNT n_expr Number of I/O
buffers

One

BUFFERED 'YES'
'NO'

Buffering for
WRITE
operations

'NO'

CARRIAGECONTROL 'FORTRAN'
'LIST'
'NONE'

Print control Formatted: 'LIST' 2

Unformatted: 'NONE'

CONVERT 'LITTLE_ENDIAN' Numeric 'NATIVE'

File Operation I/O Statements (WNT, W95, U*X) Page 21 of 44

’BIG_ENDIAN’
’CRAY’
’FDX’
’FGX’
’IBM’
’VAXD’
’VAXG’
’NATIVE’

format
specification

DEFAULTFILE c_expr Default file
pathname

Current working directory

DELIM 'APOSTROPHE'
'QUOTE'
'NONE'

Delimiter for
character
constants

'NONE'

DISPOSE
(or DISP)

'KEEP' or 'SAVE'
'DELETE'
'PRINT'
'PRINT/DELETE'
'SUBMIT'
'SUBMIT/DELETE'

File
disposition at
close

'KEEP'

ERR label Error transfer
control

No default

FILE
(or NAME)

c_expr File pathname
(file name)

fort.n 3

FORM 'FORMATTED'
'UNFORMATTED'
'BINARY' 1

Format type Depends on ACCESS setting

IOFOCUS 1 .TRUE. or .FALSE. Active window
in QuickWin
application

.TRUE. 4

IOSTAT var I/O status No default

MAXREC n_expr Direct access
record limit

No limit

ORGANIZATION 'SEQUENTIAL'
'RELATIVE'

File
organization

'SEQUENTIAL'

PAD 'YES'
'NO'

Record
padding

'YES'

POSITION 'ASIS' File 'ASIS'

File Operation I/O Statements (WNT, W95, U*X) Page 22 of 44

’REWIND’
'APPEND'

positioning

READONLY No value Write
protection

No default

RECL
(or RECORDSIZE)

n_expr Record length Depends on
RECORDTYPE,
ORGANIZATION, and
FORM settings 5

RECORDTYPE 'FIXED'
'VARIABLE'
'SEGMENTED'
'STREAM'
'STREAM_CR'
'STREAM_LF'

Record type Depends on
ORGANIZATION,
CARRIAGECONTROL,
ACCESS, and FORM
settings

SHARE 1, 6 'DENYRW'
'DENYWR'
'DENYRD'
'DENYNONE'

File locking 'DENYNONE'

SHARED No value File sharing
allowed

SHARED 6

STATUS (or TYPE) 'OLD'
'NEW'
'SCRATCH'
'REPLACE'
'UNKNOWN'

File status at
open

'UNKNOWN' 7

TITLE 1 c_expr Title for child
window in
QuickWin
application

No default

UNIT n_expr Logical unit
number

No default; an io-unit must be
specified

USEROPEN func User program
option

No default

1 WNT, W95
2 If you use the compiler option specifying OpenVMS defaults, and the unit is connected to a terminal, the default is
’FORTRAN’.
3 n is the unit number.
4 If you specify unit ’*’ the default is .FALSE..
5 On DIGITAL UNIX systems, the default depends only on the FORM setting.
6 For information on file sharing, see your user manual or programmer’s guide.
7 The default differs under certain conditions (see STATUS Specifier).

File Operation I/O Statements (WNT, W95, U*X) Page 23 of 44

Key to Values

 c_expr: A scalar default character expression
 func: An external function
 label: A statement label
 n_expr: A scalar numeric expression
 var: A scalar default integer variable

For More Information:

� On Fortran I/O status, see IOSTAT values in your programmer’s guide.
� On using the INQUIRE statement to get file attributes of existing files, see INQUIRE

Statement.
� On OPEN statements and file connection, see your programmer’s guide.

ACCESS Specifier

The ACCESS specifier indicates the access method for the connection of the file. It takes the
following form:

ACCESS = acc

acc
Is a scalar default character expression that evaluates to one of the following values:

'DIRECT' Indicates direct access.

'SEQUENTIAL' Indicates sequential access.

'APPEND' Indicates sequential access, but the file is positioned at the end-of-file
record.

The default is 'SEQUENTIAL'.

There are limitations on record access by file organization and record type.

For More Information:

For details on limitations on record access, see your programmer's guide.

ACTION Specifier

The ACTION specifier indicates the allowed I/O operations for the file connection. It takes the
following form:

File Operation I/O Statements (WNT, W95, U*X) Page 24 of 44

ACTION = act

act
Is a scalar default character expression that evaluates to one of the following values:

'READ' Indicates that only READ statements can refer to this connection.

'WRITE' Indicates that only WRITE, DELETE, and ENDFILE statements can
refer to this connection.

'READWRITE' Indicates that READ, WRITE, DELETE, and ENDFILE statements can
refer to this connection.

The default is 'READWRITE'.

However, if /fpscomp:general is specified on the command line and action is omitted, the system first
attempts to open the file with 'READWRITE'. If this fails, the system tries to open the file again, first
using 'READ', then using 'WRITE'.

Note that in this case, omitting action is not the same as specifying ACTION=’READWRITE'. If you
specify ACTION='READWRITE' and the file cannot be opened for both read and write access, the
attempt to open the file fails. You can use the INQUIRE statement to determine the actual access
mode selected.

ASSOCIATEVARIABLE Specifier

The ASSOCIATEVARIABLE specifier indicates a variable that is updated after each direct access
I/O operation, to reflect the record number of the next sequential record in the file. It takes the
following form:

ASSOCIATEVARIABLE = asv

asv
Is a scalar default integer variable. It cannot be a dummy argument to the routine in which the
OPEN statement appears.

Direct access READs, direct access WRITEs, and the FIND, DELETE, and REWRITE statements
can affect the value of asv.

This specifier is valid only for direct access; it is ignored for other access modes.

BLANK Specifier

The BLANK specifier indicates how blanks are interpreted in a file. It takes the following form:

BLANK = blnk

File Operation I/O Statements (WNT, W95, U*X) Page 25 of 44

blnk
Is a scalar default character expression that evaluates to one of the following values:

’NULL’ Indicates all blanks are ignored, except for an all-blank field (which has a value of
zero).

'ZERO' Indicates all blanks (other than leading blanks) are treated as zeros.

The default is 'NULL' (for explicitly OPENed files, preconnected files, and internal files).

If you specify /f66 (or OPTIONS/NOF77), the default is ’ZERO’. If the BN or BZ edit descriptors
are specified for a formatted input statement, they supersede the default interpretation of blanks.

For More Information:

For details on the BN and BZ edit descriptors, see Blank Editing.

BLOCKSIZE Specifier

The BLOCKSIZE specifier indicates the physical I/O transfer size for the file. It takes the following
form:

BLOCKSIZE = bks

bks
Is a scalar numeric expression. If necessary, the value is converted to integer data type before
use.

If you specify a nonzero number for bks, it is rounded up to a multiple of 512 byte blocks.

If you omit BLOCKSIZE or specify zero for bks, the filesystem default is assumed.

BUFFERCOUNT Specifier

The BUFFERCOUNT specifier indicates the number of buffers to be associated with the unit for
multibuffered I/O. It takes the following form:

BUFFERCOUNT = bc

bc
Is a scalar numeric expression in the range 1 through 127. If necessary, the value is converted
to integer data type before use.

The BLOCKSIZE specifier determines the size of each buffer. For example, if BUFFERCOUNT=3
and BLOCKSIZE=2048, the total number of bytes allocated for buffers is 3*2048, or 6144 bytes.

File Operation I/O Statements (WNT, W95, U*X) Page 26 of 44

If you do not specify BUFFERCOUNT or you specify zero for bc, the default is 1.

For More Information:

� See the BLOCKSIZE specifier.
� On obtaining optimal run-time performance, see your programmer’s guide.

BUFFERED Specifier

The BUFFERED specifier indicates run-time library behavior following WRITE operations. It takes
the following form:

BUFFERED = bf

bf
Is a scalar default character expression that evaluates to one of the following values:

’NO’ Requests that the run-time library send output data to the file system after each
WRITE operation.

'YES' Requests that the run-time library accumulate output data in its internal buffer,
possibly across several WRITE operations, before the data is sent to the file system.

Buffering may improve run-time performance for output-intensive applications.

The default is 'NO'.

If BUFFERED=’YES' is specified, the request may or may not be honored, depending on the output
device and other file or connection characteristics.

If BLOCKSIZE and BUFFERCOUNT have been specified for OPEN, their product determines the
size in bytes of the internal buffer. Otherwise, the default size of the internal buffer is 8192 bytes.

Note: The default size of the internal buffer is 1024 bytes if compiler option /fpscomp=general
is used.

The internal buffer will grow to hold the largest single record but will never shrink.

CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier indicates the type of carriage control used when a file is
displayed at a terminal. It takes the following form:

CARRIAGECONTROL = cc

File Operation I/O Statements (WNT, W95, U*X) Page 27 of 44

cc
Is a scalar default character expression that evaluates to one of the following values:

’FORTRAN’ Indicates normal Fortran interpretation of the first character.

'LIST' Indicates one line feed between records.

'NONE' Indicates no carriage control processing.

The default for binary (WNT, W95) and unformatted files is 'NONE'. The default for formatted files is
'LIST'. However, if you specify /vms or /fpscomp=general, and the unit is connected to a terminal, the
default is 'FORTRAN'.

On output, if a file was opened with CARRIAGECONTROL='FORTRAN' in effect or the file was
processed by the fortpr format utility, the first character of a record transmitted to a line printer or
terminal is typically a character that is not printed, but is used to control vertical spacing.

For More Information:

For details on valid control characters for printing, see Printing of Formatted Records.

CONVERT Specifier

The CONVERT specifier indicates a nonnative numeric format for unformatted data. It takes the
following form:

CONVERT = fm

fm
Is a scalar default character expression that evaluates to one of the following values:

'LITTLE_ENDIAN' 1 Little endian integer data 2 and IEEE® floating-point data 3.

'BIG_ENDIAN' 1 Big endian integer data 2 and IEEE floating-point data 3.

'CRAY' Big endian integer data 2 and CRAY® floating-point data of size
REAL(8) or COMPLEX(8).

'FDX' Little endian integer data 2 and DIGITAL VAXTM floating-point data
of format F_floating for REAL(4) or COMPLEX(4), D_floating for
size REAL(8) or COMPLEX(8), and IEEE X_floating for REAL(16)
4.

'FGX' Little endian integer data 2 and DIGITAL VAX floating-point data
of format F_floating for REAL(4) or COMPLEX(4), G_floating for
size REAL(8) or COMPLEX(8), and IEEE X_floating for REAL(16)

File Operation I/O Statements (WNT, W95, U*X) Page 28 of 44

4.

'IBM' Big endian integer data 2 and IBM® System\370 floating-point data
of size REAL(4) or COMPLEX(4) (IBM short 4), and size REAL(8)
or COMPLEX(8) (IBM long 8).

'VAXD ' Little endian integer data 2 and DIGITAL VAX floating-point data
of format F_floating for size REAL(4) or COMPLEX(4), D_floating
for size REAL(8) or COMPLEX(8), and H_floating for REAL(16)
4.

'VAXG' Little endian integer data 2 and DIGITAL VAX floating-point data
of format F_floating for size REAL(4) or COMPLEX(4), G_floating
for size REAL(8) or COMPLEX(8), and H_floating for REAL(16)
4.

'NATIVE' No data conversion. This is the default.

1 INTEGER(1) data is the same for little endian and big endian.
2 Of the appropriate size: INTEGER(1), INTEGER(2), INTEGER(4), or INTEGER(8)
3 Of the appropriate size and type: REAL(4), REAL(8), REAL(16), COMPLEX(4), or COMPLEX(8)
4 U*X only

You can use CONVERT to specify multiple formats in a single program, usually one format for each
specified unit number.

When reading a nonnative format, the nonnative format on disk is converted to native format in
memory. If a converted nonnative value is outside the range of the native data type, a run-time
message appears.

There are other ways to specify numeric format for unformatted files: you can specify an environment
variable, the compiler option /convert, or OPTIONS/CONVERT. The following shows the order of
precedence:

Method Used Precedence

An environment variable Highest (1)

OPEN(CONVERT=convert) 2

OPTIONS/CONVERT 3

The /convert:keyword compiler option Lowest (4)

The /convert compiler option and OPTIONS/CONVERT affect all unit numbers used by the
program, while environment variables and OPEN (CONVERT=) affect specific unit numbers.

The following example shows how to code the OPEN statement to read unformatted CRAY®

File Operation I/O Statements (WNT, W95, U*X) Page 29 of 44

numeric data from unit 15, which might be processed and possibly written in native little endian
format to unit 20:

 OPEN (CONVERT=’CRAY’, FILE=’graph3.dat’, FORM=’UNFORMATTED’,
1 UNIT=15)
 ...
 OPEN (FILE=’graph3_native.dat’, FORM=’UNFORMATTED’, UNIT=20)

For More Information:

� See Environment Variables Used with the DF Command
� See Run-Time Environment Variables
� On supported ranges for data types, see Data Types, Constants, and Variables and your

programmer’s guide.
� On compiler options, in general, see your programmer’s guide.

DEFAULTFILE Specifier

The DEFAULTFILE specifier indicates a default file pathname string. It takes the following form:

DEFAULTFILE = def

def
Is a character expression indicating a default file pathname string.

The default file pathname string is used primarily when accepting file pathnames interactively.
File pathnames known to a user program normally appear in the FILE specifier.

DEFAULTFILE supplies a value to the Fortran I/O system that is prefixed to the name that appears
in FILE.

If def does not end in a slash (/), a slash is added.

If DEFAULTFILE is omitted, the Fortran I/O system uses the current working directory.

DELIM Specifier

The DELIM specifier indicates what characters (if any) are used to delimit character constants in list-
directed and namelist output. It takes the following form:

DELIM = del

del
Is a scalar default character expression that evaluates to one of the following values:

File Operation I/O Statements (WNT, W95, U*X) Page 30 of 44

’APOSTROPHE’ Indicates apostrophes delimit character constants. All internal
apostrophes are doubled.

'QUOTE' Indicates quotation marks delimit character constants. All internal
quotation marks are doubled.

'NONE' Indicates character constants have no delimiters. No internal apostrophes
or quotation marks are doubled.

The default is 'NONE'.

The DELIM specifier is only allowed for files connected for formatted data transfer; it is ignored
during input.

DISPOSE Specifier

The DISPOSE (or DISP) specifier indicates the status of the file after the unit is closed. It takes one
of the following forms:

DISPOSE = dis
DISP = dis

dis
Is a scalar default character expression that evaluates to one of the following values:

'KEEP' or 'SAVE' Retains the file after the unit closes.

'DELETE' Deletes the file after the unit closes.

'PRINT' 1 Submits the file to the line printer spooler and retains it.

'PRINT/DELETE' 1 Submits the file to the line printer spooler and then deletes it.

'SUBMIT' Forks a process to execute the file.

'SUBMIT/DELETE' Forks a process to execute the file, and then deletes the file after the
fork is completed.

1 Use only on sequential files.

The default is 'DELETE' for scratch files. For all other files, the default is 'KEEP'.

FILE Specifier

The FILE specifier indicates the name of the file to be connected to the unit. It takes the following
form:

File Operation I/O Statements (WNT, W95, U*X) Page 31 of 44

FILE = name

name
Is a character or numeric expression.

The name can be any pathname allowed by the operating system.

Any trailing blanks in the name are ignored.

If FILE is omitted and the unit is not connected to a file, the OPEN statement must specify
STATUS=’SCRATCH’.

If the file name is stored in a numeric scalar or array, the name must consist of ASCII characters
terminated by an ASCII null character (zero byte). However, if it is stored in a character scalar or
array, it must not contain a zero byte.

If the filename is ’USER’ or ’CON’, input and output are directed to the console. For a complete list of
device names, see Physical Devices.

In a QuickWin application, you can specify FILE=’USER’ to open a child window. All subsequent
I/O statements directed to that unit appear in the child window.

The name can be blank (FILE=’ ’) if the compatibility compiler option /fpscomp:filesfromcmd is
specified. If the name is blank, the following occurs:

1. The program reads a filename from the list of arguments (if any) in the command line that
started the program. If the argument is a null or blank string (" "), you are prompted for the
corresponding filename. Each successive OPEN statement that specifies a blank name reads
the next following command-line argument.

2. If no command-line arguments are specified or there are no more arguments in the list, you are
prompted for additional filenames.
Assume the following command line started the program MYPROG (note that quotation marks
(") are used):

myprog first.fil " " third.txt

MYPROG contains four OPEN statements with blank filenames, in the following order:

 OPEN (2, FILE = ’ ’)
 OPEN (4, FILE = ’ ’)
 OPEN (5, FILE = ’ ’)
 OPEN (10, FILE = ’ ’)

Unit 2 is associated with the file FIRST.FIL. Because a blank argument was specified on the
command line for the second filename, the OPEN statement for unit 4 produces the following
prompt:

 Filename missing or blank -

File Operation I/O Statements (WNT, W95, U*X) Page 32 of 44

 Please enter name UNIT 4?

Unit 5 is associated with the file THIRD.TXT. Because no fourth file was specified on the
command line, the OPEN statement for unit 10 produces the following prompt:

 Filename missing or blank -
 Please enter name UNIT 10?

For More Information:

� See Physical Devices in Files, Devices, and I/O Hardware in the Programmer’s Guide.
� On default file name conventions, see your programmer’s guide.
� On allowable file pathnames, see the appropriate manual in your system documentation set.

FORM Specifier

The FORM specifier indicates whether the file is being connected for binary (WNT, W95), formatted,
or unformatted data transfer. It takes the following form:

FORM = fm

fm
Is a scalar default character expression that evaluates to one of the following values:

'FORMATTED' Indicates formatted data transfer

'UNFORMATTED' Indicates unformatted data transfer

'BINARY' Indicates binary data transfer

The default is 'FORMATTED' for sequential access files, and 'UNFORMATTED' for direct access
files.

The data is stored and retrieved in a file according to the file's access (set by the ACCESS specifier)
and the form of the data the file contains.

A formatted file is a sequence of formatted records. Formatted records are a series of ASCII
characters terminated by an end-of-record mark (a carriage return and line feed sequence). The
records in a formatted direct-access file must all be the same length. The records in a formatted
sequential file can have varying lengths. All internal files must be formatted.

An unformatted file is a sequence of unformatted records. An unformatted record is a sequence of
values. Unformatted direct files contain only this data, and each record is padded to a fixed length
with undefined bytes. Unformatted sequential files contain the data plus information that indicates the
boundaries of each record.

Binary sequential files are sequences of bytes with no internal structure. There are no records. The
file contains only the information specified as I/O list items in WRITE statements referring to the
file.

File Operation I/O Statements (WNT, W95, U*X) Page 33 of 44

Binary direct files have very little structure. A record length is assigned by the RECL specifier in an
OPEN statement. This establishes record boundaries, which are used only for repositioning and
padding before and after read and write operations and during BACKSPACE operations. Record
boundaries do not restrict the number of bytes that can be transferred during a read or write operation.
If an I/O operation attempts to read or write more values than are contained in a record, the read or
write operation is continued on the next record.

IOFOCUS Specifier (WNT, W95)

The IOFOCUS specifier indicates whether a particular unit is the active window in a QuickWin
application. It takes the following form:

IOFOCUS = iof

iof
Is a scalar default logical expression that evaluates to one of the following values:

.TRUE. Indicates the QuickWin child window is the active window

.FALSE. Indicates the QuickWin child window is not the active window

If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..

A value of .TRUE. causes a call to FOCUSQQ immediately before any READ, WRITE, or PRINT
statement to that window. OUTTEXT, OUTGTEXT, or any other graphics routine call does not
cause the focus to shift.

For More Information:

See Giving a Window Focus and Setting the Active Window in Using QuickWin in the
Programmer’s Guide.

MAXREC Specifier

The MAXREC specifier indicates the maximum number of records that can be transferred from or to
a direct access file while the file is connected. It takes the following form:

MAXREC = mr

mr
Is a scalar numeric expression. If necessary, the value is converted to integer data type before
use.

The default is an unlimited number of records.

File Operation I/O Statements (WNT, W95, U*X) Page 34 of 44

MODE Specifier (WNT, W95)

MODE is a nonstandard synonym for ACTION.

NAME Specifier

NAME is a nonstandard synonym for FILE.

ORGANIZATION Specifier

The ORGANIZATION specifier indicates the internal organization of the file. It takes the following
form:

ORGANIZATION = org

org
Is a scalar default character expression that evaluates to one of the following values:

’SEQUENTIAL’ Indicates a sequential file.

'RELATIVE' Indicates a relative file.

The default is 'SEQUENTIAL'.

PAD Specifier

The PAD specifier indicates whether a formatted input record is padded with blanks when an input
list and format specification requires more data than the record contains.

The PAD specifier takes the following form:

PAD = pd

pd
Is a scalar default character expression that evaluates to one of the following values:

'YES' Indicates the record will be padded with blanks when necessary.

'NO' Indicates the record will not be padded with blanks. The input record must contain
the data required by the input list and format specification.

The default is 'YES'.

File Operation I/O Statements (WNT, W95, U*X) Page 35 of 44

This behavior is different from FORTRAN 77, which never pads short records with blanks. For
example, consider the following:

 READ (5,’(I5)’) J

If you enter 123 followed by a carriage return, FORTRAN 77 turns the I5 into an I3 and J is assigned
123.

However, DIGITAL Fortran pads the 123 with 2 blanks unless you explicitly open the unit with
PAD=’NO’.

You can override blank padding by explicitly specifying the BN edit descriptor.

The PAD specifier is ignored during output.

POSITION Specifier

The POSITION specifier indicates the position of a file connected for sequential access. It takes the
following form:

POSITION = pos

pos
Is a scalar default character expression that evaluates to one of the following values:

'ASIS' Indicates the file position is unchanged if the file exists and is already
connected. The position is unspecified if the file exists but is not connected.

'REWIND' Indicates the file is positioned at its initial point.

'APPEND' Indicates the file is positioned at its terminal point (or before its end-of-file
record, if any).

The default is 'ASIS'. (On Fortran I/O systems, this is the same as 'REWIND'.)

A new file (whether specified as new explicitly or by default) is always positioned at its initial point.

In addition to the POSITION= specifier, you can use position statements. The BACKSPACE
statement positions a file back one record. The REWIND statement positions a file at its initial point.
The ENDFILE statement writes an end-of-file record at the current position and positions the file
after it. Note that ENDFILE does not go the end of an existing file, but creates an end-of-file where
it is.

For More Information:

File Operation I/O Statements (WNT, W95, U*X) Page 36 of 44

For details on record position, advancement, and transfer, see your programmer’s guide.

READONLY Specifier

The READONLY specifier indicates only READ statements can refer to this connection. It takes the
following form:

READONLY

READONLY is similar to specifying ACTION=’READ’, but READONLY prevents deletion of the
file if it is closed with STATUS=’DELETE’ in effect.

The Fortran I/O system’s default privileges for file access are READWRITE. If access is denied, the
I/O system automatically retries accessing the file for READ access.

However, if you use the /vms compiler option, the I/O system does not retry accessing for READ
access. So, run- time I/O errors can occur if the file protection does not permit WRITE access. To
prevent such errors, if you wish to read a file for which you do not have write access, specify
READONLY.

RECL Specifier

The RECL specifier indicates the length of each record in a file connected for direct access, or the
maximum length of a record in a file connected for sequential access.

The RECL specifier takes the following form:

RECL = rl

rl
Is a positive numeric expression indicating the length of records in the file. If necessary, the
value is converted to integer data type before use.

If the file is connected for formatted data transfer, the value must be expressed in bytes
(characters). Otherwise, the value is expressed in 4-byte units (longwords).

If the file is connected for unformatted data transfer, the value can be expressed in bytes if the
/assume:byterecl compiler option is specified.

Except for segmented records, the rl is the length for record data only, it does not include space for
control information.

The length specified is interpreted depending on the type of records in the connected file, as follows:

� For segmented records, RECL indicates the maximum length for any segment (including the
four bytes of control information).

File Operation I/O Statements (WNT, W95, U*X) Page 37 of 44

� For fixed-length records, RECL indicates the size of each record; it must be specified. If the
records are unformatted, the size must be expressed as an even multiple of four.

You can use the RECL specifier in an INQUIRE statement to get the record length before
opening the file.

� For variable-length records, RECL indicates the maximum length for any record.

If you read a fixed-length file with a record length different from the one used to create the file,
indeterminate results can occur.

The maximum length for rl depends on the record type and the setting of the CARRIAGECONTROL
specifier, as shown in the following table:

Maximum Record Lengths (RECL) on DIGITAL UNIX, Windows NT, and Windows 95
Systems

Record Type CARRIAGECONTROL Formatted (size in bytes)

Fixed-length 'NONE' 2147483647 (2**31-1) 1

Variable-length 'NONE' 2147483640 (2**31-8)

Segmented 'NONE' 32764 (2**15-4)

Stream 'NONE' 2147483647 (2**31-1)

Stream_CR 'LIST' 2147483647 (2**31-1)

'FORTRAN' 2147483646 (2**31-2)

Stream_LF 'LIST' 2147483647 (2**31-1) 2

'FORTRAN' 2147483646 (2**31-2)

1 Subtract 1 if the /vms compiler option is used.
2 U*X only

The default value depends on the setting of the RECORDTYPE specifier, as shown in the following
table:

Default Record Lengths (RECL) on DIGITAL UNIX, Windows NT, and Windows 95 Systems

RECORDTYPE RECL value

'FIXED' None; value must be explicitly specified.

All other settings 132 bytes for formatted records; 510 longwords for unformatted records.

File Operation I/O Statements (WNT, W95, U*X) Page 38 of 44

RECORDSIZE Specifier

RECORDSIZE is a nonstandard synonym for RECL.

RECORDTYPE Specifier

The RECORDTYPE specifier indicates the type of records in a file. It takes the following form:

RECORDTYPE = typ

typ
Is a scalar default character expression that evaluates to one of the following values:

’FIXED’ Indicates fixed-length records.

'VARIABLE ' Indicates variable-length records.

'SEGMENTED' Indicates segmented records.

'STREAM' Indicates stream-type variable length records.

'STREAM_LF' Indicates stream-type variable length records, terminated with a line
feed.

'STREAM_CR' Indicates stream-type variable length records, terminated with a carriage
return.

When you open a file, default record types are as follows:

'FIXED' For relative files

'FIXED' For direct access sequential files

'STREAM_LF' For formatted sequential access files

'VARIABLE ' For unformatted sequential access files

A segmented record is a logical record consisting of segments that are physical records. Since the
length of a segmented record can be greater than 65,535 bytes, only use segmented records for
unformatted sequential access to disk or raw magnetic tape files.

Files containing segmented records can be accessed only by unformatted sequential data transfer
statements.

If an output statement does not specify a full record for a file containing fixed-length records, the
following occurs:

File Operation I/O Statements (WNT, W95, U*X) Page 39 of 44

� In formatted files, the record is filled with blanks
� In unformatted files, the record is filled with zeros

For More Information:

For details on record types and file organization, see your programmer’s guide.

SHARE Specifier (WNT, W95)

The SHARE specifier indicates whether file locking is implemented while the unit is open. It takes
the following form:

SHARE = shr

shr
Is a scalar default character expression that evaluates to one of the following values:

’DENYRW’ Indicates deny-read/write mode. No other process can open the file.

'DENYWR' Indicates deny-write mode. No process can open the file with write
access.

'DENYRD' Indicates deny-read mode. No process can open the file with read access.

'DENYNONE' Indicates deny-none mode. Any process can open the file in any mode.

The default is 'DENYNONE'.

'COMPAT' is accepted for compatibility with previous versions. It is equivalent to 'DENYNONE'.

Use the ACCESS specifier in an INQUIRE statement to determine the access permission for a file.

Be careful not to permit other users to perform operations that might cause problems. For example, if
you open a file intending only to read from it, and want no other user to write to it while you have it
open, you could open it with ACTION=’READ’ and SHARE=’DENYRW'. Other users would not be
able to open it with ACTION=’WRITE' and change the file.

Suppose you want several users to read a file, and you want to make sure no user updates the file
while anyone is reading it. First, determine what type of access to the file you want to allow the
original user. Because you want the initial user to read the file only, that user should open the file
with ACTION=’READ'. Next, determine what type of access the initial user should allow other
users; in this case, other users should be able only to read the file. The first user should open the file
with SHARE=’DENYWR’. Other users can also open the same file with ACTION=’READ' and
SHARE=’DENYWR'.

For More Information:

File Operation I/O Statements (WNT, W95, U*X) Page 40 of 44

For details on limitations on record access, see your programmer’s guide.

SHARED Specifier

The SHARED specifier indicates that the file is connected for shared access by more than one
program executing simultaneously. It takes the following form:

SHARED

Shared access is the default for the Fortran I/O system if the /fpscomp:general compiler option is
specified.

For More Information:

For details on file sharing, see your programmer’s guide.

STATUS Specifier

The STATUS specifier indicates the status of a file when it is opened. It takes the following form:

STATUS = sta

sta
Is a scalar default character expression that evaluates to one of the following values:

'OLD' Indicates an existing file.

'NEW' Indicates a new file; if the file already exists, an error occurs. Once the file
is created, its status changes to 'OLD'.

'SCRATCH' Indicates a new file that is unnamed (called a scratch file). When the file is
closed or the program terminates, the scratch file is deleted.

'REPLACE' Indicates the file replaces another. If the file to be replaced exists, it is
deleted and a new file is created with the same name. If the file to be
replaced does not exist, a new file is created and its status changes to
'OLD'.

'UNKNOWN' Indicates the file may or may not exist. If the file does not exist, a new file
is created and its status changes to 'OLD'.

Scratch files go into a temporary directory and are visible while they are open. Scratch files are
deleted when the unit is closed or when the program terminates normally, whichever occurs first. You
can use the TMP or TEMP environment variable to specify the path for scratch files; if neither
environment variable is defined, the default is the current directory.

The default is 'UNKNOWN'. This is also the default if you implicitly open a file by using WRITE.

File Operation I/O Statements (WNT, W95, U*X) Page 41 of 44

However, if you implicitly open a file using READ, the default is ’OLD’. If you specify the /f66
compiler option (or OPTIONS/NOF77), the default is ’NEW’.

Note: The STATUS specifier can also appear in CLOSE statements to indicate the file’s status
after it is closed. However, in CLOSE statements the STATUS values are the same as those
listed for the DISPOSE specifier.

TITLE Specifier

The TITLE specifier indicates the name of a child window in a QuickWin application. It takes the
following form:

TITLE = name

name
Is a character expression.

If TITLE is specified in a non-Quickwin application, a run-time error occurs.

For More Information:

For details on QuickWin applications, see Using QuickWin in the Programmer’s Guide.

TYPE Specifier

TYPE is a nonstandard synonym for STATUS.

USEROPEN Specifier

The USEROPEN specifier lets you pass control to a routine that directly opens a file. The file can
use system calls or library routines to establish a special context that changes the effect of subsequent
Fortran I/O statements.

The USEROPEN specifier takes the following form:

USEROPEN = function-name

function-name
Is the name of an external function.

The Visual Fortran Run-time Library (RTL) I/O support routines call the function named in
USEROPEN in place of the system calls normally used when the file is first opened for I/O. On
WIN32 platforms, the Fortran RTL would normally call CreateFile() to open a file.

The called function must open the file (or pipe, etc.) using CreateFile() and return the handle of the
file (return value from CreateFile()) when it returns control to the calling Visual Fortran program.
When opening the file, the called function usually specifies options different from those provided by

File Operation I/O Statements (WNT, W95, U*X) Page 42 of 44

a normal Fortran OPEN statement.

The main purpose of the function named in USEROPEN is to jacket a call to the CreateFile()
WIN32 api. The function can be written in Fortran, C, or other languages. If the function is written in
Fortran, do not execute a Fortran OPEN statement to open the file named in USEROPEN.

Examples

In the calling Fortran program, the function named in USEROPEN must first be declared in an
EXTERNAL statement. For example, the following Fortran code might be used to call the
USEROPEN procedure UOPEN:

 IMPLICIT INTEGER (A-Z)
 EXTERNAL UOPEN
 ...
 OPEN(UNIT=10,FILE=’UOPEN.DAT’,STATUS=’NEW’,USEROPEN=UOPEN)

When the OPEN statement is executed, the UOPEN function receives control. The function opens
the file by calling CreateFile(), performs whatever operations were specified, and subsequently
returns control (with the handle returned by CreateFile()) to the calling Fortran program.

Here is what the UOPEN function might look like:

 INTEGER FUNCTION UOPEN(FILENAME, &
DESIRED_ACCESS, &
SHARE_MODE, &
A_NULL, &
CREATE_DISP, &
FLAGS_ATTR, &
B_NULL, &
UNIT, &
FLEN)

!DEC$ATTRIBUTES C, ALIAS:’_UOPEN’ :: UOPEN
!DEC$ATTRIBUTES REFERENCE :: DESIRED_ACCESS
!DEC$ATTRIBUTES REFERENCE :: SHARE_MODE
!DEC$ATTRIBUTES REFERENCE :: CREATE_DISP
!DEC$ATTRIBUTES REFERENCE :: FLAGS_ATTR
!DEC$ATTRIBUTES REFERENCE :: UNIT

USE DFWIN

IMPLICIT INTEGER (A-Z)
CHARACTER*(FLEN) FILENAME
TYPE(T_SECURITY_ATTRIBUTES), POINTER :: NULL_SEC_ATTR

! Set the FILE_FLAG_WRITE_THROUGH bit in the flag attributes to CreateFile()
! (for whatever reason)

FLAGS_ATTR = FLAGS_ATTR + FILE_FLAG_WRITE_THROUGH

! Do the CreateFile() call and return the status to the Fortran rtl
STS = CreateFile(FILENAME, &

 DESIRED_ACCESS, &
 SHARE_MODE, &
 NULL_SEC_ATTR, &
 CREATE_DISP, &
 FLAGS_ATTR, &

File Operation I/O Statements (WNT, W95, U*X) Page 43 of 44

 0)

UOPEN = STS
RETURN

END

The UOPEN function is declared to use the cdecl calling convention, so it matches the Fortran rtl
declaration of a useropen routine.

The following function definition and arguments are passed from the Visual Fortran Run-time Library
to the function named in USEROPEN:

INTEGER FUNCTION UOPEN(FILENAME, &
DESIRED_ACCESS, &
SHARE_MODE, &
A_NULL, &
CREATE_DISP, &
FLAGS_ATTR, &
B_NULL, &
UNIT, &
FLEN)

!DEC$ATTRIBUTES C, ALIAS:’_UOPEN’ :: UOPEN
!DEC$ATTRIBUTES REFERENCE :: DESIRED_ACCESS
!DEC$ATTRIBUTES REFERENCE :: SHARE_MODE
!DEC$ATTRIBUTES REFERENCE :: CREATE_DISP
!DEC$ATTRIBUTES REFERENCE :: FLAGS_ATTR
!DEC$ATTRIBUTES REFERENCE :: UNIT

The first 7 arguments correspond to the CreateFile() api arguments. The value of these arguments is
set according the caller’s O PEN() arguments:

FILENAME
Is the address of a null terminated character string that is the name of the file.

DESIRED_ACCESS
Is the desired access (read-write) mode passed by reference.

SHARE_MODE
Is the file sharing mode passed by reference.

A_NULL
Is always null. The Fortran runtime library always passes a NULL for the pointer to a
SECURITY_ATTRIBUTES structure in its CreateFile() call.

CREATE_DISP
Is the creation disposition specifying what action to take on files that exist, and what
action to take on files that do not exist. It is passed by reference.

FLAGS_ATTR
Specifies the file attributes and flags for the file. It is passed by reference.

B_NULL
Is always null. The Fortran runtime library always passes a NULL for the handle to a
template file in it’s CreateFile() call.

The last 2 arguments are the Fortran unit number and length of the file name:

UNIT

File Operation I/O Statements (WNT, W95, U*X) Page 44 of 44

Is the Fortran unit number on which this OPEN is being done. It is passed by reference.
FLEN

Is the length of the file name, not counting the terminating null, and passed by value.

REWIND Statement

The REWIND statement positions a sequential file at the beginning of the file (the initial point). For
more information, see REWIND in the A to Z Reference.

UNLOCK Statement

The UNLOCK statement frees a record in a relative or sequential file that was locked by a previous
READ statement. For more information, see UNLOCK in the A to Z Reference.

Compilation Control Statements and Compiler Directives Page 1 of 4

Compilation Control Statements and Compiler Directives

You can specify certain statements and directives within programs to influence compilation.

This chapter contains information on the following topics:

� Compilation control statements
� General Compiler directives

Compilation Control Statements

In addition to specifying options on the compiler command line, you can specify the following
statements in a program unit to influence compilation:

� The INCLUDE Statement

Incorporates external source code into programs.

� The OPTIONS Statement

Sets options usually specified in the compiler command line. OPTIONS statement settings
override command line options.

General Compiler Directives

DIGITAL Fortran provides several general-purpose compiler directives to perform tasks during
compilation. You do not need to specify a compiler option to enable general directives.

The following general compiler directives are available:

� ALIAS

Specifies an alternate external name to be used when referring to external subprograms.

� ATTRIBUTES

Specifies properties for data objects and procedures.

� DECLARE and NODECLARE

Generates or disables warnings for variables that have been used but not declared.

� DEFINE and UNDEFINE

Specifies a symbolic variable whose existence (or value) can be tested during conditional
compilation.

Compilation Control Statements and Compiler Directives Page 2 of 4

� FIXEDFORMLINESIZE

Sets the line length for fixed-form source code.

� FREEFORM and NOFREEFORM

Specifies free-format or fixed-format source code.

� IDENT

Specifies an identifier for an object module.

� IF and IF DEFINED

Specifies a conditional compilation construct.

� INTEGER

Specifies the default integer kind.

� MESSAGE

Specifies a character string to be sent to the standard output device during the first compiler
pass.

� OBJCOMMENT

Specifies a library search path in an object file.

� OPTIONS

Controls whether fields in records and data items in common blocks are naturally aligned or
packed on arbitrary byte boundaries.

� PACK

Specifies the memory starting addresses of derived-type items.

� PSECT

Modifies certain characteristics of a common block.

� REAL

Specifies the default real kind.

� STRICT and NOSTRICT

Compilation Control Statements and Compiler Directives Page 3 of 4

Disables or enables language features not found in the Fortran 90 language standard.

� TITLE and SUBTITLE

Specifies a title or subtitle for a listing header.

The following sections describe:

� Syntax Rules for General Directives
� Equivalent Compiler Options

Syntax Rules for General Directives

The following general syntax rules apply to all general compiler directives. You must follow these
rules precisely to compile your program properly and obtain meaningful results.

A general directive prefix (tag) takes the following form:

cDEC$

c
Is one of the following: C (or c), !, or *.

The following are source form rules for directive prefixes:

� Prefixes beginning with C (or c) and * are only allowed in fixed or tab source forms.

In these source forms, the prefix must appear in columns 1 through 5; column 6 must be a
blank or tab. From column 7 on, blanks are insignificant, so the directive can be positioned
anywhere on the line after column 6. A directive ends in column 72 (or column 132, if
compiler option /extend_source is specified).

� Prefixes beginning with ! are allowed in all source forms.

In fixed and tab source forms, a prefix beginning with ! must follow the same rules for prefixes
beginning with C, c, or * (see above).

In free source form, the prefix need not start in column 1, but it cannot be preceded by any
nonblank characters on the same line. It can only be preceded by whitespace.

General directives cannot be continued.

A comment can follow a directive on the same line.

Additional Fortran statements (or directives) cannot appear on the same line as the general directive.

General directives cannot appear within a continued Fortran statement.

Compilation Control Statements and Compiler Directives Page 4 of 4

If a blank common is used in a general compiler directive, it must be specified as two slashes (/ /).

For More Information:

For more details, see General Compiler Directives.

Equivalent Compiler Options

Some compiler directives and compiler options have the same effect (see the following table).
However, compiler directives can be turned on and off throughout a program, while compiler options
remain in effect for the whole compilation unless overridden by a compiler directive.

Compiler directive Equivalent command-line compiler option

DECLARE /warn:declarations or /4Yd

NODECLARE /warn:nodeclarations or /4Nd

DEFINE symbol /define:symbol or /Dsymbol

FIXEDFORMLINESIZE:option /extend_source[:option] or /4L option

FREEFORM /free or /nofixed, or /4Yf

NOFREEFORM /nofree, /fixed, or /4Nf

INTEGER:option /integer_size:option or /4I option

OBJCOMMENT /libdir

PACK:option /alignment[:option] or /Zp option

REAL:option /real_size:option or /4R option

STRICT /warn:stderrors with /stand:f90 or /4Ys

NOSTRICT /4Ns

Note that any of the compiler directive names above can be specified using the prefix !MS$; for
example, !MS$NOSTRICT is allowed.

For rules on using compiler directives, see Syntax Rules for General Directives.

Scope and Association Page 1 of 15

Scope and Association

Program entities are identified by names, labels, input/output unit numbers, operator symbols, or
assignment symbols. For example, a variable, a derived type, or a subroutine is identified by its name.

Program entities are accessible within a scope that can be any of the following:

� An entire executable program
� A single scoping unit
� A single statement (or part of a statement)

The region of the program in which a name is known and accessible is referred to as the scope of that
name. These different scopes allow the same name to be used for different things in different regions
of the program.

Association is the language concept that allows different names to refer to the same entity in a
particular region of a program.

This section contains information on the following topics:

� Scope
� Unambiguous generic procedure references
� Resolving procedure references
� Association

Scope

Program entities have the following kinds of scope (as shown in the table below):

� Global

Entities that are accessible throughout an executable program. The name of a global entity
cannot be used to identify any other global entity in the same executable program.

� Scoping unit (Local scope)

Entities that are declared within a scoping unit. These entities are local to that scoping unit. The
names of local entities are divided into classes (see the table below).

A scoping unit is one of the following:

n A derived-type definition

n A procedure interface body (excluding any derived-type definitions and interface bodies
contained within it)

n A program unit or subprogram (excluding any derived- type definitions, interface bodies,

Scope and Association Page 2 of 15

and subprograms contained within it)

A scoping unit that immediately surrounds another scoping unit is called the host scoping unit.
Named entities within the host scoping unit are accessible to the nested scoping unit by host
association. (For information about host association, see Use and Host Association.)

Once an entity is declared in a scoping unit, its name can be used throughout that scoping unit.
An entity declared in another scoping unit is a different entity even if it has the same name and
properties.

Within a scoping unit, a local entity name that is not generic must be unique within its class.
However, the name of a local entity in one class can be used to identify a local entity of another
class.

Within a scoping unit, a generic name can be the same as any one of the procedure names in
the interface block.

A component name has the same scope as the derived type of which it is a component. It can
appear only within a component designator of a structure of that type.

For information on interactions between local and global names, see the table below.

� Statement

Entities that are accessible only within a statement or part of a statement; such entities cannot
be referenced in subsequent statements.

The name of a statement entity can also be the name of a global or local entity in the same
scoping unit; in this case, the name is interpreted within the statement as that of the statement
entity.

Scope of Program Entities

Entity Scope

Program units Global

Common blocks1 Global

External procedures Global

Intrinsic procedures Global2

Module procedures Local Class I

Internal procedures Local Class I

Dummy procedures Local Class I

Statement functions Local Class I

Scope and Association Page 3 of 15

Derived types Local Class I

Components of derived types Local Class II

Named constants Local Class I

Named constructs Local Class I

Namelist group names Local Class I

Generic identifiers Local Class I

Argument keywords in procedures Local Class III

Variables that can be referenced throughout a subprogram Local Class I

Variables that are dummy arguments in statement functions Statement

DO variables in an implied-do list3 of a DATA or FORALL
statement, or an array constructor

Statement

Intrinsic operators Global

Defined operators Local

Statement labels Local

External I/O unit numbers Global

Intrinsic assignment Global4

Defined assignment Local

1 Names of common blocks can also be used to identify local entities.
2 If an intrinsic procedure is not used in a scoping unit, its name can be used as a local entity within that scoping unit.
For example, if intrinsic function COS is not used in a program unit, COS can be used as a local variable there.
3 The DO variable in an implied-do list of an I/O list has local scope.
4 The scope of the assignment symbol (=) is global, but it can identify additional operations (see Defining Generic
Assignment).

Scoping units can contain other scoping units. For example, the following shows six scoping units:

 MODULE MOD_1 ! Scoping unit 1
 ... ! Scoping unit 1
 CONTAINS ! Scoping unit 1
 FUNCTION FIRST ! Scoping unit 2
 TYPE NAME ! Scoping unit 3
 ... ! Scoping unit 3
 END TYPE NAME ! Scoping unit 3
 ... ! Scoping unit 2
 CONTAINS ! Scoping unit 2
 SUBROUTINE SUB_B ! Scoping unit 4
 TYPE PROCESS ! Scoping unit 5

Scope and Association Page 4 of 15

 ... ! Scoping unit 5
 END TYPE PROCESS ! Scoping unit 5
 INTERFACE ! Scoping unit 5
 SUBROUTINE SUB_A ! Scoping unit 6
 ... ! Scoping unit 6
 END SUBROUTINE SUB_A ! Scoping unit 6
 END INTERFACE ! Scoping unit 5
 END SUBROUTINE SUB_B ! Scoping unit 4
 END FUNCTION FIRST ! Scoping unit 2
 END MODULE ! Scoping unit 1

For More Information:

� See Derived data types.
� On user-defined generic procedures, see Defining Generic Names for Procedures.
� See Intrinsic procedures.
� On procedures and subprograms, see Program Units and Procedures.
� See Use and host association.
� On defined operations, see Defining Generic Operators.
� On defined assignment, see Defining Generic Assignment.
� On how the PRIVATE attribute can affect accessibility of entities, see PRIVATE and PUBLIC

Attributes and Statements.

Unambiguous Generic Procedure References

When a generic procedure reference is made, a specific procedure is invoked. If the following rules
are used, the generic reference will be unambiguous:

� Within a scoping unit, two procedures that have the same generic name must both be
subroutines (or both be functions). One of the procedures must have a nonoptional dummy
argument that is one of the following:

n Not present by position or argument keyword in the other argument list

n Is present, but has different type and kind parameters, or rank

� Within a scoping unit, two procedures that have the same generic operator must both have the
same number of arguments or both define assignment. One of the procedures must have a
dummy argument that corresponds by position in the argument list to a dummy argument of the
other procedure that has a different type and kind parameters, or rank.

When an interface block extends an intrinsic procedure, operator, or assignment, the rules apply as if
the intrinsic consists of a collection of specific procedures, one for each allowed set of arguments.

When a generic procedure is accessed from a module, the rules apply to all the specific versions, even
if some of them are inaccessible by their specific names.

For More Information:

For details on generic procedure names, see Defining Generic Names for Procedures.

Scope and Association Page 5 of 15

Resolving Procedure References

The procedure name in a procedure reference is either established to be generic or specific, or is not
established. The rules for resolving a procedure reference differ depending on whether the procedure
is established and how it is established.

This section discusses the following topics:

� References to Generic Names
� References to Specific Names
� References to Nonestablished Names

References to Generic Names

Within a scoping unit, a procedure name is established to be generic if any of the following is true:

� The scoping unit contains an interface block with that procedure name.

� The procedure name matches the name of a generic intrinsic procedure, and it is specified with
the INTRINSIC attribute in that scoping unit.

� The procedure name is established to be generic in a module, and the scoping unit contains a
USE statement making that procedure name accessible.

� The scoping unit contains no declarations for that procedure name, but the procedure name is
established to be generic in a host scoping unit.

To resolve a reference to a procedure name established to be generic, the following rules are used in
the order shown:

1. If an interface block with that procedure name appears in one of the following, the reference is
to the specific procedure providing that interface:

a. The scoping unit that contains the reference

b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with one of the specific interfaces of the interface block.

2. If the procedure name is specified with the INTRINSIC attribute in one of the following, the
reference is to that intrinsic procedure:

a. The same scoping unit

b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with the interface of that intrinsic procedure.

Scope and Association Page 6 of 15

3. If the following is true, the reference is resolved by applying rules 1 and 2 to the host scoping
unit:

a. The procedure name is established to be generic in the host scoping unit

b. There is agreement between the scoping unit and the host scoping unit as to whether the
procedure is a function or subroutine name.

4. If none of the preceding rules apply, the reference must be to the generic intrinsic procedure
with that name. The reference must be consistent with the interface of that intrinsic procedure.

Examples

The following example shows how a module can define three separate procedures, and a main
program give them a generic name DUP through an interface block. Although the main program calls
all three by the generic name, there is no ambiguity since the arguments are of different data types,
and DUP is a function rather than a subroutine. The module UN_MOD must give each procedure a
different name.

 MODULE UN_MOD
 !

 CONTAINS
 subroutine dup1(x,y)
 real x,y
 print *, ’ Real arguments’, x, y
 end subroutine dup1

 subroutine dup2(m,n)
 integer m,n
 print *, ’ Integer arguments’, m, n
 end subroutine dup2

 character function dup3 (z)
 character(len=2) z
 dup3 = ’String argument ’// z
 end function dup3

 END MODULE

 program unclear
 !
 ! demonstrates how to use generic procedure references

 USE UN_MOD
 INTERFACE DUP
 MODULE PROCEDURE dup1, dup2, dup3
 END INTERFACE

 real a,b
 integer c,d
 character (len=2) state

 a = 1.5
 b = 2.32
 c = 5
 d = 47

Scope and Association Page 7 of 15

 state = ’WA’

 call dup(a,b)
 call dup(c,d)
 print *, dup(state) !actual output is ’S’only
 END

Note that the function DUP3 only prints one character, since module UN_MOD specifies no length
parameter for the function result.

If the dummy arguments x and y for DUP were declared as integers instead of reals, then any calls to
DUP would be ambiguous. If this is the case, a compile-time error results.

The subroutine definitions, DUP1, DUP2, and DUP3, must have different names. The generic name is
specified in the first line of the interface block, and in the example is DUP.

References to Specific Names

In a scoping unit, a procedure name is established to be specific if it is not established to be generic
and any of the following is true:

� The scoping unit contains an interface body with that procedure name.

� The scoping unit contains an internal procedure, module procedure, or statement function with
that procedure name.

� The procedure name is the same as the name of a generic intrinsic procedure, and it is specified
with the INTRINSIC attribute in that scoping unit.

� The procedure name is specified with the EXTERNAL attribute in that scoping unit.

� The procedure name is established to be specific in a module, and the scoping unit contains a
USE statement making that procedure name accessible.

� The scoping unit contains no declarations for that procedure name, but the procedure name is
established to be specific in a host scoping unit.

To resolve a reference to a procedure name established to be specific, the following rules are used in
the order shown:

1. If either of the following is true, the dummy argument is a dummy procedure and the reference
is to that dummy procedure:

a. The scoping unit is a subprogram, and it contains an interface body with that procedure
name.

b. The procedure name has been declared EXTERNAL, and the procedure name is a
dummy argument of that subprogram.

The procedure invoked by the reference is the one supplied as the corresponding actual

Scope and Association Page 8 of 15

argument.

2. If the scoping unit contains an interface body or the procedure name has been declared
EXTERNAL, and Rule 1 does not apply, the reference is to an external procedure with that
name.

3. If the scoping unit contains an internal procedure or statement function with that procedure
name, the reference is to that entity.

4. If the procedure name has been declared INTRINSIC in the scoping unit, the reference is to the
intrinsic procedure with that name.

5. If the scoping unit contains a USE statement that makes the name of a module procedure
accessible, the reference is to that procedure. (The USE statement allows renaming, so the
name referenced may differ from the name of the module procedure.)

6. If none of the preceding rules apply, the reference is resolved by applying these rules to the host
scoping unit.

References to Nonestablished Names

In a scoping unit, a procedure name is not established if it is not determined to be generic or specific.

To resolve a reference to a procedure name that is not established, the following rules are used in the
order shown:

1. If both of the following are true, the dummy argument is a dummy procedure and the reference
is to that dummy procedure:

a. The scoping unit is a subprogram.
b. The procedure name is a dummy argument of that subprogram.

The procedure invoked by the reference is the one supplied as the corresponding actual
argument.

2. If both of the following are true, the procedure is an intrinsic procedure and the reference is to
that intrinsic procedure:

a. The procedure name matches the name of an intrinsic procedure.

b. There is agreement between the intrinsic procedure definition and the reference of the
name as a function or subroutine.

3. If neither of the preceding rules apply, the reference is to an external procedure with that name.

For More Information:

� See Function references.

Scope and Association Page 9 of 15

� See the USE statement.
� On subroutine references, see the CALL Statement.
� On generic procedure names, see Defining Generic Names for Procedures.

Association

Entities are associated when each is associated with the same storage location.

Two (or more) entities can become associated by the following:

� Name association
� Pointer association
� Storage association

The following example shows name, pointer, and storage association between an external program
unit and an external procedure.

Example of Name, Pointer, and Storage Association

! Scoping Unit 1: An external program unit

REAL A, B(4)
REAL, POINTER :: M(:)
REAL, TARGET :: N(12)
COMMON /COM/...
EQUIVALENCE (A, B(1)) ! Storage association between A and B(1)
M => N ! Pointer association
CALL P (actual-arg,...)
...

! Scoping Unit 2: An external procedure
SUBROUTINE P (dummy-arg,...) ! Name and storage association between
 ! these arguments and the calling
 ! routine’s arguments in scoping unit 1

 COMMON /COM/... ! Storage association with common block COM
 ! in scoping unit 1
 REAL Y
 CALL Q (actual-arg,...)
 CONTAINS
 SUBROUTINE Q (dummy-arg,...) ! Name and storage association between
 ! these arguments and the calling
 ! routine’s arguments in host procedure
 ! P (subprogram Q has host association
 ! with procedure P)
 Y = 2.0*(Y-1.0) ! Name association with Y in host procedure P
 ...

Name Association

Name association allows an entity to be accessed from different scoping units by the same name or by
different names. There are three types of name association: argument, use, and host.

Argument Association

Scope and Association Page 10 of 15

Execution of a procedure reference establishes argument association between an actual argument and
its corresponding dummy argument. The name of a dummy argument can be different from the name
of its associated actual argument (if any).

When the procedure completes execution, the argument association is terminated.

For More Information:

For more details, see also Argument Association.

Use and Host Association

Use association allows the entities in a module to be accessible to other scoping units. The
mechanism for use association is the USE statement. The USE statement provides access to all public
entities in the module, unless ONLY is specified. In this case, only the entities named in the ONLY
list can be accessed.

Host association allows the entities in a host scoping unit to be accessible to an internal procedure,
derived-type definition, or module procedure contained within the host. The accessed entities are
known by the same name and have the same attributes as in the host. Entities that are local to a
procedure are not accessible to its host.

Use or host association remains in effect throughout the execution of the executable program.

If an entity that is accessed by use association has the same nongeneric name as a host entity, the host
entity is inaccessible. A name that appears in the scoping unit as an external name in an
EXTERNAL statement is a global name, and any entity of the host that has this as its nongeneric
name is inaccessible.

An interface body does not access named entities by host association, but it can access entities by use
association.

If a procedure gains access to a pointer by host association, the association of the pointer with a target
that is current at the time the procedure is invoked remains current within the procedure. This pointer
association can be changed within the procedure. After execution of the procedure, the pointer
association remains current, unless the execution caused the target to become undefined. If this
occurs, the host associated pointer becomes undefined.

Note: Implicit declarations can cause problems for host association. It is recommended that
you use IMPLICIT NONE in both the host and the contained procedure, and that you
explicitly declare all entities.

When all entities are explicitly declared, local declarations override host declarations, and host
declarations that are not overridden are available in the contained procedure.

Examples

Scope and Association Page 11 of 15

The following example shows host and use association:

 MODULE SHARE_DATA
 REAL Y, Z
 END MODULE

 PROGRAM DEMO
 USE SHARE_DATA ! All entities in SHARE_DATA are available
 REAL B, Q ! through use association.
 ...
 CALL CONS (Y)
 CONTAINS
 SUBROUTINE CONS (Y) ! Y is a local entity (dummy argument).
 REAL C, Y
 ...
 Y = B + C + Q + Z ! B and Q are available through host association.
 ... ! C is a local entity, explicitly declared. Z
 END SUBROUTINE CONS ! is available through use association.
 END PROGRAM DEMO

The following example shows how a host and an internal procedure can use host-associated entities:

 program INTERNAL
 ! shows use of internal subroutine and CONTAINS statement
 real a,b,c
 call find
 print *, c
 contains
 subroutine find
 read *, a,b
 c = sqrt(a**2 + b**2)
 end subroutine find
 end

In this example, the variables a, b, and c are available to the internal subroutine find through host
association. They do not have to be passed as arguments to the internal procedure. In fact, if they are,
they become local variables to the subroutine and hide the variables declared in the host program.

Conversely, the host program knows the value of c, when it returns from the internal subroutine that
has defined c.

For More Information:

� See the USE statement.
� On entities with local scope, see Scope.

Pointer Association

A pointer can be associated with a target. At different times during the execution of a program, a
pointer can be undefined, associated with different targets, or be disassociated. The initial association
status of a pointer is undefined. A pointer can become associated by the following:

� By pointer assignment (pointer => target)

Scope and Association Page 12 of 15

The target must be associated, or specified with the TARGET attribute. If the target is
allocatable, it must be currently allocated.

� By allocation (successful execution of an ALLOCATE statement)

The ALLOCATE statement must reference the pointer.

A pointer becomes disassociated if any of the following occur:

� The pointer is nullified by a NULLIFY statement.

� The pointer is deallocated by a DEALLOCATE statement.

� The pointer is assigned a disassociated pointer (or the NULL intrinsic function).

When a pointer is associated with a target, the definition status of the pointer is defined or undefined,
depending on the definition status of the target. A target is undefined in the following cases:

� If it was never allocated
� If it is not deallocated through the pointer
� If a RETURN or END statement causes it to become undefined

If a pointer is associated with a definable target, the definition status of the pointer can be defined or
undefined, according to the rules for a variable.

If the association status of a pointer is disassociated or undefined, the pointer must not be referenced
or deallocated.

Whatever its association status, a pointer can always be nullified, allocated, or associated with a
target. When a pointer is nullified, it is disassociated. When a pointer is allocated, it becomes
associated, but is undefined. When a pointer is associated with a target, its association and definition
status are determined by its target.

For More Information:

� See Pointer assignments.
� See the NULL intrinsic function.
� On the ALLOCATE and DEALLOCATE statements, see Dynamic Allocation.
� On the NULLIFY statement, see Dynamic Allocation

Storage Association

Storage association is the association of two or more data objects. It occurs when two or more
storage sequences share (or are aligned with) one or more storage units. Storage sequences are used
to describe relationships among variables, common blocks, and result variables.

This section discusses the following topics:

Scope and Association Page 13 of 15

� Storage Units and Storage Sequence
� Array Association

Storage Units and Storage Sequence

A storage unit is a fixed unit of physical memory allocated to certain data. A storage sequence is a
sequence of storage units. The size of a storage sequence is the number of storage units in the storage
sequence. A storage unit can be numeric, character, or unspecified.

A nonpointer scalar of type default real, integer, or logical occupies one numeric storage unit. A
nonpointer scalar of type double precision real or default complex occupies two contiguous numeric
storage units. In DIGITAL Fortran, one numeric storage unit corresponds to 4 bytes of memory.

A nonpointer scalar of type default character with character length 1 occupies one character storage
unit. A nonpointer scalar of type default character with character length len occupies len contiguous
character storage units. In DIGITAL Fortran, one character storage unit corresponds to 1 byte of
memory.

A nonpointer scalar of nondefault data type occupies a single unspecified storage unit. The number of
bytes corresponding to the unspecified storage unit differs depending on the data type.

The following table lists the storage requirements (in bytes) for the intrinsic data types:

Data Type Storage Requirements

Data Type Storage Requirements (in bytes)

BYTE 1

LOGICAL 2, 4 or 8 1

LOGICAL(1) 1

LOGICAL(2) 2

LOGICAL(4) 4

LOGICAL(8) 2 8

INTEGER 2, 4 or 8 1

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8) 2 8

Scope and Association Page 14 of 15

REAL 4 or 8 3

REAL(4) 4

DOUBLE PRECISION 8

REAL(8) 8

REAL(16) 4 16

COMPLEX 8 or 16 3

COMPLEX(4) 8

DOUBLE COMPLEX 16

COMPLEX(8) 16

CHARACTER 1

CHARACTER*len len 5

CHARACTER*(*) assumed-length 6

1 Depending on default integer, LOGICAL and INTEGER can have two, four, or eight bytes. The default allocation is
four bytes.
2 Alpha only
3 Depending on default real, REAL can have four or eight bytes and COMPLEX can have eight or sixteen bytes. The
default allocations are four bytes for REAL and eight bytes for COMPLEX.
4 VMS, U*X
5 The value of len is the number of characters specified. The largest valid value is 2147483647 (2**31-1) for
DIGITAL UNIX, Windows NT, and Windows 95 systems; 65535 for OpenVMS systems. Negative values are treated
as zero.
6 The assumed-length format *(*) applies to dummy arguments, PARAMETER statements, or character functions, and
indicates that the length of the actual argument or function is used. (See Assumed-Length Character Arguments and
your programmer’s guide.)

A nonpointer scalar of sequence derived type occupies a sequence of storage sequences
corresponding to the components of the structure, in the order they occur in the derived-type
definition. (A sequence derived type has a SEQUENCE statement.)

A pointer occupies a single unspecified storage unit that is different from that of any nonpointer
object and is different for each combination of type, type parameters, and rank.

The definition status and value of a data object affects the definition status and value of any storage-
associated entity.

When two objects occupy the same storage sequence, they are totally storage-associated. When two
objects occupy parts of the same storage sequence, they are partially associated. An
EQUIVALENCE statement, a COMMON statement, or an ENTRY statement can cause total or
partial storage association of storage sequences.

Scope and Association Page 15 of 15

For More Information:

� See the COMMON statement.
� See the ENTRY statement.
� See the EQUIVALENCE statement.
� On the hardware representations of data types, see your programmer’s guide.

Array Association

A nonpointer array occupies a sequence of contiguous storage sequences, one for each array element,
in array element order.

Two or more arrays are associated when each one is associated with the same storage location. They
are partially associated when part of the storage associated with one array is the same as part or all of
the storage associated with another array.

If arrays with different data types are associated (or partially associated) with the same storage
location, and the value of one array is defined (for example, by assignment), the value of the other
array becomes undefined. This happens because an element of an array is considered defined only if
the storage associated with it contains data of the same type as the array name.

An array element, array section, or whole array is defined by a DATA statement before program
execution. (The array properties must be declared in a previous specification statement.) During
program execution, array elements and sections are defined by an assignment or input statement, and
entire arrays are defined by input statements.

For More Information:

� See Arrays.
� See the DATA statement.
� On array element order, see Array Elements.

Obsolescent and Deleted Language Features Page 1 of 4

Obsolescent and Deleted Language Features

Fortran 90 identifies some FORTRAN 77 features to be obsolescent. Fortran 95 deletes some of these
features, and identifies a few more language features to be obsolescent. Features considered
obsolescent may be removed from future revisions of the Fortran Standard.

You can specify the /stand compiler option to have these features flagged.

Note: DIGITAL Fortran fully supports features deleted from Fortran 95.

This section discusses the following topics:

� Obsolescent Language Features in Fortran 90
� Deleted Language Features in Fortran 95
� Obsolescent Language Features in Fortran 95

Obsolescent Language Features in Fortran 90

Fortran 90 did not delete any of the features in FORTRAN 77, but some FORTRAN 77 features were
identified as obsolescent.

DIGITAL Fortran flags these features if you specify the /stand compiler option.

Fortran 90 suggests other methods to achieve the functionality of the following obsolescent features:

� Alternate return (labels in an argument list)

To replace this functionality, it is recommended that you use an integer variable to return a
value to the calling program, and let the calling program test the value and perform operations,
using a computed GO TO statement or CASE construct.

� Arithmetic IF

To replace this functionality, it is recommended that you use an IF statement or construct.

� ASSIGN and assigned GO TO statements

These statements are usually used to simulate internal procedures, which can now be coded
directly.

� Assigned FORMAT specifier (label of a FORMAT statement assigned to an integer variable)

To replace this functionality, it is recommended that you use character expressions to define
format specifications.

� Branching to an END IF statement from outside its IF block

Obsolescent and Deleted Language Features Page 2 of 4

To replace this functionality, it is recommended that you branch to the statement following the
END IF statement (see IF Construct).

� H edit descriptor

To replace this functionality, it is recommended that you use the character constant edit
descriptor (see Character Constant Editing).

� PAUSE statement

To replace this functionality, it is recommended that you use a READ statement that awaits
input data.

� Real and double precision DO control variables and DO loop control expressions

To replace this functionality, it is recommended that you use integer DO variables and
expressions (see DO Constructs).

� Shared DO termination and termination on a statement other than END DO or CONTINUE

To replace this functionality, it is recommended that you use an END DO statement (see Forms
for DO Constructs) or a CONTINUE statement.

Deleted Language Features in Fortran 95

Some language features, considered redundant in FORTRAN 77, are not included in Fortran 95.
However, they are still fully supported by DIGITAL Fortran:

� ASSIGN and assigned GO TO statements
� Assigned FORMAT specifier
� Branching to an END IF statement from outside its IF block
� H edit descriptor
� PAUSE statement
� Real and double precision DO control variables and DO loop control expressions

DIGITAL Fortran flags these features if you specify the /stand compiler option.

For suggested methods to achieve the functionality of these features, see Obsolescent Language
Features in Fortran 90.

Obsolescent Language Features in Fortran 95

Some language features, considered redundant in Fortran 90 are identified as obsolescent in Fortran
95.

DIGITAL Fortran flags these features if you specify the /stand compiler option.

Obsolescent and Deleted Language Features Page 3 of 4

Fortran 90 offers other methods to achieve the functionality of the following obsolescent features:

� Alternate returns

To replace this functionality, it is recommended that you use an integer variable to return a
value to the calling program, and let the calling program use a CASE construct to test the value
and perform operations.

� Arithmetic IF

To replace this functionality, it is recommended that you use an IF statement or construct.

� Assumed-length character functions

To replace this functionality, it is recommended that you use one of the following:

n An automatic character-length function, where the length of the function result is
declared in a specification expression

n A subroutine whose arguments correspond to the function result and the function
arguments

Dummy arguments of a function can still have assumed character length; this feature is not
obsolescent.

� CHARACTER*(*) form of CHARACTER declaration

To replace this functionality, it is recommended that you use the Fortran 90 forms of specifying
a length selector in CHARACTER declarations (see Declaration Statements for Character
Types).

� Computed GO TO statement

To replace this functionality, it is recommended that you use a CASE construct.

� DATA statements among executable statements

This functionality has been included since FORTRAN 66, but is considered to be a potential
source of errors.

� Fixed source form

Newer methods of entering data have made this source form obsolescent and error-prone.

The recommended method for coding is to use free source form.

� Shared DO termination and termination on a statement other than END DO or CONTINUE

To replace this functionality, it is recommended that you use an END DO statement (see Forms

Obsolescent and Deleted Language Features Page 4 of 4

for DO Constructs) or a CONTINUE statement.

� Statement functions

To replace this functionality, it is recommended that you use an internal function.

Additional Language Features Page 1 of 12

Additional Language Features

To facilitate compatibility with older versions of Fortran, DIGITAL Fortran provides the following
additional language features:

� The DEFINE FILE statement
� The ENCODE and DECODE statements
� The FIND statement
� FORTRAN-66 Interpretation of the EXTERNAL Statement
� An alternative syntax for the PARAMETER statement
� The VIRTUAL statement
� An alternative syntax for octal and hexadecimal constants
� An alternative syntax for a record specifier
� An alternate syntax for the DELETE statement
� An alternative form for namelist external records
� The DIGITAL Fortran POINTER statement
� Record structures

These language features are particularly useful in porting older Fortran programs to Fortran 90.
However, you should avoid using them in new programs on these systems, and in new programs for
which portability to other Fortran 90 implementations is important.

FORTRAN-66 Interpretation of the EXTERNAL Statement

If you specify compiler option /f66 , the EXTERNAL statement is interpreted in a way that was
specified by the FORTRAN IV (FORTRAN-66) standard. This interpretation became incompatible
with FORTRAN 77 and later revisions of the Fortran standard.

The FORTRAN-66 interpretation of the EXTERNAL statement combines the functionality of the
INTRINSIC statement with that of the EXTERNAL statement.

This lets you use subprograms as arguments to other subprograms. The subprograms to be used as
arguments can be either user-supplied functions or Fortran 90 library functions.

The FORTRAN-66 EXTERNAL statement takes the following form:

EXTERNAL [*]v [, [*]v]...

*
Specifies that a user-supplied function is to be used instead of a Fortran 90 library function
having the same name.

v
Is the name of a subprogram or the name of a dummy argument associated with the name of a
subprogram.

Rules and Behavior

Additional Language Features Page 2 of 12

The FORTRAN-66 EXTERNAL statement declares that each name in its list is an external function
name. Such a name can then be used as an actual argument to a subprogram, which then can use the
corresponding dummy argument in a function reference or CALL statement.

However, when used as an argument, a complete function reference represents a value, not a
subprogram name; for example, SQRT(B) in CALL SUBR(A, SQRT(B), C). It is not, therefore,
defined in an EXTERNAL statement (as would be the incomplete reference SQRT).

Examples

The following example demonstrates the FORTRAN-66 EXTERNAL statement:

Main Program Subprograms

EXTERNAL SIN, COS, *TAN, SINDEG SUBROUTINE TRIG(X,F,Y)
 . Y = F(X)
 . RETURN
 . END
CALL TRIG(ANGLE, SIN, SINE)
 .
 . FUNCTION TAN(X)
 . TAN = SIN(X)/COS(X)
CALL TRIG(ANGLE, COS, COSINE) RETURN
 . END
 .
 .
CALL TRIG(ANGLE, TAN, TANGNT) FUNCTION SINDEG(X)
 . SINDEG = SIN(X*3.1459/180)
 . RETURN
 . END
CALL TRIG(ANGLED, SINDEG, SINE)

The CALL statements pass the name of a function to the subroutine TRIG. The function reference F
(X) subsequently invokes the function in the second statement of TRIG. Depending on which CALL
statement invoked TRIG, the second statement is equivalent to one of the following:

Y = SIN(X)
Y = COS(X)
Y = TAN(X)
Y = SINDEG(X)

The functions SIN and COS are examples of trigonometric functions supplied in the Fortran 90
library. The function TAN is also supplied in the library, but the asterisk (*) in the EXTERNAL
statement specifies that the user-supplied function be used, instead of the library function. The
function SINDEG is also a user-supplied function. Because no library function has the same name, no
asterisk is required.

Alternative Syntax for the PARAMETER Statement

The PARAMETER statement discussed here is similar to the one discussed in PARAMETER; they
both assign a name to a constant. However, this PARAMETER statement differs from the other one

Additional Language Features Page 3 of 12

in the following ways:

� Its list is not bounded with parentheses.

� The form of the constant, rather than implicit or explicit typing of the name, determines the
data type of the variable.

This PARAMETER statement takes the following form:

PARAMETER c = expr [, c = expr]...

c
Is the name of the constant.

expr
Is an initialization expression. It can be of any data type.

Rules and Behavior

Each name c becomes a constant and is defined as the value of expression expr. Once a name is
defined as a constant, it can appear in any position in which a constant is allowed. The effect is the
same as if the constant were written there instead of the name.

The name of a constant cannot appear as part of another constant, except as the real or imaginary part
of a complex constant. For example:

 PARAMETER I=3
 PARAMETER M=I.25 ! Not allowed
 PARAMETER N=(1.703, I) ! Allowed

The name used in the PARAMETER statement identifies only the name’s corresponding constant in
that program unit. Such a name can be defined only once in PARAMETER statements within the
same program unit.

The name of a constant assumes the data type of its corresponding constant expression. The data type
of a parameter constant cannot be specified in a type declaration statement. Nor does the initial letter
of the constant’s name implicitly affect its data type.

Examples

The following are valid examples of this form of the PARAMETER statement:

 PARAMETER PI=3.1415927, DPI=3.141592653589793238D0
 PARAMETER PIOV2=PI/2, DPIOV2=DPI/2
 PARAMETER FLAG=.TRUE., LONGNAME=’A STRING OF 25 CHARACTERS’

For More Information:

Additional Language Features Page 4 of 12

For details on compile-time constant expressions, see PARAMETER.

Alternative Syntax for Octal and Hexadecimal Constants

In DIGITAL Fortran, you can use an alternative syntax for octal and hexadecimal constants. The
following table shows this alternative syntax and equivalents:

Constant Alternative Syntax Equivalent

Octal '0..7'O O'0..7'

Hexadecimal '0..F'X Z'0..F'

You can use a quotation mark (") in place of an apostrophe in all the above syntax forms.

For More Information:

� See Octal constants.
� See Hexadecimal constants.

Alternative Syntax for a Record Specifier

In DIGITAL Fortran, you can specify the following form for a record specifier in an I/O control list:

'r

r
Is a numeric expression with a value that represents the position of the record to be accessed
using direct access I/O.

The value must be greater than or equal to 1, and less than or equal to the maximum number of
records allowed in the file. If necessary, a record number is converted to integer data type before
being used.

If this nonkeyword form is used in an I/O control list, it must immediately follow the nonkeyword
form of the io-unit specifier.

Alternative Syntax for the DELETE Statement

In DIGITAL Fortran, you can specify the following form of the DELETE statement when deleting
records from a relative file:

DELETE (io-unit'r [, ERR=label] [, IOSTAT=i-var])

io-unit
Is the number of the logical unit containing the record to be deleted.

Additional Language Features Page 5 of 12

r
Is the positional number of the record to be deleted.

label
Is the label of an executable statement that receives control if an error condition occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no
error occurs.

This form deletes the direct access record specified by r.

For More Information:

See also the DELETE statement.

Alternative Form for Namelist External Records

In DIGITAL Fortran, you can use the following form for an external record:

$group-name object = value [object = value]...$[END]

group-name
Is the name of the group containing the objects to be given values. The name must have been
previously defined in a NAMELIST statement in the scoping unit.

object
Is the name (or subobject designator) of an entity defined in the NAMELIST declaration of the
group name. The object name must not contain embedded blanks, but it can be preceded or
followed by blanks.

value
Is a null value, a constant (or list of constants), a repetition of constants in the form r*c, or a
repetition of null values in the form r*.

If more than one object=value or more than one value is specified, they must be separated by value
separators.

A value separator is any number of blanks, or a comma or slash, preceded or followed by any number
of blanks.

For More Information:

� See the NAMELIST statement.
� On namelist input, see Rules for Namelist Sequential READ Statements.
� On namelist output, see Rules for Namelist Sequential WRITE Statements.

Additional Language Features Page 6 of 12

Record Structures

The record structure was defined in earlier versions of DIGITAL Fortran as a language extension. It is
still supported in Visual Fortran, although its functionality has been replaced by standard Fortran 90
derived types. Record structures in existing code can be easily converted to Fortran 90 derived type
structures for portability, but can also be left in their old form. In most cases, a DIGITAL Fortran
record and a Fortran 90 derived type can be used interchangeably.

DIGITAL Fortran record structures are similar to Fortran 90 derived types.

A record structure is an aggregate entity containing one or more elements. (Record elements are also
called fields or components.) You can use records when you need to declare and operate on multi-
field data structures in your programs.

Creating a record is a two-step process:

1. You must define the form of the record with a multistatement structure declaration.

2. You must use a RECORD statement to declare the record as an entity with a name. (More than
one RECORD statement can refer to a given structure.)

Examples

DIGITAL Fortran record structures, using only intrinsic types, easily convert to Fortran 90 derived
types. The conversion can be as simple as replacing the keyword STRUCTURE with TYPE and
removing slash (/) marks. The following shows an example conversion:

Record Structure Fortran 90 Derived-Type

STRUCTURE /employee_name/
 CHARACTER*25 last_name
 CHARACTER*15 first_name
END STRUCTURE
STRUCTURE /employee_addr/
 CHARACTER*20 street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER(4) zip
END STRUCTURE

TYPE employee_name
 CHARACTER*25 last_name
 CHARACTER*15 first_name
END TYPE
TYPE employee_addr
 CHARACTER*20 street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER(4) zip
END TYPE

The record strcutures can be used as subordinate record variables within another record, such as the
employee_data record. The equivalent Fortran 90 derived type would use the derived-type objects as
components in a similar manner, as shown below:

Additional Language Features Page 7 of 12

Record Structure Fortran 90 Derived-Type

STRUCTURE /employee_data/
 RECORD /employee_name/ name
 RECORD /employee_addr/ addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
END STRUCTURE

TYPE employee_data
 TYPE (employee_name) name
 TYPE (employee_addr) addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
END TYPE

The following topics are also related to record structures:

� Structure Declarations
� RECORD Statement
� References to Record Fields
� Aggregate Assignment

Structure Declarations

A structure declaration defines the field names, types of data within fields, and order and alignment
of fields within a record. Fields and structures can be initialized, but records cannot be initialized. For
more information, see STRUCTURE in the A to Z Reference.

The following are related topics:

� Type Declarations
� Substructure Declarations
� Union Declarations

Type Declarations

The syntax of a type declaration within a record structure is identical to that of a normal Fortran type
statement.

The following rules and behavior apply to type declarations in record structures:

� %FILL can be specified in place of a field name to leave space in a record for purposes such as
alignment. This creates an unnamed field.

%FILL can have an array specification; for example:

 INTEGER %FILL (2,2)

Unnamed fields cannot be initialized. For example, the following statement is invalid and

Additional Language Features Page 8 of 12

generates an error message:

 INTEGER %FILL /1980/

� Initial values can be supplied in field declaration statements. Unnamed fields cannot be
initialized; they are always undefined.

� Field names must always be given explicit data types. The IMPLICIT statement does not
affect field declarations.

� Any required array dimensions must be specified in the field declaration statements.
DIMENSION statements cannot be used to define field names.

� Adjustable or assumed sized arrays and assumed-length CHARACTER declarations are not
allowed in field declarations.

Substructure Declarations

A field within a structure can itself be a structured item composed of other fields, other structures, or
both. You can declare a substructure in two ways:

� By nesting structure declarations within other structure or union declarations (with the
limitation that you cannot refer to a structure inside itself at any level of nesting).

One or more field names must be defined in the STRUCTURE statement for the substructure,
because all fields in a structure must be named. In this case, the substructure is being used as a
field within a structure or union.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict.

� By using a RECORD statement that specifies another previously defined record structure,
thereby including it in the structure being declared.

See the example in STRUCTURE for a sample structure declaration containing both a nested
structure declaration (TIME) and an included structure (DATE).

References to Record Fields

References to record fields must correspond to the kind of field being referenced. Aggregate field
references refer to composite structures (and substructures). Scalar field references refer to singular
data items, such as variables.

An operation on a record can involve one or more fields.

Record field references take one of the following forms:

Aggregate Field Reference

Additional Language Features Page 9 of 12

record-name [.aggregate-field-name] ...

Scalar Field Reference

record-name [.aggregate-field-name]scalar-field-name

record-name
Is the name used in a RECORD statement to identify a record.

aggregate-field-name
Is the name of a field that is a substructure (a record or a nested structure declaration) within
the record structure identified by the record name.

scalar-field-name
Is the name of a data item (having a data type) defined within a structure declaration.

Rules and Behavior

Records and record fields cannot be used in EQUIVALENCE statements. However, you can make
fields of record structures equivalent to themselves by using the UNION and MAP statements in a
structure declaration.

Records and record fields cannot be used in DATA statements, but individual fields can be initialized
in the STRUCTURE definition.

An automatic array cannot be a record field.

A scalar field reference consists of the name of a record (as specified in a RECORD statement) and
zero or more levels of aggregate field names followed by the name of a scalar field. A scalar field
reference refers to a single data item (having a data type) and can be treated like a normal reference to
a Fortran variable or array element.

You can use scalar field references in statement functions and in executable statements. However,
they cannot be used in COMMON, SAVE, NAMELIST, or EQUIVALENCE statements, or as the
control variable in an indexed DO-loop.

Type conversion rules for scalar field references are the same as those for variables and array
elements.

An aggregate field reference consists of the name of a record (as specified in a RECORD statement)
and zero or more levels of aggregate field names.

You can only assign an aggregate field to another aggregate field (record = record) if the records have
the same structure. DIGITAL Fortran supports no other operations (such as arithmetic or comparison)
on aggregate fields.

DIGITAL Fortran requires qualification on all levels. While some languages allow omission of
aggregate field names when there is no ambiguity as to which field is intended, DIGITAL Fortran

Additional Language Features Page 10 of 12

requires all aggregate field names to be included in references.

You can use aggregate field references in unformatted I/O statements; one I/O record is written no
matter how many aggregate and array name references appear in the I/O list. You cannot use
aggregate field references in formatted, namelist, and list-directed I/O statements.

You can use aggregate field references as actual arguments and record dummy arguments. The
declaration of the dummy record in the subprogram must match the form of the aggregate field
reference passed by the calling program unit; each structure must have the same number and types of
fields in the same order. The order of map fields within a union declaration is irrelevant.

Records are passed by reference. Aggregate field references are treated like normal variables. You
can use adjustable arrays in RECORD statements that are used as dummy arguments.

Note: Because periods are used in record references to separate fields, you should not use
relational operators (.EQ., .XOR.), logical constants (.TRUE., .FALSE.), and logical
expressions (.AND., .NOT., .OR.) as field names in structure declarations.

Examples

The following examples show record and field references. Consider the following structure
declarations:

Structure DATE:

 STRUCTURE /DATE/
 INTEGER*1 DAY, MONTH
 INTEGER*2 YEAR
 STRUCTURE

Structure APPOINTMENT:

 STRUCTURE /APPOINTMENT/
 RECORD /DATE/ APP_DATE
 STRUCTURE /TIME/ APP_TIME(2)
 INTEGER*1 HOUR, MINUTE
 END STRUCTURE
 CHARACTER*20 APP_MEMO(4)
 LOGICAL*1 APP_FLAG
 END STRUCTURE

The following RECORD statement creates a variable named NEXT_APP and a 10-element array
named APP_LIST. Both the variable and each element of the array take the form of the structure
APPOINTMENT.

 RECORD /APPOINTMENT/ NEXT_APP,APP_LIST(10)

Each of the following examples of record and field references are derived from the previous structure
declarations and RECORD statement:

Additional Language Features Page 11 of 12

Aggregate Field References

� The record NEXT_APP:

 NEXT_APP

� The field APP_DATE, a 4-byte array field in the record array APP_LIST(3):

 APP_LIST(3).APP_DATE

Scalar Field References

� The field APP_FLAG, a LOGICAL field of the record NEXT_APP:

 NEXT_APP.APP_FLAG

� The first character of APP_MEMO(1), a CHARACTER*20 field of the record NEXT_APP:

 NEXT_APP.APP_MEMO(1)(1:1)

For More Information:

� See the RECORD statement.
� On specification of fields within structure declarations, see the STRUCTURE statement.
� On structure declarations, see the STRUCTURE statement.
� On UNION and MAP statements, see the UNION statement.
� On alignment of data, see your programmer’s guide.

Aggregate Assignment

For aggregate assignment statements, the variable and expression must have the same structure as the
aggregate they reference.

The aggregate assignment statement assigns the value of each field of the aggregate on the right of an
equal sign to the corresponding field of the aggregate on the left. Both aggregates must be declared
with the same structure.

Examples

The following example shows valid aggregate assignments:

 STRUCTURE /DATE/
 INTEGER*1 DAY, MONTH
 INTEGER*2 YEAR
 END STRUCTURE

Additional Language Features Page 12 of 12

 RECORD /DATE/ TODAY, THIS_WEEK(7)
 STRUCTURE /APPOINTMENT/
 ...
 RECORD /DATE/ APP_DATE
 END STRUCTURE

 RECORD /APPOINTMENT/ MEETING

 DO I = 1,7
 CALL GET_DATE (TODAY)
 THIS_WEEK(I) = TODAY
 THIS_WEEK(I).DAY = TODAY.DAY + 1
 END DO
 MEETING.APP_DATE = TODAY

Character and Key Code Charts Page 1 of 6

Character and Key Code Charts

This section contains the ASCII and ANSI character code charts, and the Key code charts that are
available on Windows NT and Windows 95 systems. Other character sets are available on OpenVMS
and DIGITAL UNIX systems; for details, see the printed DIGITAL Fortran Language Reference
Manual.

For details on the Fortran 90 character set, see Character Sets.

ASCII Character Codes

The ASCII character code charts contain the decimal and hexadecimal values of the extended ASCII
(American Standards Committee for Information Interchange) character set. The extended character
set includes the ASCII character set (Chart 1) and 128 other characters for graphics and line drawing
(Chart 2), often called the "IBM® character set".

ASCII Character Codes Chart 1

Character and Key Code Charts Page 2 of 6

ASCII Character Codes Chart 2 (IBM character set)

Character and Key Code Charts Page 3 of 6

ANSI Character Codes

The ANSI character code chart lists the extended character set of most of the programs used by
Windows. The codes of the ANSI (American National Standards Institute) character set from 32
through 126 are displayable characters from the ASCII character set. The ANSI characters displayed
as solid blocks are undefined characters and may appear differently on output devices.

ANSI Character Codes Chart

Character and Key Code Charts Page 4 of 6

Key Codes

Some keys, such as function keys, cursor keys, and ALT+KEY combinations, have no ASCII code.
When a key is pressed, a microprocessor within the keyboard generates an "extended scan code" of
two bytes.

The first (low-order) byte contains the ASCII code, if any. The second (high-order) byte has the scan
code--a unique code generated by the keyboard when a key is either pressed or released. Because the
extended scan code is more extensive than the standard ASCII code, programs can use it to identify
keys which do not have an ASCII code.

For more details on key codes, see:

� Key Codes Chart 1
� Key Codes Chart 2

Key Codes Chart 1

Character and Key Code Charts Page 5 of 6

Key Codes Chart 2

Character and Key Code Charts Page 6 of 6

Data Representation Models Page 1 of 4

Data Representation Models

Several of the numeric intrinsic functions are defined by a model set for integers (for each intrinsic
kind used) and reals (for each real kind used). The bit functions are defined by a model set for bits
(binary digits).

For more information on the range of values for each data type (and kind), see your programmer’s
guide.

This section discusses the following topics:

� The model for Integer Data
� The model for Real Data
� The model for Bit Data

Model for Integer Data

In general, the model set for integers is defined as follows:

The following values apply to this model set:

� i is the integer value.
� s is the sign (either +1 or -1).
� q is the number of digits (a positive integer).
� r is the radix (an integer greater than 1).
� wk is a nonnegative number less than r.

The model for INTEGER(4) follows:

The following example shows the general integer model for i = -20 using a base (r) of 2:

i = (-1) x (0 x 20 + 0 x 21 + 1 x 22 + 0 x 23 + 1 x 24)

i = (-1) x (4 + 16)

i = -1 x 20

i = -20

Data Representation Models Page 2 of 4

Model for Real Data

The model set for reals, in general, is defined as one of the following:

The following values apply to this model set:

� x is the real value.
� s is the sign (either +1 or -1).
� b is the base (real radix; an integer greater than 1).
� p is the number of mantissa digits (an integer greater than 1). The number of digits differs

depending on the real format, as follows:

IEEE S_floating 24

DIGITAL VAX F_floating 1 24

IEEE T_floating 53

DIGITAL VAX D_floating 1 53 2

DIGITAL VAX G_floating 1 53

1VMS only
2The memory format for VAX D_floating format is 56 mantissa digits, but computationally it is 53 digits. It is
considered to have 53 digits by DIGITAL Fortran.

� e is an integer in the range emin to emax inclusive. This range differs depending on the real

format, as follows:

emin

emax

IEEE S_floating -125 128

DIGITAL VAX F_floating 1 -127 127

IEEE T_floating -1021 1024

DIGITAL VAX D_floating 1 -127 127

DIGITAL VAX G_floating 1 -1023 1023

Data Representation Models Page 3 of 4

1VMS only

� fk is a nonnegative number less than b (f1 is also nonzero).

For x = 0, its exponent e and digits fk are defined to be zero.

The model set for single-precision real (REAL(4)) is defined as one of the following:

The following example shows the general real model for x = 20.0 using a base (b) of 2:

x = 1 x 25 x (1 x 2-1 + 0 x 2-2 + 1 x 2-3)

x = 1 x 32 x (.5 + .125)

x = 32 x (.625)

x = 20.0

Model for Bit Data

The model set for bits (binary digits) interprets a nonnegative scalar data object of type integer as a
sequence, as follows:

The following values apply to this model set:

� j is the integer value.
� s is the number of bits.
� wk is a bit value of 0 or 1.

The bits are numbered from right to left beginning with 0.

The following example shows the bit model for j = 1001 (integer 9) using a bit number (s) of 4:

Data Representation Models Page 4 of 4

j = (w0 x 20) + (w1 x 21) + (w2 x 22) + (w3 x 23)

j = 1 + 0 + 0 + 8

j = 9

FORTRAN 77 Syntax Page 1 of 7

FORTRAN 77 Syntax

This section contains the syntax for the following features of ANSI FORTRAN 77:

� FORTRAN 77 Data Types
� FORTRAN 77 Intrinsic Functions
� FORTRAN 77 Statements

All are recognized by Visual Fortran without the use of special compiler options, except in certain
special instances.

FORTRAN 77 Data Types

The data types defined by ANSI FORTRAN 77 are as follows:

� INTEGER
� REAL
� DOUBLE PRECISION
� COMPLEX
� LOGICAL
� CHARACTER [*n], where n is between 1 and 32,767

The data type of a variable, symbolic constant, or function can be declared in a specification
statement. If its type is not declared, the compiler determines a data type by the first letter of the
variable, constant, or function name. A type statement can also dimension an array variable.

Default requirements for these data types are listed in the following table:

Type Bytes

INTEGER 4

REAL 4

DOUBLE PRECISION 8

COMPLEX 8

LOGICAL 4

CHARACTER 1

CHARACTER*n n 1

1 Where the maximum n is 32,767.

FORTRAN 77 Intrinsic Functions

FORTRAN 77 Syntax Page 2 of 7

Function syntax Type of return value

ABS (gen) Same as argument

ACOS (real) Same as argument

AIMAG (cmp8) REAL

AINT (real) Same as argument

ALOG (real4) REAL

ALOG10 (real4) REAL

AMAX0 (intA, intB [, intC] ..) REAL

AMAX1 (real4A, real4B, [, real4C]...) REAL

AMIN0 (intA, intB [, intC]...) REAL

AMIN1 (real4A, real4B [, real4C]...) REAL

AMOD (value, mod) REAL

ANINT (value) REAL

ASIN (real) Same as argument

ATAN (real) Same as argument

ATAN2 (realA, realB) Same as argument

CABS (cmp) Same as argument; COMPLEX returns REAL

CCOS (cmp8) COMPLEX

CHAR (int) CHARACTER

CLOG (cmp8) COMPLEX

CMPLX (genA [, genB]) COMPLEX

CONJG (cx8value) COMPLEX

COS (gen) Same as argument

COSH (real) Same as argument

CSIN (cmp8) COMPLEX

CSQRT (cx8value) COMPLEX

DABS (r8value) DOUBLE PRECISION

FORTRAN 77 Syntax Page 3 of 7

DACOS (dbl) DOUBLE PRECISION

DASIN (dbl) DOUBLE PRECISION

DATAN (dbl) DOUBLE PRECISION

DATAN2 (dblA, dblB) DOUBLE PRECISION

DBLE (value) DOUBLE PRECISION

DCOS (dbl) DOUBLE PRECISION

DCOSH (dbl) DOUBLE PRECISION

DDIM (dblA, dblB) DOUBLE PRECISION

DEXP (dbl) DOUBLE PRECISION

DIM (genA, genB) Same as arguments

DINT (rvalue) DOUBLE PRECISION

DLOG (dbl) DOUBLE PRECISION

DLOG10 (dbl) DOUBLE PRECISION

DMAX1 (dblA, dblB [, dblC]...) DOUBLE PRECISION

DMIN1 (dblA, dblB [dblC]...) DOUBLE PRECISION

DMOD (value, mod) DOUBLE PRECISION

DNINT (dbl) DOUBLE PRECISION

DPROD (real4A, real4B) DOUBLE PRECISION

DREAL (cxvalue) DOUBLE PRECISION

DSIGN (dblA, dblB) DOUBLE PRECISION

DSIN (dbl) DOUBLE PRECISION

DSINH (dbl) DOUBLE PRECISION

DSQRT (rvalue) DOUBLE PRECISION

DTAN (dbl) DOUBLE PRECISION

DTANH (dbl) DOUBLE PRECISION

EXP (gen) Same as argument

FLOAT (ivalue) REAL

FORTRAN 77 Syntax Page 4 of 7

IABS (int) Same as argument

ICHAR (char) INTEGER

IDIM (intA, intB) INTEGER

IDINT (dbl) INTEGER

IDNINT (dbl) INTEGER

IFIX (real4) REAL

INDEX (charA, charB) INTEGER

INT (gen) INTEGER

ISIGN (intA, intB) INTEGER

LEN (char) INTEGER

LGE (charA, charB) LOGICAL

LGT (charA, charB) LOGICAL

LLE (charA, charB) LOGICAL

LLT (charA, charB) LOGICAL

LOG (gen) Same as argument

LOG10 (real) Same as argument

MAX (genA, genB [, genC]...) INTEGER or REAL

MAX0 (intA, intB [, intC]...) INTEGER

MAX1 (realA, realB [, realC]...) INTEGER

MIN (genA, genB [, genC]...) INTEGER or REAL

MIN0 (intA, intB [, intC]...) INTEGER

MIN1 (realA, real [, real]...) INTEGER

MOD (genA, genB) REAL

NINT (real) INTEGER

REAL (gen) REAL

SIGN (genA, genB) INTEGER or REAL

SIN (gen) Same as argument

FORTRAN 77 Syntax Page 5 of 7

SINH (real) Same as argument

SNGL(dbl) REAL

SQRT (gen) Same as argument

TAN (real) Same as argument

TANH (real) Same as argument

FORTRAN 77 Statements

ASSIGN label TO variable

BACKSPACE {unitspec |
([UNIT=]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck])}

BLOCK DATA [blockdataname]

CALL sub [([actuals])]

CHARACTER [*chars] vname [*length] [(dim)] [, vname [*length] [(dim)]

CLOSE ([UNIT=]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck]
[, STATUS=status])

COMMON [/[cname] /] nlist,] / [cname] /nlist] ...

COMPLEX vnam [(dim)] [,vname [(dim)]]...

CONTINUE

DATA nlist /clist/ [[,] nlist /clist/]...

DIMENSION array ([lower:]upper [, {[lower:]upper])

DO [label [,]] dovar = start, stop [, inc]

DOUBLE PRECISION vname [(dim)] [,vname [(dim)]]...

ELSE
statementblock

ELSE IF (expression) THEN

FORTRAN 77 Syntax Page 6 of 7

statementblock

END

END IF

ENDFILE {unitspec |
([UNIT=] unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck])}

ENTRY ename [([formal [,formal]...])]

EQUIVALENCE (nlist) [, (nlist)]...

EXTERNAL name [,name]...

FORMAT [editlist]

[type] FUNCTION func ([formal] [,formal]...)

GOTO variable [[,] (labels)]

GOTO (labels) [,] n

GOTO label

IF (expression) label1, label2, label3

IF (expression) statement

IF (expression) THEN
statementblock1
[ELSE IF (expression) THEN
statementblock2] ...
[ELSE
statementblock3]
END IF

IMPLICIT type (letters) [, type (letters)]...

INQUIRE ({[UNIT=]unitspec | FILE=file}
[, ACCESS=access]
[, BLANK=blank] [, DIRECT=direct] [, ERR=errlabel] [, EXIST=exist] [,
FORM=form]
[, FORMATTED=formatted] [, IOSTAT=iocheck]
[, NAME=name] [, NAMED=named]
[, NEXTREC=nextrec] [, NUMBER=num] [, OPENED=opened]

FORTRAN 77 Syntax Page 7 of 7

[, RECL=recl] [, SEQUENTIAL=seq] [, UNFORMATTED=unformatted])

INTEGER vname [(dim)] [, vname [(dim)]] ...

INTRINSIC names

LOGICAL vname [(dim)] [, vname [(dim)]]...

OPEN ([UNIT=]unitspec [, ACCESS=access]
[, BLANK=blanks]
[, ERR=errlabel] [, FILE=file]
[, FORM=form] [, IOSTAT=iocheck]
[, RECL=recl] [, STATUS=status])

PARAMETER (name=constexpr [, name=constexpr]...)

PAUSE [prompt]

PRINT { *, | formatspec | } [, iolist]

PROGRAM program-name

READ { formatspec, | ([UNIT=] unitspec [, [FMT=]
formatspec] [, END=endlabel] [, ERR=errlabel]
[, IOSTAT=iocheck] [, REC=rec])} iolist

REAL vname [(dim)] [, vname [(dim)]] ...

RETURN [ordinal]

REWIND { unitspec |
([UNIT=]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck])}

SAVE [names]

STOP [message]

SUBROUTINE subr [([formal [, formal]...])]

WRITE ([UNIT=] unitspec
[, [FMT=] formatspec]
[, ERR=errlabel]
[, IOSTAT=iocheck]
[, REC=rec])
iolist

Summary of Language Extensions Page 1 of 9

Summary of Language Extensions

This appendix summarizes the DIGITAL Fortran language extensions to the ANSI/ISO Fortran 90
Standard.

For more information, see the following sections:

� DIGITAL Fortran Language Extensions

� High Performance Fortran Language Extensions

DIGITAL Fortran Language Extensions

This section summarizes the DIGITAL Fortran language extensions. Most extensions are available on
all systems, but some extensions are limited to certain systems. If an extension is limited, it is labeled.

Extensions in the following topics are discussed:

� Source Forms
� Names
� Character Sets
� Intrinsic Data Types
� Constants
� Derived Data Types
� Arrays
� Expressions and Assignment
� Specification Statements
� Procedures
� Compilation Control Statements
� Built-In Functions
� I/O Statements
� I/O Formatting
� File Operation Statements
� Compiler Directives
� Additional Language Features
� Intrinsic Procedures

For more information, see High Performance Fortran Language Extensions.

Source Forms

The following are extensions to the methods and rules for source forms:

� Tab-formatting as a method to code lines
� The letter D as a debugging statement indicator in column 1 of fixed or tab source form
� An optional statement field width of 132 columns for fixed or tab source form
� An optional sequence number field for fixed source form

Summary of Language Extensions Page 2 of 9

� Up to 511 continuation lines in a source program

Names

The following are extensions to the Fortran 90 rules for names (see names):

� Names can contain up to 63 characters

� The dollar sign ($) is a valid character in names, and can be the first character

Character Sets

The following are extensions to the Fortran 90 character set:

� The Tab (<Tab>) character (see Character Sets)
� The DEC Multinational extension to the ASCII character set (VMS, U*X) 1

� ASCII Character Code Chart 2--IBM Character Set (WNT, W95)
� ANSI Character Code Chart (WNT, W95)
� Key Code Charts (WNT, W95)

1 See the printed DIGITAL Fortran Language Reference Manual.

Intrinsic Data Types

The following are data-type extensions:

BYTE INTEGER*1 REAL*8 2

LOGICAL*1 INTEGER*2 REAL*16 3

LOGICAL*2 INTEGER*4 COMPLEX*8

LOGICAL*4 INTEGER*8 1 COMPLEX*16 2

LOGICAL* 8 1 REAL*4

1 Alpha only
2 D_floating and G_floating implementations are available on OpenVMS systems only.
3 VMS, U*X

For more information, see Intrinsic Data Types.

Constants

Hollerith constants are allowed as an extension.

Summary of Language Extensions Page 3 of 9

C Strings are allowed as extensions in character constants.

Derived Data Types

As an extension, default initial values for derived-type components can be specified in a derived-type
definition.

Arrays

As an extension, arrays declared using the ALLOCATABLE attribute can be automatically
deallocated.

Expressions and Assignment

When operands of different intrinsic data types are combined in expressions, conversions are
performed as necessary (see Data Type of Numeric Expressions).

Binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric constants are
allowed.

The following are extensions allowed in logical expressions:

� .XOR. as a synonym for .NEQV.
� Integers as valid logical items

As an extension, the WHERE construct can include nested WHERE constructs and a masked
ELSEWHERE statement. WHERE constructs can also be named.

The FORALL construct and statement are extensions.

Specification Statements

The following specification attributes and statements are extensions:

� AUTOMATIC attribute and statement
� STATIC attribute and statement
� VOLATILE attribute and statement

Procedures

The ELEMENTAL and PURE prefixes are allowed in user-defined functions and subroutines as
extensions.

As an extension, the END INTERFACE statement of an interface block defining a generic routine
can specify a generic identifier.

Summary of Language Extensions Page 4 of 9

Compilation Control Statements

The following statements are extensions that can influence compilation:

� INCLUDE statement format (VMS only):

INCLUDE ’[text-lib] (module-name) [/[NO]LIST]’

� OPTIONS statement:

 /ASSUME = [NO]UNDERSCORE (Alpha only)

 {ALL }
 {[NO]BOUNDS }
 /CHECK = {[NO]OVERFLOW }
 {[NO]UNDERFLOW }
 {NONE }

 /NOCHECK

 {BIG_ENDIAN }
 {CRAY }
 {FDX }
 {FGX }
 /CONVERT = {IBM }
 {LITTLE_ENDIAN }
 {NATIVE }
 {VAXD }
 {VAXG }

 /[NO]EXTEND_SOURCE
 /[NO]F77

 {D_FLOAT (VMS only) }
 /FLOAT = {G_FLOAT (VMS only) }
 {IEEE_FLOAT }

 /[NO]G_FLOATING (VMS only)
 /[NO]I4
 /[NO]RECURSIVE

Built-In Functions

The %VAL, %REF, %DESCR, and %LOC built-in functions are extensions.

I/O Statements

The following I/O statements and specifiers are extensions:

� ACCEPT statement
� REWRITE statement
� TYPE statements as synonyms for PRINT statements

Summary of Language Extensions Page 5 of 9

� A key-field-value specifier as a control list parameter (VMS only)
� A key-of-reference specifier as a control list parameter (VMS only)

� Indexed READ Statement (VMS only)

� Indexed WRITE Statement (VMS only)

As an extension, comments (beginning with !) are allowed in namelist input data.

I/O Formatting

The following are extensions allowed in I/O Formatting:

� The Q edit descriptor
� The dollar sign ($) edit descriptor and carriage-control character
� The backslash (\) edit descriptor
� The ASCII NUL carriage-control character
� Variable format expressions
� In output using I, B, O, Z, and F edit descriptors, the specified value of the field width can be

zero. (See General Rules for Numeric Editing.)

File Operation Statements

The following statement specifiers and statements are extensions:

� CLOSE statement specifiers:

n STATUS values: ’SAVE’ (as a synonym for ’KEEP’), ’PRINT’, ’PRINT/DELETE’,
’SUBMIT’, ’SUBMIT/DELETE’

n DISPOSE (or DISP)

� DELETE statement

� INQUIRE statement specifiers:

n ACCESS value: ’KEYED’ (VMS only)

n BINARY (WNT, W95)

n BUFFERED
n BLOCKSIZE (WNT, W95)

n CARRIAGECONTROL
n CONVERT
n DEFAULTFILE
n FORM values: ’UNKNOWN’, ’BINARY’ (WNT, W95)

n IOFOCUS (WNT, W95)

n KEYED (VMS only)

n MODE as a synonym for ACTION (WNT, W95)

n ORGANIZATION
n RECORDTYPE
n SHARE (WNT, W95)

Summary of Language Extensions Page 6 of 9

See also INQUIRE Statement.

� OPEN statement specifiers:

n ACCESS values: ’KEYED’ (VMS only), ’APPEND’
n ASSOCIATEVARIABLE
n BLOCKSIZE
n BUFFERCOUNT
n BUFFERED
n CARRIAGECONTROL
n CONVERT
n DEFAULTFILE
n DISPOSE
n EXTENDSIZE (VMS only)

n FORM value: ’BINARY’ (WNT, W95)

n INITIALSIZE (VMS only)

n IOFOCUS (WNT, W95)

n KEY (VMS only)

n MAXREC
n MODE as a synonym for ACTION (WNT, W95)

n NAME as a synonym for FILE
n NOSPANBLOCKS (VMS only)

n ORGANIZATION
n READONLY
n RECORDSIZE as a synonym for RECL
n RECORDTYPE
n SHARE (WNT, W95)

n SHARED
n TITLE (WNT, W95)

n TYPE as a synonym for STATUS
n USEROPEN

See also OPEN Statement.

� UNLOCK statement

Compiler Directives

The following General Compiler Directives are extensions:

� ALIAS
� ATTRIBUTES
� DECLARE and NODECLARE
� DEFINE and UNDEFINE
� FIXEDFORMLINESIZE
� FREEFORM and NOFREEFORM
� IDENT

Summary of Language Extensions Page 7 of 9

� IF and IF DEFINED
� INTEGER
� MESSAGE
� OBJCOMMENT
� OPTIONS
� PACK
� PSECT
� REAL
� STRICT and NOSTRICT
� SUBTITLE
� TITLE

Intrinsic Procedures

The following intrinsic procedures are extensions:

ACOSD CPU_TIME IDATE QEXT 4

ASIND DATE ISHA QFLOAT 4

ASM 1 DCMPLX ISHC RAN

ATAND DFLOAT ISHL RANDU

ATAN2D DREAL ISNAN SECNDS

CDABS 2 EOF LEADZ SIND

CDCOS 2 ERRSNS LOC SIZEOF

CDEXP 2 EXIT MALLOC TAND

CDLOG 2 FP_CLASS MULT_HIGH 2 TIME

CDSIN 2 FREE NULL TRAILZ

CDSQRT 2 IARGCOUNT 3 NWORKERS ZEXT

COSD IARGPTR POPCNT

COTAN IBCHNG POPPAR

1 Alpha only

2 Double precision complex intrinsics can also begin with the letter Z. For example, CDABS can also
be spelled ZABS.

Summary of Language Extensions Page 8 of 9

3 VMS only

4 VMS, U*X

The following INTEGER(8) specific functions are extensions available on Alpha processors:

AKMAX0 KIBCLR KIFIX KMIN0

AKMIN0 KIBITS KINT KMIN1

BKTEST KIBSET KIOR KMOD

DFLOTK KIDIM KISHFT KNINT

FLOATK KIDINT KISIGN KNOT

KIABS KIDNNT KMAX0 KZEXT

KIAND KIEOR KMAX1

As an extension, the keyword KIND can be specified for CEILING and FLOOR.

As an extension, SIGN can distinguish between positive and negative zero.

Additional Language Features

The following are language extensions that facilitate compatibility with other versions of Fortran:

� DEFINE FILE statement
� ENCODE and DECODE statements
� FIND statement
� An alternative syntax for the PARAMETER statement
� VIRTUAL statement
� AND, OR, XOR, IMAG, LSHIFT, RSHIFT intrinsics (see the A to Z Reference)
� An alternative syntax for octal and hexadecimal constants
� An alternative syntax for an I/O record specifier
� An alternate syntax for the DELETE statement
� An alternative form for namelist external records
� The DIGITAL Fortran 77 POINTER statement
� Record structures

High Performance Fortran Language Extensions

This section summarizes the High Performance Fortran language extensions to the Fortran 90
standard.

Summary of Language Extensions Page 9 of 9

The following extensions are discussed:

� Data Parallel Statements
� Procedure Prefixes
� Intrinsic Procedures

For information on other extensions, see DIGITAL Fortran Language Extensions.

Data Parallel Statements

The following statement and construct are extensions:

� FORALL statement
� FORALL construct with multiple assignments

FORALL is also a Fortran 95 feature.

Procedure Prefixes

The following prefixes are allowed in functions and subroutines as extensions:

� PURE - this is also a Fortran 95 feature.
� EXTRINSIC (HPF) - functional only on DIGITAL UNIX systems
� EXTRINSIC (HPF_LOCAL) - functional only on DIGITAL UNIX systems
� EXTRINSIC (HPF_SERIAL) - functional only on DIGITAL UNIX systems

Intrinsic Procedures

System Inquiry Intrinsic Procedures

The following intrinsic procedures are extensions:

� NUMBER_OF_PROCESSORS intrinsic function
� PROCESSORS_SHAPE intrinsic function

Computational Intrinsic Functions

The argument DIM is an extension in the MAXLOC and MINLOC intrinsic functions. This use of
argument DIM is also a Fortran 95 feature.

Bit Manipulation Functions

The ILEN intrinsic function is an extension.

A to Z Reference
This section contains the following:

o Language Summary Tables

This section organizes the functions, subroutines, and statements available in Visual Fortran by the
operations they perform. You can use the tables to locate a particular routine for a particular task.

o The descriptions of all Visual Fortran statements and intrinsics, which are listed in alphabetical
order.

The Fortran compiler understands statements and intrinsic functions in your program without any
additional information, such as that provided in modules.

However, modules must be included in the following types of programs:

o Programs that contain run-time or graphics functions and subroutines must specifically include the
Visual Fortran library and graphics modules with the USE DFLIB statement.

o Programs that contain Portability procedures must access the Portability library with the USE
DFPORT statement.

o Programs that use NLS procedures must access the NLS library with the USE DFNLS statement.

o Programs that use Dialog procedures must access the Dialog library with the USE DFLOGM
statement.

o Programs that use Component Object Module (COM) and Automation servers must access the
appropriate libraries with the USE DFCOMTY statement, as well as the USE DFCOM or USE
DFAUTO statement, whichever is appropriate.

Whenever required, these USE module statements are prominent in the A to Z Reference.

In addition to the appropriate USE statement, you must specify the types of libraries to be used when
linking:

o When using the visual development environment, the project type selected and the project settings
in the Libraries category (see Categories of Compiler Options) determine the libraries linked
against. Also see Errors During the Build Process.

o When using the command line (DF command), see Using the Compiler and Linker from the
Command Line and Categories of Compiler Options (especially the options under the Libraries
category).

Return to the Language Reference Contents

Language Summary Tables Page 1 of 55

Language Summary Tables

In the following tables, optional arguments for intrinsic procedures are enclosed between brackets:
[optional arg]. The argument names given in the tables are the keyword names. Keywords allow you
to specify optional arguments without regard to order. For example, when invoking PRODUCT
(ARRAY [, DIM][, MASK]), you can skip the argument DIM by using the statement: array3 =
PRODUCT(array1, MASK = array2).

The Fortran procedures and statements have been organized into the following tables:

� Program Unit Calls and Definition
� Program Control Statements and Procedures
� Specifying Variables
� System, Drive, and Directory Procedures
� File Management
� Input/Output Procedures
� Random Numbers
� Date and Time Procedures
� Keyboard and Speaker Procedures
� Error Handling
� Argument Inquiry
� Memory Allocation and Deallocation Procedures
� Array Procedures
� Numeric and Type Conversion Procedures
� Trigonometric, Exponential, Root, and Logarithmic Procedures
� Floating-Point Inquiry and Control Procedures
� Character Procedures
� Bit Operation and Representation Procedures
� QuickWin Procedures
� Graphics Procedures
� Dialog Procedures
� Compiler Directives
� National Language Standard Procedures
� Portability Procedures
� COM and Automation Procedures
� Miscellaneous Run-Time Procedures (FOR_* routines)
� Functions Not Allowed as Actual Arguments

For more information on keywords, see Argument Keywords in Intrinsic Procedures. For information
on using procedures in general, see Program Units and Procedures.

Program Unit Calls and Definitions: table

All the following are statements:

Language Summary Tables Page 2 of 55

Name Description

BLOCK DATA Identifies a block-data subprogram

CALL Executes a subroutine

COMMON Delineates variables shared between program units

CONTAINS Identifies start of a module within a host module

ENTRY Specifies a secondary entry point to a subroutine or external function

EXTERNAL Declares a user-defined subroutine or function to be passable as an argument

FUNCTION Identifies a program unit as a function

INCLUDE Inserts the contents of a specified file into the source file

INTERFACE Specifies an explicit interface for external functions and subroutines

INTRINSIC Declares a predefined function

MODULE Identifies a module program unit

PROGRAM Identifies a program unit as a main program

RETURN Returns control to the program unit that called a subroutine or function

SUBROUTINE Identifies a program unit as a subroutine

USE Gives a program unit access to a module

Program Control Statements and Procedures: table

Name Description

Statements

CASE Within a SELECT CASE structure, marks a block of statements that are
executed if an associated value matches the SELECT CASE expression

CONTINUE Often used as the target of GOTO or as the terminal statement in a DO loop;
performs no operation

CYCLE Advances control to the end statement of a DO loop; the intervening loop
statements are not executed

DO Evaluates statements in the DO loop, through and including the ending
statement, a specific number of times

DO WHILE Evaluates statements in the DO WHILE loop, through and including the ending

Language Summary Tables Page 3 of 55

statement, until a logical condition becomes .FALSE.

ELSE Introduces an ELSE block

ELSE IF Introduces an ELSE IF block

ELSEWHERE Introduces an ELSEWHERE block

END Marks the end of a program unit

END DO Marks the end of a series of statements following a DO or DO WHILE
statement

END
FORALL

Marks the end of a series of statements following a block FORALL statement

END IF Marks the end of a series of statements following a block IF statement

END
SELECT

Marks the end of a SELECT CASE statement

END WHERE Marks the end of a series of statements following a block WHERE statement

EXIT Leaves a DO loop; execution continues with the first statement following

FORALL Controls conditional execution of other statements

GOTO Transfers control to a specified part of the program

IF Controls conditional execution of other statement(s)

PAUSE Suspends program execution and, optionally, executes operating-system
commands

SELECT
CASE

Transfers program control to a block of statements, determined by a controlling
argument

STOP Terminates program execution

WHERE Controls conditional execution of other statements

Routines

EXIT CALL EXIT(exitvalue). Run-time Subroutine. Terminates the program, flushes
and closes all open files, and returns control to the operating system

RAISEQQ RAISEQQ(sig). Run-time Function. Sends an interrupt to the executing
program, simulating an interrupt from the operating system

SIGNALQQ SIGNALQQ(sig, func). Run-time Function. Controls signal handling

SLEEPQQ CALL SLEEPQQ(duration). Run-time Subroutine. Delays execution of the
program for the specified time

Language Summary Tables Page 4 of 55

Specifying Variables: table

The following are all statements:

Name Description

AUTOMATIC Declares a variable on the stack, rather than at a static memory
location.

BYTE Specifies variables as the BYTE data type; BYTE is equivalent to
INTEGER(1).

CHARACTER Specifies variables as the CHARACTER data type.

COMPLEX Specifies variables as the COMPLEX data type.

DATA Assigns initial values to variables.

DIMENSION Identifies a variable as an array and specifies the number of
elements.

DOUBLE COMPLEX Specifies variables as the DOUBLE COMPLEX data type,
equivalent to COMPLEX(8).

DOUBLE PRECISION Specifies variables as the DOUBLE-PRECISION real data type,
equivalent to REAL(8).

EQUIVALENCE Specifies that two or more variables or arrays share the same
memory location.

IMPLICIT Specifies the default typing for real and integer variables and
functions.

INTEGER Specifies variables as the INTEGER data type.

LOGICAL Specifies variables as the LOGICAL data type.

MAP...END MAP Within a UNION statement, delimits a group of variable type
declarations that are to be ordered contiguously within memory.

NAMELIST Declares a group name for a set of variables to be read or written in
a single statement.

PARAMETER Equates a constant expression with a name.

REAL Specifies variables as the REAL data type.

RECORD Declares one or more variables of a user-defined structure type.

SAVE Causes variables to retain their values between invocations of the
procedure in which they are defined.

Language Summary Tables Page 5 of 55

STATIC Declares a variable is in a static memory location, rather than on the
stack.

STRUCTURE...END
STRUCTURE

Defines a new variable type, composed of a collection of other
variable types.

TYPE...END TYPE Defines a new variable type, composed of a collection of other
variable types.

UNION...END UNION Within a structure, causes two or more maps to occupy the same
memory locations.

VOLATILE Specifies that the value of an object is totally unpredictable based
on information available to the current program unit.

System, Drive, and Directory Procedures: table

All the following are run-time functions:

Name Description

CHANGEDIRQQ CHANGEDIRQQ(dir). Makes the specified directory the current
(default) directory.

CHANGEDRIVEQQ CHANGEDRIVEQQ(drive). Makes the specified drive the current drive.

DELDIRQQ DELDIRQQ(dir). Deletes a specified directory.

GETDRIVEDIRQQ GETDRIVEDIRQQ(drivedir). Returns the current drive and directory
path.

GETDRIVESIZEQQ GETDRIVESIZEQQ(drive, total, avail). Gets the size of the specified
drive.

GETDRIVESQQ GETDRIVESQQ(). Reports the drives available to the system.

GETENVQQ GETENVQQ(varname, value). Gets a value from the current
environment.

MAKEDIRQQ MAKEDIRQQ(dirname). Makes a directory with the specified directory
name.

RUNQQ RUNQQ(filename, commandline). Calls another program and waits for it
to execute

SETENVQQ SETENVQQ(varvalue). Adds a new environment variable, or sets the
value of an existing one.

SYSTEMQQ SYSTEMQQ(commandline). Executes a command by passing a
command string to the operating system’s command interpretor.

Language Summary Tables Page 6 of 55

File Management: table

Name Procedure
Type Description

DELFILESQQ Run-time
Function

DELFILESQQ(files). Deletes the specified files in a
specified directory.

FINDFILEQQ Run-time
Function

FINDFILEQQ(filename, varname, pathbuf). Searches
for a file in the directories specified in the PATH
environment variable.

FULLPATHQQ Run-time
Function

FULLPATHQQ(name, pathbuf). Returns the full path
for a specified file or directory.

GETDRIVEDIRQQ Run-time
Function

GETDRIVEDIRQQ(drivedir). Returns current drive
and directory path.

GETFILEINFOQQ Run-time
Function

GETFILEINFOQQ(files, buffer, handle). Returns
information about files with names that match a request
string.

PACKTIMEQQ Run-time
Subroutine

PACKTIMEQQ(timedate, iyr, imon, iday, ihr, imin,
isec). Packs time values for use by SETFILETIMEQQ.

RENAMEFILEQQ Run-time
Function

RENAMEFILEQQ(oldname, newname). Renames a
file.

SETFILEACCESSQQ Run-time
Function

SETFILEACCESSQQ(filename, access). Sets file-
access mode for the specified file.

SETFILETIMEQQ Run-time
Function

SETFILETIMEQQ(filename, timedate). Sets
modification time for a given file.

SPLITPATHQQ Run-time
Function

SPLITPATHQQ(path, drive, dir, name, ext). Breaks a
full path into four components.

UNPACKTIMEQQ Run-time
Subroutine

UNPACKTIMEQQ(timedate, iyr, imon, iday, ihr, imin,
isec). Unpacks a file’s packed time and date value into its
component parts.

Input/Output Procedures: table

Language Summary Tables Page 7 of 55

Name Procedure
Type Description

ACCEPT Statement Similar to a formatted, sequential READ statement.

BACKSPACE Statement Positions a file to the beginning of the previous record.

CLOSE Statement Disconnects the specified unit.

DELETE Statement Deletes a record from a relative file.

ENDFILE Statement Writes an end-of-file record.

EOF Intrinsic
Function

EOF(unit). Checks for end-of-file record. .TRUE. if at or
past end-of-file.

INQUIRE Statement Returns the properties of a file or unit.

OPEN Statement Associates a unit number with an external device or file.

PRINT (or
TYPE)

Statement Displays data on the screen.

READ Statement Transfers data from a file to the items in an I/O list.

REWIND Statement Repositions a file to its first record.

REWRITE Statement Rewrites the current record.

UNLOCK Statement Frees a record in a relative or sequential file that was locked
by a previous READ statement.

WRITE Statement Transfers data from the items in an I/O list to a file

Random Number Procedures: table

Note: Square brackets [...] denote optional arguments.

Name Procedure
Type Description

RAN Intrinsic
function

result = RAN(i). Returns the next number from a
sequence of pseudorandom numbers of uniform
distribution over the range 0 to 1.

RANDOM Run-time
Subroutine

CALL RANDOM(ranval). Returns a pseudorandom
real value greater than or equal to zero and less than one.

RANDOM_NUMBER Intrinsic CALL RANDOM_NUMBER(harvest). Returns a

Language Summary Tables Page 8 of 55

Subroutine pseudorandom real value greater than or equal to zero
and less than one.

RANDOM_SEED Intrinsic
Subroutine

CALL RANDOM_SEED([size] [, put] [, get]). Changes
the starting point of RANDOM_NUMBER; takes one
or no arguments.

RANDU Intrinsic
Subroutine

CALL RANDU(i1, i2, x). Computes a pseudorandom
number as a single-precision value.

SEED Run-time
Subroutine

CALL SEED(seedval). Changes the starting point of
RANDOM.

Date and Time Procedures: table

Note: Square brackets [...] denote optional arguments.

Name Procedure
Type Description

CPU_TIME Intrinsic
Subroutine

CALL CPU_TIME (time). Returns the processor time in
seconds.

DATE Intrinsic
Subroutine

CALL DATE (buf). Returns the ASCII representation of
the current date (in dd-mmm-yy form).

DATE_AND_TIME Intrinsic
Subroutine

CALL DATE_AND_TIME([date] [, time] [, zone] [,
values]). Returns the date and time.

GETDAT Run-time
Subroutine

CALL GETDAT (iyr, imon, iday). Returns the date.

GETTIM Run-time
Subroutine

CALL GETTIM (ihr, imin, isec, i100th). Returns the
time.

IDATE Intrinsic
Subroutine

CALL IDATE (i, j, k). Returns three integer values
representing the current month, day, and year.

SETDAT Run-time
Function

SETDAT (iyr, imon, iday). Sets the date.

SETTIM Run-time
Function

SETTIM (ihr, imin, isec, i100th). Sets the time.

SYSTEM_CLOCK Intrinsic
Subroutine

CALL SYSTEM_CLOCK (count, count_rate,
count_max). Returns data from the system clock.

TIME Intrinsic
Subroutine

CALL TIME (buf). Returns the ASCII representation of
the current time (in hh:mm:ss form).

Language Summary Tables Page 9 of 55

Keyboard and Speaker Procedures: table

Name Procedure
Type Description

BEEPQQ Run-time
Subroutine

CALL BEEPQQ(freq, duration). Sounds the speaker for a
specified duration in milliseconds at a specified frequency in
Hertz.

GETCHARQQ Run-time
Function

GETCHARQQ(). Returns the next keyboard keystroke.

GETSTRQQ Run-time
Function

GETSTRQQ(buffer). Reads a character string from the
keyboard using buffered input.

PEEKCHARQQ Run-time
Function

PEEKCHARQQ(). Checks the buffer to see if a keystroke is
waiting.

Error Handling: table

Name Procedure
Type Description

GETLASTERRORQQ Run-time
Function

GETLASTERRORQQ(). Returns the last error set by
a run-time function or subroutine.

MATHERRQQ1 Run-time
Subroutine

CALL MATHERRQQ(name, len, info, retcode).
Replaces default error handling for errors from intrinsic
math functions.

SETERRORMODEQQ Run-time
Subroutine

CALL SETERRORMODEQQ(prompt). Sets the
mode for handling critical errors.

1 x86 only

Argument Inquiry: table

Note: Square brackets [...] denote optional arguments.

Name Procedure
Type Description Argument/Function

Type

ALLOCATED Intrinsic
Function

ALLOCATED(array). Determines
whether an allocatable array is
allocated

array: allocatable
array

result: Logical scalar

Language Summary Tables Page 10 of 55

ASSOCIATED Intrinsic
Function

ASSOCIATED(pointer[, target]).
Determines whether a pointer and
(optional) target are associated.

pointer: any type

target: any type

result: Logical

DIGITS Intrinsic
Function

DIGITS(x). Returns number of
significant digits for data of the same
type as x.

x: Integer or Real

result: Integer

EPSILON Intrinsic
Function

EPSILON(x). Returns the smallest
positive number that when added to
one produces a number greater than
one for data of the same type as x.

x: Real

result: same type as x

GETARG Run-time
Subroutine

CALL GETARG(n, buffer[, status]).
Returns the specified command line
argument (where the command itself
is argument number zero).

n: INTEGER(2) or
INTEGER(4)

buffer: Character*(*)

status: INTEGER(2)

HUGE Intrinsic
Function

HUGE(x). Returns the largest number
that can be represented by numbers of
type x.

x: Integer or Real

result: same type as x

ILEN Intrinsic
Function

ILEN(i). Returns the length (in bits)
of the two’s complement
representation of an integer.

i: Integer.

result: same type as i

KIND Intrinsic
Function

KIND(x). Returns the value of the
kind parameter of x.

x: any intrinsic type

result: Integer

LOC Intrinsic
Function

LOC(a). Returns the address of a. a
can be a variable, function call,
expression, or constant.

a: any type

result: INTEGER(4)

%LOC Intrinsic
Function

Same as LOC.

MAXEXPONENT Intrinsic
Function

MAXEXPONENT(x). Returns the
largest positive decimal exponent for
data of the same type as x.

x: Real

result: INTEGER(4)

MINEXPONENT Intrinsic
Function

MINEXPONENT(x). Returns the
largest negative decimal exponent for
data of the same type as x.

x: Real

result: INTEGER(4)

NARGS Run-time NARGS(). Returns the total number result: INTEGER(4)

Language Summary Tables Page 11 of 55

Function of command-line arguments, including
the command.

PRECISION Intrinsic
Function

PRECISION(x). Returns the number
of significant digits for data of the
same type as x.

x: Real or Complex

result: INTEGER(4)

PRESENT Intrinsic
Function

PRESENT(a). Determines whether an
optional argument is present.

a: any type

result: Logical

RADIX Intrinsic
Function

RADIX(x). Returns the base for data
of the same type as x.

x: Integer or Real

result: INTEGER(4)

RANGE Intrinsic
Function

RANGE(x). Returns the decimal
exponent range for data of the same
type as x.

x: Integer, Real or
Complex

result: INTEGER(4)

SELECTED_
INT_KIND

Intrinsic
Function

SELECTED_INT_KIND(r). Returns
the value of the kind parameter of
integers in range r.

r: Integer

result: Integer

SELECTED_
REAL_KIND

Intrinsic
Function

SELECTED_REAL_KIND([p], [r]).
Returns the value of the kind
parameter of reals with (optional) p
digits and (optional) r exponent range.
At least one optional argument is
required.

p: Integer

r: Integer

result: Integer

SIZEOF Intrinsic
Function

SIZEOF(x). Returns the number of
bytes of storage used by the argument.

x: any type

result: INTEGER(4)

TINY Intrinsic
Function

TINY(x). Returns the smallest postive
number that can be represented by
numbers of type x.

x: Real

result: same type as x

Memory Allocation and Deallocation Procedures: table

Name Procedure
Type Description Argument/Function

Type

ALLOCATE Statement Dynamically establishes allocatable
array dimensions.

ALLOCATED Intrinsic ALLOCATED(array). Determines array: allocatable

Language Summary Tabless Page 12 of 55

Function whether an allocatable array is
allocated.

array

result: Logical scalar

DEALLOCATE Statement Frees the storage space previously
reserved in an ALLOCATE statement.

FREE Intrinsic
Subroutine

FREE(addr). Frees the memory block
specified by the integer pointer addr.

addr: INTEGER(4)

MALLOC Intrinsic
Function

MALLOC(size). Allocates a memory
block of size size bytes and returns an
integer pointer to the block.

size: INTEGER(4)

result: INTEGER(4)

Array Procedures: table

Note: Square brackets [...] denote optional arguments.

Name Procedure
Type Description Argument/Function Type

ALL Intrinsic
Function

ALL(mask[, dim]). Determines
whether all array values meet
the conditions in mask along
(optional) dimension dim.

mask: Logical

dim: Integer

result: Logical and a scalar if
dim is absent or mask is one-
dimensional; otherwise, one
dimension smaller than mask

ANY Intrinsic
Function

ANY(mask[, dim]). Determines
whether any array values meet
the conditions in mask along
(optional) dimension dim.

mask: Logical

dim: Integer

result: Logical and a scalar if
dim is absent or mask is one-
dimensional; otherwise, one
dimension smaller than mask

BSEARCHQQ Run-time
Function

BSEARCHQQ(adr1, adr2,
length, size). Performs a binary
search for a specified element
on a sorted one-dimensional
array of non-structure data types
(derived types are not allowed).

adr1: INTEGER(4)

adr2: INTEGER(4)

length: INTEGER(4)

size: INTEGER(4)

result: INTEGER(4)

Language Summary Tables Page 13 of 55

COUNT Intrinsic
Function

COUNT(mask[, dim]). Counts
the number of array elements
that meet the conditions in mask
along (optional) dimension dim.

mask: Logical

dim: Integer

result: Integer and a scalar if
dim is absent or array is one-
dimensional; otherwise, one-
dimension smaller than mask

CSHIFT Intrinsic
Function

CSHIFT(array, shift [, dim]).
Performs a circular shift along
(optional) dimension dim.

array: any type

shift: Integer

dim: Integer

result: same type and shape
as array

DIMENSION Statement Identifies a variable as an array
and specifies the number of
elements.

DOT_PRODUCT Intrinsic
Function

DOT_PRODUCT(vector_a,
vector_b). Performs dot-product
multiplication on vectors (one-
dimensional arrays).

vector_a: any except
Character

vector_b: same type and size
as vector_a

result: a scalar of the same
type as vector_a

EOSHIFT Intinsic
Function

EOSHIFT(array, shift [,
boundary] [, dim]). Shifts
elements off one end of array
along (optional) dimension dim
and copies (optional) boundary
values in other end.

array: any type

shift: Integer

boundary: same as array

dim: Integer

result: same type and shape
as array

LBOUND Intrinsic LBOUND(array [, dim]). array: any type

Language Summary Tables Page 14 of 55

Function Returns lower dimensional
bound(s) of an array along
dimension dim (optional).

dim: Integer

result: Integer and a scalar if
dim is absent or array is one-
dimensional; otherwise, a
vector

MATMUL Intrinsic
Function

MATMUL(matrix_a,
matrix_b). Performs matrix
multiplication on matrices (two-
dimensional arrays).

matrix_a: any except
Character

matrix_b: same as matrix_a

result: same type as matrix_a

MAXLOC Intrinsic
Function

MAXLOC(array[, dim] [,
mask]). Returns the location of
the maximum value in an array
meeting conditions in (optional)
mask along optional dimension
dim.

array: Integer or Real

dim: Integer

mask: Logical

result: Integer vector whose
size is equal to the number of
dimensions in array

MAXVAL Intrinsic
Function

MAXVAL(array [, dim] [,
mask]). Returns the maximum
value in an array along
(optional) dimension dim that
meets conditions in (optional)
mask.

array: Integer or Real

dim: Integer

mask: Logical

result: same type as array
and a scalar if dim is absent
or array is one-dimensional;
otherwise, one dimension
smaller than array

MERGE Intrinsic
Function

MERGE(tsource, fsource,
mask). Merges two arrays
according to conditions in mask.

tsource: any type

fsource: same type and shape
as tsource

mask: Logical

result: same type and shape
as tsource

MINLOC Intrinsic MINLOC(array [, dim] [, array: Integer or Real

Language Summary Tables Page 15 of 55

Function mask]). Returns the location of
the minimum value in an array
meeting conditions in (optional)
mask along optional dimension
dim.

dim: Integer

mask: Logical

result: Integer vector whose
size is equal to the number of
dimensions in array

MINVAL Intrinsic
Function

MINVAL(array [, dim] [,
mask]). Returns the minimum
value in an array along
(optional) dimension dim that
meets conditions in (optional)
mask.

array: Integer or Real

dim: Integer

mask: Logical

result: same type as array
and a scalar if dim is absent
or array is one-dimensional;
otherwise, one dimension
smaller than array

PACK Intrinsic
Function

PACK(array, mask [,vector]).
Packs an array into a vector
(one-dimensional array) of
(optional) size vector using
mask.

array: any type

mask: Logical

vector: same as array

result: a vector (one-
dimensional array) of the
same type as array

PRODUCT Intrinsic
Function

PRODUCT(array [, dim] [,
mask]). Returns product of
elements of an array along
(optional) dimension dim that
meet conditions in (optional)
mask.

array: Integer, Real or
Complex

dim:Integer

mask: Logical

result: same type as array
and a scalar if dim is absent
or array is one-dimensional;
otherwise, one dimension
smaller than array

RESHAPE Intrinsic RESHAPE(source, shape [, source: any type

Language Summary Tables Page 16 of 55

Function pad] [, order]).

Reshapes an array with
subscript order (optional),
padded with array elements pad
(optional).

shape: Integer

pad: same as source

order: Integer

result: same type as source
and same shape as shape

SHAPE Intrinsic
Function

SHAPE(source). Returns the
shape of an array.

source: any type

result: a vector (one-
dimensional array) of the
same type as source

SIZE Intrinsic
Function

SIZE(array [, dim]). Returns
the extent of array along
dimension dim (optional).

array: any type

dim: Integer

result: Integer scalar

SORTQQ Run-time
Subroutine

CALL SORTQQ(addr, count,
size). Sorts a one-dimensional
array of non-structure data types
(derived types are not allowed).

addr: INTEGER(4)

count: INTEGER(4)

size: INTEGER(4)

SPREAD Intrinsic
Function

SPREAD(source, dim,
ncopies). Replicates an array by
adding a dimension.

source: any type

dim: Integer

ncopies: Integer

result: same type as source
and one dimension larger

SUM Intrinsic
Function

SUM(array [, dim] [, mask]).
Sums array elements along
dimension dim (optional) that
meet conditions of mask
(optional).

array: Integer, Real or
Complex

dim: Integer

mask: Logical

result: same type as array
and a scalar if dim is absent
or array is one-dimensional;
otherwise, one dimension
smaller than array

Language Summary Tables Page 17 of 55

TRANSPOSE Intrinsic
Function

TRANSPOSE(matrix).
Transposes a two-dimensional
array.

matrix: any type

result: a two-dimensional
array the same type as matrix

UBOUND Intrinsic
Function

UBOUND(array [, dim]).
Returns upper dimensional
bound(s) of an array along
dimension dim (optional).

array: any type

dim: Integer

result: same type as array
and a scalar if dim is absent
or array is one-dimensional;
otherwise, a vector.

UNPACK Intrinsic
Function

UNPACK(vector, mask, field).
Unpacks a vector (one-
dimensional array) into an array
under mask padding with values
from field.

vector: any type

mask: Logical

field: same as vector

result: same type as vector
and same shape as mask

Numeric and Type Conversion Procedures: table

Note: Square brackets [...] denote optional arguments.

Name Procedure
Type Description Argument/Function Type

ABS Intrinsic
Function

ABS(a). Returns absolute value of
a. When ABS is passed as an
argument, a must be REAL(4).

a: Integer, Real or Complex

result: same type as a, except
Real for Complex

AIMAG Intrinsic
Function

AIMAG (z). Returns imaginary part
of complex number z.

z: COMPLEX(4)

result: REAL(4)

AINT Intrinsic
Function

AINT (a[, kind]). Truncates a to
whole number of specified kind
(optional). When AINT is passed as
an argument, a must be REAL(4).

a: Real

kind: Integer

result: Real of type kind if
present; else same as a

AMAX0 Intrinsic AMAX0(a1, a2 [, a3...]). Returns All a: INTEGER(4)

Language Summary Tables Page 18 of 55

Function largest value among integer
arguments as real. result: REAL(4)

AMIN0 Intrinsic
Function

AMIN0(a1, a2 [, a3...]). Returns
smallest value among integer
arguments as real.

All a: INTEGER(4)

result: REAL(4)

ANINT Intrinsic
Function

ANINT(a [, kind]). Rounds to
nearest whole number of specified
kind (optional). When ANINT is
passed as an argument, a must be
REAL(4).

a: Real

kind: Integer

result: Real of type kind if
present; else same as a

CEILING Intrinsic
Function

CEILING(a [, kind]). Returns
smallest integer greater than a.

a: Real kind: Integer

result: INTEGER(4)

CMPLX Intrinsic
Function

CMPLX(x [,y] [,kind]). Converts x
and (optional) y to complex of
(optional) kind.

x: Integer, Real, or Complex.

y: Integer or Real; cannot
appear if x is complex type

kind: Integer

result: Complex of type kind if
present; otherwise, single-
precision complex

CONJG Intrinsic
Function

CONJG(z). Returns the conjugate
of a complex number.

z: COMPLEX(4)

result: COMPLEX(4)

DBLE Intrinsic
Function

DBLE(a). Converts a to double
precision type.

a: Integer, Real, or Complex.

result: REAL(8)

DCMPLX Intrinsic
Function

DCMPLX(x [, y]). Converts the
argument to double complex type.

x: Integer, Real, or Complex.

y: Integer or Real; cannot
appear if x is complex type

result: Double complex

DFLOAT Intrinsic
Function

DFLOAT(a). Converts an integer
to double precision type.

a: Integer

result: REAL(8)

DIM Intrinsic DIM(x, y). Returns x-y if positive; x: Integer or Real

Language Summary Tables Page 19 of 55

Function else 0. When DIM is passed as an
argument, a must be REAL(4). y: same as x

result: same type as x

DPROD Intrinsic
Function

DPROD(x, y). Returns double-
precision product of single
precision x and y.

x: REAL(4)

y: REAL (4)

result: REAL(8)

FLOAT Intrinsic
Function

FLOAT(i). Converts i to REAL(4). i: Integer

result: REAL(4)

FLOOR Intrinsic
Function

FLOOR(a[,kind]). Returns the great-
est integer less than or equal to a.

a: Real kind: Integer

result: Integer

IFIX Intrinsic
Function

IFIX(a). Converts a single-
precision real argument to an
integer argument by truncating.

x: REAL(4)

result: Default integer (usually
INTEGER(4))

IMAG Intrinsic
Function

Same as AIMAG.

INT Intrinsic
Function

INT(a [, kind]). Converts a value to
integer type.

a: Integer, Real, or Complex

kind: Integer

result: Integer of type kind if
present; else same as a

LOGICAL Intrinsic
Function

LOGICAL(l [, kind]). Converts
between logical arguments of
(optional) kind.

l: Logical

kind: Integer

MAX Intrinsic
Function

MAX(a1, a2 [, a3...]). Returns
largest value among arguments.

All a: any type

result: same type as a

MAX1 Intrinsic
Function

MAX1(a1, a2 [, a3...]). Returns
largest value among real arguments
as integer.

All a: Real(4)

result: Integer

MIN Intrinsic
Function

MIN(a1, a2 [, a3...]). Returns
largest value among arguments.

All a: any type

result: same type as a

MIN1 Intrinsic MIN1(a1, a2 [, a3...]). Returns All a: REAL(4)

Language Summary Tables Page 20 of 55

Function smallest value among real
arguments as integer. result: Integer

MOD Intrinsic
Function

MOD(a, p). Returns remainder of
a/p. When MOD is passed as an
argument, a must be integer .

a: Integer or Real

p: same as a

result: same type as a

MODULO Intrinsic
Function

MODULO(a, p). Returns a modulo
p.

a: Integer or Real

p: same as a

result: same type as a

NINT Intrinsic
Function

NINT(a [, kind]). Returns the
nearest integer to a.

a: Real

kind: Integer

result: Integer of type kind if
present; else see Reference
entry

REAL Intrinsic
Function

REAL(a [, kind]). Converts a value
to real type.

a: Integer, Real, or Complex

result: REAL(4)

SIGN Intrinsic
Function

SIGN(a, b). Returns absolute value
of a times the sign of b. When
SIGN is passed as an argument, a
must be REAL(4).

a: Integer or Real

b: same as a

result: same type as a

SNGL Intrinsic
Function

SNGL(a). Converts a double-
precision argument to single-
precision real type.

a: REAL(8)

result: REAL(4)

TRANSFER Intrinsic
Function

TRANSFER(source, mold[, size]).
Transforms first argument into type
of second argument with (optional)
size if array.

source: any type

mold: any type

size: Integer

result: same type as mold

ZEXT Intrinsic
Function

ZEXT(x). Extends x with zeros. a: Logical or Integer

result: Default integer (usually
INTEGER(4))

Language Summary Tables Page 21 of 55

Trigonometric, Exponential, Root, and Logarithmic Procedures: table

Name Description Argument/Function
Type

ACOS ACOS(x). Returns the arc cosine of x in radians between 0
and pi. When ACOS is passed as an argument, x must be
REAL(4).

x: Real

result: same type as x

ACOSD ACOSD(x). Returns the arc cosine of x in degrees between
0 and 180. When ACOSD is passed as an argument, x
must be REAL(4).

x: Real

result: same type as x

ALOG ALOG(x). Returns natural log of x. x: REAL(4)

result: REAL(4)

ALOG10 ALOG10(x). Returns common log (base 10) of x. x: REAL(4)

result: REAL(4)

ASIN ASIN(x). Returns arc sine of x in radians between ±pi/2.
When ASIN is passed as an argument, x must be REAL
(4).

x: Real

result: same type as x

ASIND ASIND(x). Returns arc sine of x in degrees between ±90°.
When ASIND is passed as an argument, x must be REAL
(4).

x: Real

result: same type as x

ATAN ATAN(x). Returns arc tangent of x in radians between
±pi/2. When ATAN is passed as an argument, x must be
REAL(4).

x: Real

result: same type as x

ATAND ATAND(x). Returns arc tangent of x in degrees between
±90°. When ATAND is passed as an argument, x must be
REAL(4).

x: Real

result: same type as x

ATAN2 ATAN2(y, x). Returns the arc tangent of y/x in radians
between ±pi . When ATAN2 is passed as an argument, y
and x must be REAL(4).

y: Real

x: same as y

result: same type as y

ATAN2D ATAN2D(y, x). Returns the arc tangent of y/x in degrees
between ±180°. When ATAN2D is passed as an argument,
y and x must be REAL(4).

y: Real

x: same as y

result: same type as y

Language Summary Tables Page 22 of 55

CCOS CCOS(x). Returns complex cosine of x. x: COMPLEX(4)

result: COMPLEX(4)

CDCOS CDCOS(x). Returns double-precision complex cosine of x. x: COMPLEX(8)

result: COMPLEX(8)

CDEXP CDEXP(x). Returns double-precision complex value of
e**x.

x: COMPLEX(8)

result: COMPLEX(8)

CDLOG CDLOG(x). Returns double-precision complex natural log
of x.

x: COMPLEX(8)

result: COMPLEX(8)

CDSIN CDSIN(x). Returns double-precision complex sine of x. x: COMPLEX(8)

result: COMPLEX(8)

CDSQRT CDSQRT(x). Returns double-precision complex square
root of x.

x COMPLEX(8)

result: COMPLEX(8)

CEXP CEXP(x). Returns complex value of e**x. x: COMPLEX(4)

result: COMPLEX(4)

CLOG CLOG(x). Returns complex natural log of x. x: COMPLEX(4)

result: COMPLEX(4)

COS COS(x). Returns cosine of x radians. When COS is passed
as an argument, x must be REAL(4).

x: Real or Complex

result: same type as x

COSD COSD(x). Returns cosine of x degrees. When COSD is
passed as an argument, x must be REAL(4).

x: Real

result: same type as x

COSH COSH(x). Returns the hyperbolic cosine of x. When
COSH is passed as an argument, x must be REAL(4).

x: Real

result: same type as x

COTAN COTAN (x). Returns cotangent of x in radians. x: Real

result: same type as x

COTAND COTAND (x). Returns cotangent of x in degrees. x: Real

result: same type as x

Language Summary Tables Page 23 of 55

CSIN CSIN(x). Returns complex sine of x. x: COMPLEX(4)

result: COMPLEX(4)

CSQRT CSQRT(x). Returns complex square root of x. x: COMPLEX(4)

result: COMPLEX(4)

DACOS DACOS(x). Returns double-precision arc cosine of x in
radians between 0 and pi.

x: REAL(8)

result: REAL(8)

DACOSD DACOSD(x). Returns the arc cosine of x in degrees
between 0 and 180. When DACOSD is passed as an
argument, x must be REAL(4).

x: REAL(8)

result: REAL(8)

DASIN DASIN(x). Returns double-precision arc sine of x in
radians between ±pi/2.

x: REAL(8)

result: REAL(8)

DASIND DASIND(x). Returns double-precision arc sine of x in
degrees between ±90°.

x: REAL(8)

result: REAL(8)

DATAN DATAN(x). Returns double-precision arc tangent of x in
radians between ±pi/2.

x: REAL(8)

result: REAL(8)

DATAND DATAND(x). Returns double-precision arc tangent of x in
degrees between ±90°.

x: REAL(8)

result: REAL(8)

DATAN2 DATAN2(y, x). Returns double-precision arc tangent of
y/x in radians between ±pi.

y: REAL(8)

x: REAL(8)

result: REAL(8)

DATAN2D DATAN2D(y, x). Returns double-precision arc tangent of
y/x in degrees between ±180°.

y: REAL(8)

x: REAL(8)

result: REAL(8)

DCOS DCOS(x). Returns double-precision cosine of x in radians. x: REAL(8)

result: REAL(8)

DCOSD DCOSD(x). Returns double-precision cosine of x in x: REAL(8)

Language Summary Tables Page 24 of 55

degrees.
result: REAL(8)

DCOSH DCOSH(x). Returns double-precision hyperbolic cosine of
x.

x: REAL(8)

result: REAL(8)

DCOTAN DCOTAN(x). Returns double-precision cotangent of x. x: REAL(8)

result: REAL(8)

DEXP DEXP(x). Returns double-precision value of e**x x: REAL(8)

result: REAL(8)

DLOG DLOG(x). Returns double-precision natural log of x. x: REAL(8)

result: REAL(8)

DLOG10 DLOG10(x). Returns double-precision common log (base
10) of x.

x: REAL(8)

result: REAL(8)

DSIN DSIN(x). Returns double-precision sin of x in radians. x: REAL(8)

result: REAL(8)

DSIND DSIND(x). Returns double-precision sin of x in degrees. x: REAL(8)

result: REAL(8)

DSINH DSINH(x). Returns double-precision hyperbolic sine of x. x: REAL(8)

result: REAL(8)

DSQRT DSQRT(x). Returns double-precision square root of x. x: REAL(8)

result: REAL(8)

DTAN DTAN(x). Returns double-precision tangent of x in
radians.

x: REAL(8)

result: REAL(8)

DTAND DTAND(x). Returns double-precision tangent of x in
degrees.

x: REAL(8)

result: REAL(8)

DTANH DTANH(x). Returns double-precision hyperbolic tangent
of x.

x: REAL(8)

result: REAL(8)

EXP EXP(x). Returns value of e**x. When EXP is passed as an x: Real or Complex

Language Summary Tables Page 25 of 55

argument, x must be REAL(4).
result: same type as x

LOG LOG(x) Returns the natural log of x. x: Real or Complex

result: same type as x

LOG10 LOG10(x). Returns the common log (base 10) of x. x: Real

result: same type as x

SIN SIN(x). Returns the sine of x radians. When SIN is passed
as an argument, x must be REAL(4).

x: Real or Complex

result: same type as x

SIND SIND(x). Returns the sine of x degrees. When SIND is
passed as an argument, x must be REAL(4).

x: Real

result: same type as x

SINH SINH(x). Returns the hyperbolic sine of x. When SINH is
passed as an argument, x must be REAL(4).

x: Real

result: same type as x

SQRT SQRT(x). Returns the square root of x. When SQRT is
passed as an argument, x must be REAL(4).

x: Real or Complex

result: same type as x

TAN TAN(x). Returns the tangent of x radians. When TAN is
passed as an argument, x must be REAL(4).

x: Real

result: same type as x

TAND TAND(x). Returns the tangent of x degrees. When TAND
is passed as an argument, x must be REAL(4).

x: Real

result: same type as x

TANH TANH(x). Returns the hyperbolic tangent of x. When
TANH is passed as an argument, x must be REAL(4).

x: Real

result: same type as x

Floating-Point Inquiry and Control Procedures: table

Note: Certain functions (EXPONENT, FRACTION, NEAREST, RRSPACING, SCALE,
SET_EXPONENT and SPACING) return values related to components of the model set of real
numbers. For a description of this model, see the Model for Real Data.

Language Summary Tables Page 26 of 55

Name Procedure
Type Description Argument/Function

Type

DIGITS Intrinsic
Function

DIGITS(x). Returns number of
significant digits for data of the
same type as x.

x: Integer or Real

result: Integer

EPSILON Intrinsic
Function

EPSILON(x). Returns the
smallest positive number that
when added to one produces a
number greater than one for data
of the same type as x.

x: Real

result: same type as x

EXPONENT Intrinsic
Function

EXPONENT(x). Returns the
exponent part of the
representation of x.

x: Real

result: Integer

FRACTION Intrinsic
Function

FRACTION(x). Returns the
fractional part of the
representation of x.

x: Real

result: same type as x

GETCONTROLFPQQ1 Run-time
Subroutine

GETCONTROLFPQQ(control).
Returns the value of the floating-
point processor control word.

control: INTEGER
(2)

GETSTATUSFPQQ1 Run-time
Subroutine

GETSTATUSFPQQ(status).
Returns the value of the floating-
point processor status word.

status: INTEGER(2)

HUGE Intrinsic
Function

HUGE(x). Returns largest
number that can be represented by
data of type x.

x: Integer or Real

result: same type as x

LCWRQQ1 Run-time
Subroutine

Same as SETCONTROLFPQQ.

MAXEXPONENT Intrinsic
Function

MAXEXPONENT(x). Returns
the largest positive decimal
exponent for data of the same type
as x.

x: Real

result: INTEGER(4)

MINEXPONENT Intrinsic
Function

MINEXPONENT(x). Returns the
largest negative decimal exponent
for data of the same type as x.

x: Real

result: INTEGER(4)

NEAREST Intrinsic NEAREST(x, s). Returns the x: Real

Language Summary Tables Page 27 of 55

Function nearest different machine
representable number to x in the
direction of the sign of s.

s: Real and not zero

result: same type as x

PRECISION Intrinsic
Function

PRECISION(x). Returns the
number of significant digits for
data of the same type as x.

x: Real or Complex

result: INTEGER(4)

RADIX Intrinsic
Function

RADIX(x). Returns the base for
data of the same type as x.

x: Integer or Real

result: INTEGER(4)

RANGE Intrinsic
Function

RANGE(x). Returns the decimal
exponent range for data of the
same type as x.

x: Integer, Real or
Complex

result: INTEGER(4)

RRSPACING Intrinsic
Function

RRSPACING(x). Returns the
reciprocal of the relative spacing
of numbers near x.

x: Real

result: same type as x

SCALE Intrinsic
Function

SCALE(x, i). Multiplies x by 2
raised to the power of i.

x: Real

i: Integer

result: same type as x

SCWRQQ1 Run-time
Subroutine

Same as GETCONTROLFPQQ.

SETCONTROLFPQQ1 Run-time
Subroutine

SETCONTROLFPQQ
(controlword). Sets the value of
the floating-point processor
control word.

controlword:
INTEGER(2)

SET_EXPONENT Intrinsic
Function

SET_EXPONENT(x, i). Returns
a number whose fractional part is
x and whose exponential part is i.

x: Real

i: Integer

result: same type as x

SPACING Intrinsic
Function

SPACING(x). Returns the
absolute spacing of numbers near
x.

x: Real

result: same type as x

SSWRQQ1 Run-time
Subroutine

Same as GETSTATUSFPQQ.

TINY Intrinsic TINY(x). Returns smallest x: Real

Language Summary Tables Page 28 of 55

Function postive number that can be
represented by data of type x. result: same type as x

1 x86 only

See also Miscellaneous Run-Time Procedures: table.

Character Procedures: table

Note: Square brackets [...] denote optional arguments.

Name Procedure
Type Description Argument/Function Type

ACHAR Intrinsic
Function

ACHAR(i). Returns character in
position i in the ASCII sequence

i: Integer from 0 to 255

result: CHARACTER(1)

ADJUSTL Intrinsic
Function

ADJUSTL(string). Adjusts left,
removing leading blanks and
inserting trailing blanks

string: Character*(*)

result: same type as string

ADJUSTR Intrinsic
Function

ADJUSTR(string). Adjusts right,
removing trailing blanks and
inserting leading blanks

string: Character*(*)

result: same type as string

CHAR Intrinsic
Function

CHAR(i [, kind]). Returns character
in position i in the character sequence
of (optional) kind

i: Integer

kind: Integer

result: CHARACTER(1) of
type kind if present;
otherwise, default kind.

IACHAR Intrinsic
Function

IACHAR(c). Returns the position of
c in the ASCII sequence

c: CHARACTER(1)

result: Integer

ICHAR Intrinsic
Function

ICHAR(c). Returns the position of c
in the current character sequence

c: CHARACTER(1)

result: Integer

Language Summary Tables Page 29 of 55

INDEX Intrinsic
Function

INDEX(string, substring, back]).
Returns the starting position of a
substring in a string, leftmost or
(optional) rightmost occurance

string: Character*(*)

substring: Character*(*)

back: Logical

result: Integer

LEN Intrinsic
Function

LEN(string). Returns the size of the
variable string

string: Character*(*)

result: Integer

LEN_TRIM Intrinsic
Function

LEN_TRIM(string). Returns the
number of characters in string, not
counting trailing blanks

string: Character*(*)

result: Integer

LGE Intrinsic
Function

LGE(string_a, string_b). Tests
which string comes last in the ASCII
sequence; TRUE if equal or string_a
last

string_a: Character*(*)

string_b: Character*(*)

result: Logical

LGT Intrinsic
Function

LGT(string_a, string_b). Tests
which string comes last in the ASCII
sequence; TRUE if string_a last

string_a: Character*(*)

string_b: Character*(*)

result: Logical

LLE Intrinsic
Function

LLE(string_a, string_b). Tests which
string comes first in the ASCII
sequence; TRUE if equal or string_a
first

string_a: Character*(*)

string_b: Character*(*)

result: Logical

LLT Intrinsic
Function

LLT(string_a, string_b). Tests which
string comes first in the ASCII
sequence; TRUE if string_a first

string_a: Character*(*)

string_b: Character*(*)

result: Logical

REPEAT Intrinsic
Function

REPEAT(string, ncopies).
Concatenates multiple copies of a
string

string: Character*(*)

ncopies: Integer

result: Character*(*)

SCAN Intrinsic SCAN(string, set [, back]). Scans a string: Character*(*)

Language Summary Tables Page 30 of 55

Function string for any characters in a set and
returns leftmost or (optional)
rightmost position where a match is
found

set: Character*(*)

back: Logical

result: Integer

TRIM Intrinsic
Function

TRIM(string). Removes trailing
blanks from a string

string: Character*(*)

result: Character*(*)

VERIFY Intrinsic
Function

VERIFY(string, set [, back]).
Returns the position of the leftmost
or (optional) rightmost character in
string not in set, or zero if all
characters inset are present

string: Character*(*)

set: Character*(*)

back: Logical

result: Integer

Bit Operation and Representation Procedures: table

Note: Square brackets [...] denote optional arguments.

Name Procedure
Type Description Argument/Function

Type

Bit Operation

BIT_SIZE Intrinsic
Function

BIT_SIZE(i). Returns the number of bits in
integers of type i.

i: Integer

result: same type as i

BTEST Intrinsic
Function

BTEST(i, pos). Tests a bit in position pos of
i; true if bit is 1.

i: Integer

pos: positive Integer

result: Logical

IAND Intrinsic
Function

IAND(i, j). Performs a logical AND. i: Integer

j: Integer

result: same type as i

IBCHNG Intrinsic
Function

IBCHNG(i, pos). Reverses value of bit in
position pos of i.

i: Integer

pos: positive Integer

result: same type as i

Language Summary Tables Page 31 of 55

IBCLR Intrinsic
Function

IBCLR(i, pos). Clears the bit in position pos
of i to zero.

i: Integer

pos: positive Integer

result: same type as i

IBITS Intrinsic
Function

IBITS(i, pos, len). Extracts a sequence of bits
of length len from i starting in position pos.

i: Integer

pos: positive Integer

len: positive Integer

result: same type as i

IBSET Intrinsic
Function

IBSET(i, pos). Sets the bit in position pos of i
to one.

i: Integer

pos: positive Integer

result: same type as i

IEOR Intrinsic
Function

IEOR(i, j). Performs an exclusive OR. i: Integer

j: Integer

result: same type as i

IOR Intrinsic
Function

IOR(i, j). Performs an inclusive OR. i: Integer

j: Integer

result: same type as i

ISHA Intrinsic
Function

ISHA(i, shift). Shifts i arithmetically left or
right by shift bits; left if shift positive, right if
shift negative. Zeros shifted in from the right,
ones shifted in from the left.

i: Integer

shift: Integer

result: same type as i

ISHC Intrinsic
Function

ISHC(i, shift). Performs a circular shift of i
left or right by shift bits; left if shift positive,
right if shift negative. No bits lost.

i: Integer

shift: Integer

result: same type as i

ISHFT Intrinsic
Function

ISHFT(i, shift). Shifts i logically left or right
by shift bits; left if shift positive, right if shift
negative. Zeros shifted in from opposite end.

i: Integer

shift: Integer

result: same type as i

Language Summary Tables Page 32 of 55

ISHFTC Intrinsic
Function

ISHFTC(i, shift[, size]). Performs a circular
shift of the rightmost bits of (optional) size by
shift bits. No bits lost.

i: Integer

shift: Integer

size: positive Integer

result: same type as i

ISHL Intrinsic
Function

ISHL(i, shift). Shifts i logically left or right
by shift bits. Zeros shifted in from opposite
end.

i: Integer

shift: Integer

result: same type as i

MVBITS Intrinsic
Subroutine

MVBITS(from, frompos, len, to, topos).
Copies a sequence of bits from one integer to
another.

from: Integer

frompos: positive
Integer

to: Integer

topos: positive Integer

NOT Intrinsic
Function

NOT(i). Performs a logical complement. i: Integer

result: same type as i

Bit Representation

LEADZ Intrinsic
Function

LEADZ(i). Returns leading zero bits in an
integer.

i: Integer

result: same type as i

POPCNT Intrinsic
Function

POPCNT(i). Returns number of 1 bits in an
integer.

i: Integer

result: same type as i

POPPAR Intrinsic
Function

POPPAR(i). Returns the parity of an integer. i: Integer

result: same type as i

TRAILZ Intrinsic
Function

TRAILZ(i). Returns trailing zero bits in an
integer.

i: Integer

result: same type as i

QuickWin Procedures: table

Note: Programs that use these procedures must access the appropriate library with USE DFLIB.

Language Summary Tables Page 33 of 55

Name Procedure
Type Description

ABOUTBOXQQ Function Adds an About Box with customized text.

APPENDMENUQQ Function Appends a menu item.

CLICKMENUQQ Function Sends menu click messages to the application
window.

DELETEMENUQQ Function Deletes a menu item.

FOCUSQQ Function Makes a child window active, and gives focus to
the child window.

GETACTIVEQQ Function Gets the unit number of the active child window.

GETHWNDQQ Function Gets the true windows handle from window with
the specified unit number.

GETWINDOWCONFIG Function Returns the current window’s properties.

GETWSIZEQQ Function Gets the size of the child or frame window.

GETUNITQQ Function Gets the unit number corresponding to the
specified windows handle. Inverse of
GETHWNDQQ.

INCHARQQ Function Reads a keyboard input and return its ASCII
value.

INITIALSETTINGS Function Controls initial menu settings and initial frame
window settings.

INQFOCUSQQ Function Determines which window is active and has the
focus.

INSERTMENUQQ Function Inserts a menu item.

INTEGERTORGB Subroutine Converts a true color value into its red, green and
blue components.

MESSAGEBOXQQ Function Displays a message box.

MODIFYMENUFLAGSQQ Function Modifies a menu item state.

MODIFYMENUROUTINEQQ Function Modifies a menu item’s callback routine.

MODIFYMENUSTRINGQQ Function Changes a menu item’s text string.

PASSDIRKEYSQQ Function Determines the behavior of direction and page
keys.

Language Summary Tables Page 34 of 55

REGISTERMOUSEEVENT Function Registers the application-defined routines to be
called on mouse events.

RGBTOINTEGER Function Converts a trio of red, green and blue values to a
true color value for use with RGB functions and
subroutines.

SETACTIVEQQ Function Makes the specified window the current active
window without giving it the focus.

SETMESSAGEQQ Subroutine Changes any QuickWin message, including
status bar messages, state messages and dialog
box messages.

SETWINDOWCONFIG Function Configures the current window’s properties.

SETWINDOWMENUQQ Function Sets the Window menu to which current child
window names will be appended.

SETWSIZEQQ Function Sets the size of the child or frame window.

UNREGISTERMOUSEEVENT Function Removes the callback routine registered by
REGISTERMOUSEEVENT.

WAITONMOUSEEVENT Function Blocks return until a mouse event occurs.

For more information on using these procedures, see Using QuickWin.

Graphics Procedures: table

Note: Programs that use these procedures must access the appropriate library with USE DFLIB.

Name Procedure
Type Description

ARC, ARC_W Functions Draws an arc.

CLEARSCREEN Subroutine Clears the screen, viewport, or text
window.

DISPLAYCURSOR Function Turns the cursor off and on.

ELLIPSE, ELLIPSE_W Functions Draws an ellipse or circle.

FLOODFILL, FLOODFILL_W Functions Fills an enclosed area of the screen with
the current color index, using the current
fill mask.

FLOODFILLRGB, Functions Fills an enclosed area of the screen with

Language Summary Tables Page 35 of 55

FLOODFILLRGB_W the current RGB color, using the current
fill mask.

GETARCINFO Function Determines the end points of the most
recently drawn arc or pie.

GETBKCOLOR Function Returns the current background color
index.

GETBKCOLORRGB Function Returns the current background RGB
color.

GETCOLOR Function Returns the current color index.

GETCOLORRGB Function Returns the current RGB color.

GETCURRENTPOSITION,
GETCURRENTPOSITION_W

Subroutines Returns the coordinates of the current
graphics-output position.

GETFILLMASK Subroutine Returns the current fill mask.

GETFONTINFO Function Returns the current font characteristics.

GETGTEXTEXTENT Function Determines the width of the specified
text in the current font.

GETGTEXTROTATION Function Get the current text rotation angle.

GETIMAGE, GETIMAGE_W Subroutines Stores a screen image in memory.

GETLINESTYLE Function Returns the current line style.

GETPHYSCOORD Subroutine Converts viewport coordinates to
physical coordinates.

GETPIXEL, GETPIXEL_W Functions Returns a pixel’s color index.

GETPIXELRGB, GETPIXELRGB_W Functions Returns a pixel’s RGB color.

GETPIXELS Function Returns the color indices of multiple
pixels.

GETPIXELSRGB Function Returns the RGB colors of multiple
pixels.

GETTEXTCOLOR Function Returns the current text color index.

GETTEXTCOLORRGB Function Returns the current text RGB color.

GETTEXTPOSITION Subroutine Returns the current text-output position.

GETTEXTWINDOW Subroutine Returns the boundaries of the current
text window.

Language Summary Tables Page 36 of 55

GETVIEWCOORD,
GETVIEWCOORD_W

Subroutines Converts physical or window
coordinates to viewport coordinates.

GETWINDOWCOORD Subroutine Converts viewport coordinates to
window coordinates.

GETWRITEMODE Function Returns the logical write mode for lines.

GRSTATUS Function Returns the status (success or failure) of
the most recently called graphics
routine.

IMAGESIZE, IMAGESIZE_W Functions Returns image size in bytes.

INITIALIZEFONTS Function Initializes the font library.

LINETO, LINETO_W Functions Draws a line from the current position to
a specified point.

LOADIMAGE, LOADIMAGE_W Functions Reads a Windows bitmap file (.BMP)
and displays it at the specified location.

MOVETO, MOVETO_W Subroutines Moves the current position to the
specified point.

OUTGTEXT Subroutine Sends text in the current font to the
screen at the current position.

OUTTEXT Subroutine Sends text to the screen at the current
position.

PIE, PIE_W Functions Draws a pie slice.

POLYGON, POLYGON_W Functions Draws a polygon.

PUTIMAGE, PUTIMAGE_W Subroutines Retrieves an image from memory and
displays it.

RECTANGLE, RECTANGLE_W Functions Draws a rectangle.

REMAPALLPALETTERGB Function Remaps a set of RGB color values to
indices recognized by the current video
configuration.

REMAPPALETTERGB Function Remaps a single RGB color value to a
color index.

SAVEIMAGE, SAVEIMAGE_W Functions Captures a screen image and saves it as
a Windows bitmap file.

SCROLLTEXTWINDOW Subroutine Scrolls the contents of a text window.

SETBKCOLOR Function Sets the current background color.

Language Summary Tables Page 37 of 55

SETBKCOLORRGB Function Sets the current background color to a
direct color value rather than an index to
a defined palette.

SETCLIPRGN Subroutine Limits graphics output to a part of the
screen.

SETCOLOR Function Sets the current color to a new color
index.

SETCOLORRGB Function Sets the current color to a direct color
value rather than an index to a defined
palette.

SETFILLMASK Subroutine Changes the current fill mask to a new
pattern.

SETFONT Function Finds a single font matching the
specified characteristics and assigns it to
OUTGTEXT.

SETGTEXTROTATION Subroutine Sets the direction in which text is
written to the specified angle.

SETLINESTYLE Subroutine Changes the current line style.

SETPIXEL, SETPIXEL_W Functions Sets color of a pixel at a specified
location.

SETPIXELRGB, SETPIXELRGB_W Functions Sets RGB color of a pixel at a specified
location.

SETPIXELS Subroutine Sets the color indices of multiple pixels.

SETPIXELSRGB Subroutine Sets the RGB color of multiple pixels.

SETTEXTCOLOR Function Sets the current text color to a new color
index.

SETTEXTCOLORRGB Function Sets the current text color to a direct
color value rather than an index to a
defined palette.

SETTEXTPOSITION Subroutine Changes the current text position.

SETTEXTWINDOW Subroutine Sets the current text display window.

SETVIEWORG Subroutine Positions the viewport coordinate origin.

SETVIEWPORT Subroutine Defines the size and screen position of
the viewport.

SETWINDOW Function Defines the window coordinate system.

Language Summary Tables Page 38 of 55

SETWRITEMODE Function Changes the current logical write mode
for lines.

WRAPON Function Turns line wrapping on or off.

For more information on using these procedures, see Using QuickWin.

Dialog Procedures: table

Note: Programs that use these procedures must access the Dialog library with USE DFLOGM.
Square brackets [...] denote optional arguments.

Name Procedure
Type Description Argument/Funct

Type

DLGEXIT Subroutine CALL DLGEXIT(dlg). Closes an open
dialog.

dlg: DIALOG
derived type

result: Logical

DLGGET Function DLGGET(dlg, controlid, value [, index]).
Retrieves values of dialog control
variables.

dlg: DIALOG
derived type

controlid: Integer

value: Integer,
Logical or Charac

index: Integer

result: Logical

DLGGETCHAR Function DLGGETCHAR(dlg, controlid, value [,
index]). Retrieves values of dialog control
variables of type Character.

dlg: DIALOG
derived type

controlid: Integer

value: Character

index: Integer

result: Logical

DLGGETINT Function DLGGETINT(dlg, controlid, value dlg: DIALOG

Language Summary Tables Page 39 of 55

[, index]). Retrieves values of dialog
control variables of type Integer.

derived type

controlid: Integer

value: Integer

index: Integer

result: Logical

DLGGETLOG Function DLGGETLOG(dlg, controlid, value [,
index]). Retrieves values of dialog control
variables of type Logical.

dlg: DIALOG
derived type

controlid: Integer

value: Logical

index: Integer

result: Logical

DLGINIT Function DLGINIT(dlgid, dlg). Initializes a dialog. dlgid: Integer

dlg: DIALOG
derived type

result: Logical

DLGINITWITH-
RESOURCEHANDLE

Function DLGINITWITHRESOURCEHANDLE
(dlgid, hinst, dlg). Initializes a dialog.

dlgid: Integer

hinst: Integer

dlg: DIALOG
derived type

result: Logical

DLGISDLGMESSAGE Function DLGISDLGMESSAGE(mesg).
Determines whether a message is intended
for a modeless dialog box and, if it is,
processes it.

mesg: T_MSG
derived type

result: Logical

DLGMODAL Function DLGMODAL(dlg). Displays a dialog
and processes dialog selections from user.

dlg: DIALOG
derived type

result: Integer

DLGMODELESS Function DLGMODELESS(dlg [, nCmdShow, dlg: DIALOG

Language Summary Tables Page 40 of 55

hwndParent]). Displays a modeless dialog
box.

derived type

nCmdShow: Integ

hwndParent: Integ

result: Logical

DLGSEND-
CTRLMESSAGE

Function DLGSENDCTRLMESSAGE(dlg,
controlid, msg, wparam, lparam). Sends a
message to a dialog box control.

dlg: DIALOG
derived type

controlid: Integer

msg: Integer

wparam: Integer

lparam: Integer

result: Integer

DLGSET Function DLGSET(dlg, controlid, value [, index]).
Assigns values to dialog control variables.

dlg: DIALOG
derived type

controlid: Integer

value: Integer,
Logical or Charac

index: Integer

result: Logical

DLGSETCHAR Function DLGSETCHAR(dlg, controlid, value [,
index]). Assigns values to dialog control
variables of type Character.

dlg: DIALOG
derived type

controlid: Integer

value: Character

index: Integer

result: Logical

DLGSETINT Function DLGSETINT(dlg, controlid, value [, dlg: DIALOG

Language Summary Tables Page 41 of 55

index]). Assigns values to dialog control
variables of type Integer.

derived type

controlid: Integer

value: Integer

index: Integer

result: Logical

DLGSETLOG Function DLGSETLOG(dlg, controlid, value [,
index]). Assigns values to dialog control
variables of type Logical.

dlg: DIALOG
derived type

controlid: Integer

value: Logical

index: Integer

result: Logical

DLGSETRETURN Subroutine CALL DLGSETRETURN(dlg, retval).
Sets the return value for DLGMODAL.

dlg: DIALOG
derived type

retval: Integer

DLGSETSUB Function DLGSETSUB(dlg, controlid, value [,
index]). Assigns procedures (callback
routines) to dialog controls.

dlg: DIALOG
derived type

controlid: Integer

value: external
procedure name

index: Integer

result: Logical

DLGUNINIT Subroutine CALL DLGUNINIT(dlg). Deallocates
memory occupied by an initialized dialog.

dlg: DIALOG
derived type

For more information on using these procedures, see Using Dialogs.

Compiler Directives: table

Note: Each directive name is preceded by the prefix cDEC$; for example, cDEC$ ALIAS. The c can
be a c, C, !, or *.

Language Summary Tables Page 42 of 55

Name Description

ALIAS Specifies an alternate external name to be used when referring to
external subprograms.

ATTRIBUTES Applies attributes to variables and procedures.

DECLARE Generates warning messages for undeclared variables.

DEFINE Creates a variable whose existence can be tested during conditional
compilation.

ELSE Marks the beginning of an alternative conditional-compilation block to
an IF directive construct.

ELSEIF Marks the beginning of an alternative conditional-compilation block to
an IF directive construct.

ENDIF Marks the end of a conditional-compilation block.

FIXEDFORMLINESIZE Sets fixed-form line length. This directive has no effect on freeform
code.

FREEFORM Uses freeform format for source code.

IDENT Specifies an identifier for an object module.

IF Marks the beginning of a conditional-compilation block.

IF DEFINED Marks the beginning of a conditional-compilation block.

INTEGER Selects default integer size.

MESSAGE Sends a character string to the standard output device.

NODECLARE (Default) Turns off warning messages for undeclared variables.

NOFREEFORM (Default) Uses standard FORTRAN 77 code formatting column rules.

NOSTRICT (Default) Disables a previous STRICT directive.

OBJCOMMENT Specifies a library search path in an object file.

OPTIONS Controls whether fields in records and data items in common blocks
are naturally aligned or packed on arbitrary byte boundaries.

PACK Specifies the memory starting addresses of derived-type items.

PSECT Modifies certain characteristics of a common block.

REAL Selects default real size.

STRICT Disables Visual Fortran features not in the Fortran 90 Standard.

Language Summary Tables Page 43 of 55

SUBTITLE Prints the specified subtitle on subsequent pages of the source listing.

TITLE Prints the specified title on subsequent pages of the source listing.

UNDEFINE Removes a symbolic variable name created with the DEFINE
directive.

For more information on using these directives, see General Compiler Directives.

National Language Standard Procedures: table

Note: Programs that use these procedures must access the NLS library with USE DFNLS.

Name Procedure
Type Description

MBCharLen Function Returns the length of the first multibyte
character in a string.

MBConvertMBToUnicode Function Converts a character string from a multibyte
codepage to a Unicode string.

MBConvertUnicodeToMB Function Converts a Unicode string to a multibyte
character string of the current codepage.

MBCurMax Function Returns the longest possible mutlibyte
character for the current codepage.

MBINCHARQQ Function Same as INCHARQQ, but can read a single
multibyte character at once.

MBINDEX Function Same as INDEX, except that multibyte
characters can be included in its arguments.

MBJISToJMS Function Converts a Japan Industry Standard (JIS)
character to a Kanji (Shift JIS or JMS)
character.

MBJMSToJIS Function Converts a Kanji (Shift JIS or JMS)
character to a Japan Industry Standard (JIS)
character.

MBLead Function Determines whether a given character is the
first byte of a multibyte character.

MBLen Function Returns the number of multibyte characters
in a string, including trailing spaces.

MBLen_Trim Function Returns the number of multibyte characters

Language Summary Tables Page 44 of 55

in a string, not including trailing spaces.

MBLGE, MBLGT, MBLLE,
MBLLT,MBLEQ, MBLNE

Function Same as LGE, LGT, LLE, and LLT, and
the logical operators .EQ. and .NE., except
that multibyte characters can be included in
their arguments.

MBNext Function Returns the string position of the first byte of
the multibyte character immediately after the
given string position.

MBPrev Function Returns the string position of the first byte of
the multibyte character immediately before
the given string position.

MBSCAN Function Same as SCAN, except that multibyte
characters can be included in its arguments.

MBStrLead Function Performs a context sensitive test to
determine whether a given byte in a character
string is a lead byte.

MBVERIFY Function Same as VERIFY, except that multibyte
characters can be included in its arguments.

NLSEnumCodepages Function Returns an array of valid codepages for the
current console.

NLSEnumLocales Function Returns an array of locales (langauge/country
combinations) installed on the system.

NLSFormatCurrency Function Formats a currency number according to
conventions of the current locale
(language/country).

NLSFormatDate Function Formats a date according to conventions of
the current locale (language/country).

NLSFormatNumber Function Formats a number according to conventions
of the current locale (language/country).

NLSFormatTime Function Formats a time according to conventions of
the current locale (language/country).

NLSGetEnvironmentCodepage Function Returns the current codepage for the system
Window or console.

NLSGetLocale Subroutine Returns the current language, country, and/or
codepage.

NLSGetLocaleInfo Function Returns information about the current locale.

NLSSetEnvironmentCodepage Function Sets the codepage for the console.

Language Summary Tables Page 45 of 55

NLSSetLocale Function Sets the current language, country, and
codepage.

For more information on using these procedures, see Using National Language Support Routines.

See also NLS Date and Time Format.

Portability Procedures: table

Note: Programs that use these procedures must access the portability library with USE DFPORT.
Square brackets [...] denote optional arguments.

Name Procedure
Type Description Argument/Function

Type

ABORT Subroutine CALL ABORT([string]). Flushes
and closes all I/O buffers and
terminates execution with the
optional abort message in string.

string: CHARACTER*
(*)

ACCESS Function ACCESS(name, mode). Checks the
file specified by name for
accessibility to the caller in mode
mode.

name: CHARACTER*
(*)

mode: CHARACTER*
(*)

result: INTEGER(4)

ALARM Function ALARM(time, proc). Executes the
subroutine proc after time seconds
elapse.

time: INTEGER(4)

proc: External
procedure

result: INTEGER(4)

BESJ0, BESJ1,
BESJN, BESY0,
BESY1, BESYN

Functions Bessel functions of the first and
second kinds and integer orders.
BESJ0(x), BESJ1(x), BESY0(x),
BESY1(x) take argument x. BESJN
(n, x), BESYN(n, x) take arguments
integer order n and value x.

n: INTEGER(4)

x: REAL(4)

result: REAL(4)

BIC, BIS, BIT Subroutines Bit clear and set subroutines, and bit bitnum: INTEGER(4)

Language Summary Tables Page 46 of 55

and Function test function.

CALL BIC(bitnum, target) clears a
bit.

CALL BIS(bitnum, target) sets a
bit.

BIT(bitnum, source) tests a bit.

target: INTEGER(4)

source: INTEGER(4)

return from BIT:
Logical

CHDIR Function CHDIR(dir_name). Changes the
default directory to dir_name.

dir_name:
CHARACTER*(*)

result: INTEGER(4)

CHMOD Function CHMOD(name, mode). Changes the
mode attributes of a file specified by
name.

name: CHARACTER*
(*)

mode: CHARACTER*
(*)

result: INTEGER(4)

CLOCK Function CLOCK(). Returns the time in
HH:MM:SS format.

result: CHARACTER
(8)

CTIME Function CTIME(stime). Converts system
time to a 24-character ASCII string.

stime: INTEGER(4)

result: CHARACTER
(24)

DATE Subroutine
or Function

CALL DATE(string) or

DATE(). Returns the date as an
ASCII string.

string: CHARACTER*
(*)

return from DATE
function:
CHARACTER(8)

DBESJ0,
DBESJ1,
DBESJN,
DBESY0,
DBESY1,
DBESYN

Functions REAL(8) Bessel functions of the
first and second kinds and integer
orders. DBESJ0(x), DBESJ1(x),
DBESY0(x), DBESY1(x) take
argument x. DBESJN(n, x),
DBESYN(n, x) take arguments
integer order n and value x.

n: INTEGER(4)

x: REAL(8)

result: REAL(8)

DRAND,
DRANDM

Functions DRAND(iflag) and DRANDM
(iflag). Return random numbers
between 0.0 and 1.0, chosen
according to the value of iflag.

iflag: INTEGER(4)

result: REAL(8)

Language Summary Tables Page 47 of 55

DTIME1 Function DTIME(tarray). Returns the
elapsed time since the last call to
DTIME or the program start.

tarray(2): REAL(4)

result: REAL(4)

ETIME1 Function ETIME(tarray). Returns the elapsed
CPU time since the last call to
ETIME or the program start.

tarray(2): REAL(4)

result: REAL(4)

FDATE Subroutine
or Function

CALL FDATE(string) or

FDATE(). Returns the date and
time as an ASCII string.

string: CHARACTER*
(*)

return from FDATE
function:
CHARACTER(24)

FGETC Function FGETC(lunit, char). Reads the next
available character from lunit and
places it in char.

lunit: INTEGER(4)

char: CHARACTER(1)

result: INTEGER(4)

FLUSH Subroutine CALL FLUSH(lunit). Causes the
contents of the lunit buffer to be
flushed to the associated file.

lunit: INTEGER(4)

FPUTC Function FPUTC(lunit, char). Writes a
character char to the file associated
with lunit, bypassing normal Fortran
I/O.

lunit: INTEGER(4)

char: CHARACTER(1)

result: INTEGER(4)

FSEEK Subroutine FSEEK(lunit, offset, from).
Repositions a file on a logical unit to
offset bytes relative to position from.

lunit: INTEGER(4)

offset: INTEGER(4)

from: INTEGER(4)

result: INTEGER(4)

FSTAT Function FSTAT(lunit, statb). Returns
information about lunit in the array
statb.

lunit: INTEGER(4)

statb(12): INTEGER(4)

result: INTEGER(4)

FTELL Function FTELL(lunit). Returns the current
position of the file associated with
lunit as an offset in bytes from the
beginning of the file.

lunit: INTEGER(4)

result: INTEGER(4)

Language Summary Tables Page 48 of 55

GERROR Subroutine CALL GERROR(string). Fills
string with a message for the last
detected IERRNO error.

string: CHARACTER*
(*)

GETC Function GETC(char). Gets the next
available character from logical unit
5, usually connected to the console,
and places it in char, bypassing
normal Fortran I/O.

char: CHARACTER(1)

result: INTEGER(4)

GETCWD Function GETCWD(dirname). Places the
current working directory path in
dirname.

dirname:
CHARACTER*(*)

result: INTEGER(4)

GETENV Function CALL GETENV(ename, evalue).
Searches the environment list for a
string of the form ename=evalue and
returns the value found in evalue or
blanks.

ename:
CHARACTER*(*)

evalue:
CHARACTER*(*)

GETGID Function GETGID(). Included for
portability. Always returns 1.

result: INTEGER(4)
equal to 1

GETLOG Subroutine CALL GETLOG(name). Returns
the user’s login name or blanks.

name: CHARACTER*
(*)

GETPID Function GETPID(). Returns the process ID
number of the current process.

result: INTEGER(4)

GETUID Function GETUID(). Included for
portability. Always returns 1.

result: INTEGER(4)
equal to 1

GMTIME Subroutine CALL GMTIME(stime, tarray).
Separates the time returned by
TIME() in stime into GMT date
and time and stores in tarray.

stime: INTEGER(4)

tarray(9): INTEGER(4)

HOSTNAM Function HOSTNAM(name). Puts the name
of the current host into name.

name: CHARACTER*
(*)

result: INTEGER(4)

IARGC Function IARGC(). Returns the index of the
last command-line argument.

result: INTEGER(4)

IDATE Subroutine CALL IDATE(iarray) or iarray(3): INTEGER(4)

Language Summary Tables Page 49 of 55

CALL IDATE(month, day, year).
Returns the day, month and year in
iarray or the parameters month, day,
and year.

month: INTEGER(4)

day: INTEGER(4)

year: INTEGER(4)

IERRNO Function IERRNO(). Returns the last
IERRNO error code.

result: INTEGER(4)

IRAND,
IRANDM

Functions IRAND(iflag) and IRANDM(iflag).
Return integer random numbers
between 0 and (2**31) -1, chosen
according to the value of iflag.

iflag: INTEGER(4)

result: INTEGER(4)

ITIME Subroutine CALL ITIME(iarray). Returns the
current time in iarray.

iarray(3): INTEGER(4)

JDATE Function JDATE(). Return the Julian date in
the form YYDDD.

result: CHARACTER
(8)

KILL Function KILL(pid, signum). Sends a signal
designated by signum (defined in
SIGNAL) to the calling process
designated by pid (returned by
GETPID).

pid: INTEGER(4)

signum: INTEGER(4)

result: INTEGER(4)

LNBLNK Function LNBLNK(string). Returns the index
of the last nonblank character in
string.

string: CHARACTER*
(*)

result: INTEGER(4)

LONG Function LONG(int2). Returns an INTEGER
(2) argument as an INTEGER(4).

int2: INTEGER(2)

result: INTEGER(4)

LSTAT Function LSTAT(name, statb). Returns
information about the file named
name in the array statb.

name: CHARACTER*
(*)

statb(12): INTEGER(4)

result: INTEGER(4)

LTIME Subroutine CALL LTIME(stime, tarray).
Separates the time returned by
TIME() in stime into the date and
time for the local time zone and
stores in tarray.

stime: INTEGER(4)

tarray(9): INTEGER(4)

PERROR Subroutine CALL PERROR(string). Sends an string: CHARACTER*

Language Summary Tables Page 50 of 55

error message to the standard error
stream, preceded by string with a
message for the last detected
IERRNO error.

(*)

PUTC Function PUTC(char).Writes a character char
to logical unit 6.

char: CHARACTER(1)

result: INTEGER(4)

QSORT Subroutine CALL QSORT(array, len, isize,
compar). Sorts len elements of array
each of length size according to the
sorting order in a user-supplied
function compar.

array: any type

len: INTEGER(4)

isize: INTEGER(4)

compar: External
INTEGER(2) function

RAN Function RAN(iseed). Returns a uniformly
distributed random number between
0.0 and 1.0.

seed: INTEGER(4)

result: REAL(4)

RAND,
RANDOM

Functions RAND(iflag) and RANDOM(iflag).
Return random numbers between 0.0
and 1.0, chosen according to the
value of iflag.

iflag: INTEGER(4)

result: REAL(4)

RENAME Function RENAME(from, to). Renames a file
from from to to. If to exists it is
removed first.

from: CHARACTER*
(*)

to: CHARACTER*(*)

result: INTEGER(4)

RINDEX Function RINDEX(string, substr). Returns
the index of the last occurrence of
substr in string, or 0.

string: CHARACTER*
(*)

substr: CHARACTER*
(*)

result: INTEGER(4)

RTC Function RTC(). Returns the number of
seconds since 00:00:00 Greenwich
mean time, January 1, 1970.

result: REAL(8)

SECNDS Function SECNDS(offset). Returns the
number of seconds that have elapsed
since midnight, minus offset.

offset: REAL(4)

result: REAL(4)

SHORT Function SHORT(int4). Returns an int4: INTEGER(4)

Language Summary Tables Page 51 of 55

INTEGER(4) argument as an
INTEGER(2). result: INTEGER(2)

SIGNAL Function SIGNAL(signum, proc, flag).
Changes the action taken for the
signal designated by signum to the
external signal processing procedure
proc. Implementation of proc is
controlled by flag.

signum: INTEGER(4)

proc: External function

flag: INTEGER(4)

result: INTEGER(4)

SLEEP Subroutine CALL SLEEP(itime). Suspends the
calling process for itime seconds.

itime: INTEGER(4)

STAT Function STAT(name, statb). Returns
information about the file named
name in the array statb.

name: CHARACTER*
(*)

statb(12): INTEGER(4)

result: INTEGER(4)

SYSTEM Function SYSTEM(string). Causes string to
be given to your shell as input as if
string had been typed as a command.

string: CHARACTER*
(*)

result: INTEGER(4)

TIME Subroutine
or Function

CALL TIME(string) or

TIME(). As a subroutine, fills
string with the current time
formatted as HH:MM:SS. As a
function, returns elapsed seconds
since 00:00:00 Greenwich mean
time, January 1, 1970.

string: CHARACTER
(8)

result: INTEGER(4)

TIMEF Function TIMEF(). Returns the number of
seconds since the first time it was
called. The first time called, TIMEF
returns 0.0D0.

result: REAL(8)

UNLINK Function UNLINK(name). Removes the file
specified by path name.

name: CHARACTER*
(*)

result: INTEGER(4)

1 WNT only

Warning: The two-digit year return value of DATE, IDATE, and JDATE may cause problems with
the year 2000. Use DATE_AND_TIME instead.

Language Summary Tables Page 52 of 55

For more information on using these procedures, see Portability Library in the Programmer’s Guide.

COM and Automation Procedures: table

Note: Programs that use COM procedures must access the appropriate libraries with USE DFCOM
and USE DFCOMTY. Programs that use Automation procedures must access the appropriate
libraries with USE DFAUTO and USE DFCOMTY.

Component Object Model (COM) Procedures (DFCOM)

Name Procedure
Type Description

COMAddObjectReference Function Adds a reference to an object’s interface.

COMCLSIDFromProgID Subroutine Passes a programmatic identifier and returns the
corresponding class identifier.

COMCLSIDFromString Subroutine Passes a class identifier string and returns the
corresponding class identifier.

COMCreateObjectByGUID Subroutine Passes a class identifier, creates an instance of
an object, and returns a pointer to the object’s
interface.

COMCreateObjectByProgID Subroutine Passes a programmatic identifier, creates an
instance of an object, and returns a pointer to the
object’s IDispatch interface.

COMGetActiveObjectByGUID Subroutine Passes a class identifier and returns a pointer to
the interface of a currently active object.

COMGetActiveObjectByProgID Subroutine Passes a programmatic identifier and returns a
pointer to the IDispatch interface of a currently
active object.

COMInitialize Subroutine Initializes the COM library.

COMGetFileObject Subroutine Passes a file name and returns a pointer to the
IDispatch interface of an Automation object that
can manipulate the file.

COMQueryInterface Subroutine Passes an interface identifier and returns a
pointer to an object’s interface.

COMReleaseObject Function Indicates that the program is done with a
reference to an object’s interface.

COMUninitialize Subroutine Uninitializes the COM library.

Language Summary Tables Page 53 of 55

Automation Server Procedures (DFAUTO)

Name Procedure
Type Description

AUTOAddArg Subroutine Passes an argument name and value and adds the
argument to the argument list data structure.

AUTOAllocateInvokeArgs Function Allocates an argument list data structure that
holds the arguments to be passed to
AUTOInvoke.

AUTODeallocateInvokeArgs Subroutine Deallocates an argument list data structure.

AUTOGetExceptInfo Subroutine Retrieves the exception information when a
method has returned an exception status.

AUTOGetProperty Function Passes the name or identifier of the property and
gets the value of the Automation object’s
property.

AUTOGetPropertyByID Function Passes the member ID of the property and gets
the value of the Automation object’s property
into the argument list’s first argument.

AUTOGetPropertyInvokeArgs Function Passes an argument list data structure and gets
the value of the Automation object’s property
specified in the argument list’s first argument.

AUTOInvoke Function Passes the name or identifier of an object’s
method and an argument list data structure and
invokes the method with the passed arguments.

AUTOSetProperty Function Passes the name or identifier of the property and
a value, and sets the value of the Automation
object’s property.

AUTOSetPropertyByID Function Passes the member ID of the property and sets
the value of the Automation object’s property,
using the argument list’s first argument.

AUTOSetPropertyInvokeArgs Function Passes an argument list data structure and sets
the value of the Automation object’s property
specified in the argument list’s first argument.

For more information on using these procedures, see Using COM and Automation Objects.

Miscellaneous Run-Time Procedures: table

Language Summary Tables Page 54 of 55

Name Procedure
Type Description

FOR_CHECK_FLAWED_PENTIUM Function FOR_CHECK_FLAWED_PENTIUM ().
Checks the processor to determine if it
shows characteristics of the Pentium®
floating-point divide flaw.

FOR_GET_FPE Function FOR_GET_FPE (). Returns the current
settings of floating-point exception flags.

FOR_RTL_FINISH_ Function FOR_RTL_FINISH_ (). Cleans up the
Fortran run-time environment; for example,
flushing buffers and closing files. It also
issues messages about floating-point
exceptions, if any occur.

FOR_RTL_INIT_ Subroutine FOR_RTL_INIT_ (argcount, actarg).
Initializes the Fortran run-time environment.
It establishes handlers and floating-point
exception handling, so Fortran subroutines
behave the same as when called from a
Fortran main program.

FOR_SET_FPE Function FOR_SET_FPE (a). Sets the floating-
point exception flags.

FOR_SET_REENTRANCY Function FOR_SET_REENTRANCY (mode).
Controls the type of reentrancy protection
that the Fortran Run-Time Library (RTL)
exhibits.

Functions Not Allowed as Actual Arguments: table

The following specific functions cannot be passed as actual arguments:

AIMAX0 EOF JIDINT LOC

AIMIN0 FLOAT JIFIX MALLOC

AJMAX0 FLOATI JINT MAX0

AJMIN0 FLOATJ JMAX0 MAX1

AKMAX0 FLOATK JMAX1 MIN0

AKMIN0 ICHAR JMIN0 MIN1

AMAX0 IDINT JMIN1 MULT_HIGH

Language Summary Tables Page 55 of 55

AMAX1 IFIX KIDINT NUMBER_OF_PROCESSORS

AMIN0 IIDINT KIFIX NWORKERS

AMIN1 IIFIX KINT PROCESSORS_SHAPE

CHAR IINT KIQINT QEXT

DBLE IMAX0 KIQNNT QEXTD

DBLEQ IMAX1 KMAX0 QMAX1

DFLOTI IMIN0 KMAX1 QMIN1

DFLOTJ IMIN1 KMIN0 RAN

DFLOTK INT KMIN1 REAL

DMAX1 INT1 LGE SECNDS

DMIN1 INT2 LGT SIZEOF

DPROD INT4 LLE SNGL

DREAL JFIX LLT SNGLQ

ABORT Page 1 of 62

ABORT

Portability Subroutine: Flushes and closes I/O buffers, and terminates program execution.

Module: USE DFPORT

Syntax

CALL ABORT [string]

string
(Input; optional) Character*(*). Allows you to specify an abort message at program
termination. When ABORT is called, "abort:" is written to external unit 0, followed by string.
If omitted, the default message written to external unit 0 is "abort: Fortran Abort Called."

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EXIT, STOP

Example

!The following prints "abort: Fortran Abort Called"
CALL ABORT

!The following prints "abort: Out of here!"
Call ABORT ("Out of here!")

ABOUTBOXQQ

QuickWin Function: Specifies the information displayed in the message box that appears when the
user selects the About command from a QuickWin application’s Help menu.

Module: USE DFLIB

Syntax

result = ABOUTBOXQQ (cstring)

cstring
(Input; output) Character*(*). Null-terminated C string.

Results:

The value of the result is INTEGER(4). It is zero if successful; otherwise, nonzero.

If your program does not call ABOUTBOXQQ, the QuickWin run-time library supplies a default

ABOUTBOX Page 2 of 62

string. For further discussion, see Using QuickWin in the Programmer’s Guide.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin

Example

 USE DFLIB
 INTEGER(4) dummy
! Set the About box message
 dummy = ABOUTBOXQQ (’Matrix Multiplier\r Version 1.0’C)

ABS

Elemental Intrinsic Function (Generic): Computes an absolute value.

Syntax

result = ABS (a)

a
(Input) Must be of type integer, real, or complex.

Results:

If a is an integer or real value, the value of the result is | a |; if a is a complex value (X, Y), the result
is the real value SQRT (X**2 + Y**2).

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIABS INTEGER(2) INTEGER(2)

IABS 1 INTEGER(4) INTEGER(4)

KIAB S 2 INTEGER(8) INTEGER(8)

ABS REAL(4) REAL(4)

DABS REAL(8) REAL(8)

QABS 3 REAL(16) REAL(16)

CABS 4 COMPLEX(4) REAL(4)

CDABS 5 COMPLEX(8) REAL(8)

ABS Page 3 of 62

1 Or JIABS. For compatibility with older versions of Fortran, IABS can also be specified as a generic function.
2 VMS and U*X
3 Alpha only
4 The setting of compiler option /real_size can affect CABS.
5 This function can also be specified as ZABS.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Examples

ABS (-7.4) has the value 7.4.

ABS ((6.0, 8.0)) has the value 10.0.

The following ABS.F90 program calculates two square roots, retaining the sign:

 REAL mag(2), sgn(2), result(2)
 WRITE (*, ’(A)’) ’ Enter two signed magnitudes: ’
 READ (*, *) mag
 sgn = SIGN((/1.0, 1.0/), mag) ! transfer the signs to 1.0s
 result = SQRT (ABS (mag))
! Restore the sign by multiplying by -1 or +1:
 result = result * sgn
 WRITE (*, *) result
 END

ACCEPT

Statement: A data transfer input statement. It is the same as a formatted, sequential READ
statement, except that an ACCEPT statement must never be commented to user-specified I/O units.

Syntax

Formatted
ACCEPT form [, io-list]

Formatted: List-Directed
ACCEPT * [, io-list]

Formatted: Namelist
ACCEPT nml

form
Is the nonkeyword form of a format specifier (no FMT=).

io-list
Is an I/O list.

ACCEPT Page 4 of 62

*
Is the format specifier indicating list-directed formatting. (It can also be specified as FMT=*.)

nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist formatting.

Example

In the following example, character data is read from the implicit unit and binary values are assigned
to each of the five elements of array CHARAR:

 CHARACTER*10 CHARAR(5)
 ACCEPT 200, CHARAR
200 FORMAT (5A10)

ACCESS

Portability Function: Determines if a file exists and how it can be accessed.

Module: USE DFPORT

Syntax

result = ACCESS (name, mode)

name
(Input) Character*(*). Name of the file whose accessibility is to be determined.

mode
(Input) Character*(*). Modes of accessibility to check for. Must be a character string of length
one or greater containing only the characters "r", "w", "x", or "" (a blank). These characters are
interpreted as follows.

Character Meaning

r Tests for read permission

w Tests for write permission

x Tests for execute permission (name must be .COM, .EXE, .BAT, or .CMD)

(blank) Tests for existence

The characters within mode can appear in any order or combination. For example, wrx and r
are legal forms of mode and represent the same set of inquiries.

Results:

The value of the result is INTEGER(4). It is zero if all inquiries specified by mode are affirmative. If

ACCESS Page 5 of 62

either argument is illegal, or if the file cannot be accessed in all of the modes specified, one of the
following error codes is returned:

� EACCES: Access denied; the file’s permission setting does not allow the specified access
� EINVAL: The mode argument is invalid
� ENOENT: File or path not found

For a list of error codes, see IERRNO.

The name argument can contain either forward or backward slashes for path separators.

Note that all files are readable. A test for read permission always returns 0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INQUIRE, GETFILEINFOQQ

Example

! checks for read and write permission on the file "DATAFILE.TXT"

J = ACCESS ("DATAFILE.TXT", "rw")
! checks whether "DATAFILE.TXT" is executable. It is not, since
! it does not end in .COM, .EXE, .BAT, or .CMD
J = ACCESS ("DATAFILE.TXT","x")

ACHAR

Elemental Intrinsic Function (Generic): Returns the character in a specified position of the ASCII character
set. It is the inverse of the IACHAR function.

Syntax

result = ACHAR (i)

i
(Input) Is of type integer.

Results

The result type is character of length 1 with the kind parameter value of KIND (’A’).

If I has a value within the range 0 to 127, the result is the character in position I of the ASCII
character set. ACHAR (IACHAR(C)) has the value C for any character C capable of representation in
the processor. For a complete list of ASCII character codes, see Character and Key Code Charts..

Compatibility

ACHAR Page 6 of 62

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CHAR, IACHAR, ICHAR

Examples

ACHAR (71) has the value ’G’.

ACHAR (63) has the value ’?’.

ACOS

Elemental Intrinsic Function (Generic): Produces an arccosine (with the result in radians).

Syntax

result = ACOS (x)

x
(Input) Must be of type real. The | x | must be less than or equal to 1.

Results:

The result type is the same as x. The value lies in the range 0 to pi.

Specific Name Argument Type Result Type

ACOS REAL(4) REAL(4)

DACOS REAL(8) REAL(8)

QACOS 1 REAL(16) REAL(16)

1 VMS and U*X

Example

ACOS (0.68032123) has the value .8225955.

ACOSD

Elemental Intrinsic Function (Generic): Produces an arccosine (with the result in degrees).

Syntax

result = ACOSD (x)

ACOSD Page 7 of 62

x
(Input) Must be of type real and must be greater than or equal to zero. The |x| must be less than
or equal to 1.

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

ACOSD REAL(4) REAL(4)

DACOSD REAL(8) REAL(8)

QACOSD 1 REAL(16) REAL(16)

1 VMS and U*X

Example

ACOSD (0.886579) has the value 27.55354.

ADJUSTL

Elemental Intrinsic Function (Generic): Adjusts a character string to the left, removing leading blanks and
inserting trailing blanks.

Syntax

result = ADJUSTL (string)

string
(Input) Must be of type character.

Results:

The result type is character with the same length and kind parameter as string. The value of the result
is the same as string, except that any leading blanks have been removed and inserted as trailing
blanks.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ADJUSTR

Examples

ADJUSTL Page 8 of 62

CHARACTER(16) STRING
STRING= ADJUSTL(’ Fortran 90 ’) ! returns ’Fortran 90 ’

ADJUSTL (’ SUMMERTIME’) ! has the value ’SUMMERTIME ’

ADJUSTR

Elemental Intrinsic Function (Generic): Adjusts a character string to the right, removing trailing blanks and
inserting leading blanks.

Syntax

result = ADJUSTR (string)

string
(Input) Must be of type character.

Results:

The result type is character with the same length and kind parameter as string.

The value of the result is the same as string, except that any trailing blanks have been removed and
inserted as leading blanks.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ADJUSTL

Example

CHARACTER(16) STRING
STRING= ADJUSTR(’ Fortran 90 ’) ! returns ’ Fortran 90’

ADJUSTR (’SUMMERTIME----’) ! has the value ’----SUMMERTIME’

AIMAG

Elemental Intrinsic Function (Generic): Returns the imaginary part of a complex number. This function
can also be specified as IMAG.

Syntax

result = AIMAG (z)

z
(Input) Must be of type complex.

AIMAG Page 9 of 62

Results:

The result type is real with the same kind parameter as z. If z has the value (x, y), the result has the
value y.

The setting of compiler option /real_size can affect AIMAG.

Specific Name Argument Type Result Type

AIMAG COMPLEX(4) REAL(4)

DIMAG COMPLEX(8) REAL(8)

To return the real part of complex numbers, use REAL.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CONJG, DBLE

Examples

AIMAG ((4.0, 5.0)) has the value 5.0.

The program AIMAG.F90 applies the quadratic formula to a polynomial and allows for complex
results:

REAL a, b, c
COMPLEX ans1, ans2, d
WRITE (*, 100)
100 FORMAT (’ Enter A, b, and c of the ’, &
 ’polynomial ax**2 + bx + c: ’\)
READ (*, *) a, b, c
d = CSQRT (CMPLX (b**2 - 4.0*a*c)) ! d is either:
 ! 0.0 + i root, or
 ! root + i 0.0
ans1 = (-b + d) / (2.0 * a)
ans2 = (-b + d) / (2.0 * a)
WRITE (*, 200)
200 FORMAT (/ ’ The roots are:’ /)
WRITE (*, 300) REAL(ans1), AIMAG(ans1), &
 REAL(ans2), AIMAG(ans2)
300 FORMAT (’ X = ’, F10.5, ’ + i’, F10.5)
END

AINT

Elemental Intrinsic Function (Generic): Truncates a value to a whole number.

AINT Page 10 of 62

Syntax

result = AINT (a [, kind])

a
(Input) Must be of type real.

kind
(Optional; input) Must be a scalar integer initialization expression.

Results:

The result type is real. If kind is present, the kind parameter is that specified by kind; otherwise, the
kind parameter is that of a.

The a is defined as the largest integer whose magnitude does not exceed the magnitude of a and
whose sign is the same as that of a. If | a | is less than 1, AINT (a) has the value zero.

Specific Name Argument Type Result Type

AINT REAL(4) REAL(4)

DINT REAL(8) REAL(8)

QINT 1 REAL(16) REAL(16)

1 VMS and U*X

To round rather than truncate, use ANINT.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Examples

AINT (3.678) has the value 3.0.

AINT (-1.375) has the value -1.0.

REAL r1, r2
REAL(8) r3(2)
r1 = AINT(2.6) ! returns the value 2.0
r2 = AINT(-2.6) ! returns the value -2.0
r3 = AINT((/1.3, 1.9/), KIND = 8) ! returns the values
 ! (1.0D0, 1.0D0)

ALARM

ALARM Page 11 of 62

Portability Function: Causes a subroutine to begin execution after a specified amount of time has
elapsed.

Module: USE DFPORT

Syntax

result = ALARM (time, proc)

time
(Input) Integer. Specifies the time delay, in seconds, between the call to ALARM and the time
when proc is to begin execution. If time is 0, the alarm is turned off and no routine is called.

proc
(Input) Name of the procedure to call, which takes no arguments.

Results:

The return value is INTEGER(4). It is zero if no alarm is pending. If an alarm is pending (has already
been set by a previous call to ALARM), it returns the number of seconds remaining until the
prevoiusly set alarm is to go off, rounded up to the nearest second.

After ALARM is called and the timer starts, the calling program continues for time seconds. The
calling program then suspends and calls proc, which runs in another thread. When proc finishes, the
alarm thread terminates, the original thread resumes, and the calling program resets the alarm. Once
the alarm goes off, it is disabled until set again.

If proc performs I/O or otherwise uses the Fortran library, you need to compile it with one of the
multithread libraries. For more information on multithreading, see Creating Multithread Applications
in the Programmer’s Guide.

The thread that proc runs in has a higher priority than any other thread in the process. All other
threads are essentially suspended until proc terminates, or is blocked on some other event, such as
I/O.

No alarms can occur after the main process ends. If the main program finishes or any thread executes
an EXIT call, than any pending alarm is deactivated before it has a chance to run.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RUNQQ

Example

USE DFPORT
INTEGER(4) numsec, istat

ALARM Page 12 of 62

EXTERNAL subprog
numsec = 4
write *, "subprog will begin in ", numsec, " seconds"
ISTAT = ALARM (numsec, subprog)

ALIAS

Compiler Directive: Declares alternate external names for external subprograms.

Syntax

cDEC$ ALIAS internal-name, external-name

c
Is a c, C, !, or *. (See Syntax Rules for General Directives.)

internal-name
The name of the subprogram as used in the current program unit.

external-name
A name or a character constant, delimited by apostrophes or quotation marks.

Rules and Behavior

If a name is specified, the name (in uppercase) is used as the external name for the specified internal-
name. If a character constant is specified, it is used as is; the string is not changed to uppercase, nor
are blanks removed.

The ALIAS directive affects only the external name used for references to the specified internal-
name.

Names that are not acceptable to the linker will cause link-time errors.

You can use the prefix !MS$ in place of cDEC$.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ATTRIBUTES - ALIAS option, General Compiler Directives

ALL

Transformational Intrinsic Function (Generic): Determines if all values are true in an entire array
or in a specified dimension of an array.

Syntax

result = ALL (mask [, dim])

ALL Page 13 of 62

mask
(Input) Must be a logical array.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of mask.

Results:

The result is an array or a scalar of type logical.

The result is a scalar if dim is omitted or mask has rank one. A scalar result is true only if all elements
of mask are true, or mask has size zero. The result has the value false if any element of mask is false.

An array result has the same type and kind parameters as mask, and a rank that is one less than mask.
Its shape is (d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2,..., dn) is the shape of mask.

Each element in an array result is true only if all elements in the one dimensional array defined by
mask (s1, s2, ..., sdim-1, :, sdim+1, ..., sn) are true.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ANY, COUNT

Examples

 LOGICAL mask(2, 3), AR1(3), AR2(2)
 mask = RESHAPE((/.TRUE., .TRUE., .FALSE., .TRUE., .FALSE., &
 .FALSE./),(/2,3/))
! mask is true false false
! true true false
 AR1 = ALL(mask,DIM = 1) ! evaluates the elements column by
 ! column yielding [true false false]
 AR2 = ALL(mask,DIM = 2) ! evaluates the elements row by row
 ! yielding [false false].

ALL ((/.TRUE., .FALSE., .TRUE./)) has the value false because some elements of MASK are not
true.

ALL ((/.TRUE., .TRUE., .TRUE./)) has the value true because all elements of MASK are true.

A is the array

 [1 5 7]
 [3 6 8]

and B is the array

ALL Page 14 of 62

 [0 5 7]
 [2 6 9].

ALL (A .EQ. B, DIM=1) tests to see if all elements in each column of A are equal to the elements in
the corresponding column of B. The result has the value (false, true, false) because only the second
column has elements that are all equal.

ALL (A .EQ. B, DIM=2) tests to see if all elements in each row of A are equal to the elements in the
corresponding row of B. The result has the value (false, false) because each row has some elements
that are not equal.

ALLOCATABLE

Statement and Attribute: Specifies that an array is an allocatable array with a deferred shape. The
shape of an allocatable array is determined when an ALLOCATE statement is executed, dynamically
allocating space for the array.

The ALLOCATABLE attribute can be specified in a type declaration statement or an
ALLOCATABLE statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] ALLOCATABLE [att-ls,] :: a[(d-spec)] [, a[(d-spec)]]...

Statement:

ALLOCATABLE [::] a[(d-spec)] [, a[(d-spec)]]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

a
Is the name of the allocatable array; it must not be a dummy argument or function result.

d-spec
Is a deferred-shape specification (: [, :]...). Each colon represents a dimension of the array.

Rules and Behavior

If the array is given the DIMENSION attribute elsewhere in the program, it must be declared as a
deferred-shape array.

When the allocatable array is no longer needed, it can be deallocated by execution of a
DEALLOCATE statement.

ALLOCATABLE Page 15 of 62

An allocatable array cannot be specified in a COMMON, EQUIVALENCE, DATA, or
NAMELIST statement.

Allocatable arrays are not saved by default. If you want to retain the values of an allocatable array
across procedure calls, you must specify the SAVE attribute for the array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Type declaration statements, Compatible attributes, DEALLOCATE, Arrays, Allocation of
Allocatable Arrays, SAVE

Examples

!Method for creating and allocating deferred-shape arrays.
INTEGER, ALLOCATABLE :: matrix(:,:)
REAL, ALLOCATABLE :: vector(:)
...
ALLOCATE(matrix(3,5),vector(-2:N+2))
...

The following example shows a type declaration statement specifying the ALLOCATABLE attribute:

REAL, ALLOCATABLE :: Z(:, :, :)

The following is an example of the ALLOCATABLE statement:

REAL A, B(:)
ALLOCATABLE :: A(:,:), B

ALLOCATE

Statement: Dynamically creates storage for allocatable arrays and pointer targets. The storage space
allocated is uninitialized.

Syntax

ALLOCATE (object [(s-spec)] [, object [(s-spec [, s-spec...])]]...[, STAT=sv])

object
Is the object to be allocated. It is a variable name or structure component, and must be a pointer
or allocatable array. The object can be of type character with zero length.

s-spec
Is a shape specification in the form [lower-bound:]upper-bound. Each bound must be a scalar
integer expression. The number of shape specifications must be the same as the rank of the
object.

ALLOCATE Page 16 of 62

sv
(Output) Is a scalar integer variable in which the status of the allocation is stored.

Rules and Behavior

A bound in s-spec must not be an expression containing an array inquiry function whose argument is
any allocatable object in the same ALLOCATE statement; for example, the following is not
permitted:

 INTEGER ERR
 INTEGER, ALLOCATABLE :: A(:), B(:)
 ...
 ALLOCATE(A(10:25), B(SIZE(A)), STAT=ERR) ! A is invalid as an argument
 ! to function SIZE

If a STAT variable is specified, it must not be allocated in the ALLOCATE statement in which it
appears. If the allocation is successful, the variable is set to zero. If the allocation is not successful, an
error condition occurs, and the variable is set to a positive integer value (representing the run-time
error). If no STAT variable is specified and an error condition occurs, program execution
terminates.

To release the storage for an allocated array, use DEALLOCATE.

To determine whether an allocatable array is currently allocated, use the ALLOCATED intrinsic
function.

To determine whether a pointer is currently associated with a target, use the ASSOCIATED intrinsic
function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALLOCATABLE, ALLOCATED, DEALLOCATE, ASSOCIATED, POINTER, Dynamic
Allocation

Examples

!Method for creating and allocating deferred shape arrays.
INTEGER,ALLOCATABLE::matrix(:,:)
REAL, ALLOCATABLE:: vector(:)
. . .
ALLOCATE (matrix(3,5),vector(-2:N+2))
. . .

The following is another example of the ALLOCATE statement:

INTEGER J, N, ALLOC_ERR

ALLOCATE Page 17 of 62

REAL, ALLOCATABLE :: A(:), B(:,:)
...
ALLOCATE(A(0:80), B(-3:J+1, N), STAT = ALLOC_ERR)

ALLOCATED

Inquiry Intrinsic Function (Generic): Indicates whether an allocatable array is currently allocated.

Syntax

ALLOCATED (array)

array
(Input) Must be an allocatable array.

Results:

The result is a default logical scalar.

The result has the value true if array is currently allocated, false if array is not currently allocated, or
undefined if its allocation status is undefined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALLOCATABLE, ALLOCATE, DEALLOCATE, Arrays, Dynamic Allocation

Examples

 REAL, ALLOCATABLE :: A(:)
 ...
 IF (.NOT. ALLOCATED(A)) ALLOCATE (A (5))

Consider the following:

REAL, ALLOCATABLE, DIMENSION (:,:,:) :: E
PRINT *, ALLOCATED (E) ! Returns the value false
ALLOCATE (E (12, 15, 20))
PRINT *, ALLOCATED (E) ! Returns the value true

AND

Elemental Intrinsic Function (Generic): See IAND.

Example

INTEGER(1) i, m

AND Page 18 of 62

INTEGER result
INTEGER(2) result2
i = 1
m = 3
result = AND(i,m) ! returns an integer of default type
 ! (INTEGER(4) unless reset by user) whose
 ! value = 1
result2 = AND(i,m) ! returns an INTEGER(2) with value = 1

ANINT

Elemental Intrinsic Function (Generic): Calculates the nearest whole number.

Syntax

result = ANINT (a [, kind])

a
(Input) Must be of type real.

kind
(Optional; input) Must be a scalar integer initialization expression.

Results:

The result type is real. If kind is present, the kind parameter is that specified by kind; otherwise, the
kind parameter is that of a. If a is greater than zero, ANINT (a) has the value AINT (a + 0.5); if a is
less than or equal to zero, ANINT (a) has the value AINT (a - 0.5).

Specific Name Argument Type Result Type

ANINT REAL(4) REAL(4)

DNINT REAL(8) REAL(8)

QNINT 1 REAL(16) REAL(16)

1 VMS and U*X

To truncate rather than round, use AINT.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NINT

Examples

 REAL r1, r2

ANINT Page 19 of 62

 r1 = ANINT(2.6) ! returns the value 3.0
 r2 = ANINT(-2.6) ! returns the value -3.0

! ANINT.F90 Calculates and adds tax to a purchase amount.
 REAL amount, taxrate, tax, total
 taxrate = 0.081
 amount = 12.99
 tax = ANINT (amount * taxrate * 100.0) / 100.0
 total = amount + tax
 WRITE (*, 100) amount, tax, total
 100 FORMAT (1X, ’AMOUNT’, F7.2 /
 + 1X, ’TAX ’, F7.2 /
 + 1X, ’TOTAL ’, F7.2)
 END

ANINT (3.456) has the value 3.0.

ANINT (-2.798) has the value -3.0.

ANY

Transformational Intrinsic Function (Generic): Determines if any value is true in an entire array or
in a specified dimension of an array.

Syntax

result = ANY (mask [, dim])

mask
(Input) Must be a logical array.

dim
(Optional; input) Must be a scalar integer expression with a value in the range 1 to n, where n
is the rank of mask.

Results:

The result is an array or a scalar of type logical.

The result is a scalar if dim is omitted or mask has rank one. A scalar result is true if any elements of
mask are true. The result has the value false if no element of mask is true, or mask has size zero.

An array result has the same type and kind parameters as mask, and a rank that is one less than mask.
Its shape is (d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2, ..., dn) is the shape of mask.

Each element in an array result is true if any elements in the one dimensional array defined by mask
(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) are true.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

ANY Page 20 of 62

See Also: ALL, COUNT

Example

 LOGICAL mask(2, 3), AR1(3), AR2(2)
 DATA mask /T, T, F, T, F, F/
! mask is true false false
! true true false
 AR1 = ANY(mask,DIM = 1) ! evaluates the elements column by
 ! column yielding [true true false]
 AR2 = ANY(mask,DIM = 2) ! evaluates the elements row by row
 ! yielding [true true]

ANY ((/.FALSE., .FALSE., .TRUE./)) has the value true because one element is true.

A is the array

 [1 5 7]
 [3 6 8]

and B is the array

 [0 5 7]
 [2 6 9].

ANY (A .EQ. B, DIM=1) tests to see if any elements in each column of A are equal to the elements
in the corresponding column of B. The result has the value (false, true, true) because the second and
third columns have at least one element that is equal.

ANY (A .EQ. B, DIM=2) tests to see if any elements in each row of A are equal to the elements in
the corresponding row of B. The result has the value (true, true) because each row has at least one
element that is equal.

APPENDMENUQQ

QuickWin Function: Appends a menu item to the end of a menu and registers its callback
subroutine.

Module: USE DFLIB

Syntax

result = APPENDMENUQQ (menuID, flags, text, routine)

menuID
(Input) INTEGER(4). Identifies the menu to which the item is appended, starting with 1 as the
leftmost menu.

APPENDMENUQQ Page 21 of 62

flags
(Input) INTEGER(4). Constant indicating the menu state. Flags can be combined with an
inclusive OR (see Results). The following constants are available:

n $MENUGRAYED - Disables and grays out the menu item.
n $MENUDISABLED - Disables but does not gray out the menu item.
n $MENUENABLED - Enables the menu item.
n $MENUSEPARATOR - Draws a separator bar.
n $MENUCHECKED - Puts a check by the menu item.
n $MENUUNCHECKED - Removes the check by the menu item.

text
(Input) Character*(*). Menu item name. Must be a null-terminated C string, for example,
’WORDS OF TEXT’C.

routine
(Input) EXTERNAL. Callback subroutine that is called if the menu item is selected. All
routines take a single LOGICAL parameter which indicates whether the menu item is checked
or not. You can assign the following predefined routines to menus:

n WINPRINT - Prints the program.
n WINSAVE - Saves the program.
n WINEXIT - Terminates the program.
n WINSELTEXT - Selects text from the current window.
n WINSELGRAPH - Selects graphics from the current window.
n WINSELALL - Selects the entire contents of the current window.
n WINCOPY - Copies the selected text and/or graphics from the current window to the

Clipboard.
n WINPASTE - Allows the user to paste Clipboard contents (text only) to the current text

window of the active window during a READ.
n WINCLEARPASTE - Clears the paste buffer.
n WINSIZETOFIT - Sizes output to fit window.
n WINFULLSCREEN - Displays output in full screen.
n WINSTATE - Toggles between pause and resume states of text output.
n WINCASCADE - Cascades active windows.
n WINTILE - Tiles active windows.
n WINARRANGE - Arranges icons.
n WINSTATUS - Enables a status bar.
n WININDEX - Displays the index for QuickWin help.
n WINUSING - Displays information on how to use Help.
n WINABOUT - Displays information about the current QuickWin application.
n NUL - No callback routine.

Results:

The result type is logical. It is .TRUE. if successful; otherwise, .FALSE..

You do not need to specify a menu item number, because APPENDMENUQQ always adds the new

APPENDMENUQQ Page 22 of 62

item to the bottom of the menu list. If there is no item yet for a menu, your appended item is treated
as the top-level menu item (shown on the menu bar), and text becomes the menu title.
APPENDMENUQQ ignores the callback routine for a top-level menu item if there are any other
menu items in the menu. In this case, you can set routine to NUL.

If you want to insert a menu item into a menu rather than append to the bottom of the menu list, use
INSERTMENUQQ.

The constants available for flags can be combined with an inclusive OR where reasonable, for
example $MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense,
such as $MENUENABLED and $MENUDISABLED, and lead to undefined behavior.

You can create quick-access keys in the text strings you pass to APPENDMENUQQ as text by
placing an ampersand (&) before the letter you want underlined. For example, to add a Print menu
item with the r underlined, text should be "P&rint". Quick-access keys allow users of your program to
activate that menu item with the key combination ALT+QUICK-ACCESS-KEY (ALT+R in the example)
as an alternative to selecting the item with the mouse.

For more information about customizing QuickWin menus, see Using QuickWin in the
Programmer’s Guide.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: INSERTMENUQQ, DELETEMENUQQ, MODIFYMENUFLAGSQQ,
MODIFYMENUROUTINEQQ, MODIFYMENUSTRINGQQ.

Example

 USE DFLIB
 LOGICAL(4) result
 CHARACTER(25) str
 ...
! Append two items to the bottom of the first (FILE) menu
 str = ’&Add to File Menu’C ! ’A’ is a quick-access key
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)
 str = ’Menu Item &2b’C ! ’2’ is a quick-access key
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINCASCADE)
! Append an item to the bottom of the second (EDIT) menu
 str = ’Add to Second &Menu’C ! ’M’ is a quick-access key
 result = APPENDMENUQQ(2, $MENUENABLED, str, WINTILE)

ARC, ARC_W

Graphics Function: Draws elliptical arcs using the current graphics color.

Module: USE DFLIB

Syntax

ARC, ARC_W Page 23 of 62

result = ARC (x1, y1, x2, y2, x3, y3, x4, y4)
result = ARC_W (wx1, wy1, wx2, wy2, wx3, wy3, wx4, wy4)

x1, y1
(Input) INTEGER(2). Viewport coordinates for upper-left corner of bounding rectangle.

x2, y2
(Input) INTEGER(2). Viewport coordinates for lower-right corner of bounding rectangle.

x3, y3
(Input) INTEGER(2). Viewport coordinates of start vector.

x4, y4
(Input) INTEGER(2). Viewport coordinates of end vector.

wx1,wy1
(Input) REAL(8). Window coordinates for upper-left corner of bounding rectangle.

wx2, wy2
(Input) REAL(8). Window coordinates for lower-right corner of bounding rectangle.

wx3, wy3
(Input) REAL(8). Window coordinates of start vector.

wx4, wy4
(Input) REAL(8). Window coordinates of end vector.

Results:

The result type is INTEGER(2). It is nonzero if successful; otherwise, 0. If the arc is clipped or
partially out of bounds, the arc is considered successfully drawn and the return is 1. If the arc is
drawn completely out of bounds, the return is 0.

The center of the arc is the center of the bounding rectangle defined by the points (x1, y1) and (x2, y2)
for ARC and (wx1, wy1) and (wx2, wy2) for ARC_W.

The arc starts where it intersects an imaginary line extending from the center of the arc through (x3,
y3) for ARC and (wx3, wy3) for ARC_W. It is drawn counterclockwise about the center of the arc,
ending where it intersects an imaginary line extending from the center of the arc through (x4, y4) for
ARC and (wx4, wy4) for ARC_W.

ARC uses the view-coordinate system. ARC_W uses the window-coordinate system. In each case,
the arc is drawn using the current color.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

ARC, ARC_W Page 24 of 62

Example

This program draws the arc shown below.

USE DFLIB
INTEGER(2) status, x1, y1, x2, y2, x3, y3, x4, y4

x1 = 80; y1 = 50
x2 = 240; y2 = 150
x3 = 120; y3 = 75
x4 = 90; y4 = 180
status = ARC(x1, y1, x2, y2, x3, y3, x4, y4)
END

Figure: Output of Program ARC.FOR

ASIN

Elemental Intrinsic Function (Generic): Produces an arcsine (with the result in radians).

Syntax

result = ASIN (x)

x
(Input) Must be of type real. The | x | must be less than or equal to 1.

Results:

The result type is the same as x. The value lies in the range -pi/2 to pi/2.

Specific Name Argument Type Result Type

ASIN REAL(4) REAL(4)

DASIN REAL(8) REAL(8)

QASIN 1 REAL(16) REAL(16)

1 VMS and U*X

Example

ASIN Page 25 of 62

ASIN (0.79345021) has the value 0.9164571.

ASIND

Elemental Intrinsic Function (Generic): Produces an arcsine (with the result in degrees).

Syntax

result = ASIND (x)

x
(Input) Must be of type real and must be greater than or equal to zero. The |x| must be less than
or equal to 1.

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

ASIND REAL(4) REAL(4)

DASIND REAL(8) REAL(8)

QASIND 1 REAL(16) REAL(16)

1 VMS and U*X

Example

ASIND (0.2467590) has the value 14.28581.

ASM (Alpha only)

Nonelemental Intrinsic Function (Generic): Lets you use assembler instructions in an executable program.

Syntax

result = ASM (string [, a,...]})

string
Character. It is a character constant or a concatenation of character constants containing the
assembler instructions.

a
(Optional) Any type. This can be a source or destination argument for the instruction, for

ASM (Alpha only) Page 26 of 62

example.

Results:

The result is a scalar of type INTEGER(8), REAL(4), or REAL(8).

Arguments are passed by value. If you want to pass an argument by reference (for example, a whole
array, a character string, or a record structure), you can use the %REF built-in function.

Labels are allowed, but all references must be from within the same ASM function. This lets you set
up looping constructs, for example. Cross-jumping between ASM functions is not permitted.

In general, an ASM function can appear anywhere that an intrinsic function can be used. Since the
supplied assembly code, assembly directives, or assembly data is integrated into the code stream, the
compiler may choose to use different registers, better code sequences, and so on, just as if the code
were written in Fortran.

You do not have absolute control over instruction sequences and registers, and the compiler may
intersperse other code together with the ASM code for better performance. Better code sequences
may be substituted by the optimizer if it chooses to do so.

Only register names beginning with a dollar sign ($) or percent sign (%) are permitted. For more
information on register name conventions, see your operating system documentation set.

Specific Name Argument Type 1 Result Type

ASM 2 CHARACTER INTEGER(8)

FASM 3 CHARACTER REAL(4)

DASM 3 CHARACTER REAL(8)

1 For the first argument.
2 The value must be stored in register $0 by the user code.
3 The value must be stored in register $F0 by the user code.

Examples

Consider the following:

 ! Concatenation is recommended for clarity.
 ! Notice that ";" separates instructions.
 !
 nine=9

 type *, asm(’addq %0, $17, $0;’// ! Adds the first two arguments
 1 ’ldq $22, %6;’// ! and puts the answer in
 1 ’ldq $23, %7;’// ! register $0
 1 ’ldq $24, %8;’// !
 1 ’mov $0, %fp;’// ! Comments are not allowed in the

ASM (Alpha only) Page 27 of 62

 1 ’addq $18, %fp, $0;’// ! constant, but are allowed here
 1 ’addq $19, $0, $0;’//
 1 ’addq $20, $0, $0;’//
 1 ’addq $21, $0, $0;’//
 1 ’addq $22, $0, $0;’//
 1 ’addq $23, $0, $0;’//
 1 ’addq $24, $0, $0;’,
 1 1,2,3,4,5,6,7,8,nine) ! The actual arguments to the
 ! ASM (usually by value)
 end

This example shows an integer ASM function that adds up 9 values and returns the sum as its result.
Note that the user stores the function result in register $0.

All arguments are passed by value. The arguments not passed in registers can be named %6, %7, and
%8, which correspond to the actual arguments 7, 8, and 9 (since %0 is the first argument). Notice that
you can reference reserved registers like %fp.

The compiler creates the appropriate argument list. So, in this example, the first argument value (1)
will be available in register $16, and the eighth argument value (8) will be available in %7, which is
actually 8($30).

ASSIGN -- Label Assignment

Statement: Assigns a statement label value to an integer variable.

Syntax

ASSIGN label TO var

label
Is the label of a branch target or FORMAT statement in the same scoping unit as the ASSIGN
statement.

var
Is a scalar integer variable.

Rules and Behavior

When an ASSIGN statement is executed, the statement label is assigned to the integer variable. The
variable is then undefined as an integer variable and can only be used as a label (unless it is later
redefined with an integer value).

The ASSIGN statement must be executed before the statements in which the assigned variable is
used.

The ASSIGN statement is an obsolescent feature of standard Fortran 90. Indirect branching through
integer variables makes program flow difficult to read, especially if the integer variable is also used in
arithmetic operations. Using these statements permits inconsistent usage of the integer variable, and
can be an obscure source of error. The ASSIGN statement has been used to simulate internal
procedures, which now can be coded directly.

ASSIGN Page 28 of 62

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Assignment: intrinsic, Obsolescent Features in Fortran 90

Examples

The value of a label is not the same as its number; instead, the label is identified by a number
assigned by the compiler. In the following example, 400 is the label number (not the value) of IVBL:

ASSIGN 400 TO IVBL

Variables used in ASSIGN statements are not defined as integers. If you want to use a variable
defined by an ASSIGN statement in an arithmetic expression, you must first define the variable by a
computational assignment statement or by a READ statement, as in the following example:

IVBL = 400

The following example shows ASSIGN statements:

INTEGER ERROR
...
ASSIGN 10 TO NSTART
ASSIGN 99999 TO KSTOP
ASSIGN 250 TO ERROR

Note that NSTART and KSTOP are integer variables implicitly, but ERROR must be previously
declared as an integer variable.

The following statement associates the variable NUMBER with the statement label 100:

ASSIGN 100 TO NUMBER

If an arithmetic operation is subsequently performed on variable NUMBER (such as follows), the
run-time behavior is unpredictable:

NUMBER = NUMBER + 1

To return NUMBER to the status of an integer variable, you can use the following statement:

NUMBER = 10

This statement dissociates NUMBER from statement 100 and assigns it an integer value of 10. Once
NUMBER is returned to its integer variable status, it can no longer be used in an assigned GO TO
statement.

Assignment(=) Page 29 of 62

Assignment(=) -- Defined Assignment

Statement: An interface block that defines generic assignment. The only procedures allowed in the
interface block are subroutines that can be referenced as defined assignments.

The initial line for such an interface block takes the following form:

Syntax

INTERFACE ASSIGNMENT(=)

The subroutines within the interface block must have two nonoptional arguments, the first with intent
OUT or INOUT, and the second with intent IN.

A defined assignment is treated as a reference to a subroutine. The left side of the assignment
corresponds to the first dummy argument of the subroutine; the right side of the assignment
corresponds to the second argument.

The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the equal
sign are of the same derived type.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.

Any procedure reference involving generic assignment must be resolvable to one specific procedure;
it must be unambiguous. For more information, see Unambiguous Generic Procedure References.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INTERFACE, Assignment Statements

Examples

The following is an example of a procedure interface block defining assignment:

INTERFACE ASSIGNMENT (=)
 SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)
 INTEGER, INTENT(OUT) :: NUM
 LOGICAL, INTENT(IN) :: BIT(:)
 END SUBROUTINE BIT_TO_NUMERIC

 SUBROUTINE CHAR_TO_STRING (STR, CHAR)
 USE STRING_MODULE ! Contains definition of type STRING
 TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string
 CHARACTER(*), INTENT(IN) :: CHAR
 END SUBROUTINE CHAR_TO_STRING
END INTERFACE

Assignment(=) Page 30 of 62

The following example shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:

 CALL BIT_TO_NUMERIC(X, (NUM(I:J)))
 X = NUM(I:J)

The following example shows two equivalent ways to reference subroutine CHAR_TO_STRING:

 CALL CHAR_TO_STRING(CH, ’432C’)
 CH = ’432C’

!Converting circle data to interval data.
module mod1
TYPE CIRCLE
 REAL radius, center_point(2)
END TYPE CIRCLE
TYPE INTERVAL
 REAL lower_bound, upper_bound
END TYPE INTERVAL
CONTAINS
 SUBROUTINE circle_to_interval(I,C)
 type (interval),INTENT(OUT)::I
 type (circle),INTENT(IN)::C
!Project circle center onto the x=-axis
!Note: the length of the interval is the diameter of the circle
 I%lower_bound = C%center_point(1) - C%radius
 I%upper_bound = C%center_point(1) + C%radius
 END SUBROUTINE circle_to_interval
end module mod1

PROGRAM assign
use mod1
TYPE(CIRCLE) circle1
TYPE(INTERVAL) interval1
INTERFACE ASSIGNMENT(=)
 module procedure circle_to_interval
END INTERFACE
!Begin executable part of program
 circle1%radius = 2.5
 circle1%center_point = (/3.0,5.0/)
 interval1 = circle1
. . .
END PROGRAM

Assignment -- Intrinsic

Statement: Assigns a value to a nonpointer variable. In the case of pointers, intrinsic assignment is
used to assign a value to the target associated with the pointer variable. The value assigned to the
variable (or target) is determined by evaluation of the expression to the right of the equal sign.

Syntax

variable = expression

variable

Assignment -- Intrinsic Page 31 of 62

Is the name of a scalar or array of intrinsic or derived type (with no defined assignment). The
array cannot be an assumed-size array, and neither the scalar nor the array can be declared with
the PARAMETER or INTENT(IN) attribute.

expression
Is of intrinsic type or the same derived type as variable. Its shape must conform with variable.
If necessary, it is converted to the same type and kind as variable.

Rules and Behavior

Before a value is assigned to the variable, the expression part of the assignment statement and any
expressions within the variable are evaluated. No definition of expressions in the variable can affect
or be affected by the evaluation of the expression part of the assignment statement.

Note: When the run-time system assigns a value to a scalar integer or character variable and the
variable is shorter than the value being assigned, the assigned value may be truncated and
significant bits (or characters) lost. This truncation can occur without warning, and can cause
the run- time system to pass incorrect information back to the program.

If the variable is a pointer, it must be associated with a definable target. The shape of the target and
expression must conform and their type and kind parameters must match.

If the cDEC$ NOSTRICT compiler directive (the default) is in effect, then you can assign a
character expression to a noncharacter variable, and a noncharacter variable or array element (but not
an expression) to a character variable.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Assignment: defined, NOSTRICT directive

Example

 REAL a, b, c
 LOGICAL abigger
 CHARACTER(16) assertion
 c = .01
 a = SQRT (c)
 b = c**2

 assertion = ’a > b’
 abigger = (a .GT. b)

 WRITE (*, 100) a, b
100 FORMAT (’ a =’, F7.4, ’ b =’, F7.4)

 IF (abigger) THEN
 WRITE (*, *) assertion, ’ is true.’
 ELSE
 WRITE (*, *) assertion, ’ is false.’
 END IF
 END

Assignment -- Intrinsic Page 32 of 62

! The program above has the following output:
! a = .1000 b = .0001 a > b is true.

! The following code demonstrates legal and illegal
! assignment statements:
!
 INTEGER i, j
 REAL rone(4), rtwo(4), x, y
 COMPLEX z
 CHARACTER name6(6), name8(8)
 i = 4
 x = 2.0
 z = (3.0, 4.0)
 rone(1) = 4.0
 rone(2) = 3.0
 rone(3) = 2.0
 rone(4) = 1.0
 name8 = ’Hello,’
! The following assignment statements are legal:
 i = rone(2); j = rone(i); j = x
 y = x; y = z; y = rone(3); rtwo = rone; rtwo = 4.7
 name6 = name8
! The following assignment statements are illegal:
 name6 = x + 1.0; int = name8//’test’; y = rone
 END

ASSOCIATED

Inquiry Intrinsic Function (Generic): Returns the association status of its pointer argument or
indicates whether the pointer is associated with the target.

Syntax

result = ASSOCIATED (pointer [, target])

pointer
(Input) Must be a pointer (of any data type).

target
(Optional; input) Must be a pointer or target. The pointer (in pointer or target) must not have
an association status that is undefined.

Results:

The result type is default logical scalar.

If only pointer appears, the result is true if it is currently associated with a target; otherwise, the result
is false.

If target also appears and is a target, the result is true if pointer is currently associated with target;
otherwise, the result is false.

If target is a pointer, the result is true if both pointer and target are currently associated with the same

ASSOCIATED Page 33 of 62

target; otherwise, the result is false. (If either pointer or target is disassociated, the result is false.)

The setting of compiler option /integer_size can affect this function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALLOCATED, POINTER, TARGET

Example

REAL C (:), D(:), E(5)
POINTER C, D
ARGET E
LOGICAL STATUS
C => E ! pointer assignment
D => E ! pointer assignment
STATUS = ASSOCIATED(C) ! returns TRUE; C is associated
STATUS = ASSOCIATED(C, E) ! returns TRUE; C is associated with E
STATUS = ASSOCIATED (C, D) ! returns TRUE; C and D are associated
 ! with the same target

Consider the following:

 REAL, TARGET, DIMENSION (0:50) :: TAR
 REAL, POINTER, DIMENSION (:) :: PTR
 PTR => TAR
 ASSOCIATED (PTR, TAR) ! Returns the value true

The subscript range for PTR is 0:50. Consider the following pointer assignment statements:

 (1) PTR => TAR (:)
 (2) PTR => TAR (0:50)
 (3) PTR => TAR (0:49)

For statements 1 and 2, ASSOCIATED (PTR, TAR) is true because TAR has not changed (the
subscript range for PTR in both cases is 1:51, following the rules for deferred-shape arrays). For
statement 3, ASSOCIATED (PTR, TAR) is false because the upper bound of TAR has changed.

Consider the following:

 REAL, POINTER, DIMENSION (:) :: PTR2, PTR3
 ALLOCATE (PTR2 (0:15))
 PTR3 => PTR2
 ASSOCIATED (PTR2, PTR3) ! Returns the value true
 ...
 NULLIFY (PTR2)
 NULLIFY (PTR3)
 ASSOCIATED (PTR2, PTR3) ! Returns the value false

ATAN

ATAN Page 34 of 62

Elemental Intrinsic Function (Generic): Produces an arctangent (with the result in radians).

Syntax

result = ATAN (x)

x
(Input) Must be of type real.

Results:

The result type is the same as x. The value lies in the range -pi/2 to pi/2.

Specific Name Argument Type Result Type

ATAN REAL(4) REAL(4)

DATAN REAL(8) REAL(8)

QATAN 1 REAL(16) REAL(16)

1 VMS and U*X

Example

ATAN (1.5874993) has the value 1.008666.

ATAND

Elemental Intrinsic Function (Generic): Produces an arctangent (with the result in degrees).

Syntax

result = ATAND (x)

x
(Input) Must be of type real and must be greater than or equal to zero.

Results:

The result type is the same as x.

ATAND Page 35 of 62

Specific Name Argument Type Result Type

ATAND REAL(4) REAL(4)

DATAND REAL(8) REAL(8)

QATAND 1 REAL(16) REAL(16)

1 VMS and U*X

Example

ATAND (0.0874679) has the value 4.998819.

ATAN2

Elemental Intrinsic Function (Generic): Produces an arctangent (with the result in radians). The result
is the principal value of the argument of the nonzero complex number (x, y).

Syntax

result = ATAN2 (x, y)

x
(Input) Must be of type real. It cannot have the value zero.

y
(Input) Must have the same type and kind parameters as y. It cannot have the value zero.

Results:

The result type is the same as x. The value lies in the range -pi to pi. If x /= zero, the result is
approximately equal to the value of arctan (y/x).

If y > zero, the result is positive.

If y < zero, the result is negative.

If y = zero, the result is zero (if x > zero) or pi (if x < zero).

If x = zero, the absolute value of the result is pi/2.

ATAN2 Page 36 of 62

Specific Name Argument Type Result Type

ATAN2 REAL(4) REAL(4)

DATAN2 REAL(8) REAL(8)

QATAN2 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

ATAN2 (2.679676, 1.0) has the value 1.213623.

If Y has the value

 [1 1]
 [-1 -1]

and X has the value

 [-1 1]
 [-1 1],

then ATAN2 (Y, X) is

ATAN2D

Elemental Intrinsic Function (Generic): Produces an arctangent (with the result in degrees). The result
is the principal value of the argument of the nonzero complex number (x, y).

Syntax

result = ATAN2D (x, y)

x
(Input) Must be of type real. It cannot have the value zero.

y
(Input) Must have the same type and kind parameters as y. It cannot have the value zero.

Results:

ATAN2D Page 37 of 62

The result type is the same as x. The value lies in the range -180 degrees to 180 degrees. If x /= zero,
the result is approximately equal to the value of arctan (y/x).

If y > zero, the result is positive.

If y < zero, the result is negative.

If y = zero, the result is zero (if x > zero) or 180 degrees (if x < zero).

If x = zero, the absolute value of the result is 90 degrees.

Specific Name Argument Type Result Type

ATAN2D REAL(4) REAL(4)

DATAN2D REAL(8) REAL(8)

QATAN2D 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

ATAN2D (2.679676, 1.0) has the value 69.53546.

ATTRIBUTES

Compiler Directive: Declares properties for specified variables.

Syntax

cDEC$ ATTRIBUTES att [, att]... :: object [, object]...

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

att
Is one of the following:

ALIAS DLLEXPORT STDCALL

ARRAY_VISUALIZER DLLIMPORT VALUE

C EXTERN VARYING

DEFAULT REFERENCE

ATTRIBUTES Page 38 of 62

object
Is the name of a data object or procedure.

The following table shows which properties can be used with various objects:

Property
Variable
and Array
Declarations

Common Block
Names 1

Subprogram
Specification and
EXTERNAL
Statements

ALIAS No Yes Yes

ARRAY_VISUALIZER2 Yes No No

C No Yes Yes

DEFAULT No Yes Yes

DLLEXPORT No Yes Yes

DLLIMPORT No Yes Yes

EXTERN Yes No No

REFERENCE Yes No Yes

STDCALL No Yes Yes

VALUE Yes No No

VARYING No No Yes

1 A common block name is specified as [/]common-block-name[/]
2 This property can only be applied to arrays.

These properties can be used in function and subroutine definitions, in type declarations, and
with the INTERFACE and ENTRY statements.

Properties applied to entities available through use or host association are in effect during the
association. For example, consider the following:

MODULE MOD1
 INTERFACE
 SUBROUTINE SUB1
 !DEC$ ATTRIBUTES C, ALIAS:’othername’ :: NEW_SUB
 END SUBROUTINE
 END INTERFACE
 CONTAINS
 SUBROUTINE SUB2
 CALL NEW_SUB
 END SUBROUTINE

ATTRIBUTES Page 39 of 62

END MODULE

In this case, the call to NEW_SUB within SUB2 uses the C and ALIAS properties specified in
the interface block.

The properties are described as follows:

l ALIAS

Specifies an alternate external name to be used when referring to external subprograms. Its
form is:

ALIAS:external-name

external-name
Is a character constant delimited by apostrophes or quotation marks. The character
constant is used as is; the string is not changed to uppercase, nor are blanks removed.

The ALIAS property overrides the C (and STDCALL) property. If both C and ALIAS are
specified for a subprogram, the subprogram is given the C calling convention, but not the C
naming convention. It instead receives the name given for ALIAS, with no modifications.

ALIAS cannot be used with internal procedures, and it cannot be applied to dummy arguments.

The following example gives the subroutine happy the name OtherName outside this scoping
unit.

INTERFACE
 SUBROUTINE happy
!DEC$ ATTRIBUTES C, VARYING, ALIAS:’OtherName’ :: happy
 END SUBROUTINE
END INTERFACE

cDEC$ ATTRIBUTES ALIAS has the same effect as the cDEC$ ALIAS directive.

l ARRAY_VISUALIZER

Enhances the performance of the Array Visualizer.

When declaring allocatable arrays to be viewed using the Array Viewer, this option can
improve the performance of the Array Viewer. For example:

 real(4), allocatable :: MyArray(:, :)
 !DEC$ ATTRIBUTES array_visualizer :: MyArray

When this option is used, array memory is shared between the Array Viewer and your
application. Otherwise, the array data is copied during each faglUpdate call.

This option is not useful unless the array is viewed in the Array Visualizer by using fagl* calls.

ATTRIBUTES Page 40 of 62

For more information on fagl* routines, see your online documentation for Array Visualizer.

l C and STDCALL

Specify how data is to be passed when you use routines written in C or assembler with
FORTRAN or Fortran 90 routines.

On Intel processors, C and STDCALL have slightly different meanings; on all other platforms,
they are interpreted as synonyms.

When applied to a subprogram, these properties define the subprogram as having a specific set
of calling conventions.

The following table summarizes the differences between the calling conventions:

Convention C 1 STDCALL 1 Default 2

Arguments passed by value Yes Yes No

Case of external subprogram
names

VMS: Uppercase

U*X: Lowercase
WNT:
Lowercase
W95: Lowercase

VMS: Uppercase

U*X: Lowercase
WNT: Lowercase

W95: Lowercase

VMS:
Uppercase
U*X: Lowercase

WNT:
Uppercase
W95:
Uppercase

U*X only:

Trailing underscore added No No Yes

WNT, W95:

Leading underscore added Yes Yes Yes

Number of arguments added No Yes Yes

Caller stack cleanup Yes No No

Variable number of arguments Yes No No

1 C and STDCALL are synonyms on OpenVMS and DIGITAL UNIX systems, and Windows NT systems on
Alpha processors
2 The Fortran 90 calling convention

If C or STDCALL is specified for a subprogram, arguments (except for arrays and characters)
are passed by value. Subprograms using standard Fortran 90 conventions pass arguments by

ATTRIBUTES Page 41 of 62

reference.

On Intel processors, an underscore (_) is placed at the beginning of the external name of a
subprogram. If STDCALL is specified, an at sign (@) followed by the number of argument
bytes being passed is placed at the end of the name. For example, a subprogram named SUB1
that has three INTEGER(4) arguments and is defined with STDCALL is assigned the external
name _sub1@12.

Character arguments are passed as follows:

n By default:

n On OpenVMS and DIGITAL UNIX Systems, hidden lengths are put at the end of
the argument list.

n On Windows NT and Windows 95 Systems, hidden lengths immediately follow
the variable.

n If C or STDCALL (only) are specified:

On all systems, the first character of the string is passed (and padded with zeros out to
INTEGER(4) length).

n If C or STDCALL are specified with REFERENCE:

On all systems, the string is passed with no length.

See also REFERENCE.

l DEFAULT

Overrides certain compiler options that can affect external routine and COMMON block
declarations.

It specifies that the compiler should ignore compiler options that change the default
conventions for external symbol naming and argument passing for routines and COMMON
blocks (/iface, /names, and /assume:underscore).

This option can be combined with other cDEC$ ATTRIBUTES options, such as STDCALL,
C, REFERENCE, ALIAS, etc. to specify attributes different from the compiler defaults.

This option is useful when declaring INTERFACE blocks for external routines, since it
prevents compiler options from changing calling or naming conventions.

l DLLEXPORT and DLLIMPORT (WNT, W95)

Define a dynamic-link library’s (DLL) interface for processes that use them. The properties can
be assigned to data objects or procedures.

ATTRIBUTES Page 42 of 62

DLLEXPORT specifies that procedures or data are being exported to other applications or
DLLs. This causes the compiler to produce efficient code, eliminating the need for a module
definition (.def) file to export symbols.

If a procedure (or data) is declared with the DLLEXPORT property, it must be defined in the
same module of the same program.

Symbols defined in a DLL are imported by programs that use them. The program must link
with the import DLL and use the DLLIMPORT property inside the program unit that imports
the symbol. DLLIMPORT is specified in a declaration, not a definition, since you cannot
define a symbol you are importing.

For details on working with DLL applications, see Creating Fortran DLLs in the Programmer’s
Guide.

l EXTERN

Specifies that a variable is allocated in another source file. EXTERN can be used in global
variable declarations, but it must not be applied to dummy arguments.

EXTERN must be used when accessing variables declared in other languages.

l REFERENCE and VALUE

Specify how a dummy argument is to be passed.

REFERENCE specifies a dummy argument’s memory location is to be passed instead of the
argument’s value.

VALUE specifies a dummy argument’s value is to be passed instead of the argument’s memory
location.

When a dummy argument has the VALUE property, the actual argument passed to it can be of
a different type. If necessary, type conversion is performed before the subprogram is called.

When a complex (KIND=4 or KIND=8) argument is passed by value, two floating-point
arguments (one containing the real part, the other containing the imaginary part) are passed by
immediate value.

Character values, substrings, assumed-size arrays, and adjustable arrays cannot be passed by
value.

If REFERENCE (only) is specified for a character argument, the following occurs:

n On OpenVMS and DIGITAL UNIX systems, the string is passed with no length

n On Windows NT and Windows 95 systems, hidden lengths immediately follow the
variable

ATTRIBUTES Page 43 of 62

If REFERENCE and C (or STDCALL) are specified for a character argument, the string is
passed with no length.

VALUE is the default if the C or STDCALL property is specified in the subprogram definition.

In the following example integer x is passed by value:

 SUBROUTINE Subr (x)
 INTEGER x
!DEC$ ATTRIBUTES VALUE :: x

l VARYING

Allows a variable number of calling arguments. If VARYING is specified, the C property must
also be specified.

Either the first argument must be a number indicating how many arguments to process, or the
last argument must be a special marker (such as -1) indicating it is the final argument. The
sequence of the arguments, and types and kinds must be compatible with the called procedure.

Options C, STDCALL, REFERENCE, VALUE, and VARYING affect the calling conventions of
routines. You can specify these cDEC$ ATTRIBUTES options to individual arguments or to an
entire routine.

The following form is also allowed: !MS$ATTRIBUTES att [,att]... :: object [,object]...

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Programming with Mixed Languages, Creating Fortran DLLs, General Compiler
Directives, Rules for General Directives

Examples

INTERFACE
 SUBROUTINE For_Sub (I)
 !DEC$ ATTRIBUTES C, ALIAS:’_For_Sub’ :: For_Sub
 INTEGER I
 END SUBROUTINE For_Sub
END INTERFACE

You can assign more than one property to multiple variables with the same compiler directive. All
properties apply to all the specified variables. For example:

 !DEC$ ATTRIBUTES REFERENCE, VARYING, C :: A, B, C

In this case, the variables A, B, and C are assigned the REFERENCE, VARYING, and C properties.
The only restriction on the number of properties and variables is that the entire compiler directive

ATTRIBUTES Page 44 of 62

must fit on one line.

The identifier of the variable or procedure assigned properties must be a simple name. It cannot
include initialization or array dimensions. For example, the following is not allowed:

 !DEC$ ATTRIBUTES C :: A(10) ! This is illegal.

The following shows another example:

SUBROUTINE ARRAYTEST(arr)
!DEC$ ATTRIBUTES DLLEXPORT :: ARRAYTEST
 REAL(4) arr(3, 7)
 INTEGER i, j
 DO i = 1, 3
 DO j = 1, 7
 arr (i, j) = 11.0 * i + j
 END DO
 END DO
END SUBROUTINE

AUTOAddArg

DFAUTO Subroutine: Passes an argument name and value and adds the argument to the argument
list data structure.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

CALL AUTOAddArg (invoke_args, name, value [, output_arg] [, type])

invoke_args
The argument list data structure of type INTEGER(4).

name
The argument’s name of type CHARACTER*(*).

value
The argument’s value. Must be of type INTEGER(2), INTEGER(4), REAL(4), REAL(8),
LOGICAL(2), LOGICAL(4), CHARACTER*(*), or a single dimension array of one of these
types. Can also be of type VARIANT, which is defined in the DFCOMTY module.

output_arg
Indicates whether the argument’s value is set by the called method. Must be of type LOGICAL.
(See Note below.)

type
The variant type of the argument. Must be one of the VT_* constants defined in the
DFCOMTY module.

AUTOAddArg Page 45 of 62

Note: When the value of output_arg is TRUE, the variable used in the value parameter should be
declared using the VOLATILE attribute. This is because the value of the variable will be changed by
the subsequent call to AUTOInvoke. The compiler’s global optimizations need to know that the value
can change unexpectedly.

AUTOAllocateInvokeArgs

DFAUTO Function: Allocates an argument list data structure that holds the arguments to be passed
to AUTOInvoke.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOAllocateInvokeArgs ()

Results:

The value returned is an argument list data structure of type INTEGER(4).

AUTODeallocateInvokeArgs

DFAUTO Subroutine: Deallocates an argument list data structure.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

CALL AUTODeallocateInvokeArgs (invoke_args)

invoke_args
The argument list data structure of type INTEGER(4).

AUTOGetExceptInfo

DFAUTO Subroutine: Retrieves the exception information when a method has returned an
exception status.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

CALL AUTOGetExceptInfo (invoke_args, code, source, description, help_file, help_context,
scode)

invoke_args

AUTOGetExceptInfo Page 46 of 62

The argument list data structure of type INTEGER(4).

code
An output argument that returns the error code. Must be of type INTEGER(2).

source
An output argument that returns a human-readable name of the source of the exception. Must
be of type CHARACTER*(*).

description
An output argument that returns a human-readable description of the error. Must be of type
CHARACTER*(*).

help_file
An output argument that returns the fully qualified path of a Help file with more information
about the error. Must be of type CHARACTER*(*).

help_context
An output argument that returns the Help context of the topic within the Help file. Must be of
type INTEGER(4).

scode
An output argument that returns an SCODE describing the error. Must be of type INTEGER(4).

AUTOGetProperty

DFAUTO Function: Passes the name or identifier of the property and gets the value of the
Automation object’s property.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOGetProperty (idispatch, id, value [, type])

idispatch
The object’s IDispatch interface pointer. Must be of type INTEGER(4).

id
The argument’s name of type CHARACTER*(*), or its member ID of type INTEGER(4).

value
An output argument that returns the argument’s value. Must be of type INTEGER(2),
INTEGER(4), REAL(4), REAL(8), LOGICAL(2), LOGICAL(4), CHARACTER*(*), or a
single dimension array of one of these types.

type

AUTOGetProperty Page 47 of 62

The variant type of the requested argument. Must be one of the VT_* constants defined in the
DFCOMTY module.

Results:

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOGetPropertyByID

DFAUTO Function: Passes the member ID of the property and gets the value of the Automation
object’s property into the argument list’s first argument.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOGetPropertyByID (idispatch, memid, invoke_args)

idispatch
The object’s IDispatch interface pointer. Must be of type INTEGER(4).

memid
Member ID of the property. Must be of type INTEGER(4).

invoke_args
The argument list data structure of type INTEGER(4).

Results:

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOGetPropertyInvokeArgs

DFAUTO Function: Passes an argument list data structure and gets the value of the Automation
object’s property specified in the argument list’s first argument.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOGetPropertyInvokeArgs (idispatch, invoke_args)

idispatch
The object’s IDispatch interface pointer. Must be of type INTEGER(4).

invoke_args
The argument list data structure of type INTEGER(4).

AUTOGetPropertyInvokeArgs Page 48 of 62

Results:

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOInvoke

DFAUTO Function: Passes the name or identifier of an object’s method and an argument list data
structure and invokes the method with the passed arguments.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOInvoke (idispatch, id, invoke_args)

idispatch
The object’s IDispatch interface pointer. Must be of type INTEGER(4).

id
The argument’s name of type CHARACTER*(*), or its member ID of type INTEGER(4).

invoke_args
The argument list data structure of type INTEGER(4).

Results:

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOMATIC

Statement and Attribute: Controls the storage allocation of variables in subprograms (as does
STATIC). Variables declared as AUTOMATIC and allocated in memory reside in the stack storage
area, rather than at a static memory location.

The AUTOMATIC attribute can be specified in a type declaration statement or an AUTOMATIC
statement, and takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] AUTOMATIC [att-ls,] :: v [, v]...

Statement:

AUTOMATIC [::] v [, v]...

AUTOMATIC Page 49 of 62

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

v
Is the name of a variable or an array specification. It can be of any type.

Rules and Behavior

AUTOMATIC declarations only affect how data is allocated in storage.

If you want to retain definitions of variables upon reentry to subprograms, you must use the SAVE
attribute.

Automatic variables can reduce memory use because only the variables currently being used are
allocated to memory.

Automatic variables allow possible recursion. With recursion, a subprogram can call itself (directly or
indirectly), and resulting values are available upon a subsequent call or return to the subprogram. For
recursion to occur, RECURSIVE must be specified in one of the following ways:

� As a keyword in a FUNCTION or SUBROUTINE statement
� As a compiler option
� As an option in an OPTIONS statement

By default, the compiler allocates local variables of non-recursive subprograms, except for
allocatable arrays, in the static storage area. The compiler may choose to allocate a variable in
temporary (stack or register) storage if it notices that the variable is always defined before use.
Appropriate use of the SAVE attribute can prevent compiler warnings if a variable is used before it is
defined.

To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE (in one
of the ways mentioned above).

To override any compiler option that may affect variables, explicitly specify the variables as
AUTOMATIC.

Note: Variables that are data-initialized, and variables in COMMON and SAVE statements
are always static. This is regardless of whether a compiler option specifies recursion.

A variable cannot be specified as AUTOMATIC more than once in the same scoping unit.

If the variable is a pointer, AUTOMATIC applies only to the pointer itself, not to any associated
target.

AUTOMATIC Page 50 of 62

Some variables cannot be specified as AUTOMATIC. The following table shows these restrictions:

Variable AUTOMATIC

Dummy argument Yes

Automatic object No

Common block item No

Use-associated item No

Function result Yes

Component of a derived type No

If a variable is in a module’s outer scope, it cannot be specified as AUTOMATIC.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: STATIC, SAVE, Type declaration statements, Compatible attributes, RECURSIVE,
/recursive, OPTIONS, POINTER, Modules and Module Procedures

Examples

The following example shows a type declaration statement specifying the AUTOMATIC attribute:

REAL, AUTOMATIC :: A, B, C

The following example uses an AUTOMATIC statement:

...
CONTAINS
 INTEGER FUNCTION REDO_FUNC
 INTEGER I, J(10), K
 REAL C, D, E(30)
 AUTOMATIC I, J, K(20)
 STATIC C, D, E
 ...
 END FUNCTION
...

C In this example, all variables within the program unit
C are automatic, except for "var1" and "var2"; these are
C explicitly declared in a SAVE statement, and thus have
C static memory locations:
 SUBROUTINE DoIt (arg1, arg2)

 INTEGER(4) arg1, arg2

AUTOMATIC Page 51 of 62

 INTEGER(4) var1, var2, var3, var4

 AUTOMATIC
 SAVE var1, var3
C var2 and var4 are automatic

AUTOSetProperty

DFAUTO Function: Passes the name or identifier of the property and a value, and sets the value of
the Automation object’s property.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOSetProperty (idispatch, id, value [, type])

idispatch
The object’s IDispatch interface pointer. Must be of type INTEGER(4).

id
The argument’s name of type CHARACTER*(*), or its member ID of type INTEGER(4).

value
The argument’s value. Must be of type INTEGER(2), INTEGER(4), REAL(4), REAL(8),
LOGICAL(2), LOGICAL(4), CHARACTER*(*), or a single dimension array of one of these
types.

type
The variant type of the argument. Must be one of the VT_* constants defined in the
DFCOMTY module.

Results:

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOSetPropertyByID

DFAUTO Function: Passes the member ID of the property and sets the value of the Automation
object’s property into the argument list’s first argument.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOSetPropertyByID (idispatch, memid, invoke_args)

idispatch
The object’s IDispatch interface pointer. Must be of type INTEGER(4).

AUTOSetPropertyByID Page 52 of 62

memid
Member ID of the property. Must be of type INTEGER(4).

invoke_args
The argument list data structure of type INTEGER(4).

Results:

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOSetPropertyInvokeArgs

DFAUTO Function: Passes an argument list data structure and sets the value of the Automation
object’s property specified in the argument list’s first argument.

Modules: USE DFAUTO, USE DFCOMTY

Syntax

result = AUTOSetPropertyInvokeArgs (idispatch, invoke_args)

idispatch
The object’s IDispatch interface pointer. Must be of type INTEGER(4).

invoke_args
The argument list data structure of type INTEGER(4).

Results:

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

BACKSPACE

Statement: Positions a file at the beginning of the preceding record, making it available for
subsequent I/O processing. It takes one of the following forms:

Syntax

BACKSPACE ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])

BACKSPACE io-unit

io-unit
(Input) Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error occurs.

BACKSPACE Page 53 of 62

i-var
(Output) Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if
no error occurs.

Rules and Behavior

Use the BACKSPACE statement with files connected for sequential access. BACKSPACE cannot
be used to skip over records that have been written using list-directed or namelist formatting.

The I/O unit number must specify an open file on disk or magnetic tape.

Backspacing from the current record n is performed by rewinding to the start of the file and then
performing n-1 successive READs to reach the previous record.

A BACKSPACE statement must not be specified for a file that is open for direct or append access,
because n is not available to the Fortran I/O system.

If a file is already positioned at the beginning of a file, a BACKSPACE statement has no effect.

If the file is positioned between the last record and the end-of-file record, BACKSPACE positions
the file at the start of the last record.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: REWIND, ENDFILE, Data Transfer I/O Statements, Branch Specifiers

Examples

BACKSPACE 5
BACKSPACE (5)
BACKSPACE lunit
BACKSPACE (UNIT = lunit, ERR = 30, IOSTAT = ios)

The following statement repositions the file connected to I/O unit 4 back to the preceding record:

BACKSPACE 4

Consider the following statement:

BACKSPACE (UNIT=9, IOSTAT=IOS, ERR=10)

This statement positions the file connected to unit 9 back to the preceding record. If an error occurs,
control is transferred to the statement labeled 10, and a positive integer is stored in variable IOS.

BEEPQQ Page 54 of 62

BEEPQQ

Run-Time Subroutine: Sounds the speaker at the specified frequency for the specified duration in
milliseconds.

Module: USE DFLIB

Syntax

CALL BEEPQQ (frequency, duration)

frequency
(Input) INTEGER(4). Frequency of the tone in Hz.

duration
(Input) INTEGER(4). Length of the beep in milliseconds.

BEEPQQ does not return until the sound terminates.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SLEEPQQ

Example

USE DFLIB
INTEGER(4) frequency, duration
frequency = 4000
duration = 1000
CALL BEEPQQ(frequency, duration)

BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN

Portability Functions: Compute the single-precision values of Bessel functions of the first and
second kinds.

Module: USE DFPORT

Syntax

result = BESJ0 (posvalu)
result = BESJ1 (posvalu)
result = BESJN (n, posvalu)
result = BESY0 (posvalu)
result = BESY1 (posvalu)
result = BESYN (n, posvalu)

BESJ0, ...BESJN Page 55 of 62

posvalue
(Input) REAL(4). Independent variable for a Bessel function. Must be greater than or equal to
zero.

n
(Input) Default integer (INTEGER(4) unless changed by the user). Specifies the order of the
selected Bessel function computation.

Results:

BESJ0, BESJ1, and BESJN return Bessel functions of the first kind, orders 0, 1, and n, respectively,
with the independent variable posvalue.

BESY0, BESY1, and BESYN return Bessel functions of the second kind, orders 0, 1, and n,
respectively, with the independent variable posvalue.

Negative arguments cause BESY0, BESY1, and BESYN to return QNAN.

Bessel functions are explained more fully in most mathematics reference books, such as the
Handbook of Mathematical Functions (Abramowitz and Stegun. Washington: U.S. Government
Printing Office, 1964). These functions are commonly used in the mathematics of electromagnetic
wave theory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DBESJ0, DBESJ1, DBESJN

BIC, BIS

Portability Subroutines: Perform a bit-level set and clear for integers.

Module: USE DFPORT

Syntax

CALL BIC (bitnum, target)
CALL BIS (bitnum, target)

bitnum
(Input) INTEGER(4). Bit number to set. Must be in the range 0 (least significant bit) to 31
(most significant bit).

target
(Input) INTEGER(4). Variable whose bit is to be set.

BIC, BIS Page 56 of 62

BIC sets bit bitnum of target to 0; BIS sets bit bitnum to 1.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BIT

BIT

Portability Function: Performs a bit-level test for integers.

Module: USE DFPORT

Syntax

result = BIT (bitnum, source)

bitnum
(Input) INTEGER(4). Bit number to test. Must be in the range 0 (least significant bit) to 31
(most significant bit).

source
(Input) INTEGER(4). Variable being tested.

Results:

The result type is logical. .TRUE. if bit bitnum of source is 1; otherwise, .FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BIC, BIS

BIT_SIZE

Inquiry Intrinsic Function (Generic): Returns the number of bits in an integer type.

Syntax

result = BIT_SIZE (i)

i
(Input) Must be of type default integer.

Results:

BIT_SIZE Page 57 of 62

The result is a scalar integer with the same kind parameter as i. The result value is the number of bits
(s) defined by the bit model for integers with the kind parameter of the argument. For information on
the bit model, see Model for Bit Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BTEST, IBCLR, IBITS, IBSET

Examples

BIT_SIZE (1_2) has the value 16 because the KIND=2 integer type contains 16 bits.

BLOCK DATA

Statement: Identifies a block-data program unit, which provides initial values for nonpointer
variables in named common blocks.

Syntax

BLOCK DATA [name]
[specification-part]

END [BLOCK DATA [name]]

name
Is the name of the block data program unit.

specification-part
Is one or more of the following statements:

COMMON INTRINSIC STATIC

DATA PARAMETER TARGET

Derived-type definition POINTER Type declaration 2

DIMENSION RECORD 1 USE 3

EQUIVALENCE Record structure declaration 1

IMPLICIT SAVE

1 For more information, see RECORD statement and record structure declarations.
2 Can only contain attributes: DIMENSION, INTRINSIC, PARAMETER, POINTER, SAVE, STATIC, or
TARGET.
3 Allows access to only named constants.

Rules and Behavior

BLOCK DATA Page 58 of 62

A block data program unit need not be named, but there can only be one unnamed block data program
unit in an executable program.

If a name follows the END statement, it must be the same as the name specified in the BLOCK
DATA statement.

An interface block must not appear in a block data program unit and a block data program unit must
not contain any executable statements.

If a DATA statement initializes any variable in a named common block, the block data program unit
must have a complete set of specification statements establishing the common block. However, all of
the variables in the block do not have to be initialized.

A block data program unit can establish and define initial values for more than one common block,
but a given common block can appear in only one block data program unit in an executable program.

The name of a block data program unit can appear in the EXTERNAL statement of a different
program unit to force a search of object libraries for the block data program unit at link time.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: COMMON, DATA, EXTERNAL, Program Units and Procedures

Examples

The following shows a block data program unit:

BLOCK DATA BLKDAT
 INTEGER S,X
 LOGICAL T,W
 DOUBLE PRECISION U
 DIMENSION R(3)
 COMMON /AREA1/R,S,U,T /AREA2/W,X,Y
 DATA R/1.0,2*2.0/, T/.FALSE./, U/0.214537D-7/, W/.TRUE./, Y/3.5/
END

The following shows another example:

C Main Program
 CHARACTER(LEN=10) LakeType
 REAL X(10), Y(4)
 COMMON/Lakes/a,b,c,d,e,family/Blk2/x,y
 ...
C The following block-data subprogram initializes
C the named common block /Lakes/:
C
 BLOCK DATA InitLakes
 COMMON /Lakes/ erie, huron, michigan, ontario,
 + superior, fname
 DATA erie, huron, michigan, ontario, superior /1, 2, 3, 4, 5/

BLOCK DATA Page 59 of 62

 CHARACTER(LEN=10) fname/’GreatLakes’/
 END

BSEARCHQQ

Run-Time Function: Performs a binary search of a sorted one-dimensional array for a specified
element. The array elements cannot be derived types or structures.

Module: USE DFLIB

Syntax

result = BSEARCHQQ (adrkey, adrarray, length, size)

adrkey
(Input) INTEGER(4). Address of the variable containing the element to be found (returned by
LOC).

adrarray
(Input) INTEGER(4). Address of the array (returned by LOC).

length
(Input) INTEGER(4). Number of elements in the array.

size
(Input) INTEGER(4). Positive constant less than 32,767 that specifies the kind of array to be
sorted. The following constants, defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory,
specify type and kind for numeric arrays:

Constant Type of array

SRT$INTEGER1 INTEGER(1)

SRT$INTEGER2 INTEGER(2) or equivalent

SRT$INTEGER4 INTEGER(4) or equivalent

SRT$REAL4 REAL(4) or equivalent

SRT$REAL8 REAL(8) or equivalent

If the value provided in size is not a symbolic constant and is less than 32,767, the array is assumed to
be a character array with size characters per element.

Results:

INTEGER(4). Array index of the matched entry, or 0 if the entry is not found.

The array must be sorted in ascending order before being searched.

BSEARCHQQ Page 60 of 62

Caution: The location of the array and the element to be found must both be passed by address
using the LOC function. This defeats Fortran type checking, so you must make certain that the
length and size arguments are correct, and that size is the same for the element to be found and
the array searched.

If you pass invalid arguments, BSEARCHQQ attempts to search random parts of memory. If
the memory it attempts to search is allocated to the current process, that memory is searched. If
the memory it attempts to search is not allocated to the current process, the operating system
intervenes, the program is halted, and you receive a General Protection Violation message.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SORTQQ, LOC

Example

USE DFLIB
INTEGER(4) array(10), length
INTEGER(4) result, target
length = SIZE(array)
...
result = BSEARCHQQ(LOC(target),LOC(array),length,SRT$INTEGER4)

BTEST

Elemental Intrinsic Function (Generic): Tests a bit of an integer argument.

Syntax

result = BTEST (i, pos)

i
(Input) Must be of type integer.

pos
(Input) Must be of type integer. It must not be negative and it must be less than BIT_SIZE(i).

Results:

The result type is default logical.

The result is true if bit pos of i has the value 1. The result is false if pos has the value zero. For
information on the model for the interpretation of an integer value as a sequence of bits, see Model
for Bit Data.

BTEST Page 61 of 62

The setting of compiler option /integer_size can affect this function.

Specific Name Argument Type Result Type

INTEGER(1) LOGICAL(1)

BITEST INTEGER(2) LOGICAL(2)

BTEST 1 INTEGER(4) LOGICAL(4)

BKTEST 2 INTEGER(8) LOGICAL(8)

1 Or BJTEST
2 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IBCLR, IBSET, IBCHNG, IOR, IEOR, IAND

Examples

BTEST (9, 3) has the value true.

If A has the value

 [1 2]
 [3 4],

the value of BTEST (A, 2) is

 [false false]
 [false true]

and the value of BTEST (2, A) is

 [true false]
 [false false].

The following shows more examples:

BTEST Page 62 of 62

Function reference i Result

BTEST (i,2) 00011100 01111000 .FALSE.

BTEST (i,3) 00011100 01111000 .TRUE.

The following shows another example:

INTEGER(1) i(2)
LOGICAL result(2)
i(1) = 2#10101010
i(2) = 2#01010101
result = BTEST(i, (/3,2/)) ! returns (.TRUE.,.TRUE.)
write(*,*) result

BYTE

Statement: Specifies the BYTE data type, which is equivalent to INTEGER(1).

See Also: INTEGER, Integer Data Types

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

BYTE count, matrix(4, 4) / 4*1, 4*2, 4(4), 4*8 /
BYTE num / 10 /

CALL Page 1 of 97

CALL

Statement: Transfers control to a subroutine subprogram.

Syntax

CALL sub [([a-arg [, a-arg]...])]

sub
Is the name of the subroutine subprogram.

a-arg
Is an actual argument optionally preceded by [keyword=], where keyword is the name of a
dummy argument in the explicit interface for the subroutine. The keyword is assigned a value
when the procedure is invoked.

Each actual argument must be a variable, an expression, the name of a procedure, or an
alternate return specifier. (It must not be the name of an internal procedure, statement function,
or the generic name of a procedure.)

An alternate return specifier is an asterisk (*), or ampersand (&) followed by the label of an
executable branch target statement in the same scoping unit as the CALL statement. (An
alternate return is an obsolescent feature in Fortran 90 and Fortran 95.)

Rules and Behavior

When the CALL statement is executed, any expressions in the actual argument list are evaluated,
then control is passed to the first executable statement or construct in the subroutine. When the
subroutine finishes executing, control returns to the next executable statement following the CALL
statement, or to a statement identified by an alternate return label (if any).

If an argument list appears, each actual argument is associated with the corresponding dummy
argument by its position in the argument list or by the name of its keyword. The arguments must
agree in type and kind parameters.

If positional arguments and argument keywords are specified, the argument keywords must appear
last in the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

An actual argument associated with a dummy procedure must be the specific name of a procedure, or
be another dummy procedure. Certain specific intrinsic function names must not be used as actual
arguments (see Functions Not Allowed as Actual Arguments).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

CALL Page 2 of 97

See Also: SUBROUTINE, CONTAINS, RECURSIVE, USE, Program Units and Procedures

Examples

The following example shows valid CALL statements:

CALL CURVE(BASE,3.14159+X,Y,LIMIT,R(LT+2))

CALL PNTOUT(A,N,’ABCD’)

CALL EXIT

CALL MULT(A,B,*10,*20,C) ! The asterisks and ampersands denote
CALL SUBA(X,&30,&50,Y) ! alternate returns

The following example shows a subroutine with argument keywords:

PROGRAM KEYWORD_EXAMPLE
 INTERFACE
 SUBROUTINE TEST_C(I, L, J, KYWD2, D, F, KYWD1)
 INTEGER I, L(20), J, KYWD1
 REAL, OPTIONAL :: D, F
 COMPLEX KYWD2
 ...
 END SUBROUTINE TEST_C
 END INTERFACE
 INTEGER I, J, K
 INTEGER L(20)
 COMPLEX Z1
 CALL TEST_C(I, L, J, KYWD1 = K, KYWD2 = Z1)
 ...

The first three actual arguments are associated with their corresponding dummy arguments by
position. The argument keywords are associated by keyword name, so they can appear in any order.

Note that the interface to subroutine TEST has two optional arguments that have been omitted in the
CALL statement.

The following is another example of a subroutine call with argument keywords:

CALL TEST(X, Y, N, EQUALITIES = Q, XSTART = X0)

The first three arguments are associated by position.

The following shows another example:

!Variations on a subroutine call
 REAL S,T,X
 INTRINSIC NINT
 S=1.5
 T=2.5
 X=14.7

CALL Page 3 of 97

 !This calls SUB1 using keywords. NINT is an intrinsic function.
 CALL SUB1(B=X,C=S*T,FUNC=NINT,A=4.0)
!Here is the same call using an implicit reference
 CALL SUB1(4.0,X,S*T,NINT)
 CONTAINS
 SUBROUTINE sub1(a,b,c,func)
 INTEGER func
 REAL a,b,c
 PRINT *, a,b,c, func(b)
 END SUBROUTINE
 END

CASE

Statement: Marks the beginning of a CASE construct. A CASE construct conditionally executes one
block of constructs or statements depending on the value of a scalar expression in a SELECT CASE
statement.

Syntax

[name:] SELECT CASE (expr)
[CASE (case-value [, case-value]...) [name]

block]...
[CASE DEFAULT [name]

block]
END SELECT [name]

name
Is the name of the CASE construct.

expr
Is a scalar expression of type integer, logical, or character (enclosed in parentheses). Evaluation
of this expression results in a value called the case index.

case-value
Is one or more scalar integer, logical, or character initialization expressions enclosed in
parentheses. Each case-value must be of the same type and kind parameter as expr. If the type
is character, case-value and expr can be of different lengths, but their kind parameter must be
the same.

Integer and character expressions can be expressed as a range of case values, taking one of the
following forms:

 low:high
 low:
 :high

Case values must not overlap.

block
Is a sequence of zero or more statements or constructs.

CASE Page 4 of 97

Rules and Behavior

If a construct name is specified in a SELECT CASE statement, the same name must appear in the
corresponding END SELECT statement. The same construct name can optionally appear in any
CASE statement in the construct. The same construct name must not be used for different named
constructs in the same scoping unit.

The case expression (expr) is evaluated first. The resulting case index is compared to the case values
to find a matching value (there can only be one). When a match occurs, the block following the
matching case value is executed and the construct terminates.

The following rules determine whether a match occurs:

� When the case value is a single value (no colon appears), a match occurs as follows:

Data Type A Match Occurs If:

Logical case-index .EQV. case-value

Integer or Character case-index = = case-value

� When the case value is a range of values (a colon appears), a match depends on the range
specified, as follows:

Range A Match Occurs If:

low: case-index >= low

:high case-index <= high

low:high low <= case-index <= high

The following are all valid case values:

CASE (1, 4, 7, 11:14, 22) ! Individual values as specified:
 ! 1, 4, 7, 11, 12, 13, 14, 22
CASE (:-1) ! All values less than zero
CASE (0) ! Only zero
CASE (1:) ! All values above zero

If no match occurs but a CASE DEFAULT statement is present, the block following that statement
is executed and the construct terminates.

If no match occurs and no CASE DEFAULT statement is present, no block is executed, the
construct terminates, and control passes to the next executable statement or construct following the
END SELECT statement.

CASE Page 5 of 97

The following figure shows the flow of control in a CASE construct:

Flow of Control in CASE Constructs

You cannot use branching statements to transfer control to a CASE statement. However, branching to

CASE Page 6 of 97

a SELECT CASE statement is allowed. Branching to the END SELECT statement is allowed only
from within the CASE construct.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Execution Control

Examples

The following are examples of CASE constructs:

INTEGER FUNCTION STATUS_CODE (I)
 INTEGER I
 CHECK_STATUS: SELECT CASE (I)
 CASE (:-1)
 STATUS_CODE = -1
 CASE (0)
 STATUS_CODE = 0
 CASE (1:)
 STATUS_CODE = 1
 END SELECT CHECK_STATUS
END FUNCTION STATUS_CODE

SELECT CASE (J)
CASE (1, 3:7, 9) ! Values: 1, 3, 4, 5, 6, 7, 9
 CALL SUB_A
CASE DEFAULT
 CALL SUB_B
END SELECT

The following three examples are equivalent:

1. SELECT CASE (ITEST .EQ. 1)
 CASE (.TRUE.)
 CALL SUB1 ()
 CASE (.FALSE.)
 CALL SUB2 ()
 END SELECT

2. SELECT CASE (ITEST)
 CASE DEFAULT
 CALL SUB2 ()
 CASE (1)
 CALL SUB1 ()
 END SELECT

3. IF (ITEST .EQ. 1) THEN
 CALL SUB1 ()
 ELSE
 CALL SUB2 ()
 END IF

The following shows another example:

CASE Page 7 of 97

*CHARACTER*1 cmdchar
GET_ANSWER: SELECT CASE (cmdchar)
CASE (’0’)
 WRITE (*, *) "Must retrieve one to nine files"
CASE (’1’:’9’)
 CALL RetrieveNumFiles (cmdchar)
CASE (’A’, ’a’)
 CALL AddEntry
CASE (’D’, ’d’)
 CALL DeleteEntry
CASE (’H’, ’h’)
 CALL Help
CASE DEFAULT
 WRITE (*, *) "Command not recognized; please use H for help"
END SELECT GET_ANSWER

CEILING

Elemental Intrinsic Function (Generic): Returns the smallest integer greater than or equal to its argument.

Syntax

result = CEILING (a [, kind])

a
(Input) Must be of type real.

kind
(Optional; input) Must be a scalar integer initialization expression. This argument is a Fortran
95 feature.

Results:

If kind is present, the kind parameter is that specified by kind; otherwise, the kind parameter is that of
default integer. The value of the result is equal to the smallest integer greater than or equal to a. The
result is undefined if the value cannot be represented in the default integer range.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FLOOR

Examples

CEILING (4.8) has the value 5.

CEILING (-2.55) has the value -2.0.

The following shows another example:

CEILING Page 8 of 96

INTEGER I, IARRAY(2)
I = CEILING(8.01) ! returns 9
I = CEILING(-8.01) ! returns -8
IARRAY = CEILING((/8.01,-5.6/)) ! returns (9, -5)

CHANGEDIRQQ

Run-Time Function: Makes the specified directory the current, default directory.

Module: USE DFLIB

Syntax

result = CHANGEDIRQQ (dir)

dir
(Input) Character*(*). Directory to be made the current directory.

Results

LOGICAL(4). .TRUE. if successful; otherwise, .FALSE..

If you do not specify a drive in the dir string, the named directory on the current drive becomes the
current directory. If you specify a drive in dir, the named directory on the specified drive becomes the
current directory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETDRIVEDIRQQ, MAKEDIRQQ, DELDIRQQ, CHANGEDRIVEQQ

Example

USE DFLIB
LOGICAL(4) status
status = CHANGEDIRQQ(’d:\fps90\bin\bessel’)

CHANGEDRIVEQQ

Run-Time Function: Makes the specified drive the current, default drive.

Module: USE DFLIB

Syntax

result = CHANGEDRIVEQQ (drive)

CHANGEDRIVEQQ Page 9 of 96

drive
(Input) Character*(*). String beginning with the drive letter.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE.

Because drives are identified by a single alphabetic character, CHANGEDRIVEQQ examines only
the first character of drive. The drive letter can be uppercase or lowercase.

CHANGEDRIVEQQ changes only the current drive. The current directory on the specified drive
becomes the new current directory. If no current directory has been established on that drive, the root
directory of the specified drive becomes the new current directory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETDRIVESQQ, GETDRIVESIZEQQ, GETDRIVEDIRQQ, CHANGEDIRQQ

Example

USE DFLIB
LOGICAL(4) status
status = CHANGEDRIVEQQ(’d’)

CHAR

Elemental Intrinsic Function (Generic): Returns the character in the specified position of the ASCII
character set. It is the inverse of the function ICHAR.

Syntax

result = CHAR (i [, kind])

i
(Input) Must be of type integer with a value in the range 0 to n - 1, where n is the number of
characters in the ASCII character set.

kind
(Optional; input) Must be a scalar integer initialization expression.

Results:

The result type is character of length 1. The kind parameter is that of default character type.

The result is the character in position i of the ASCII character set. ICHAR(CHAR (i, kind(c))) has
the value I for 0 to n - 1 and CHAR(ICHAR(c), kind(c)) has the value c for any character c capable

CHAR Page 10 of 96

of representation in the processor.

Specific Name Argument Type Result Type

INTEGER(1) CHARACTER

INTEGER(2) CHARACTER

CHAR 1 INTEGER(4) CHARACTER

INTEGER(8) 2 CHARACTER

1 This specific function cannot be passed as an actual argument.
2 INTEGER(8) is only available on Alpha processors.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ACHAR, IACHAR, ICHAR, ASCII and Key Code Charts

Examples

CHAR (76) has the value ’L’.

CHAR (94) has the value ’^’.

CHARACTER

Statement: Specifies the CHARACTER data type.

Syntax

CHARACTER
CHARACTER([KIND=]n)
CHARACTER* len

n
Is kind 1.

len
Is a string length (not a kind). For more information, see Declaration Statements for Character
Types.

If no kind type parameter is specified, the kind of the constant is default character.

Compatibility

CHARACTER Page 11 of 96

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Character Data Type, Character Constants, Character Substrings, C Strings, Declaration
Statements for Character Types

Example

C
C Length of wt and vs is 10, city is 80, and ch is 1
C
 CHARACTER wt*10, city*80, ch
 CHARACTER (LEN = 10), PRIVATE :: vs
 CHARACTER*(*) arg !declares a dummy argument
C name and plume are ten-element character arrays
C of length 20

 CHARACTER name(10)*20
 CHARACTER(len=20), dimension(10):: plume
C
C Length of susan, patty, and dotty are 2, alice is 12,
C jane is a 79-member array of length 2
C
 CHARACTER(2) susan, patty, alice*12, dotty, jane(79)

CHDIR

Portability Function: Changes the default directory.

Module: USE DFPORT

Syntax

result = CHDIR (dir_name)

dir_name
(Input) Character*(*). Name of a directory to become the default directory.

Results:

The result type is INTEGER(4). It returns zero if the directory was changed successfully; otherwise,
an error code. Possible error codes are:

� ENOENT: The named directory does not exist.
� ENOTDIR: The dir_name parameter is not a directory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CHANGEDIRQQ

CHDIR Page 12 of 96

Example

 integer(4) istatus, enoent, enotdir
 character*(*) newdir, prompt, errmsg
 prompt = ’Please enter directory name: ’
10 write *, prompt
 read *, newdir
 ISTATUS = CHDIR(newdir)
 select case (istatus)
 case (enoent)
 errmsg = ’The directory’//newdir//’ does not exist’
 case (enotdir)
 errmsg = newdir//’ is not a directory’
 case else
 goto 40
 end select
 write *, errmsg
 goto 10
40 write *, ’Default directory successfully changed.’
 end

CHMOD

Portability Function: Changes the access mode of a file.

Module: USE DFPORT

Syntax

result = CHMOD (name, mode)

name
(Input) Character*(*). Name of the file whose access mode is to be changed. Must have a
single path.

mode
(Input) Character*(*). File permission: either Read, Write, or Execute. The mode parameter can
be either symbolic or absolute. An absolute mode is specified with an octal number, consisting
of any combination of the following permission bits ORed together:

Permission bit Description Action

4000 Set user ID on execution ignored; never true

2000 Set group ID on execution ignored; never true

1000 Sticky bit ignored; never true

0400 Read by owner ignored; always true

0200 Write by owner Settable

CHMOD Page 13 of 96

0100 Execute by owner ignored; based on filename extension

0040, 0020, 0010 Read, Write, Execute by group ignored; assumes owner permissions

0004, 0002, 0001 Read, Write, Execute by others ignored; assumes owner permissions

The following regular expression represents a symbolic mode:

[ugoa]*[+-=] [rwxXst]*

"[ugoa]*" is ignored. "[+ - =]" indicates the operation to carry out:

� + Add the permission
� - Remove the permission
� = Absolutely set the permission

"[rwxXst]*" indicates the permission to add, subtract, or set. Only "w" is significant and affects write
permission. All other letters are ignored.

Results:

INTEGER(4). Zero if the mode was changed successfully; otherwise, an error code. Possible error
codes are:

� ENOENT: The specified file was not found.
� EINVAL: The mode argument is invalid.
� EPERM: Permission denied; the file’s mode cannot be changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SETFILEACCESSQQ

Example

USE DFPORT
integer(4) I,Istatus
I = ACCESS ("DATAFILE.TXT", "w")
if (i) then
 ISTATUS = CHMOD ("datafile.txt", "[+w]")
end if
I = ACCESS ("DATAFILE.TXT","w")
print *, i

CLEARSCREEN

Graphics Subroutine: Erases the target area and fills it with the current background color.

Module: USE DFLIB

CLEARSCREEN Page 14 of 96

Syntax

CALL CLEARSCREEN (area)

area
(Input) INTEGER(4). Identifies the target area. Must be one of the following symbolic
constants (defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory):

n $GCLEARSCREEN Clears the entire screen.
n $GVIEWPORT Clears only the current viewport.
n $GWINDOW Clears only the current text window (set with SETTEXTWINDOW).

All pixels in the target area are set to the color specified with SETBKCOLORRGB. The default
color is black.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETBKCOLORRGB, SETBKCOLORRGB, SETTEXTWINDOW, SETVIEWPORT

Example

USE DFLIB
CALL CLEARSCREEN($GCLEARSCREEN)

CLICKMENUQQ

QuickWin Function: Simulates the effect of clicking or selecting a menu command. The QuickWin
application responds as though the user had clicked or selected the command.

Modules: USE DFLIB

Syntax

result = CLICKMENUQQ (item)

item
(Input) INTEGER(4). Constant that represents the command selected from the Window menu.
Must be one of the following symbolic constants (defined in DFLIB.F90 in the \DF98
\INCLUDE subdirectory):

n QWIN$STATUS: Status command
n QWIN$TILE: Tile command
n QWIN$CASCADE: Cascade command
n QWIN$ARRANGE: Arrange Icons command

Results:

CLICKMENUQQ Page 15 of 96

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, REGISTERMOUSEEVENT, UNREGISTERMOUSEEVENT,
WAITONMOUSEEVENT.

CLOCK

Portability Function: Converts a system time into an 8-character ASCII string.

Module: USE DFPORT

Syntax

result = CLOCK ()

Results:

The result type is CHARACTER(8). The result is the current time in the form hh:mm:ss, using a 24-
hour clock.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

USE DFPORT
character(8) whatimeisit
whatimeisit = CLOCK ()
write *, ’The current time is ’,whatimeisit

CLOSE

Statement: Disconnects a file from a unit.

Syntax

CLOSE ([UNIT=]io-unit [, STATUS | DISPOSE | DISP = p] [, ERR=label] [, IOSTAT=i-var])

io-unit
(Input) an external unit specifier.

CLOSE Page 16 of 96

p
(Input) a scalar default character expression indicating the status of the file after it is closed. It has
one of the following values:

� ’KEEP’ or ’SAVE’ - Retains the file after the unit closes.
� ’DELETE’ - Deletes the file after the unit closes (unless OPEN(READONLY) is in effect).
� ’PRINT’ - Submits the file to the line print spooler, then retains it (sequential files only).
� ’PRINT/DELETE’ - Submits the file to the line print spooler, then deletes it (sequential files

only).
� ’SUBMIT’ - Forks a process to execute the file.
� ’SUBMIT/DELETE’ - Forks a process to execute the file, then deletes the file after the fork is

completed.

The default is ’DELETE’ for scratch files and QuickWin applications. For all other files, the default is
’KEEP’.

Files opened without a filename are called "scratch" files. Scratch files are temporary and are always
deleted upon normal program termination; specifying STATUS=’KEEP’ for scratch files causes a run-
time error.

For QuickWin applications, STATUS=’KEEP’ causes the child window to remain on the screen even
after the unit closes. The default status is ’DELETE’, which removes the child window from the
screen.

label
Is the label of the branch target statement that receives control if an error occurs.

i-var
(Output) Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if
no error occurs.

Rules and Behavior

The CLOSE statement specifiers can appear in any order. An I/O unit must be specified, but the
UNIT= keyword is optional if the unit specifier is the first item in the I/O control list.

The status specified in the CLOSE statement supersedes the status specified in the OPEN statement,
except that a file opened as a scratch file cannot be saved, printed, or submitted, and a file opened for
read-only access cannot be deleted.

If a CLOSE statement is specified for a unit that is not open, it has no effect.

You do not need to explicitly close open files. Normal program termination closes each file according
to its default status. The CLOSE statement does not have to appear in the same program unit that
opened the file.

Closing unit 0 automatically reconnects unit 0 to the keyboard and screen. Closing units 5 and 6
automatically reconnects those units to the keyboard or screen, respectively. Closing the asterisk (*)

CLOSE Page 17 of 96

unit causes a compile-time error. In QuickWin, use CLOSE with unit 0, 5, or 6 to close the default
window. If all of these units have been detached from the console (through an explicit OPEN), you
must close one of these units beforehand to reestablish its connection with the console. You can then
close the reconnect unit to close the default window.

If a parameter of the CLOSE statement is an expression that calls a function, that function must not
cause an I/O operation or the EOF intrinsic function to be executed, because the results are
unpredictable.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Data Transfer I/O Statements, Branch Specifiers

Example

C Close and discard file:
 CLOSE (7, STATUS = ’DELETE’)

Consider the following statement:

 CLOSE (UNIT=J, STATUS=’DELETE’, ERR=99)

This statement closes the file connected to unit J and deletes it. If an error occurs, control is
transferred to the statement labeled 99.

CMPLX

Elemental Intrinsic Function (Generic): Converts the argument to complex type.

Syntax

result = CMPLX (x [, y] [, kind])

x
(Input) Must be of type integer, real, or complex.

y
(Optional; input) Must be of type integer or real. It must not be present if x is of type complex.

kind
(Optional; input) Must be a scalar integer initialization expression.

Results:

The result type is complex (COMPLEX(4) or COMPLEX*8). If kind is present, the kind parameter is
that specified by kind; otherwise, the kind parameter is that of default real type.

CMPLX Page 18 of 96

If only one noncomplex argument appears, it is converted into the real part of a complex value and
zero is assigned to the imaginary part. If y is not specified and x is complex, it is as if y were present
with the value AIMAG(x).

If two noncomplex arguments appear, the complex value is produced by converting the first argument
into the real part of the value, and converting the second argument into the imaginary part.

CMPLX(x, y, kind) has the complex value whose real part is REAL(x, kind) and whose imaginary
part is REAL(y, kind).

The setting of compiler option /real_size can affect this function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DCMPLX, FLOAT, INT, IFIX, REAL, SNGL

Examples

CMPLX (-3) has the value (-3.0, 0.0).

CMPLX (4.1, 2.3) has the value (4.1, 2.3).

The following shows another example:

COMPLEX z1, z2
COMPLEX(8) z3
z1 = CMPLX(3) ! returns the value 3.0 + i 0.0
z2 = CMPLX(3,4) ! returns the value 3.0 + i 4.0
z3 = CMPLX(3,4,8) ! returns a COMPLEX(8) value 3.0D0 + i 4.0D0

COMAddObjectReference

DFCOM Function: Adds a reference to an object’s interface.

Modules: USE DFCOM, USE DFCOMTY

Syntax

result = COMAddObjectReference (iunknown)

iunknown
An IUnKnown interface pointer. Must be of type INTEGER(4).

Results:

The result type is INTEGER(4). It is the object’s current reference count.

COMAddObjectReference Page 19 of 96

For more information on the IUnKnown method AddRef, see the OLE section of the Win32 SDK.

COMCLSIDFromProgID

DFCOM Subroutine: Passes a programmatic identifier and returns the corresponding class
identifier.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMCLSIDFromProgID (prog_id, clsid, status)

prog_id
The programmatic identifier of type CHARACTER*(*).

clsid
The class identifier corresponding to the programmatic identifier. Must be of type GUID,
which is defined in the DFCOMTY module.

status
The status of the operation. It can be any status returned by CLSIDFromProgID. Must be of
type INTEGER(4).

For more information on CLSIDFromProgID, see the OLE section of the Win32 SDK.

COMCLSIDFromString

DFCOM Subroutine: Passes a class identifier string and returns the corresponding class identifier.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMCLSIDFromString (string, clsid, status)

string
The class identifier string of type CHARACTER*(*).

clsid
The class identifier corresponding to the identifier string. Must be of type GUID, which is
defined in the DFCOMTY module.

status
The status of the operation. It can be any status returned by CLSIDFromString. Must be of
type INTEGER(4).

COMCLSIDFromString Page 20 of 96

For more information on CLSIDFromString, see the OLE section of the Win32 SDK.

COMCreateObjectByGUID

DFCOM Subroutine: Passes a class identifier, creates an instance of an object, and returns a pointer
to the object’s interface.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMCreateObjectByGUID (clsid, clsctx, iid, interface, status)

clsid
The class identifier of the class of object to be created. Must be of type GUID, which is defined
in the DFCOMTY module.

clsctx
Lets you restrict the types of servers used for the object. Must be of type INTEGER(4). Must be
one of the CLSCTX_* constants defined in the DFCOMTY module.

iid
The interface identifier of the interface being requested. Must be of type GUID, which is
defined in the DFCOMTY module.

interface
An output argument that returns the object’s interface pointer. Must be of type INTEGER(4).

status
The status of the operation. It can be any status returned by CoCreateInstance. Must be of
type INTEGER(4).

For more information on CoCreateInstance, see the OLE section of the Win32 SDK.

COMCreateObjectByProgID

DFCOM Subroutine: Passes a programmatic identifier, creates an instance of an object, and returns
a pointer to the object’s IDispatch interface.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMCreateObjectByProgID (prog_id, idispatch, status)

prog_id
The programmatic identifier of type CHARACTER*(*).

COMCreateObjectByProgID Page 21 of 96

idispatch
An output argument that returns the object’s IDispatch interface pointer. Must be of type
INTEGER(4).

status
The status of the operation. It can be any status returned by CLSIDFromProgID or
CoCreateInstance. Must be of type INTEGER(4).

For more information on CLSIDFromProgID and CoCreateInstance, see the OLE section of the
Win32 SDK.

COMGetActiveObjectByGUID

DFCOM Subroutine: Passes a class identifier and returns a pointer to the interface of a currently
active object.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMGetActiveObjectByGUID (clsid, clsctx, iid, interface, status)

clsid
The class identifier of the class of object to be found. Must be of type GUID, which is defined
in the DFCOMTY module.

clsctx
Lets you restrict the types of servers used for the object. Must be of type INTEGER(4). Must be
one of the CLSCTX_* constants defined in the DFCOMTY module.

iid
The interface identifier of the interface being requested. Must be of type GUID, which is
defined in the DFCOMTY module.

interface
An output argument that returns the object’s interface pointer. Must be of type INTEGER(4).

status
The status of the operation. It can be any status returned by CoGetClassObject. Must be of
type INTEGER(4).

For more information on CoGetClassObject, see the OLE section of the Win32 SDK.

COMGetActiveObjectByProgID

DFCOM Subroutine: Passes a programmatic identifier and returns a pointer to the IDispatch
interface of a currently active object.

COMGetActiveObjectByProgID Page 22 of 96

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMGetActiveObjectByProgID (prog_id, idispatch, status)

prog_id
The programmatic identifier of type CHARACTER*(*).

idispatch
An output argument that returns the object’s IDispatch interface pointer. Must be of type
INTEGER(4).

status
The status of the operation. It can be any status returned by CLSIDFromProgID or
CoGetClassObject. Must be of type INTEGER(4).

For more information on CLSIDFromProgID and CoGetClassObject, see the OLE section of the
Win32 SDK.

COMGetFileObject

DFCOM Subroutine: Passes a file name and returns a pointer to the IDispatch interface of an
Automation object that can manipulate the file.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMGetFileObject (filename, idispatch, status)

filename
The path of the file of type CHARACTER*(*).

idispatch
An output argument that returns the object’s IDispatch interface pointer. Must be of type
INTEGER(4).

status
The status of the operation. It can be any status returned by CreateBindCtx,
MkParseDisplayName, or the IMonikerBindToObject method. Must be of type INTEGER
(4).

For more information on the CreateBindCtx or MkParseDisplayName routines or the
IMonikerBindToObject method, see the OLE section of the Win32 SDK.

COMInitialize

COMInitialize Page 23 of 96

DFCOM Subroutine: Initializes the COM library.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMInitialize (status)

status
The status of the operation. It can be any status returned by OleInitialize. Must be of type
INTEGER(4).

You must use this routine to initialize the COM library before calling any other COM or AUTO
routine.

For more information on OleInitialize, see the OLE section of the Win32 SDK.

COMMITQQ

Run-Time Function: Forces the operating system to execute any pending write operations for the
file associated with a specified unit to the file’s physical device.

Module: USE DFLIB

Syntax

result = COMMITQQ (unit)

unit
(Input) INTEGER(4). Fortran logical unit attached to a file to be flushed from cache memory to
a physical device.

Results:

The result type is LOGICAL(4). If an open unit number is supplied, .TRUE. is returned and
uncommitted records (if any) are written. If an unopened unit number is supplied, .FALSE. is
returned.

Data written to files on physical devices is often initally written into operating-system buffers and
then written to the device when the operating system is ready. Data in the buffer is automatically
flushed to disk when the file is closed. However, if the program or the computer crashes before the
data is transferred from buffers, the data can be lost. COMMITQQ tells the operating system to
write any cached data intended for a file on a physical device to that device immediately. This is
called flushing the file.

COMMITQQ is most useful when you want to be certain that no loss of data occurs at a critical
point in your program; for example, after a long calculation has concluded and you have written the

COMMITQQ Page 24 of 96

results to a file, or after the user has entered a group of data items, or if you are on a network with
more than one program sharing the same file. Flushing a file to disk provides the benefits of closing
and reopening the file without the delay.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PRINT, WRITE

Example

USE DFLIB
INTEGER unit / 10 /
INTEGER len
CHARACTER(80) stuff
OPEN(unit, FILE=’COMMITQQ.TST’, ACCESS=’Sequential’)
DO WHILE (.TRUE.)
 WRITE (*, ’(A, \)’) ’Enter some data (Hit RETURN to &
 exit): ’
 len = GETSTRQQ (stuff)
 IF (len .EQ. 0) EXIT
 WRITE (unit, *) stuff
 IF (.NOT. COMMITQQ(unit)) WRITE (*,*) ’Failed’
END DO
CLOSE (unit)
END

COMMON

Statement: Defines one or more contiguous areas, or blocks, of physical storage (called common
blocks) that can be accessed by any of the scoping units in an executable program. COMMON
statements also define the order in which variables and arrays are stored in each common block,
which can prevent misaligned data items.

Common blocks can be named or unnamed (a blank common).

Syntax

COMMON [/[cname] /] var-list [[,] /[cname]/ var-list]...

cname
(Optional) Is the name of the common block. The name can be omitted for blank common (//).

var-list
Is a list of variable names, separated by commas.

The variable must not be a dummy argument, allocatable array, automatic object, function,
function result, or entry to a procedure. It must not have the PARAMETER attribute. If an
object of derived type is specified, it must be a sequence type.

Rules and Behavior

COMMON Page 25 of 96

A common block is a global entity. Any common block name (or blank common) can appear more
than once in one or more COMMON statements in a program unit. The list following each
successive appearance of the same common block name is treated as a continuation of the list for the
block associated with that name. Consider the following COMMON statements:

 COMMON /ralph/ ed, norton, trixie
 COMMON / / fred, ethel, lucy
 COMMON /ralph/ audrey, meadows
 COMMON /jerry/ mortimer, tom, mickey
 COMMON melvin, purvis

They are equivalent to these COMMON statements:

 COMMON /ralph/ ed, norton, trixie, audrey, meadows
 COMMON fred, ethel, lucy, melvin, purvis
 COMMON /jerry/ mortimer, tom, mickey

A variable can appear in only one common block within a scoping unit.

If an array is specified, it can be followed by an explicit-shape array specification. The array must not
have the POINTER attribute and each bound in the specification must be a constant specification
expression.

A pointer can only be associated with pointers of the same type and kind parameters, and rank.

An object with the TARGET attribute can only be associated with another object with the TARGET
attribute and the same type and kind parameters.

A nonpointer can only be associated with another nonpointer, but association depends on their types,
as follows:

Type of Variable Type of Associated Variable

Intrinsic numeric[1] or numeric sequence[2] Can be of any of these types

Default character or character sequence[2] Can be of either of these types

Any other intrinsic type Must have the same type and kind parameters

Any other sequence type Must have the same type

[1] Default integer, default real, double precision real, default complex, double complex, or default logical.
[2] If an object of numeric sequence or character sequence type appears in a common block, it is as if the individual
components were enumerated directly in the common list.

So, variables can be associated if they are of different numeric type. For example, the following is
valid:

COMMON Page 26 of 96

 INTEGER A(20)
 REAL Y(20)
 COMMON /QUANTA/ A, Y

When common blocks from different program units have the same name, they share the same storage
area when the units are combined into an executable program.

Entities are assigned storage in common blocks on a one-for-one basis. So, the data type of entities
assigned by a COMMON statement in one program unit should agree with the data type of entities
placed in a common block by another program unit. For example:

Program Unit A Program Unit B

COMMON CENTS INTEGER(2) MONEY

. . . COMMON MONEY

. . .

When these program units are combined into an executable program, incorrect results can occur if the
2-byte integer variable MONEY is made to correspond to the lower-addressed two bytes of the real
variable CENTS.

Note: On DIGITAL UNIX, Windows NT, and Windows 95 systems, if a common block is
initialized by a DATA statement, the module containing the initialization must declare the
common block to be its maximum defined length.

This limitation does not apply if you compile all source modules together.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BLOCK DATA, DATA, MODULE, EQUIVALENCE, Specification expressions, Storage
association, Interaction between COMMON and EQUIVALENCE Statements

Examples

PROGRAM MyProg
COMMON i, j, x, k(10)
COMMON /mycom/ a(3)
...
END
SUBROUTINE MySub
COMMON pe, mn, z, idum(10)
COMMON /mycom/ a(3)
...
END

In the following example, the COMMON statement in the main program puts HEAT and X in blank
common, and KILO and Q in a named common block, BLK1:

COMMON Page 27 of 96

Main Program Subprogram

COMMON HEAT,X /BLK1/KILO,Q SUBROUTINE FIGURE

. . . COMMON /BLK1/LIMA,R / /ALFA,BET

. . .

CALL FIGURE

. . . RETURN

END

The COMMON statement in the subroutine makes ALFA and BET share the same storage location
as HEAT and X in blank common. It makes LIMA and R share the same storage location as KILO
and Q in BLK1.

The following example shows how a COMMON statement can be used to declare arrays:

COMMON / MIXED / SPOTTED(100), STRIPED(50,50)

The following example shows a valid association between subroutines in different program units. The
object lists agree in number, type, and kind of data objects:

 SUBROUTINE unit1
 REAL(8) x(5)
 INTEGER J
 CHARACTER str*12
 TYPE(member) club(50)
 COMMON / blocka / x, j, str, club
 ...

 SUBROUTINE unit2
 REAL(8) z(5)
 INTEGER m
 CHARACTER chr*12
 TYPE(member) myclub(50)
 COMMON / blocka / z, m, chr, myclub
 ...

See also the program example for BLOCK DATA.

COMPLEX

Statement: Specifies the COMPLEX data type.

Syntax

COMPLEX
COMPLEX([KIND=]n)

COMPLEX Page 28 of 96

COMPLEX*s
DOUBLE COMPLEX

n
Is kind 4 or 8.

s
Is 8 or 16.COMPLEX(4) is specified as COMPLEX*8. COMPLEX(8) is specified as
COMPLEX*16.

If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter is
specified, the kind of both parts is default real, and the constant is of type default complex.

DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for data declared with
type DOUBLE COMPLEX.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DOUBLE COMPLEX, Complex Data Type, COMPLEX(4) Constants, COMPLEX(8) or
DOUBLE COMPLEX Constants, Data Types, Constants, and Variables

Examples

COMPLEX ch
COMPLEX (KIND=4),PRIVATE :: zz, yy !equivalent to COMPLEX*8 zz, yy
COMPLEX(8) ax, by !equivalent to COMPLEX*16 ax, by
COMPLEX (kind(4)) y(10)
complex (kind=8) x, z(10)

COMQueryInterface

DFCOM Subroutine: Passes an interface identifier and returns a pointer to an object’s interface.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMQueryInterface (iunknown, iid, interface, status)

iunknown
An IUnknown interface pointer. Must be of type INTEGER(4).

iid
The interface identifier of the interface being requested. Must be of type GUID, which is
defined in the DFCOMTY module.

interface

COMQueryInterface Page 29 of 96

An output argument that returns the object’s interface pointer. Must be of type INTEGER(4).

status
The status of the operation. It can be any status returned by the IUnknown method
QueryInterface. Must be of type INTEGER(4).

For more information on the IUnknown method QueryInterface, see the OLE section of the Win32
SDK.

COMReleaseObject

DFCOM Function: Indicates that the program is done with a reference to an object’s interface.

Modules: USE DFCOM, USE DFCOMTY

Syntax

result = COMReleaseObject (iunknown)

iunknown
An IUnknown interface pointer. Must be of type INTEGER(4).

The result type is INTEGER(4). It is the object’s current reference count.

COMUninitialize

DFCOM Subroutine: Uninitializes the COM library.

Modules: USE DFCOM, USE DFCOMTY

Syntax

CALL COMUninitialize ()

When using COM routines, this must be the last routine called.

CONJG

Elemental Intrinsic Function (Generic): Calculates the conjugate of a complex number.

Syntax

result = CONJG (z)

z
(Input) Must be of type complex.

CONJG Page 30 of 96

Results:

The result type is the same as z. If z has the value (x, y), the result has the value (x, -y).

Specific Name Argument Type Result Type

CONJG COMPLEX(4) COMPLEX(4)

DCONJG COMPLEX(8) COMPLEX(8)

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: AIMAG

Examples

CONJG ((2.0, 3.0)) has the value (2.0, -3.0).

CONJG ((1.0, -4.2)) has the value (1.0, 4.2).

The following shows another example:

COMPLEX z1
COMPLEX(8) z2
z1 = CONJG((3.0, 5.6)) ! returns (3.0, -5.6)
z2 = DCONJG((3.0D0, 5.6D0)) ! returns (3.0D0, -5.6D0)

CONTAINS

Statement: Separates the body of a main program, module, or external subprogram from any internal
or module procedures it may contain. It is not executable.

Syntax

CONTAINS

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Internal Procedures, Modules and Module Procedures, Main Program

Example

PROGRAM OUTER
 REAL, DIMENSION(10) :: A

CONTAINS Page 31 of 96

 . . .
 CALL INNER (A)
CONTAINS
 SUBROUTINE INNER (B)
 REAL, DIMENSION(10) :: B
 . . .
 END SUBROUTINE INNER
END PROGRAM OUTER

CONTINUE

Statement: Primarily used to terminate a labeled DO construct when the construct would otherwise
end improperly with either a GO TO, arithmetic IF, or other prohibited control statement.

Syntax

CONTINUE

The statement by itself does nothing and has no effect on program results or execution sequence.

Compatibility

Console Standard Graphics QuickWin Graphics Windows DLL LIB

See Also: END DO, DO, Execution Control

Examples

The following example shows a CONTINUE statement:

 DO 150 I = 1,40
40 Y = Y + 1
 Z = COS(Y)
 PRINT *, Z
 IF (Y .LT. 30) GO TO 150
 GO TO 40
150 CONTINUE

The following shows another example:

 DIMENSION narray(10)
 DO 100 n = 1, 10
 narray(n) = 120
100 CONTINUE

COS

Elemental Intrinsic Function (Generic): Produces a cosine (with the result in radians).

Syntax

COS Page 32 of 96

result = COS (x)

x
(Input) Must be of type real or complex. It must be in radians and is treated as modulo 2*pi. (If
x is of type complex, its real part is regarded as a value in radians.)

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

COS REAL(4) REAL(4)

DCOS REAL(8) REAL(8)

QCOS 1 REAL(16) REAL(16)

CCOS 2 COMPLEX(4) COMPLEX(4)

CDCOS 3 COMPLEX(8) COMPLEX(8)

1 VMS and U*X
2 The setting of compiler option /real_size can affect CCOS.
3 This function can also be specified as ZCOS.

Examples

COS (2.0) has the value -0.4161468.

COS (0.567745) has the value 0.8431157.

COSD

Elemental Intrinsic Function (Generic): Produces a cosine (with the result in degrees).

Syntax

result = COSD (x)

x
(Input) Must be of type real. It must be in degrees and is treated as modulo 360.

Results:

The result type is the same as x.

COSD Page 33 of 96

Specific Name Argument Type Result Type

COSD REAL(4) REAL(4)

DCOSD REAL(8) REAL(8)

QCOSD 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

COSD (2.0) has the value 0.9993908.

COSD (30.4) has the value 0.8625137.

COSH

Elemental Intrinsic Function (Generic): Produces a hyperbolic cosine.

Syntax

result = COSH (x)

x
(Input) Must be of type real.

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

COSH REAL(4) REAL(4)

DCOSH REAL(8) REAL(8)

QCOSH 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

COSH (2.0) has the value 3.762196.

COSH (0.65893) has the value 1.225064.

COTAN Page 34 of 96

COTAN

Elemental Intrinsic Function (Generic): Produces a cotangent (with the result in radians).

Syntax

result = COTAN (x)

x
(Input) Must be of type real; it cannot be zero. It must be in radians and is treated as modulo
2*pi.

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

COTAN REAL(4) REAL(4)

DCOTAN REAL(8) REAL(8)

QCOTAN 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

COTAN (2.0) has the value -4.576575E-01.

COTAN (0.6) has the value 1.461696.

COTAND

Elemental Intrinsic Function (Generic): Produces a cotangent (with the result in degrees).

Syntax

result = COTAND (x)

x
(Input) Must be of type real. It must be in degrees and is treated as modulo 360.

Results:

The result type is the same as x.

COTAND Page 35 of 96

Specific Name Argument Type Result Type

COTAND REAL(4) REAL(4)

DCOTAND REAL(8) REAL(8)

QCOTAND 1 REAL(16) REAL(16)

1 VMS, U*X

Examples

COTAND (2.0) has the value 0.2863625E+02.

COTAND (0.6) has the value 0.9548947E+02.

COUNT

Transformational Intrinsic Function (Generic): Counts the number of true elements in an entire array
or in a specified dimension of an array.

Syntax

result = COUNT (mask [, dim])

mask
(Input) Must be a logical array.

dim
(Optional; input) Must be a scalar integer expression with a value in the range 1 to n, where n
is the rank of mask.

Results:

The result is an array or scalar of type default integer.

The result is scalar if dim is omitted or mask has rank one. A scalar result has a value equal to the
number of true elements of mask. If mask has size zero, the result is zero.

An array result has a rank that is one less than mask, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn),

where (d1, d2,..., dn) is the shape of mask.

Each element in an array result equals the number of elements that are true in the one dimensional
array defined by mask (s1, s2, ..., sdim-1, :, sdim+1, ..., sn).

Compatibility

COUNT Page 36 of 96

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALL, ANY

Example

COUNT ((/.TRUE., .FALSE., .TRUE./)) has the value 2 because two elements are true.

COUNT ((/.TRUE., .TRUE., .TRUE./)) has the value 3 because three elements are true.

A is the array

 [1 5 7]
 [3 6 8]

and B is the array

 [0 5 7]
 [2 6 9].

COUNT (A .NE. B, DIM=1) tests to see how many elements in each column of A are not equal to the
elements in the corresponding column of B. The result has the value (2, 0, 1) because:

� The first column of A and B have 2 elements that are not equal.

� The second column of A and B have 0 elements that are not equal.

� The third column of A and B have 1 element that is not equal.

COUNT (A .NE. B, DIM=2) tests to see how many elements in each row of A are not equal to the
elements in the corresponding row of B. The result has the value (1, 2) because:

� The first row of A and B have 1 element that is not equal.

� The second row of A and B have 2 elements that are not equal.

The following is another example:

LOGICAL mask (2, 3)
INTEGER AR1(3), AR2(2), I
mask = RESHAPE((/.TRUE., .TRUE., .FALSE., .TRUE., &
 .FALSE., .FALSE./),(/2,3/))
! mask is the array true false false
! true true false
AR1 = COUNT(mask,DIM=1) ! counts true elements by
 ! column yielding [2 1 0]
AR2 = COUNT(mask,DIM=2) ! counts true elements by row
 ! yielding [1 2]
I = COUNT(mask) ! returns 3

CPU_TIME Page 37 of 96

CPU_TIME

Intrinsic Subroutine: Returns a processor-dependent approximation of the processor time in
seconds. This is a Fortran 95 intrinsic subroutine.

Syntax

CALL CPU_TIME (time)

time
Must be scalar and of type real. It is an INTENT(OUT) argument.

If a meaningful time cannot be returned, a processor-dependent negative value is returned.

Examples

Consider the following:

 REAL time_begin, time_end
 ...
 CALL CPU_TIME (time_begin)
 ...
 CALL CPU_TIME (time_end)
 PRINT (*,*) ’Time of operation was ’, time_begin - time_end, ’ seconds’

CSHIFT

Transformational Intrinsic Function (Generic): Performs a circular shift on a rank-one array,
or performs circular shifts on all the complete rank-one sections (vectors) along a given dimension
of an array of rank two or greater.

Elements shifted off one end are inserted at the other end. Different sections can be shifted by
different amounts and in different directions.

Syntax

result = CSHIFT (array, shift [, dim])

array
(Input) Array whose elements are to be shifted. It can be of any data type.

shift
(Input) The number of positions shifted. Must be a scalar integer or an array with a rank that is
one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2, ..., dn) is the

shape of array.

dim

CSHIFT Page 38 of 96

(Optional; input) Optional dimension along which to perform the shift. Must be a scalar integer
with a value in the range 1 to n, where n is the rank of array. If dim is omitted, it is assumed to
be 1.

Results:

The result is an array with the same type and kind parameters, and shape as array.

If array has rank one, element i of the result is array (1 + MODULO (i + shift - 1, SIZE (array))).
(The same shift is applied to each element.)

If array has rank greater than one, each section (s1,s2, ..., sdim-1, :, sdim+1, ..., sn) of the result is

shifted as follows:

� By the value of shift, if shift is scalar

� According to the corresponding value in shift(s1, s2,..., sdim-1, sdim+1,..., sn), if shift is an array

The value of shift determines the amount and direction of the circular shift. A positive shift value
causes a shift to the left (in rows) or up (in columns). A negative shift value causes a shift to the right
(in rows) or down (in columns). A zero shift value causes no shift.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EOSHIFT, ISHFT, ISHFTC

Examples

V is the array (1, 2, 3, 4, 5, 6).

CSHIFT (V, SHIFT=2) shifts the elements in V circularly to the left by 2 positions, producing the
value (3, 4, 5, 6, 1, 2). 1 and 2 are shifted off the beginning and inserted at the end.

CSHIFT (V, SHIFT= -2) shifts the elements in V circularly to the right by 2 positions, producing the
value (5, 6, 1, 2, 3, 4). 5 and 6 are shifted off the end and inserted at the beginning.

M is the array

 [1 2 3]
 [4 5 6]
 [7 8 9].

CSHIFT (M, SHIFT = 1, DIM = 2) produces the result

 [2 3 1]

CSHIFT Page 39 of 96

 [5 6 4]
 [8 9 7].

Each element in rows 1, 2, and 3 is shifted to the left by 2 positions. The elements shifted off the
beginning are inserted at the end.

CSHIFT (M, SHIFT = -1, DIM = 1) produces the result

 [7 8 9]
 [1 2 3]
 [4 5 6].

Each element in columns 1, 2, and 3 is shifted down by 1 position. The elements shifted off the end
are inserted at the beginning.

CSHIFT (M, SHIFT = (/1, -1, 0/), DIM = 2) produces the result

 [2 3 1]
 [6 4 5]
 [7 8 9].

Each element in row 1 is shifted to the left by 1 position; each element in row 2 is shifted to the right
by 1 position; no element in row 3 is shifted at all.

The following is another example:

INTEGER array (3, 3), AR1(3, 3), AR2 (3, 3)
DATA array /1, 4, 7, 2, 5, 8, 3, 6, 9/
! array is 1 2 3
! 4 5 6
! 7 8 9
AR1 = CSHIFT(array, 1, DIM = 1) ! shifts all columns
 ! by 1 yielding
 ! 4 5 6
 ! 7 8 9
 ! 1 2 3
!
AR2=CSHIFT(array,shift=(/-1, 1, 0/),DIM=2) ! shifts
 ! each row separately
 ! by the amount in
 ! shift yielding
 ! 3 1 2
 ! 5 6 4
 ! 7 8 9

CTIME

Portability Function: Converts a system time into a 24-character ASCII string.

Module: USE DFPORT

Syntax

CTIME Page 40 of 96

result = CTIME (stime)

stime
(Input) INTEGER(4). An elapsed time in seconds since 00:00:00 Greenwich mean time,
January 1, 1970.

Results:

The result is a value in the form Mon Jan 31 04:37:23 1994. Hours are expressed using a 24-hour
clock.

The value of stime can be determined by calling the TIME function. CTIME(TIME()) returns the
current time and date.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

character (24) systime
systime = CTIME (TIME())
print *, ’Current date and time is ’,systime

CYCLE

Statement: Interrupts the current execution cycle of the innermost (or named) DO construct.

Syntax

CYCLE [name]

name
(Optional) Is the name of the DO construct.

Rules and Behavior

When a CYCLE statement is executed, the following occurs:

1. The current execution cycle of the named (or innermost) DO construct is terminated.

If a DO construct name is specified, the CYCLE statement must be within the range of that
construct.

2. The iteration count (if any) is decremented by 1.

CYCLE Page 41 of 96

3. The DO variable (if any) is incremented by the value of the increment parameter (if any).

4. A new iteration cycle of the DO construct begins.

Any executable statements following the CYCLE statement (including a labeled terminal statement)
are not executed.

A CYCLE statement can be labeled, but it cannot be used to terminate a DO construct.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DO, DO WHILE, DO Constructs

Examples

The following example shows a CYCLE statement:

DO I =1, 10
 A(I) = C + D(I)
 IF (D(I) < 0) CYCLE ! If true, the next statement is omitted
 A(I) = 0 ! from the loop and the loop is tested again.
END DO

The following is from CYCLE.F90 in the /DF98/SAMPLES/TUTORIAL subdirectory:

 sample_loop: do i = 1, 5
 print *,i
 if(i .gt. 3) cycle sample_loop
 print *,i
 end do sample_loop
 print *,’done!’
!output:
! 1
! 1
! 2
! 2
! 3
! 3
! 4
! 5
! done!

DATA

Statement: Assigns initial values to variables before program execution.

Syntax

DATA var-list /clist/ [[,] var-list /clist/]...

DATA Page 42 of 96

var-list
Is a list of variable names or implied-do lists, separated by commas.

Subscript expressions and expressions in substring references must be initialization
expressions.

An implied-do list in a DATA statement takes the following form:

(do-list, var = expr1, expr2 [, expr3])

do-list
Is a list of one or more array elements, substrings, scalar structure components, or
implied-do lists, separated by commas. Any array elements or scalar structure
components must not have a constant parent.

var
Is the name of a scalar integer variable (the implied-do variable).

expr
Are scalar integer expressions. The expressions can contain variables of other implied-do
lists that have this implied-do list within their ranges.

clist
Is a list of constants (or names of constants), or for pointer objects, NULL(); constants must be
separated by commas. If the constant is a structure constructor, each component must be an
initialization expression. If the constant is in binary, octal, or hexadecimal form, the
corresponding object must be of type integer.

A constant can be specified in the form r*constant, where r is a repeat specification. It is a
nonnegative scalar integer constant (with no kind parameter). If it is a named constant, it must
have been declared previously in the scoping unit or made accessible through use or host
association. If r is omitted, it is assumed to be 1.

Rules and Behavior

A variable can be initialized only once in an executable program. A variable that appears in a DATA
statement and is typed implicitly can appear in a subsequent type declaration only if that declaration
confirms the implicit typing.

The number of constants in c-list must equal the number of variables in var-list. The constants are
assigned to the variables in the order in which they appear (from left to right).

The following objects cannot be initialized in a DATA statement:

� A dummy argument
� A function
� A function result
� An automatic object

DATA Page 43 of 96

� An allocatable array
� A variable that is accessible by use or host association
� A variable in a named common block (unless the DATA statement is in a block data program

unit)
� A variable in blank common

Except for variables in named COMMON blocks, a named variable has the SAVE attribute if any
part of it is initialized in a DATA statement. You can confirm this property by specifying the variable
in a SAVE statement or a type declaration statement containing the SAVE attribute.

When an unsubscripted array name appears in a DATA statement, values are assigned to every
element of that array in the order of subscript progression. The associated constant list must contain
enough values to fill the array.

Array element values can be initialized in three ways: by name, by element, or by an implied-do list
(interpreted in the same way as a DO construct).

The following conversion rules and restrictions apply to variable and constant list items:

� If the constant and the variable are both of numeric type, the following conversion occurs:

n The constant value is converted to the data type of the variable being initialized, if
necessary.

n When a binary, octal, or hexadecimal constant is assigned to a variable or array element,
the number of digits that can be assigned depends on the data type of the data item. If the
constant contains fewer digits than the capacity of the variable or array element, the
constant is extended on the left with zeros. If the constant contains more digits than can
be stored, the constant is truncated on the left.

� If the constant and the variable are both of character type, the following conversion occurs:

n If the length of the constant is less than the length of the variable, the rightmost character
positions of the variable are initialized with blank characters.

n If the length of the constant is greater than the length of the variable, the character
constant is truncated on the right.

� If the constant is of numeric type and the variable is of character type, the following restrictions
apply:

n The character variable must have a length of one character.

n The constant must be an integer, binary, octal, or hexadecimal constant, and must have a
value in the range 0 through 255.

When the constant and variable conform to these restrictions, the variable is initialized with the
character that has the ASCII code specified by the constant. (This lets you initialize a character
object to any 8-bit ASCII code.)

DATA Page 44 of 96

� If the constant is a Hollerith or character constant, and the variable is a numeric variable or
numeric array element, the number of characters that can be assigned depends on the data type
of the data item.

If the Hollerith or character constant contains fewer characters than the capacity of the variable
or array element, the constant is extended on the right with blank characters. If the constant
contains more characters than can be stored, the constant is truncated on the right.

As a Fortran 95 feature, a pointer can be initialized as disassociated by using a DATA statement. For
example:

 INTEGER, POINTER :: P
 DATA P/NULL()/
 END

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CHARACTER, INTEGER, REAL, COMPLEX, COMMON, Data Types, Constants, and
Variables, I/O Lists

Examples

The following example shows the three ways that DATA statements can initialize array element
values:

 DIMENSION A(10,10)
 DATA A/100*1.0/ ! initialization by name
 DATA A(1,1), A(10,1), A(3,3) /2*2.5, 2.0/ ! initialization by element
 DATA ((A(I,J), I=1,5,2), J=1,5) /15*1.0/ ! initialization by implied-do list

The following example shows DATA statements containing structure components:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE
 TYPE(EMPLOYEE) MAN_NAME, CON_NAME
 DATA MAN_NAME / EMPLOYEE(417, ’Henry Adams’) /
 DATA CON_NAME%ID, CON_NAME%NAME /891, "David James"/

In the following example, the first DATA statement assigns zero to all 10 elements of array A, and
four asterisks followed by two blanks to the character variable STARS:

 INTEGER A(10), B(10)
 CHARACTER BELL, TAB, LF, FF, STARS*6
 DATA A,STARS /10*0,’****’/
 DATA BELL,TAB,LF,FF /7,9,10,12/

DATA Page 45 of 96

 DATA (B(I), I=1,10,2) /5*1/

In this case, the second DATA statement assigns ASCII control character codes to the character
variables BELL, TAB, LF, and FF. The last DATA statement uses an implied-do list to assign the value
1 to the odd-numbered elements in the array B.

The following shows another example:

 INTEGER n, order, alpha, list(100)
 REAL coef(4), eps(2),
 pi(5), x(5,5)
 CHARACTER*12 help
 COMPLEX*8 cstuff
 DATA n /0/, order /3/
 DATA alpha /’A’/
 DATA coef /1.0, 2*3.0, 1.0/, eps(1) /.00001/
 DATA cstuff /(-1.0, -1.0)/
! The following example initializes diagonal and below in
! a 5x5 matrix:
 DATA ((x(j,i), i=1,j), j=1,5) / 15*1.0 /
 DATA pi / 5*3.14159 /
 DATA list / 100*0 /
 DATA help(1:4), help(5:8), help(9:12) /3*’HELP’/

Consider the following:

 CHARACTER (LEN = 10) name
 INTEGER, DIMENSION (0:9) :: miles
 REAL, DIMENSION (100, 100) :: skew
 TYPE (member) myname, yours
 DATA name / ’JOHN DOE’ /, miles / 10*0 /
 DATA ((skew (k, j), j = 1, k), k = 1, 100) / 5050*0.0 /
 DATA ((skew (k, j), j = k + 1, 100), k = 1, 99) / 4950*1.0 /
 DATA myname / member (21, ’JOHN SMITH’) /
 DATA yours % age, yours % name / 35, ’FRED BROWN’ /

In this example, the character variable name is initialized with the value JOHN DOE with two trailing
blanks to fill out the declared length of the variable. The ten elements of miles are initialized to zero.
The two-dimensional array skew is initialized so that its lower triangle is zero and its upper triangle is
one. The structures myname and yours are declared using the derived type member from Derived
Type. The derived-type variable myname is initialized by a structure constructor. The derived-type
variable yours is initialized by supplying a separate value for each component.

The first DATA statement in the previous example could also be written as:

 DATA name / ’JOHN DOE’ /
 DATA miles / 10*0 /

A pointer can be initialized as disassociated by using a DATA statement. For example:

INTEGER, POINTER :: P
DATA P/NULL()/
END

DATE

DATE Page 46 of 96

DATE can be used as an intrinsic subroutine or as a portability routine.

Warning: The two-digit year return value may cause problems with the year 2000. Use
DATE_AND_TIME instead.

DATE Intrinsic Subroutine

Intrinsic Subroutine: Returns the current date as set within the system.

Syntax

CALL DATE (buf)

buf
Is a 9-byte variable, array, array element, or character substring.

The date is returned as a 9-byte ASCII character string taking the form dd-mmm-yy, where:

dd is the 2-digit date
mmm is the 3-letter month
yy is the last two digits of the year

If buf is of numeric type and smaller than 9 bytes, data corruption can occur.

If buf is of character type, its associated length is passed to the subroutine. If buf is smaller than 9
bytes, the subroutine truncates the date to fit in the specified length. If an array of type character is
passed, the subroutine stores the date in the first array element, using the element length, not the
length of the entire array.

Example

CHARACTER*1 DAY(9)
...
CALL DATE (DAY)

The length of the first array element in CHARACTER array DAY is passed to the DATE subroutine.
The subroutine then truncates the date to fit into the 1-character element, producing an incorrect
result.

DATE Portability Routine

Portability Subroutine and Function: Returns the current system date.

Module: USE DFPORT

Subroutine Syntax

DATE Page 47 of 96

CALL DATE (string)

Function Syntax

result = DATE ()

string
(Output) CHARACTER. Variable or array containing at least nine bytes of storage.

DATE in its function form returns a character(8) string in the form mm/dd/yy, where mm, dd, and yy
are two-digit representations of the month, day, and year, respectively.

DATE in its subroutine form returns string in the form dd-mmm-yy, where dd is a two-digit
representation of the current day of the month, mmm is a three-character abbreviation for the current
month (for example, Jan) and yy are the last two digits of the current year.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

USE DFPORT
!If today’s date is October 6, 1995, the following
!code prints "06-Oct-95"
CHARACTER(9) TODAY
CALL DATE(TODAY)
PRINT *, TODAY
!The next line prints "10/06/95"
PRINT *, DATE()

DATE_AND_TIME

Intrinsic Subroutine: Returns character data on the real-time clock and date in a form compatible
with the representations defined in Standard ISO 8601:1988.

Syntax

CALL DATE_AND_TIME ([date] [, time] [, zone] [, values])

date
(Optional; output) Must be scalar and of type default character; its length must be at least 8 to
contain the complete value. Its leftmost 8 characters are set to a value of the form
CCYYMMDD, where:

DATE_AND_TIME Page 48 of 96

CC Is the century

YY Is the year within the century

MM Is the month within the year

DD Is the day within the month

time
(Optional; output) Must be scalar and of type default character; its length must be at least 10 to
contain the complete value. Its leftmost 10 characters are set to a value of the form hhmmss.sss,
where:

hh Is the hour of the day

mm Is the minutes of the hour

ss.sss Is the seconds and milliseconds of the minute

zone
(Optional; output) Must be scalar and of type default character; its length must be at least 5 to
contain the complete value. Its leftmost 5 characters are set to a value of the form hhmm, where
hh and mm are the time difference with respect to Coordinated Universal Time (UTC) in hours
and parts of an hour expressed in minutes, respectively.

UTC (also known as Greenwich Mean Time) is defined by CCIR Recommendation 460-2.

values
(Optional; output) Must be of type default integer. One-dimensional array with size of at least
8. The values returned in values are as follows:

values
(1)

The 4-digit year

values
(2)

The month of the year

values
(3)

The day of the month

values
(4)

The time difference with respect to Coordinated Universal Time (UTC) in
minutes

values
(5)

The hour of the day (range 0 to 23) - local time

values
(6)

The minutes of the hour (range 0 to 59) - local time

values
(7)

The seconds of the minute (range 0 to 59) - local time

DATE_AND_TIME Page 49 of 96

values
(8)

The milliseconds of the second (range 0 to 999) - local time

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETDAT, GETTIM, IDATE, FDATE, TIME, ITIME, RTC, CLOCK

Example

Consider the following example executed on 1993 April 23 at 13:23:30.5:

 INTEGER DATE_TIME (8)
 CHARACTER (LEN = 12) REAL_CLOCK (3)
 CALL DATE_AND_TIME (REAL_CLOCK (1), REAL_CLOCK (2), &
 REAL_CLOCK (3), DATE_TIME)

This assigns the value "19930423" to REAL_CLOCK (1), the value "132330.500" to REAL_CLOCK (2),
and the value "+0100" to REAL_CLOCK (3). The following values are assigned to DATE_TIME: 1993,
4, 23, 60, 13, 23, 30, and 500.

The following shows another example:

CHARACTER(10) t
CHARACTER(5) z
CALL DATE_AND_TIME(TIME = t, ZONE = z)

DBESJ0, DBESJ1, DBESJN, DBESY0, DBESY1, DBESYN

Portability Functions: Compute the double-precision values of Bessel functions of the first and
second kinds.

Module: USE DFPORT

Syntax

result = DBESJ0 (posvalu)
result = DBESJ1 (posvalu)
result = DBESJN (n, posvalu)
result = DBESY0 (posvalu)
result = DBESY1 (posvalu)
result = DBESYN (n, posvalu)

posvalue
(Input) REAL(8). Independent variable for a Bessel function. Must be greater than or equal to
zero.

DBESJ0, ...DBESN Page 50 of 96

n
(Input) Integer. Specifies the order of the selected Bessel function computation.

Results:

DBESJ0, DBESJ1, and DBESJN return Bessel functions of the first kind, orders 0, 1, and n,
respectively, with the independent variable posvalue.

DBESY0, DBESY1, and DBESYN return Bessel functions of the second kind, orders 0, 1, and n,
respectively, with the independent variable posvalue.

Negative arguments cause DBESY0, DBESY1, and DBESYN to return a huge negative value.

Bessel functions are explained more fully in most mathematics reference books, such as the
Handbook of Mathematical Functions (Abramowitz and Stegun. Washington: U.S. Government
Printing Office, 1964). These functions are commonly used in the mathematics of electromagnetic
wave theory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN

Example

 USE DFPORT
 real(8) besnum, besout
10 read *, besnum
 besout = dbesj0(besnum)
 print *, ’result is ’,besout
 goto 10
 end

DBLE

Elemental Intrinsic Function (Generic): Converts a number to double-precision real type.

Syntax

result = DBLE (a)

a
(Input) Must be of type integer, real, or complex.

Results:

The result type is double precision real (REAL(8) or REAL*8). Functions that cause conversion of
one data type to another type have the same effect as the implied conversion in assignment

DBLE Page 51 of 96

statements.

If a is of type double precision, the result is the value of the a with no conversion (DBLE(a) = a).

If a is of type integer or real, the result has as much precision of the significant part of a as a double
precision value can contain.

If a is of type complex, the result has as much precision of the significant part of the real part of a as
a double precision value can contain.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(8)

INTEGER(2) REAL(8)

INTEGER(4) REAL(8)

INTEGER(8) REAL(8)

DBLE 2 REAL(4) REAL(8)

REAL(8) REAL(8)

DBLEQ 3 REAL(16) REAL(8)

COMPLEX(4) REAL(8)

COMPLEX(8) REAL(8)

1 These specific functions cannot be passed as actual arguments.
2 For compatibility with older versions of Fortran, DBLE can also be specified as a specific function.
3 VMS, U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FLOAT, SNGL, REAL, CMPLX

Examples

DBLE (4) has the value 4.0.

DBLE ((3.4, 2.0)) has the value 3.4.

DCMPLX

Elemental Intrinsic Function (Generic): Converts the argument to double complex type.

DCMPLX Page 52 of 96

Syntax

result = DCMPLX (x [, y])

x
(Input) Must be of type integer, real, or complex.

y
(Optional; input) Must be of type integer or real. It must not be present if x is of type complex.

Results:

The result type is double complex (COMPLEX(8) or COMPLEX*16).

If only one noncomplex argument appears, it is converted into the real part of a complex value and
zero is assigned to the imaginary part. If y is not specified and x is complex, it is as if y were present
with the value AIMAG(x).

If two noncomplex arguments appear, the complex value is produced by converting the first argument
into the real part of the value, and converting the second argument into the imaginary part.

DCMPLX(x, y) has the complex value whose real part is REAL(x, kind=8) and whose imaginary
part is REAL(y, kind=8).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CMPLX, FLOAT, INT, IFIX, REAL, SNGL

Examples

DCMPLX (-3) has the value (-3.0, 0.0).

DCMPLX (4.1, 2.3) has the value (4.1, 2.3).

DEALLOCATE

Statement: Frees the storage allocated for allocatable arrays and pointer targets (and causes the
pointers to become disassociated).

Syntax

DEALLOCATE (object [, object]...[, STAT=sv])

object
Is a structure component or the name of a variable, and must be a pointer or allocatable array.

DEALLOCATE Page 53 of 96

sv
Is a scalar integer variable in which the status of the deallocation is stored.

Rules and Behavior

If a STAT variable is specified, it must not be deallocated in the DEALLOCATE statement in
which it appears. If the deallocation is successful, the variable is set to zero. If the deallocation is not
successful, an error condition occurs, and the variable is set to a positive integer value (representing
the run-time error). If no STAT variable is specified and an error condition occurs, program
execution terminates.

It is recommended that all explicitly allocated storage be explicitly deallocated when it is no longer
needed.

To disassociate a pointer that was not associated with the ALLOCATE statement, use the
NULLIFY statement.

For a list of run-time errors, see Visual Fortran Run-Time Errors.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALLOCATE, NULLIFY, Arrays

Examples

The following example shows deallocation of an allocatable array:

INTEGER ALLOC_ERR
REAL, ALLOCATABLE :: A(:), B(:,:)
...
ALLOCATE (A(10), B(-2:8,1:5))
...
DEALLOCATE(A, B, STAT = ALLOC_ERR)

The following shows another example:

INTEGER, ALLOCATABLE :: dataset(:,:,:)
INTEGER reactor, level, points, error
DATA reactor, level, points / 10, 50, 10 /
ALLOCATE (dataset(1:reactor,1:level,1:points), STAT = error)
DEALLOCATE (dataset, STAT = error)

DECLARE and NODECLARE

Compiler Directives: DECLARE generates warnings for variables that have been used but have not
been declared (like the IMPLICIT NONE statement). NODECLARE (the default) disables these
warnings.

DECLARE and NODECLARE Page 54 of 96

Syntax

cDEC$ DECLARE
cDEC$ NODECLARE

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

The DECLARE directive is primarily a debugging tool that locates variables that have not been
properly initialized, or that have been defined but never used.

The following forms are also allowed: !MS$DECLARE and !MS$NODECLARE

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IMPLICIT, General Compiler Directives

DECODE

Statement: Translates data from character to internal form. It is comparable to using internal files in
formatted sequential READ statements.

Syntax

DECODE (c, f, b [, IOSTAT=i-var] [, ERR=label]) [io-list]

c
Is a scalar integer expression. It is the number of characters to be translated to internal form.

f
Is a format identifier. An error occurs if more than one record is specified.

b
Is a scalar or array reference. If b is an array reference, its elements are processed in the order
of subscript progression.
b contains the characters to be translated to internal form.

i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and as zero if
no error occurs.

label
Is the label of an executable statement that receives control if an error occurs.

io-list

DECODE Page 55 of 96

Is an I/O list. An I/O list is either an implied-do list or a simple list of variables (except for
assumed-size arrays).
The list receives the data after translation to internal form.
The interaction between the format specifier and the I/O list is the same as for a formatted I/O
statement.

Rules and Behavior

The number of characters that the DECODE statement can translate depends on the data type of b.
For example, an INTEGER(2) array can contain two characters per element, so that the maximum
number of characters is twice the number of elements in that array.
The maximum number of characters a character variable or character array element can contain is the
length of the character variable or character array element.
The maximum number of characters a character array can contain is the length of each element
multiplied by the number of elements.

See Also: READ, WRITE, ENCODE

Examples

In the following example, the DECODE statement translates the 12 characters in A to integer form
(as specified by the FORMAT statement):

 DIMENSION K(3)
 CHARACTER*12 A,B
 DATA A/’123456789012’/
 DECODE(12,100,A) K
100 FORMAT(3I4)
 ENCODE(12,100,B) K(3), K(2), K(1)

The 12 characters are stored in array K:

K(1) = 1234
K(2) = 5678
K(3) = 9012

DEFINE and UNDEFINE

Compiler Directives: DEFINE creates a symbolic variable whose existence or value can be tested
during conditional compilation. UNDEFINE removes a defined symbol.

Syntax

cDEC$ DEFINE name [= val]

cDEC$ UNDEFINE name

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

DEFINE and UNDEFINE Page 56 of 96

name
Is the name of the variable.

val
(Input) INTEGER(4). The value assigned to name.

Rules and Behavior

DEFINE and UNDEFINE create and remove symbols for use with the IF (or IF DEFINED)
compiler directive. Symbols defined with DEFINE directive are local to the directive. They cannot
be declared in the Fortran program.

Because Fortran programs cannot access the named variables, the names can duplicate Fortran
keywords, intrinsic functions, or user-defined names without conflict.

To test whether a symbol has been defined, use the IF DEFINED (name) directive. You can assign
an integer value to a defined symbol. To test the assigned value of name, use the IF directive. IF test
expressions can contain most logical and arithmetic operators.

Attempting to undefine a symbol that has not been defined produces a compiler warning.

The DEFINE and UNDEFINE directives can appear anywhere in a program, enabling and disabling
symbol definitions.

The following forms are also allowed: !MS$DEFINE name[=val] and !MS$UNDEFINE name

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IF Directive Construct, General Compiler Directives, /define compiler option

Example

!DEC$ DEFINE testflag
!DEC$ IF DEFINED (testflag)
 write (*,*) ’Compiling first line’
!DEC$ ELSE
 write (*,*) ’Compiling second line’
!DEC$ ENDIF
!DEC$ UNDEFINE testflag

DEFINE FILE

Statement: Establishes the size and structure of files with relative organization and associates them
with a logical unit number.

Syntax

DEFINE FILE Page 57 of 96

DEFINE FILE u(m, n, U, asv) [, u(m, n, U, asv)]...

u
Is a scalar integer constant or variable that specifies the logical unit number.

m
Is a scalar integer constant or variable that specifies the number of records in the file.

n
Is a scalar integer constant or variable that specifies the length of each record in 16-bit words (2
bytes).

U
Specifies that the file is unformatted (binary); this is the only acceptable entry in this position.

asv
Is a scalar integer variable, called the associated variable of the file. At the end of each direct
access I/O operation, the record number of the next higher numbered record in the file is
assigned to asv; asv must not be a dummy argument.

Rules and Behavior

The DEFINE FILE statement is comparable to the OPEN statement. In situations where you can use
the OPEN statement, OPEN is the preferable mechanism for creating and opening files.

The DEFINE FILE statement specifies that a file containing m fixed-length records, each composed
of n 16-bit words, exists (or will exist) on the specified logical unit. The records in the file are
numbered sequentially from 1 through m.

A DEFINE FILE statement does not itself open a file. However, the statement must be executed
before the first direct access I/O statement referring to the specified file. The file is opened when the
I/O statement is executed.

If this I/O statement is a WRITE statement, a direct access sequential file is opened, or created if
necessary.
If the I/O statement is a READ or FIND statement, an existing file is opened, unless the specified file
does not exist. If a file does not exist, an error occurs.

The DEFINE FILE statement establishes the variable asv as the associated variable of a file. At the
end of each direct access I/O operation, the Fortran I/O system places in asv the record number of the
record immediately following the one just read or written.

The associated variable always points to the next sequential record in the file (unless the associated
variable is redefined by an assignment, input, or FIND statement). So, direct access I/O statements
can perform sequential processing on the file by using the associated variable of the file as the record
number specifier.

Examples

DEFINE FILE Page 58 of 96

DEFINE FILE 3(1000,48,U,NREC)

In this example, the DEFINE FILE statement specifies that the logical unit 3 is to be connected to a
file of 1000 fixed-length records; each record is forty-eight 16-bit words long. The records are
numbered sequentially from 1 through 1000 and are unformatted.
After each direct access I/O operation on this file, the integer variable NREC will contain the record
number of the record immediately following the record just processed.

DELDIRQQ

Run-Time Function: Deletes a specified directory.

Module: USE DFLIB

Syntax

result = DELDIRQQ (dir)

dir
(Input) Character*(*). String containing the path of the directory to be deleted.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The directory to be deleted must be empty. It cannot be the current directory, the root directory, or a
directory currently in use by another process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETDRIVEDIRQQ, MAKEDIRQQ, CHANGEDIRQQ, CHANGEDRIVEQQ, UNLINK

Example

See the example for GETDRIVEDIRQQ.

DELETE

Statement: Deletes a record from a relative file.

Syntax

DELETE ([UNIT=]io-unit, REC=r [, ERR=label] [, IOSTAT=i-var])

DELETE Page 59 of 96

io-unit
Is an external unit specifier.

r
Is a scalar numeric expression indicating the record number to be deleted.

label
Is the label of the branch target statement that receives control if an error occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no
error occurs.

Rules and Behavior

In a relative file, the DELETE statement deletes the direct access record specified by r. If REC=r is
omitted, the current record is deleted. When the direct access record is deleted, any associated
variable is set to the next record number.

The DELETE statement logically removes the appropriate record from the specified file by locating
the record and marking it as a deleted record. It then frees the position formerly occupied by the
deleted record so that a new record can be written at that position.

Note: You must use the /vms compiler option for READs to detect that a record has been
deleted.

See Also: Data Transfer I/O Statements, Branch Specifiers

Examples

The following statement deletes the fifth record in the file connected to I/O unit 10:

 DELETE (10, REC=5)

Suppose the following statement is specified:

 DELETE (UNIT=9, REC=10, IOSTAT=IOS, ERR=20)

The tenth record in the file connected to unit 9 is deleted. If an error occurs, control is transferred to
the statement labeled 20, and a positive integer is stored in the variable IOS.

DELETEMENUQQ

QuickWin Function: Deletes a menu item from a QuickWin menu.

Module: USE DFLIB

DELETEMENUQQ Page 60 of 96

Syntax

result = DELETEMENUQQ (menuID, itemID)

menuID
(Input) INTEGER(4). Identifies the menu that contains the menu item to be deleted, starting
with 1 as the leftmost menu.

itemID
(Input) INTEGER(4). Identifies the menu item to be deleted, starting with 0 as the top menu
item.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, APPENDMENUQQ, INSERTMENUQQ, MODIFYMENUFLAGSQQ,
MODIFYMENUROUTINEQQ, MODIFYMENUSTRINGQQ.

Example

USE DFLIB
LOGICAL(4) result
CHARACTER(25) str
str = ’Add to EDIT Menu’C ! Append to 2nd menu
result = APPENDMENUQQ(2, $MENUENABLED, str, WINSTATUS)
! Delete third item (EXIT) from menu 1 (FILE)
result = DELETEMENUQQ(1, 3)
! Delete entire fifth menu (WINDOW)
result = DELETEMENUQQ(5,0)
END

DELFILESQQ

Run-Time Function: Deletes all files matching the name specification, which can contain wildcards
(* and ?).

Module: USE DFLIB

Syntax

result = DELFILESQQ (files)

files
(Input) Character*(*). File(s) to be deleted. Can contain wildcards (* and ?).

DELFILESQQ Page 61 of 96

Results:

The result type is INTEGER(2). The result is the number of files deleted.

You can use wildcards to delete more than one file at a time. DELFILESQQ does not delete
directories or system, hidden, or read-only files. Use this function with caution because it can delete
many files at once. If a file is in use by another process (for example, if it is open in another process),
it cannot be deleted.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FINDFILEQQ

Example

USE DFLIB
INTEGER(4) len, count
CHARACTER(80) file
CHARACTER(1) ch
WRITE(*,*) "Enter names of files to delete: "
len = GETSTRQQ(file)
IF (file(1:len) .EQ. ’*.*’) THEN
 WRITE(*,*) "Are you sure (Y/N)?"
 ch = GETCHARQQ()
 IF ((ch .NE. ’Y’) .AND. (ch .NE. ’y’)) STOP
END IF
count = DELFILESQQ(file)
WRITE(*,*) "Deleted ", count, " files."
END

Derived Type

Statement: Specifies the name of a user-defined type and the types of its components.

Syntax

TYPE [[, access] ::] name
component-definition
[component-definition]. . .

END TYPE [name]

access
Is the PUBLIC or PRIVATE keyword. The keyword can only be specified if the derived-type
definition is in the specification part of a module.

name
Is the name of the derived data type. It must not be the same as the name of any intrinsic type,
or the same as the name of a derived type that can be accessed from a module.

Derived Type Page 62 of 96

component-definition
Is one or more type declaration statements defining the component of derived type.

The first component definition can be preceded by an optional PRIVATE or SEQUENCE
statement. (Only one PRIVATE or SEQUENCE statement can appear in a given derived-type
definition.)

If SEQUENCE is present, all derived types specified in component definitions must be
sequence types.

A component definition takes the following form:

type [[, attr] ::] component [(a-spec)] [*char-len] [init-ex]

type
Is a type specifier. IIt can be an intrinsic type or a previously defined derived type. (If the
POINTER attribute follows this specifier, the type can also be any accessible derived
type, including the type being defined.)

attr
Is an optional POINTER attribute for a pointer component, or an optional DIMENSION
attribute for an array component. You can specify one or both attributes. If DIMENSION
is specified, it can be followed by an array specification.

The POINTER or DIMENSION attribute can only appear once in a given component-
definition.

component
Is the name of the component being defined.

a-spec
Is an optional array specification, enclosed in parentheses. If POINTER is specified, the
array is deferred shape; otherwise, it is explicit shape. In an explicit-shape specification,
each bound must be a constant scalar integer expression.

If the array bounds are not specified here, they must be specified following the
DIMENSION attribute.

char-len
Is an optional scalar integer literal constant; it must be preceded by an asterisk (*). This
parameter can only be specified if the component is of type CHARACTER.

init-ex
Is an initialization expression, or for pointer components, => NULL().

If init-ex is specified, a double colon must appear in the component definition. The
equals assignment symbol (=) can only be specified for nonpointer components.

Derived Type Page 63 of 96

The initialization expression is evaluated in the scoping unit of the type definition.

Rules and Behavior

If a name is specified following the END TYPE statement, it must be the same name that follows
TYPE in the derived type statement.

A derived type can be defined only once in a scoping unit. If the same derived-type name appears in a
derived-type definition in another scoping unit, it is treated independently.

A component name has the scope of the derived-type definition only. Therefore, the same name can
be used in another derived-type definition in the same scoping unit.

Two data entities have the same type if they are both declared to be of the same derived type (the
derived-type definition can be accessed from a module or a host scoping unit).

If the entities are in different scoping units, they can also have the same derived type if they are
declared with reference to different derived-type definitions, and if both derived-type definitions have
all of the following:

� The same name

� A SEQUENCE statement (they both have sequence type)

� Components that agree in name, order, and attributes; components cannot be private

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DIMENSION, MAP...END MAP, PRIVATE, PUBLIC, RECORD, SEQUENCE,
STRUCTURE...END STRUCTURE, Derived Types, Default Initialization, Structure Components
Structure Constructors

Examples

TYPE mem_name
 SEQUENCE
 CHARACTER (LEN = 20) lastn
 CHARACTER (LEN = 20) firstn
 CHARACTER (len = 3) cos ! this works because COS is a component name
END TYPE mem_name
TYPE member
 TYPE (mem_name) :: name
 SEQUENCE
 INTEGER age
 CHARACTER (LEN = 20) specialty
END TYPE member

In the following example, a and b are both variable arrays of derived type pair:

Derived Type Page 64 of 96

 TYPE (pair)
 INTEGER i, j
 END TYPE
 TYPE (pair), DIMENSION (2, 2) :: a, b(3)

The following example shows how you can use derived-type objects as components of other derived-
type objects:

 TYPE employee_name
 CHARACTER(25) last_name
 CHARACTER(15) first_name
 END TYPE
 TYPE employee_addr
 CHARACTER(20) street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER(20) city
 CHARACTER(2) state
 INTEGER(4) zip
 END TYPE

Objects of these derived types can then be used within a third derived-type specification, such as:

 TYPE employee_data
 TYPE (employee_name) :: name
 TYPE (employee_addr) :: addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
 END TYPE

%DESCR (VMS only)

Built-in Function: Changes the form of an actual argument. It passes an argument by
 descriptor.

Syntax

result = %DESCR (a)

a
(Input) An expression, record name, procedure name, array, character array section, or array
element.

You must specify %DESCR in the actual argument list of a CALL statement or function reference.
You cannot use it in any other context.

See Also: CALL, %VAL

%DESCR (VMS only) Page 65 of 96

Note: The following table lists the DIGITAL Fortran defaults for argument passing,
and the allowed uses of %DESCR:

Actual Argument Data Type Default %DESCR

Expressions:

Logical REF Yes

Integer REF Yes

REAL(4) REF Yes

REAL(8) REF Yes

REAL(16) 1 REF Yes

COMPLEX(4) REF Yes

COMPLEX(8) REF Yes

Character DESCR 2 Yes

Hollerith REF No

Aggregate 2 REF No

Derived REF No

Array Name:

Numeric REF Yes

Character DESCR 2 Yes

Aggregate 3 REF No

Derived REF No

Procedure Name:

Numeric REF Yes

Character DESCR 2 Yes

1 VMS, U*X
2 On DIGITAL UNIX, Windows NT and Windows 95 systems, a character argument is passed by
address and hidden length.
3 In DIGITAL Fortran record structures

DFLOAT Page 66 of 96

DFLOAT

Elemental Intrinsic Function (Generic): Converts an integer to double precision type.

Syntax

result = DFLOAT (a)

a
(Input) Must be of type integer.

Results:

The result type is double precision real (REAL(8) or REAL*8). Functions that cause conversion of
one data type to another type have the same effect as the implied conversion in assignment
statements.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(8)

DFLOTI INTEGER(2) REAL(8)

DFLOTJ INTEGER(4) REAL(8)

DFLOTK 2 INTEGER(8) REAL(8)

1 These specific functions cannot be passed as actual arguments.
2 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: REAL

Examples

DFLOAT (-4) has the value -4.0.

DIGITS

Inquiry Intrinsic Function (Generic): Returns the number of significant digits for numbers of
the same type and kind parameters as the argument.

Syntax

DIGITS Page 67 of 96

result = DIGITS (x)

x
(Input) Must be of type integer or real; it can be scalar or array valued.

Results:

The result is a scalar of type default integer.

The result has the value q if x is of type integer; it has the value p if x is of type real. Integer
parameter q is defined in Model for Integer Data; real parameter p is defined in Model for Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EXPONENT, RADIX, FRACTION, Data Representation Models

Examples

If x is of type REAL(4), DIGITS(x) has the value 24.

DIM

Elemental Intrinsic Function (Generic): Returns the difference between two numbers (if the
difference is positive).

Syntax

result = DIM (x, y)

x
(Input) Must be of type integer or real.

y
(Input) Must have the same type and kind parameters as x.

Results:

The result type is the same as x. The value of the result is x - y if x is greater than y; otherwise, the
value of the result is zero.

DIM Page 68 of 96

Specific Name Argument type Result Type

INTEGER(1) INTEGER(1)

IIDIM INTEGER(2) INTEGER(2)

IDIM 1 INTEGER(4) INTEGER(4)

KIDI M 2 INTEGER(8) INTEGER(8)

DIM REAL(4) REAL(4)

DDIM REAL(8) REAL(8)

QDIM 3 REAL(16) REAL(16)

1 Or JIDIM.
2 Alpha only
3 VMS and U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Examples

DIM (6, 2) has the value 4.

DIM (-4.0, 3.0) has the value 0.0.

The following shows another example:

 INTEGER i
 REAL r
 REAL(8) d
 i = IDIM(10, 5) ! returns 5
 r = DIM (-5.1, 3.7) ! returns 0.0
 d = DDIM (10.0D0, -5.0D0) ! returns 15.0D0

DIMENSION

Statement and Attribute: Specifies that an object is an array, and defines the shape of the array.

The DIMENSION attribute can be specified in a type declaration statement or a DIMENSION
statement, and takes one of the following forms:

Syntax

Type Declaration Statement:

DIMENSION Page 69 of 96

type, [att-ls,] DIMENSION (a-spec) [, att-ls] :: a[(a-spec)] [, a[(a-spec)]] ...

Statement:

DIMENSION [::] a(a-spec) [, a(a-spec)] ...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

a-spec
Is an array specification. It can be any of the following:

n An explicit-shape specification; for example, a(10,10)
n An assumed-shape specification; for example, a(:)
n A deferred-shape specification; for example, a(:,:)
n An assumed-size specification; for example, a(10,*)

For more information on array specifications, see Declaration Statements for Arrays.

In a type declaration statement, any array specification following an array overrides any array
specification following DIMENSION.

a
Is the name of the array being declared.

Rules and Behavior

The DIMENSION attribute allocates a number of storage elements to each array named, one storage
element to each array element in each dimension. The size of each storage element is determined by
the data type of the array.

The total number of storage elements assigned to an array is equal to the number produced by
multiplying together the number of elements in each dimension in the array specification. For
example, the following statement defines ARRAY as having 16 real elements of 4 bytes each and
defines MATRIX as having 125 integer elements of 4 bytes each:

 DIMENSION ARRAY(4,4), MATRIX(5,5,5)

An array can also be declared in the following statements: ALLOCATABLE, POINTER,
TARGET, and COMMON.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

DIMENSION Page 70 of 96

See Also: ALLOCATE, Declaration Statements for Arrays, Arrays

Examples

The following examples show type declaration statements specifying the DIMENSION attribute:

 REAL, DIMENSION(10, 10) :: A, B, C(10, 15) ! Specification following C
 ! overrides the one following
 ! DIMENSION
 REAL(8), DIMENSION(5,-2:2) :: A,B,C

The following are examples of the DIMENSION statement:

 DIMENSION BOTTOM(12,24,10)
 DIMENSION X(5,5,5), Y(4,85), Z(100)
 DIMENSION MARK(4,4,4,4)

 SUBROUTINE APROC(A1,A2,N1,N2,N3)
 DIMENSION A1(N1:N2), A2(N3:*)

 CHARACTER(LEN = 20) D
 DIMENSION A(15), B(15, 40), C(-5:8, 7), D(15)

You can also declare arrays by using type and ALLOCATABLE statements, for example:

 INTEGER A(2,0:2)
 COMPLEX F
 ALLOCATABLE F(:,:)
 REAL(8), ALLOCATABLE, DIMENSION(:, :, :) :: E

You can specify both the upper and lower dimension bounds. If, for example, one array contains data
from experiments numbered 28 through 112, you could dimension the array as follows:

 DIMENSION experiment(28:112)

Then, to refer to the data from experiment 72, you would reference experiment(72).

Array elements are stored in column-major order: the leftmost subscript is incremented first when the
array is mapped into contiguous memory addresses. For example, consider the following statements:

 INTEGER(2) a(2, 0:2)
 DATA a /1, 2, 3, 4, 5, 6/

These are equivalent to:

 INTEGER(2) a
 DIMENSION a(2, 0:2)
 DATA a /1, 2, 3, 4, 5, 6/

If a is placed at location 1000 in memory, the preceding DATA statement produces the following
mapping.

DIMENSION Page 71 of 96

Array element Address Value

a(1,0) 1000 1

a(2,0) 1002 2

a(1,1) 1004 3

a(2,1) 1006 4

a(1,2) 1008 5

a(2,2) 100A 6

The following DIMENSION statement defines an assumed-size array in a subprogram:

 DIMENSION data (19,*)

At execution time, the array data is given the size of the corresponding array in the calling program.

The following program fragment dimensions two arrays:

 ...
 SUBROUTINE Subr (matrix, rows, vector)
 REAL MATRIX, VECTOR
 INTEGER ROWS
 DIMENSION MATRIX (ROWS,*), VECTOR (10),
 + LOCAL (2,4,8)
 MATRIX (1,1) = VECTOR (5)
 ...

DISPLAYCURSOR

Graphics Function: Controls cursor visibility.

Module: USE DFLIB

Syntax

result = DISPLAYCURSOR (toggle)

toggle
(Input) INTEGER(2). Constant that defines the cursor state. Has two possible values:

n $GCURSOROFF: Makes the cursor invisible regardless of its current shape and mode.
n $GCURSORON: Makes the cursor always visible in graphics mode.

Results:

DISPLAYCURSOR Page 72 of 96

The result type is INTEGER(2). The result is the previous value of toggle.

Cursor settings hold only for the currently active child window. You need to call DISPLAYCURSOR
for each window in which you want the cursor to be visible.

A call to SETWINDOWCONFIG turns off the cursor.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

DLGEXIT

Run-Time Subroutine: Closes an open dialog box.

Module: USE DFLOGM

Syntax

CALL DLGEXIT (dlg)

dlg
(Input) Derived type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

If you want to exit a dialog box on a condition other than the user selecting the OK or Cancel button,
you need to include a call to DLGEXIT from within your callback routine. DLGEXIT saves the data
associated with the dialog box controls and then closes the dialog box. The dialog box is exited after
DLGEXIT has returned control back to the dialog manager, not immediately after the call to
DLGEXIT.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGSETRETURN, DLGINIT, DLGMODAL, DLGMODELESS

Example

SUBROUTINE EXITSUB (dlg, exit_button_id, callbacktype)
USE DFLOGM
TYPE (DIALOG) dlg
INTEGER exit_button_id, callbacktype
...
 CALL DLGEXIT (dlg)

DLGGET, DLGGETINT, DLGGETLOG, DLGGETCHAR

DLGGET, ...DLGGETCHAR Page 73 of 96

Run-Time Functions: Retrieve the state of the dialog control variable.

Module: USE DFLOGM

Syntax

result = DLGGET (dlg, controlid, value [, index])
result = DLGGETINT (dlg, controlid, value [, index])
result = DLGGETLOG (dlg, controlid, value [, index])
result = DLGGETCHAR (dlg, controlid, value [, index])

dlg
(Input) Derived type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

controlid
(Input) Integer. Specifies the identifier of a control within the dialog box. Can be either the
symbolic name for the control or the identifier number, both listed in the Include file (with
extension .FD).

value
(Output) Integer, logical, or character. The value of the control’s variable.

index
(Input; optional) Integer. Specifies the control variable whose value is retrieved. Necessary if
the control has more than one variable of the same data type and you do not want to get the
value of the default for that type.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

Use the DLGGET functions to retrieve the values of variables associated with your dialog box
controls. Each control has at least one of the integer, logical, or character variable associated with it,
but not necessarily all. The control variables are listed in Control Indexes in the Programmer’s Guide.
The types of controls they are associated with are listed in Available Indexes for Each Dialog Control.

You can use DLGGET to retrieve the value of any variable. You can also use DLGGETINT to
retrieve an integer value, or DLGGETLOG and DLGGETCHAR to retrieve logical and character
values, respectively. If you use DLGGET, you do not have to worry about matching the function to
the variable type. If you use the wrong function type for a variable or try to retrieve a variable type
that is not available, the DLGGET functions return .FALSE..

If two or more controls have the same controlid, you cannot use these controls in a DLGGET
operation. In this case the function returns .FALSE..

The dialog box does not need to be open to access its control variables.

DLGGET, ...DLGGETCHAR Page 74 of 96

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGSET, DLGSETSUB, DLGINIT, DLGMODAL, DLGMODELESS

Example

USE DFLOGM
INCLUDE "THISDLG.FD"
TYPE (DIALOG) dlg
INTEGER val
LOGICAL retlog, is_checked
CHARACTER(256) text
...
retlog = DLGGET (dlg, IDC_CHECKBOX1, is_checked, dlg_status)
retlog = DLGGET (dlg, IDC_SCROLLBAR2, val, dlg_range)
retlog = DLGGET (dlg, IDC_STATIC_TEXT1, text, dlg_title)
...

DLGINIT, DLGINITWITHRESOURCEHANDLE

Run-Time Functions: Initialize a dialog box.

Module: USE DFLOGM

Syntax

result = DLGINIT (id, dlg)
result = DLGINITWITHRESOURCEHANDLE (id, hinst, dlg)

id
(Input) INTEGER(4). Dialog identifier. Can be either the symbolic name for the dialog or the
identifier number, both listed in the Include file (with extension .FD).

dlg
(Output) Derived type DIALOG. Contains dialog box parameters.

hinst
(Input) INTEGER(4). Module instance handle in which the dialog resource can be found.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

DLGINIT must be called to initialize a dialog box before it can be used with DLGMODAL,
DLGMODELESS, or any other dialog function.

DLGINIT will only search for the dialog box resource in the main application. For example, it will
not find a dialog box resource that has been built into a dynamic link library.

DLGINIT, DLGINITWITHRESOURCEHANDLE Page 75 of 96

DLGINITWITHRESOURCEHANDLE can be used when the dialog resource is not in the main
application. If the dialog resource is in a dynamic link library (DLL), hinst must be the value passed
as the first argument to the DLLMAIN procedure.

Dialogs can be used from any application, including console, QuickWin, and Windows.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGEXIT, DLGMODAL, DLGMODELESS, DLGUNINIT

Example

USE DFLOGM
INCLUDE ’DLG1.FD’
LOGICAL retlog
TYPE (DIALOG) thisdlg
...
retlog = DLGINIT (IDD_DLG3, thisdlg)
IF (.not. retlog) THEN
 WRITE (*,*) ’ERROR: dialog not found’
ELSE
...

DLGISDLGMESSAGE

Run-Time Function: Determines whether the specified message is intended for one of the currently
displayed modeless dialog boxes.

Module: USE DFLOGM

Syntax

result = DLGISDLSMESSAGE (mesg)

mesg
(Input) Derived type T_MSG. Contains a Windows message.

Results:

The result type is LOGICAL(4). The result is .TRUE. if the message is processed by the dialog box.
Otherwise, the result is .FALSE. and the message should be further processed.

DLGISDLSMESSAGE must be called in the message loop of Windows applications that display a
modeless dialog box using DLGMODELESS. DLGISDLSMESSAGE determines whether the
message is intended for one of the currently displayed modeless dialog boxes. If it is, it passes the
message to the dialog box to be processed.

Compatibility

DLGISDLGMESSAGE Page 76 of 96

WINDOWS

See Also: DLGMODELESS, Using a Modeless Dialog Routine

Example

use dflogm
include ’resource.fd’
type (DIALOG) dlg
type (T_MSG) mesg
integer*4 ret
logical*4 lret
…
! Create the main dialog box and set up the controls and callbacks
lret = DlgInit(IDD_THERM_DIALOG, dlg)
lret = DlgSetSub(dlg, IDD_THERM_DIALOG, ThermSub)
…
lret = DlgModeless(dlg, nCmdShow)
…
! Read and process messsages
do while(GetMessage (mesg, NULL, 0, 0))
 ! Note that DlgIsDlgMessage must be called in order to give
 ! the dialog box first chance at the message.
 if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then

 lret = TranslateMessage(mesg)
 ret = DispatchMessage(mesg)

 end if
end do

 ! Cleanup dialog box memory and exit the application
call DlgUninit(dlg)
WinMain = mesg.wParam
return

DLGMODAL

Run-Time Function: Displays a dialog box and processes user control selections made within the
box.

Module: USE DFLOGM

Syntax

result = DLGMODAL (dlg)

dlg
(Input) Derived type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

Results:

The result type is INTEGER(4). By default, if successful, it returns the identifier of the control that
caused the dialog to exit; otherwise, it returns -1. The return value can be changed with the

DLGMODAL Page 77 of 96

DLGSETRETURN subroutine.

During execution, DLGMODAL displays a dialog box and then waits for user control selections.
When a control selection is made, the callback routine, if any, of the selected control (set with
DLGSETSUB) is called.

The dialog remains active until an exit control is executed: either the default exit associated with the
OK and Cancel buttons, or DLGEXIT within your own control callbacks. DLGMODAL does not
return a value until the dialog box is exited.

The default return value for DLGMODAL is the identifier of the control that caused it to exit (for
example, IDOK for the OK button and IDCANCEL for the Cancel button). You can specify your own
return value with DLGSETRETURN from within one of your dialog control callback routines. You
should not specify -1 as your return value, because this is the error value DLGMODAL returns if it
cannot open the dialog.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGSETRETURN, DLGSETSUB, DLGINIT, DLGEXIT

Example

USE DFLOGM
INCLUDE "MYDLG.FD"
INTEGER return
TYPE (DIALOG) mydialog
...
return = DLGMODAL (mydialog)
...

DLGMODELESS

Run-Time Function: Displays a modeless dialog box.

Module: USE DFLOGM

Syntax

result = DLGMODELESS (dlg [, nCmdShow, hwndParent])

dlg
(Input) Derived type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user. The variable passed to this function must remain in memory for the
duration of the dialog box, that is from the DLGINIT call through the DLGUNINIT call.

The variable can be declared as global data in a module, as a variable with the STATIC
attribute, or in a calling procedure that is active for the duration of the dialog box. It must not

DLGMODELESS Page 78 of 96

be an AUTOMATIC variable in the procedure that calls DLGMODELESS.

nCmdShow
(Input) Integer. Specifies how the dialog box is to be shown. It must be one of the following
values:

Value Description

SW_HIDE Hides the dialog box.

SW_MINIMIZE Minimizes the dialog box.

SW_RESTORE Activates and displays the dialog box. If the dialog box is
minimized or maximized, Windows restores it to its original
size and position.

SW_SHOW Activates the dialog box and displays it in its current size
and position.

SW_SHOWMAXIMIZED Activates the dialog box and displays it as a maximized
window.

SW_SHOWMINIMIZED Activates the dialog box and displays it as an icon.

SW_SHOWMINNOACTIVE Displays the dialog box as an icon. The window that is
currently active remains active.

SW_SHOWNA Displays the dialog box in its current state. The window that
is currently active remains active.

SW_SHOWNOACTIVATE Displays the dialog box in its most recent size and position.
The window that is currently active remains active.

SW_SHOWNORMAL Activates and displays the dialog box. If the dialog box is
minimized or maximized, Windows restores it to its original
size and position.

The default value is SW_SHOWNORMAL.

hwndParent
(Input) Integer. Specifies the parent window for the dialog box. The default value is determined
in this order:

1. If DLGMODELESS is called from a callback of a modeless dialog box, then that dialog
box is the parent window.

2. The Windows desktop window is the parent window.

Results:

The result type is LOGICAL(4). The value is .TRUE. if the function successfully displays the dialog

DLGMODELESS Page 79 of 96

box. Otherwise the result is .FALSE..

During execution, DLGMODELESS displays a modeless dialog box and returns control to the
calling application. The dialog box remains active until DLGEXIT is called, either explicitly or as
the result of the invocation of a default button callback.

DLGMODLESS can only be used in a Windows application. The application must contain a
message loop that processes Windows messages. The message loop must call
DLGISDLGMESSAGE for each message. See the example below. Multiple modeless dialog boxes
can be displayed at the same time. A modal dialog box can be displayed from a modeless dialog box
by calling DLGMODAL from a modeless dialog callback. However, DLGMODELESS cannot be
called from a modal dialog box callback.

Use the DLG_INIT callback with DLGSETSUB to perform processing immediately after the dialog
box is created and before it is displayed, and to perform processing immediately before the dialog box
is destroyed.

Compatibility

WINDOWS

See Also: DLGSETSUB, DLGINIT, DLGEXIT, DLGISDLGMESSAGE, Using a Modeless Dialog
Routine

Example

use dflogm
include ’resource.fd’
type (DIALOG) dlg
type (T_MSG) mesg
integer*4 ret
logical*4 lret
…
! Create the main dialog box and set up the controls and callbacks
lret = DlgInit(IDD_THERM_DIALOG, dlg)
lret = DlgSetSub(dlg, IDD_THERM_DIALOG, ThermSub)
…
lret = DlgModeless(dlg, nCmdShow)
…
! Read and process messsages
do while(GetMessage (mesg, NULL, 0, 0))
 ! Note that DlgIsDlgMessage must be called in order to give
 ! the dialog box first chance at the message.
 if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then

 lret = TranslateMessage(mesg)
 ret = DispatchMessage(mesg)

 end if
end do

 ! Cleanup dialog box memory and exit the application
call DlgUninit(dlg)
WinMain = mesg.wParam
return

DLGSENDCTRLMESSAGE

DLGSENDCTRLMESSAGE Page 80 of 96

Run-Time Function: Sends a Windows message to a dialog box control.

Module: USE DFLOGM

Syntax

result = DLGSENDCTRLMESSAGE (dlg, controlid, msg, wparam, lparam)

dlg
(Input) Derived-type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

controlid
(Input) Integer. Specifies the identifier of the control within the dialog box. Can be either the
symbolic name for the control or the identifier number, both listed in the Include file (with
extension .FD).

msg
(Input) Integer. Derived type T_MSG. Specifies the message to be sent.

wparam
(Input) Integer. Specifies additional message specific information.

lparam
(Input) Integer. Specifies additional message specific information.

Results:

The result type is INTEGER(4). The value specifies the result of the message processing and depends
upon the message sent.

The dialog box must be currently active by a call to DLGMODAL or DLGMODELESS. This
function does not return until the message has been processed by the control.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGINIT, DLGSETSUB, DLGMODAL, DLGMODELESS

Example

use dfwin
use dflogm
include ’resource.fd’
type (dialog) dlg
integer callbacktype

DLGSENDCTRLMESSAGE Page 81 of 96

integer cref
logical lret

if (callbacktype == dlg_init) then
! Change the color of the Progress bar to red
! NOTE: The following message succeeds only if Internet Explorer 4.0
! or later is installed
cref = #FF ! Red

 lret = DlgSendCtrlMessage(dlg, IDC_PROGRESS1, PBM_SETBARCOLOR, 0, cref)
endif

DLGSET, DLGSETINT, DLGSETLOG, DLGSETCHAR

Run-Time Functions: Set the values of dialog control variables.

Module: USE DFLOGM

Syntax

result = DLGSET (dlg, controlid, value [, index])
result = DLGSETINT (dlg, controlid, value [, index])
result = DLGSETLOG (dlg, controlid, value [, index])
result = DLGSETCHAR (dlg, controlid, value [, index])

dlg
(Input) Derived-type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

controlid
(Input) Integer. Specifies the identifier of a control within the dialog box. Can be either the
symbolic name for the control or the identifier number, both listed in the Include file (with
extension .FD).

value
(Input) Integer, logical, or character. The value of the control’s variable.

index
(Input; optional) Integer. Specifies the control variable whose value is set. Necessary if the
control has more than one variable of the same data type and you do not want to set the value
of the default for that type.

Results:

The result type is LOGICAL(4) The result is .TRUE. if successful; otherwise, the result is .FALSE..

Use the DLGSET functions to set the values of variables associated with your dialog box controls.
Each control has at least one of the integer, logical, or character variables associated with it, but not
necessarily all. The control variables are listed in the table in Control Indexes in the Programmer’s
Guide. The types of controls they are associated with are listed in the table in Available Indexes for
Each Dialog Control in the Programmer’s Guide.

DLGSET, ...DLGSETCHAR Page 82 of 96

You can use DLGSET to set any control variable. You can also use DLGSETINT to set an integer
variable, or DLGSETLOG and DLGSETCHAR to set logical and character values, respectively. If
you use DLGSET, you do not have to worry about matching the function to the variable type. If you
use the wrong function type for a variable or try to set a variable type that is not available, the
DLGSET functions return .FALSE..

Calling DLGSET does not cause a callback routine to be called for the changing value of a control.
In particular, when inside a callback, performing a DLGSET on a control does not cause the
associated callback for that control to be called. Callbacks are invoked automatically only by user
action on the controls in the dialog box. If the callback routine needs to be called, you can call it
manually after the DLGSET is executed.

If two or more controls have the same controlid, you cannot use these controls in a DLGSET
operation. In this case the function returns .FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGSETSUB, DLGGET, Using Dialogs, Dialog Functions, and Dialog Controls

Example

USE DFLOGM
INCLUDE "DLGRADAR.FD"
TYPE (DIALOG) dlg
LOGICAL retlog
...
retlog = DLGSET (dlg, IDC_SCROLLBAR1, 400, dlg_range)
retlog = DLGSET (dlg, IDC_CHECKBOX1, .FALSE., dlg_status)
retlog = DLGSET (dlg, IDC_RADIOBUTTON1, "Hot Button", dlg_title)
...

DLGSETRETURN

Run-Time Subroutine: Sets the return value for the DLGMODAL function from within a callback
subroutine.

Module: USE DFLOGM

Syntax

CALL DLGSETRETURN (dlg, retval)

dlg
(Input) Derived type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

DLGSETRETURN Page 83 of 96

retval
(Input) Integer. Specifies the return value for DLGMODAL upon exiting.

DLGSETRETURN overrides the default return value with retval. You can set your own value as a
means of determining the condition under which the dialog box was closed. The default return value
for an error condition is -1, so you should not use -1 as your return value.

DLGSETRETURN should be called from within a callback routine, and is generally used with
DLGEXIT, which causes the dialog box to be exited from a control callback rather than the user
selecting the OK or Cancel button.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGEXIT, DLGMODAL

Example

SUBROUTINE SETRETSUB (dlg, button_id, callbacktype)
USE DFLOGM
INCLUDE "MYDLG.FD"
TYPE (DIALOG) dlg
LOGICAL is_checked, retlog
INTEGER return, button_id, callbacktype
...
retlog = DLGGET(dlg, IDC_CHECKBOX4, is_checked, dlg_state)
IF (is_checked) THEN
 return = 999
ELSE
 return = -999
END IF
CALL DLGSETRETURN (dlg, return)
CALL DLGEXIT (dlg)
END SUBROUTINE SETRETSUB

DLGSETSUB

Run-Time Function: Assigns your own callback subroutines to dialog controls and to the dialog
box.

Module: USE DFLOGM

Syntax

result = DLGSETSUB (dlg, controlid, value [, index])

dlg
(Input) Derived type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

DLGSETSUB Page 84 of 96

controlid
(Input) Integer. Specifies the identifier of a control within the dialog box. Can be the symbolic
name for the control or the identifier number, both listed in the include (with extension .FD)
file, or it can be the identifier of the dialog box.

value
(Input) EXTERNAL. Name of the routine to be called when the callback event occurs.

index
(Input; optional) Integer. Specifies which callback routine is executed when the callback event
occurs. Necessary if the control has more than one callback routine.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

When a callback event occurs (for example, when you select a check box), the callback routine
associated with that callback event is called. You use DLGSETSUB to specify the subroutine to be
called. All callback routines should have the following interface:

SUBROUTINE callbackname (dlg, control_id, callbacktype)

callbackname
Is the name of the callback routine.

dlg
Refers to the dialog box and allows the callback to change values of the dialog controls.

control_id
Is the name of the control that caused the callback.

callbacktype
Indicates what callback is occurring (for example, DLG_CLICKED, DLG_CHANGE, or
DLG_DBLCLICK).

The control_id and callbacktype parameters let you write a single subroutine that can be used with
multiple callbacks from more than one control. Typically, you do this for controls comprising a
logical group. You can also associate more than one callback routine with the same control, but you
must use then use index parameter to indicate which callback routine to use.

The control_id can also be the identifier of the dialog box. The dialog box supports a single
callbacktype, DLG_INIT. This callback is executed immediately after the dialog box is created with
callbacktype DLG_INIT, and immediately before the dialog box is destroyed with callbacktype
DLG_DESTROY.

Callback routines for a control are called after the value of the control has been updated based on the
user’s action.

DLGSETSUB Page 85 of 96

If two or more controls have the same controlid, you cannot use these controls in a DLGSETSUB
operation. In this case, the function returns .FALSE..

For more information, see Dialog Callback Routines in the Programmer’s Guide.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGSET, DLGGET

Example

PROGRAM DLGPROG
USE DFLOGM
INCLUDE "MYDLG.FD"
TYPE (dialog) mydialog
LOGICAL retlog
INTEGER return
EXTERNAL RADIOSUB
retlog = DLGINIT(IDD_mydlg, dlg)
retlog = DLGSETSUB (mydialog, IDC_RADIO_BUTTON1, RADIOSUB)
retlog = DLGSETSUB (mydialog, IDC_RADIO_BUTTON2, RADIOSUB)
return = DLGMODAL(dlg)
END
SUBROUTINE RADIOSUB(dlg, id, callbacktype)
 USE DFLOGM
 TYPE (dialog) dlg
 INTEGER id, callbacktype
 INCLUDE ’MYDLG.FD’
 CHARACTER(256) text
 INTEGER cel, far, retint
 LOGICAL retlog
 SELECT CASE (id)
 CASE (IDC_RADIO_BUTTON1)
 ! Radio button 1 selected by user so
 ! change text accordingly
 text = ’Statistics Package A’
 retlog = DLGSET(dlg, IDC_STATICTEXT1, text)
 CASE (IDC_RADIO_BUTTON2)
 ! Radio button 2 selected by user so
 ! change text accordingly
 text = ’Statistics Package B’
 retlog = DLGSET(dlg, IDC_STATICTEXT1, text)
 END SELECT
END SUBROUTINE RADIOSUB

DLGUNINIT

Run-Time Subroutine: Deallocates memory associated with an initialized dialog.

Module: USE DFLOGM

Syntax

DLGUNINIT Page 86 of 96

CALL DLGUNINIT (dlg)

dlg
(Input) Derived type DIALOG. Contains dialog box parameters. The components of the type
DIALOG are defined with the PRIVATE attribute, and cannot be changed or individually
accessed by the user.

You should call DLGUNINIT when a dialog that was successfully initialized by DLGINIT is no
longer needed. DLGUNINIT should only be called on a dialog initialized with DLGINIT. If it is
called on an uninitialized dialog or one that has already been deallocated with DLGUNINIT, the
result is undefined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DLGINIT, DLGMODAL, DLGMODELESS, DLGEXIT

Example

USE DFLOGM
INCLUDE "MYDLG.FD"
TYPE (DIALOG) mydialog
LOGICAL retlog
...
retlog = DLGINIT(IDD_mydlg, mydialog)
...
CALL DLGUNINIT (mydialog)
END

DO

Statement: Marks the beginning of a DO construct. The DO construct controls the repeated
execution of a block of statements or constructs. (This repeated execution is called a loop.)

A DO construct takes one of the following forms:

Syntax

Block Form

[name:] DO [label[,]] [loop-control]
block

[label] term-stmt

Nonblock Form

DO label[,] [loop-control]

DO Page 87 of 96

name
(Optional) Is the name of the DO construct.

label
(Optional) Is a statement label identifying the terminal statement.

loop-control
Is a DO iteration (see Iteration Loop Control) or a DO WHILE statement.

block
Is a sequence of zero or more statements or constructs.

term-stmt
Is the terminal statement for the construct.

Rules and Behavior

A block DO construct is terminated by an END DO or CONTINUE statement. If the block DO
statement contains a label, the terminal statement must be identified with the same label. If no label
appears, the terminal statement must be an END DO statement.

If a construct name is specified in a block DO statement, the same name must appear in the terminal
END DO statement. If no construct name is specified in the block DO statement, no name can appear
in the terminal END DO statement.

A nonblock DO construct is terminated by an executable statement (or construct) that is identified by
the label specified in the nonblock DO statement. A nonblock DO construct can share a terminal
statement with another nonblock DO construct. A block DO construct cannot share a terminal
statement.

The following cannot be terminal statements for nonblock DO constructs:

� CONTINUE (allowed if it is a shared terminal statement)
� CYCLE
� END (for a program or subprogram)
� EXIT
� GO TO (unconditional or assigned)
� Arithmetic IF
� RETURN
� STOP

The nonblock DO construct is an obsolescent feature in Fortran 90 and Fortran 95.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CONTINUE, CYCLE, EXIT, DO WHILE, Execution Control, DO Constructs

DO Page 88 of 96

Examples

The following example shows a simple block DO construct (contains no iteration count or DO
WHILE statement):

 DO
 READ *, N
 IF (N == 0) STOP
 CALL SUBN
 END DO

The DO block executes repeatedly until the value of zero is read. Then the DO construct terminates.

The following example shows a named block DO construct:

 LOOP_1: DO I = 1, N
 A(I) = C * B(I)
 END DO LOOP_1

The following example shows a nonblock DO construct with a shared terminal statement:

 DO 20 I = 1, N
 DO 20 J = 1 + I, N
 20 RESULT(I,J) = 1.0 / REAL(I + J)

The following two program fragments are also examples of DO statements:

 C Initialize the even elements of a 20-element real array
 C
 DIMENSION array(20)
 DO j = 2, 20, 2
 array(j) = 12.0
 END DO
 C
 C Perform a function 11 times
 C
 DO k = -30, -60, -3
 int = j / 3
 isb = -9 - k
 array(isb) = MyFunc (int)
 END DO

The following shows the final value of a DO variable (in this case 11):

 DO j = 1, 10
 WRITE (*, ’(I5)’) j
 END DO
 WRITE (*, ’(I5)’) j

DO WHILE

Statement: Executes the range of a DO construct while a specified condition remains true.

DO WHILE Page 89 of 96

Syntax

DO [label[,]] WHILE (expr)

label
(Optional) Is a label specifying an executable statement in the same program unit.

expr
Is a scalar logical (test) expression enclosed in parentheses.

Rules and Behavior

Before each execution of the DO range, the logical expression is evaluated. If it is true, the statements
in the body of the loop are executed. If it is false, the DO construct terminates and control transfers to
the statement following the loop.

If no label appears in a DO WHILE statement, the DO WHILE loop must be terminated with an
END DO statement.

You can transfer control out of a DO WHILE loop but not into a loop from elsewhere in the
program.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: CONTINUE, CYCLE, EXIT, DO, Execution Control, DO Constructs,

Examples

The following example shows a DO WHILE statement:

 CHARACTER*132 LINE
 ...
 I = 1
 DO WHILE (LINE(I:I) .EQ. ’ ’)
 I = I + 1
 END DO

The following examples show required and optional END DO statements:

 Required Optional
 DO WHILE (I .GT. J) DO 10 WHILE (I .GT. J)
 ARRAY(I,J) = 1.0 ARRAY(I,J) = 1.0
 I = I - 1 I = I - 1
 END DO 10 END DO

The following shows another example:

DO WHILE Page 90 of 96

 CHARACTER(1) input
 input = ’ ’
 DO WHILE ((input .NE. ’n’) .AND. (input .NE. ’y’))
 WRITE (*, ’(A)’) ’Enter y or n: ’
 READ (*, ’(A)’) input
 END DO

DOT_PRODUCT

Transformational Intrinsic Function (Generic): Performs dot-product multiplication of numeric
or logical vectors (rank-one arrays).

Syntax

result = DOT_PRODUCT (vector_a, vector_b)

vector_a
(Input) Must be a rank-one array of numeric (integer, real, or complex) or logical type.

vector_b
(Input) Must be a rank-one array of numeric type if vector_a is of numeric type, or of logical
type if vector_a is of logical type. It must be the same size as vector_a.

Results:

The result is a scalar whose type depends on the types of vector_a and vector_b.

If vector_a is of type integer or real, the result value is SUM (vector_a*vector_b).

If vector_a is of type complex, the result value is SUM (CONJG (vector_a)*vector_b).

If vector_a is of type logical, the result has the value ANY (vector_a .AND. vector_b).

If either rank-one array has size zero, the result is zero if the array is of numeric type, and false if the
array is of logical type.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PRODUCT, MATMUL, TRANSPOSE

Examples

DOT_PRODUCT ((/1, 2, 3/), (/3, 4, 5/)) has the value 26 (calculated as follows: ((1 x 3) + (2 x
4) + (3 x 5)) = 26).

DOT_PRODUCT ((/ (1.0, 2.0), (2.0, 3.0) /), (/ (1.0, 1.0), (1.0, 4.0) /)) has the value (17.0, 4.0).

DOT_PRODUCT Page 91 of 96

DOT_PRODUCT ((/ .TRUE., .FALSE. /), (/ .FALSE., .TRUE. /)) has the value false.

The following shows another example:

 I = DOT_PRODUCT((/1,2,3/), (/4,5,6/)) ! returns
 ! the value 32

DOUBLE COMPLEX

Statement: Specifies the DOUBLE COMPLEX data type.

A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a complex
number. One of the pair must be a double-precision real constant, the other can be an integer, single-
precision real, or double-precision real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is
interpreted as a complex number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision
portion of COMPLEX(KIND=8) or DOUBLE COMPLEX constants. (See REAL and DOUBLE
PRECISION for more information.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have
IEEE® T_floating format.

For more information, see General Rules for Complex Constants.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: COMPLEX, Complex Data Types, DOUBLE PRECISION, REAL

Examples

DOUBLE COMPLEX vector, arrays(7,29)
DOUBLE COMPLEX pi, pi2 /3.141592654,6.283185308/

The following examples demonstrate valid and invalid COMPLEX(KIND=8) or DOUBLE
COMPLEX constants:

Valid

(1.7039,-1.7039D0)

(547.3E0_8,-1.44_8)

(1.7039E0,-1.7039D0

DOUBLE COMPLEX Page 92 of 96

(+12739D3,0.D0)

Invalid Explanation

(1.23D0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION; this is a valid single-
precision real constant.

DOUBLE PRECISION

A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4)
number, and greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of
digits that precede the exponent is unlimited, but typically only the leftmost 15 digits are significant.

IEEE® T_floating format is used.

For more information, see General Rules for Real Constants.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: REAL, REAL(8) or DOUBLE PRECISION Constants, Data Types, Constants, and
Variables

Examples

DOUBLE PRECISION varnam
DOUBLE PRECISION,PRIVATE :: zz

The following examples show valid and invalid REAL(8) or DOUBLE PRECISION constants:

Valid

123456789D+5

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

DOUBLE PRECISION Page 93 of 96

2.3_8

3.4E7_8

Invalid Explanation

-.25D0_2 2 is not a valid kind type for reals.

+2.7182812846182 No D exponent designator is present; this is a valid single-precision constant.

1234567890D45 Too large for D_floating format; valid for G_floating and T_floating format.

123456789.D400 Too large for any double-precision format.

123456789.D-400 Too small for any double-precision format.

DPROD

Elemental Intrinsic Function (Specific): Produces a double precision product. This specific
function has no generic function associated with it.

Syntax

result = DPROD (x, y)

x, y
(Input) Must be of type default real.

Results:

The result type is double precision real. The result value is equal to x * y.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Examples

DPROD (2.0, -4.0) has the value -8.00.

DPROD (5.0, 3.0) has the value 15.00.

The following shows another example:

REAL(8) d
d = DPROD (123456.7, 123456.7)
! returns 1.524155754649439E+010

DRAND, DRANDM

DRAND, DRANDM Page 94 of 96

Portability Functions: Return double-precision random numbers in the range 0.0 through 1.0.

Module: USE DFPORT

Syntax

result = DRAND (iflag)
result = DRANDM (iflag)

iflag
(Input) INTEGER(4). Controls the way the random number is selected.

Results:

The result type is REAL(8). Return values are:

Value of
iflag Selection process

1 The generator is restarted and the first random value is selected.

0 The next random number in the sequence is selected.

Otherwise The generator is reseeded using iflag, restarted, and the first random value is
selected.

There is no difference between DRAND and DRANDM. Both functions are included to insure
portability of existing code that references one or both of them.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM_NUMBER, RANDOM_SEED

Example

USE DFPORT
REAL(8) num
INTEGER(4) f
f=1
CALL print_rand
f=0
CALL print_rand
f=22
CALL print_rand
CONTAINS
SUBROUTINE print_rand
num = drand(f)
print *, ’f= ’,f,’:’,num
END SUBROUTINE

DRAND, DRANDM Page 95 of 96

END

DREAL

Elemental Intrinsic Function (Specific): Converts a double complex argument to double precision type.
This specific function has no generic function associated with it.

DREAL must not be passed as an actual argument.

Syntax

result = DREAL (a)

a
(Input) Must be of type double complex (COMPLEX(8) or COMPLEX*16).

Results:

The result type is double precision real (REAL(8) or REAL*8).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: REAL

Examples

DREAL ((2.0d0, 3.0d0)) has the value 2.00.

DTIME (WNT only)

Portability Function: Returns the elapsed CPU time since the start of program execution when first
called, and the elapsed execution time since the last call to DTIME thereafter. This function is
currently restricted to Windows NT systems.

Module: USE DFPORT

Syntax

result = DTIME (tarray)

tarray
(Output) REAL(4). Must be a rank one array with two elements:

� tarray(1) Elapsed user time, which is time spent executing user code. This value includes time
running protected Windows subsystem code.

� tarray(2) Elapsed system time, which is time spent executing privileged code (code in the

DTIME (WNT only) Page 96 of 96

Windows Executive).

Results:

The result type is REAL(4). The result is the total CPU time, which is the sum of tarray(1) and tarray
(2).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

 REAL(4) I, TA(2)
 I = DTIME(TA)
 write(*,*) ’Program has been running for’, I, ’seconds.’
 write(*,*) ’ This includes’, TA(1), ’seconds of user time and’, &
& TA(2), ’seconds of system time.’

ELEMENTAL Page 1 of 58

ELEMENTAL

Keyword: Asserts that a user-defined procedure is a restricted form of pure procedure. This is a
Fortran 95 feature.

To specify an elemental procedure, use the keyword in a FUNCTION or SUBROUTINE statement.

An elemental procedure can be passed an array, which is acted upon one element at a time.

For functions, the result must be scalar; it cannot have the POINTER attribute.

Dummy arguments have the following restrictions:

� They must be scalar.
� They cannot have the POINTER attribute.
� They (or their subobjects) cannot appear in a specification expression except as an argument to

one of the intrinsic functions BIT_SIZE, LEN, KIND, or the numeric inquiry functions.
� They cannot be *.
� They cannot be dummy procedures.

If the actual arguments are all scalar, the result is scalar. If the actual arguments are array valued, the
values of the elements (if any) of the result are the same as if the function or subroutine had been
applied separately, in any order, to corresponding elements of each array actual argument.

Elemental procedures are pure procedures and all rules that apply to pure procedures also apply to
elemental procedures.

See Also: FUNCTION, SUBROUTINE

Examples

Consider the following:

 MIN (A, 0, B) ! A and B are arrays of shape (S, T)

In this case, the elemental reference to the MIN intrinsic function is an array expression whose
elements have the following values:

 MIN (A(I,J), 0, B(I,J)), I = 1, 2, ..., S, J = 1, 2, ..., T

ELLIPSE, ELLIPSE_W

Graphics Function: Draws a circle or an ellipse using the current graphics color.

Module: USE DFLIB

Syntax

ELLIPSE, ELLIPSE_W Page 2 of 58

result = ELLIPSE (control, x1, y1, x2, y2)
result = ELLIPSE_W (control, wx1, wy1, wx2, wy2)

control
(Input) INTEGER(2). Fill flag. Can be one of the following symbolic constants:

n $GFILLINTERIOR Fills the figure using the current color and fill mask.
n $GBORDER Does not fill the figure.

x1, y1
(Input) INTEGER(2). Viewport coordinates for upper-left corner of bounding rectangle.

x2, y2
(Input) INTEGER(2). Viewport coordinates for lower-right corner of bounding rectangle.

wx1, wy1
(Input) REAL(8). Window coordinates for upper-left corner of bounding rectangle.

wx2, wy2
(Input) REAL(8). Window coordinates for lower-right corner of bounding rectangle.

Results:

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0. If the ellipse is
clipped or partially out of bounds, the ellipse is considered successfully drawn, and the return is 1. If
the ellipse is drawn completely out of bounds, the return is 0.

The border is drawn in the current color and line style.

When you use ELLIPSE, the center of the ellipse is the center of the bounding rectangle defined by
the viewport-coordinate points (x1, y1) and (x2, y2). When you use ELLIPSE_W, the center of the
ellipse is the center of the bounding rectangle defined by the window-coordinate points (wx1, wy1)
and (wx2, wy2). If the bounding-rectangle arguments define a point or a vertical or horizontal line, no
figure is drawn.

The control option given by $GFILLINTERIOR is equivalent to a subsequent call to the
FLOODFILLRGB function using the center of the ellipse as the start point and the current color (set
by SETCOLORRGB) as the boundary color.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: ARC, FLOODFILLRGB, GRSTATUS, LINETO, PIE, POLYGON, RECTANGLE,
SETCOLORRGB, SETFILLMASK

Example

ELLIPSE, ELLIPSE_W Page 3 of 58

This program draws the shape shown below.

! compile as QuickWin or Standard Graphics application
 USE DFLIB
 INTEGER(2) dummy, x1, y1, x2, y2
 x1 = 80; y1 = 50
 x2 = 240; y2 = 150
 dummy = ELLIPSE($GFILLINTERIOR, x1, y1, x2, y2)
 END

Figure: Output of Program ELLIPSE.FOR

ELSE Directive

See the IF Directive Construct.

ELSE

See IF Construct.

ELSEIF Directive

See the IF Directive Construct.

ELSE IF

See IF Construct.

ELSEWHERE

Statement: Marks the beginning of an ELSEWHERE block within a WHERE construct.

Syntax

[name:] WHERE (mask-expr1)
[where-body-stmt]...

[ELSEWHERE (mask-expr2) [name]
[where-body-stmt]...]

[ELSEWHERE [name]
[where-body-stmt]...]

END WHERE [name]

ELSEWHERE Page 4 of 58

name
Is the name of the WHERE construct.

mask-expr1, mask-expr2
Are logical array expressions (called mask expressions).

where-body-stmt
Is one of the following:

n An assignment statement of the form: array variable = array expression.
n A WHERE statement or construct

Rules and Behavior

Every assignment statement following the ELSEWHERE is executed as if it were a WHERE
statement with ".NOT. mask-expr1". If ELSEWHERE specifies "mask-expr2", it is executed as
"(.NOT. mask-expr1) .AND. mask-expr2".

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: WHERE

Example

WHERE (pressure <= 1.0)
 pressure = pressure + inc_pressure
 temp = temp - 5.0
ELSEWHERE
 raining = .TRUE.
END WHERE

The variables temp, pressure, and raining are all arrays.

ENCODE

Statement: Translates data from internal (binary) form to character form. It is comparable to using
internal files in formatted sequential WRITE statements.

Syntax

ENCODE (c, f, b [, IOSTAT=i-var] [, ERR=label]) [io-list]

c
Is a scalar integer expression. It is the number of characters to be translated to internal form.

f

ENCODE Page 5 of 58

Is a format identifier. An error occurs if more than one record is specified.

b
Is a scalar or array reference. If b is an array reference, its elements are processed in the order
of subscript progression.
b contains the characters to be translated to internal form.

i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and as zero if
no error occurs.

label
Is the label of an executable statement that receives control if an error occurs.

io-list
Is an I/O list. An I/O list is either an implied-do list or a simple list of variables (except for
assumed-size arrays).
The list contains the data to be translated to character form.
The interaction between the format specifier and the I/O list is the same as for a formatted I/O
statement.

Rules and Behavior

The number of characters that the ENCODE statement can translate depends on the data type of b.
For example, an INTEGER(2) array can contain two characters per element, so that the maximum
number of characters is twice the number of elements in that array.

The maximum number of characters a character variable or character array element can contain is the
length of the character variable or character array element.

The maximum number of characters a character array can contain is the length of each element
multiplied by the number of elements.

See Also: READ, WRITE, DECODE

Examples

Consider the following:

 DIMENSION K(3)
 CHARACTER*12 A,B
 DATA A/’123456789012’/
 ENCODE(12,100,A) K
100 FORMAT(3I4)
 ENCODE(12,100,B) K(3), K(2), K(1)

The 12 characters are stored in array K:

K(1) = 1234

ENCODE Page 6 of 58

K(2) = 5678
K(3) = 9012

The ENCODE statement translates the values K(3), K(2), and K(1) to character form and stores the
characters in the character variable B.:

B = ’901256781234’

END

Statement: Marks the end of a program unit. It takes one of the following forms:

Syntax

END [PROGRAM [program-name]]
END [FUNCTION [function-name]]
END [SUBROUTINE [subroutine-name]]
END [MODULE [module-name]]
END [BLOCK DATA [block-data-name]]

For internal procedures and module procedures, you must specify the FUNCTION and
SUBROUTINE keywords in the END statement; otherwise, the keywords are optional.

In main programs, function subprograms, and subroutine subprograms, END statements are
executable and can be branch target statements. If control reaches the END statement in these
program units, the following occurs:

� In a main program, execution of the program terminates.
� In a function or subroutine subprogram, a RETURN statement is implicitly executed.

The END statement cannot be continued in a program unit, and no other statement in the program
unit can have an initial line that appears to be the program unit END statement.

The END statements in a module or block data program unit are nonexecutable.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Program Units and Procedures, Branch Statements

Example

C An END statement must be the last statement in a program
C unit:
 PROGRAM MyProg
 WRITE (*, ’("Hello, world!")’)
 END
C
C An example of a named subroutine
C

END Page 7 of 58

 SUBROUTINE EXT1 (X,Y,Z)
 Real, Dimension (100,100) :: X, Y, Z
 END SUBROUTINE EXT1

END DO

Statement: Marks the end of a DO or DO WHILE loop.

Syntax

END DO

Remarks

There must be a matching END DO statement for every DO or DO WHILE statement that does not
contain a label reference.

An END DO statement can terminate only one DO or DO WHILE statement. If you name the DO or
DO WHILE statement, the END DO statement can specify the same name.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DO, DO WHILE, CONTINUE

Example

The following examples both produce the same output:

 DO ivar = 1, 10
 PRINT ivar
 END DO
 ivar = 0

do2: DO WHILE (ivar .LT. 10)
 ivar = ivar + 1
 PRINT ivar
 END DO do2

ENDIF Directive

See the IF Directive Construct.

END IF

See IF Construct.

ENDFILE

ENDFILE Page 8 of 58

Statement: Writes an end-of-file record to a sequential file and positions the file after this record (the
terminal point). It can have either of the following forms.

Syntax

ENDFILE ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])
ENDFILE io-unit

io-unit
(Input) Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error occurs.

i-var
(Output) Is a scalar integer variable that is defined as a positive integer if an error occurs and
zero if no error occurs.

Rules and Behavior

If the unit specified in the ENDFILE statement is not open, the default file is opened for unformatted
output.

An end-of-file record can be written only to files with sequential organization that are accessed as
formatted-sequential or unformatted-segmented sequential files.

End-of-file records should not be written in files that are read by programs written in a language other
than Fortran.

Note: If you use the /vms compiler and an ENDFILE is performed on a sequential unit, an
actual one byte record containing a Ctrl/Z is written to the file. If this option is not specified, an
internal ENDFILE flag is set and the file is truncated. The option does not affect ENDFILE
on relative files; such files are truncated.

If a parameter of the ENDFILE statement is an expression that calls a function, that function must
not cause an I/O statement or the EOF intrinsic function to be executed, because unpredictable results
can occur.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BACKSPACE, REWIND, Data Transfer I/O Statements, Branch Specifiers

Examples

The following statement writes an end-of-file record to I/O unit 2:

ENDFILE Page 9 of 58

 ENDFILE 2

Suppose the following statement is specified:

 ENDFILE (UNIT=9, IOSTAT=IOS, ERR=10)

An end-of-file record is written to the file connected to unit 9. If an error occurs, control is transferred
to the statement labeled 10, and a positive integer is stored in variable IOS.

The following shows another example:

 WRITE (6, *) x
 ENDFILE 6
 REWIND 6
 READ (6, *) y

END FORALL

Statement: Marks the end of a FORALL construct. For more information, see FORALL.

END INTERFACE

Statement: Marks the end of an INTERFACE block. For more information, see INTERFACE.

END WHERE

Statement: Marks the end of a WHERE block. For more information, see WHERE.

Example

WHERE (pressure <= 1.0)
 pressure = pressure + inc_pressure
 temp = temp - 5.0
ELSEWHERE
 raining = .TRUE.
END WHERE

Note that the variables temp, pressure, and raining are all arrays.

ENTRY

Statement: Provides multiple entry points within a subprogram. It is not executable and must
precede any CONTAINS statement (if any) within the subprogram.

Syntax

ENTRY Page 10 of 58

ENTRY name [([d-arg [, d-arg]...]) [RESULT (r-name)]]

name
Is the name of an entry point. If RESULT is specified, this entry name must not appear in any
specification statement in the scoping unit of the function subprogram.

d-arg
(Optional) Is a dummy argument. The dummy argument can be an alternate return indicator (*)
if the ENTRY statement is within a subroutine subprogram.

r-name
(Optional) Is the name of a function result. This name must not be the same as the name of the
entry point, or the name of any other function or function result. This parameter can only be
specified for function subprograms.

Rules and Behavior

An external or module procedure can have one or more ENTRY statements. Internal procedures must
not contain ENTRY statements.

An ENTRY statement must not appear in a CASE, DO, IF, FORALL, or WHERE construct, or a
nonblock DO loop.

When the ENTRY statement appears in a subroutine subprogram, it is referenced by a CALL
statement. When the ENTRY statement appears in a function subprogram, it is referenced by a
function reference.

An entry name within a function subprogram can appear in a type declaration statement.

Within the subprogram containing the ENTRY statement, the entry name must not appear as a
dummy argument in the FUNCTION or SUBROUTINE statement, and it must not appear in an
EXTERNAL or INTRINSIC statement. For example, neither of the following are valid:

(1) SUBROUTINE SUB(E)
 ENTRY E
 ...

(2) SUBROUTINE SUB
 EXTERNAL E
 ENTRY E
 ...

An ENTRY statement can reference itself if the function or subroutine subprogram was defined as
RECURSIVE.

Dummy arguments can be used in ENTRY statements even if they differ in order, number, type and
kind parameters, and name from the dummy arguments used in the FUNCTION, SUBROUTINE,
and other ENTRY statements in the same subprogram. However, each reference to a function,
subroutine, or entry must use an actual argument list that agrees in order, number, and type with the

ENTRY Page 11 of 58

dummy argument list in the corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

Dummy arguments can be referred to only in executable statements that follow the first
SUBROUTINE, FUNCTION, or ENTRY statement in which the dummy argument is specified. If a
dummy argument is not currently associated with an actual argument, the dummy argument is
undefined and cannot be referenced. Arguments do not retain their association from one reference of
a subprogram to another.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Program Units and Procedures, ENTRY Statements in Function Subprograms, ENTRY
Statements in Subroutine Subprograms

Example

C This fragment writes a message indicating
C whether num is positive or negative
 IF (num .GE. 0) THEN
 CALL Sign
 ELSE
 CALL Negative
 END IF
 ...
 END

SUBROUTINE Sign
 WRITE (*, *) ’It’’s positive.’
 RETURN
 ENTRY Negative
 WRITE (*, *) ’It’’s negative.’
 RETURN
END SUBROUTINE

EOF

Inquiry Intrinsic Function (Generic): Checks whether a file is at or beyond the end-of-file record.

Syntax

result = EOF (a)

a
(Input) Must be of type integer. It represents a unit specifier corresponding to an open file. It
cannot be zero unless you have reconnected unit zero to a unit other than the screen or
keyboard.

Results:

The result type is logical. The value of the result is .TRUE. if the file connected to a is at or beyond
the end-of-file record; otherwise, .FALSE..

EOF Page 12 of 58

This specific function cannot be passed as an actual argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ENDFILE, BACKSPACE, REWIND

Example

! Creates a file of random numbers, reads them back
 REAL x, total
 INTEGER count
 OPEN (1, FILE = ’TEST.DAT’)
 DO I = 1, 20
 CALL RANDOM_NUMBER(x)
 WRITE (1, ’(F6.3)’) x * 100.0
 END DO
 CLOSE(1)
 OPEN (1, FILE = ’TEST.DAT’)
 DO WHILE (.NOT. EOF(1))
 count = count + 1
 READ (1, *) value
 total = total + value
 END DO
100 IF (count .GT. 0) THEN
 WRITE (*,*) ’Average is: ’, total / count
 ELSE
 WRITE (*,*) ’Input file is empty ’
 END IF

STOP
 END

EOSHIFT

Transformational Intrinsic Function (Generic): Performs an end-off shift on a rank-one array,
or performs end-off shifts on all the complete rank-one sections along a given dimension of
an array of rank two or greater.

Elements are shifted off at one end of a section and copies of a boundary value are filled in at the
other end. Different sections can have different boundary values and can be shifted by different
amounts and in different directions.

Syntax

result = EOSHIFT (array, shift [, boundary][, dim])

array
(Input) Must be an array (of any data type).

shift
(Input) Must be a scalar integer or an array with a rank that is one less than array, and shape

EOSHIFT Page 13 of 58

(d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.

boundary
(Optional; input) Must have the same type and kind parameters as array. It must be a scalar or
an array with a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn). The

boundary specifies a value to replace spaces left by the shifting procedure.

If boundary is not specified, it is assumed to have the following default values (depending on
the data type of array):

 array Type boundary Value
 Integer 0
 Real 0.0
 Complex (0.0, 0.0)
 Logical false
 Character(len) len blanks

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array. If dim is omitted, it is assumed to be 1.

Results:

The result is an array with the same type and kind parameters, and shape as array.

If array has rank one, the same shift is applied to each element. If an element is shifted off one end of
the array, the boundary value is placed at the other end the array.

If array has rank greater than one, each section (s1, s2, ..., sdim-1, :, sdim+1, ..., sn) of the result is

shifted as follows:

� By the value of shift, if shift is scalar

� According to the corresponding value in shift(s1, s2, ..., sdim-1, sdim+1, ..., sn), if shift is an array

If an element is shifted off one end of a section, the boundary value is placed at the other end of the
section.

The value of shift determines the amount and direction of the end- off shift. A positive shift value
causes a shift to the left (in rows) or up (in columns). A negative shift value causes a shift to the right
(in rows) or down (in columns).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CSHIFT, ISHFT, ISHFTC, TRANSPOSE

EOSHIFT Page 14 of 58

Examples

V is the array (1, 2, 3, 4, 5, 6).

EOSHIFT (V, SHIFT=2) shifts the elements in V to the left by 2 positions, producing the value (3, 4,
5, 6, 0, 0). 1 and 2 are shifted off the beginning and two elements with the default BOUNDARY
value are placed at the end.

EOSHIFT (V, SHIFT= -3, BOUNDARY= 99) shifts the elements in V to the right by 3 positions,
producing the value (99, 99, 99, 1, 2, 3). 4, 5, and 6 are shifted off the end and three elements with
BOUNDARY value 99 are placed at the beginning.

M is the array

 [1 2 3]
 [4 5 6]
 [7 8 9].

EOSHIFT (M, SHIFT = 1, BOUNDARY = ’*’, DIM = 2) produces the result

 [2 3 *]
 [5 6 *]
 [8 9 *].

Each element in rows 1, 2, and 3 is shifted to the left by 1 position. This causes the first element in
each row to be shifted off the beginning, and the BOUNDARY value to be placed at the end.

EOSHIFT (M, SHIFT = -1, DIM = 1) produces the result

 [0 0 0]
 [1 2 3]
 [4 5 6].

Each element in columns 1, 2, and 3 is shifted down by 1 position. This causes the last element in
each column to be shifted off the end and the BOUNDARY value to be placed at the beginning.

EOSHIFT (M, SHIFT = (/1, -1, 0/), BOUNDARY = (/ ’*’, ’?’, ’/’ /), DIM = 2) produces the result

 [2 3 *]
 [? 4 5]
 [7 8 9].

Each element in row 1 is shifted to the left by 1 position, causing the first element to be shifted off the
beginning and the BOUNDARY value * to be placed at the end. Each element in row 2 is shifted to
the right by 1 position, causing the last element to be shifted off the end and the BOUNDARY value
? to be placed at the beginning. No element in row 3 is shifted at all, so the specified BOUNDARY
value is not used.

EOSHIFT Page 15 of 58

The following is another example:

INTEGER shift(3)
CHARACTER(1) array(3, 3), AR1(3, 3)
array = RESHAPE ((/’A’, ’D’, ’G’, ’B’, ’E’, ’H’, &
 ’C’, ’F’, ’I’/), (/3,3/))
! array is A B C
! D E F
! G H I
shift = (/-1, 1, 0/)
AR1 = EOSHIFT (array, shift, BOUNDARY = (/’*’,’?’,’#’/), DIM= 2)
! returns * A B
! E F ?
! G H I

EPSILON

Inquiry Intrinsic Function (Generic): Returns a positive model number that is almost negligible
compared to unity in the model representing real numbers.

Syntax

result = EPSILON (x)

x
(Input) Must be of type real; it can be scalar or array valued.

Results:

The result is scalar of the same type and kind parameters as x. The result has the value b1-p.
Parameters b and p are defined in Model for Real Data.

EPSILON makes it easy to select a delta for algorithms (such as root locators) that search until the
calculation is within delta of an estimate. If delta is too small (smaller than the decimal resolution of
the data type), the algorithm might never halt. By scaling the value returned by EPSILON to the
estimate, you obtain a delta that ensures search termination.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PRECISION, TINY, Data Representation Models

Examples

If x is of type REAL(4), EPSILON (X) has the value 2-23.

EQUIVALENCE

EQUIVALENCE Page 16 of 58

Statement: Specifies that a storage area is shared by two or more objects in a program unit. This
causes total or partial storage association of the objects that share the storage area.

Syntax

EQUIVALENCE (equiv-list) [, (equiv-list)] ...

equiv-list
Is a list of two or more variables, array elements, or substrings, separated by commas (also
called an equivalence set). If an object of derived type is specified, it must be a sequence type.
Objects cannot have the TARGET attribute.

Each expression in a subscript or a substring reference must be an integer initialization
expression. A substring must not have a length of zero.

Rules and Behavior

The following objects cannot be specified in EQUIVALENCE statements:

� A dummy argument
� An allocatable array
� A pointer
� An object of nonsequence derived type
� An object of sequence derived type containing a pointer in the structure
� A function, entry, or result name
� A named constant
� A structure component
� A subobject of any of the above objects

The EQUIVALENCE statement causes all of the entities in one parenthesized list to be allocated
storage beginning at the same storage location.

Association of objects depends on their types, as follows:

Type of Object Type of Associated Object

Intrinsic numeric[1] or numeric sequenceCan be of any of these types

Default character or character sequence Can be of either of these types[2]

Any other intrinsic type Must have the same type and kind parameters

Any other sequence type Must have the same type

[1] Default integer, default real, double precision real, default complex, double complex, or default logical.
[2] The lengths do not have to be equal.

So, objects can be associated if they are of different numeric type. For example, the following is

EQUIVALENCE Page 17 of 58

valid:

 INTEGER A(20)
 REAL Y(20)
 EQUIVALENCE(A, Y)

Objects of default character do not need to have the same length. The following example associates
character variable D with the last 4 (of the 6) characters of character array F:

 CHARACTER(LEN=4) D
 CHARACTER(LEN=3) F(2)
 EQUIVALENCE(D, F(1)(3:))

Entities having different data types can be associated because multiple components of one data type
can share storage with a single component of a higher-ranked data type. For example, if you make an
integer variable equivalent to a complex variable, the integer variable shares storage with the real part
of the complex variable.

The same storage unit cannot occur more than once in a storage sequence, and consecutive storage
units cannot be specified in a way that would make them nonconsecutive.

Visual Fortran lets you associate character and noncharacter entities, for example:

 CHARACTER*1 char1(10)
 REAL reala, realb
 EQUIVALENCE (reala, char1(1))
 EQUIVALENCE (realb, char1(2))

EQUIVALENCE statements require only the first subscript of a multidimensional array (unless the
STRICT compiler directive is in effect). For example, the array declaration var(3,3), var(4) could
appear in an EQUIVALENCE statement. The reference is to the fourth element of the array (var
(1,2)), not to the beginning of the fourth row or column.

If you use the STRICT directive, the following rules apply to the kinds of variables and arrays that
you can associate:

� If an EQUIVALENCE object is default integer, default real, double-precision real, default
complex, default logical, or a sequenced derived type of all numeric or logical components, all
objects in the EQUIVALENCE statement must be one of these types, though it is not
necessary that they be the same type.

� If an EQUIVALENCE object is default character or a sequenced derived type of all character
components, all objects in the EQUIVALENCE statement must be one of these types. The
lengths do not need to be the same.

� If an EQUIVALENCE object is a sequenced derived type that is not purely numeric or purely
character, all objects in the EQUIVALENCE statement must be the same derived type.

� If an EQUIVALENCE object is an intrinsic type other than the default (for example,

EQUIVALENCE Page 18 of 58

INTEGER(1)), all objects in the EQUIVALENCE statement must be the same type and kind.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EQUIVALENCE Statement, Initialization Expressions, Derived Data Types, Storage
Association, STRICT Directive

Examples

The following EQUIVALENCE statement is invalid because it specifies the same storage unit for X
(1) and X(2):

 REAL, DIMENSION(2), :: X
 REAL :: Y
 EQUIVALENCE(X(1), Y), (X(2), Y)

The following EQUIVALENCE statement is invalid because because A(1) and A(2) will not be
consecutive:

 REAL A(2)
 DOUBLE PRECISION D(2)
 EQUIVALENCE(A(1), D(1)), (A(2), D(2))

In the following example, the EQUIVALENCE statement causes the four elements of the integer
array IARR to share the same storage as that of the double-precision variable DVAR.

 DOUBLE PRECISION DVAR
 INTEGER(KIND=2) IARR(4)
 EQUIVALENCE(DVAR, IARR(1))

In the following example, the EQUIVALENCE statement causes the first character of the character
variables KEY and STAR to share the same storage location. The character variable STAR is
equivalent to the substring KEY(1:10).

 CHARACTER KEY*16, STAR*10
 EQUIVALENCE(KEY, STAR)

The following shows another example:

 CHARACTER name, first, middle, last
 DIMENSION name(60), first(20), middle(20), last(20)
 EQUIVALENCE (name(1), first(1)), (name(21), middle(1))
 EQUIVALENCE (name(41), last(1))

Consider the following:

 CHARACTER (LEN = 4) :: a, b

EQUIVALENCE Page 19 of 58

 CHARACTER (LEN = 3) :: c(2)
 EQUIVALENCE (a, c(1)), (b, c(2))

This causes the following alignment:

 1 2 3 4 5 6 7
 a(1:1) a(2:2) a(3:3) a(4:4)
 b(1:1) b(2:2) b(3:3) b(4:4)
 c(1)(1:1) c(1)(2:2) c(1)(3:3) c(2)(1:1) c(2)(2:2) c(2)(3:3)

Note that the fourth element of a, the first element of b, and the first element of c(2) share the same
storage unit.

ERRSNS

Intrinsic Subroutine: Returns information about the most recently detected I/O system error
condition.

Syntax

ERRSNS ([io_err] [, sys_err] [, stat] [, unit] [, cond])

io_err
(Optional) Is an integer variable or array element that stores the most recent DIGITAL Fortran
Run-Time Library error number that occurred during program execution. (For a listing of error
numbers, see Visual Fortran Run-Time Errors.)

A zero indicates no error has occurred since the last call to ERRSNS or since the start of
program execution.

sys_err
(Optional) Is an integer variable or array element that stores the most recent system error
number associated with io_err. This code is the value returned by GETLASTERROR() at the
time of the error.

stat
(Optional) Is an integer variable or array element that stores a status value that occurred during
program execution. The value is zero.

unit
(Optional) Is an integer variable or array element that stores the logical unit number, if the last
error was an I/O error.

cond
(Optional) Is an integer variable or array element that stores the actual processor value. This
value is always zero.

If you specify INTEGER(2) arguments, only the low-order 16 bits of information are returned
or adjacent data can be overwritten. Because of this, it is best to use INTEGER(4) arguments.

ERRSNS Page 20 of 58

The saved error information is set to zero after each call to ERRSNS.

Examples

Any of the arguments can be omitted. For example, the following is valid:

CALL ERRSNS (SYS_ERR, STAT, , UNIT)

ETIME (WNT only)

Portability Function: Returns the elapsed CPU time, in seconds, of the process that calls it. This
function is currently restricted to Windows NT systems.

Module: USE DFPORT

Syntax

result = ETIME (array)

array
(Output) REAL(4). Must be a rank one array with two elements:

n array(1) Elapsed user time, which is time spent executing user code. This value includes
time running protected Windows subsystem code.

n array(2) Elapsed system time, which is time spent executing privileged code (code in the
Windows Executive).

Results:

The result type is REAL(4). The result is the total CPU time, which is the sum of array(1) and array
(2).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

REAL(4) I, TA(2)
I = ETIME(TA)
write(*,*) ’Program has used’, I, ’seconds of CPU time.’
write(*,*) ’ This includes’, TA(1), ’seconds of user time and’, &
& TA(2), ’seconds of system time.’

EXIT

EXIT Page 21 of 58

Statement: Terminates execution of a DO construct.

Syntax

EXIT [name]

name
(Optional) Is the name of the DO construct.

Rules and Behavior

The EXIT statement causes execution of the named (or innermost) DO construct to be terminated.

If a DO construct name is specified, the EXIT statement must be within the range of that construct.

Any DO variable present retains its last defined value.

An EXIT statement can be labeled, but it cannot be used to terminate a DO construct.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DO, DO WHILE

Example

The following example shows an EXIT statement:

LOOP_A : DO I = 1, 15
 N = N + 1
 IF (N > I) EXIT LOOP_A
END DO LOOP_A

The following shows another example:

CC See CYCLE.F90 in the /DF98/SAMPLES/TUTORIAL for an example of EXIT in nested
CC DO loops
CC Loop terminates early if one of the data points is zero:
CC
 INTEGER numpoints, point
 REAL datarray(1000), sum
 sum = 0.0
 DO point = 1, 1000
 sum = sum + datarray(point)
 IF (datarray(point+1) .EQ. 0.0) EXIT
 END DO

EXIT Subroutine

EXIT Subroutine Page 22 of 58

Intrinsic Subroutine: Terminates program execution, closes all files, and returns control to the
operating system.

Syntax

CALL EXIT ([status])

status
(Optional; output) Is an integer argument you can use to specify the image exit-status value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: END, ABORT

Example

 INTEGER(4) exvalue
! all is well, exit with 1
 exvalue = 1
 CALL EXIT(exvalue)
! all is not well, exit with diagnostic -4
 exvalue = -4
 CALL EXIT(exvalue)
! give no diagnostic, just exit
 CALL EXIT ()

EXP

Elemental Intrinsic Function (Generic): Computes an exponential value.

Syntax

result = EXP (x)

x
(Input) Must be of type real or complex.

Results:

The result type is the same as x. The value of the result is ex. If x is of type complex, its imaginary
part is regarded as a value in radians.

EXP Page 23 of 58

Specific Name Argument Type Result Type

EXP REAL(4) REAL(4)

DEXP REAL(8) REAL(8)

QEXP 1 REAL(16) REAL(16)

CEXP 2 COMPLEX(4) COMPLEX(4)

CDEXP 3 COMPLEX(8) COMPLEX(8)

1 VMS and U*X
2 The setting of compiler option /real_size can affect CEXP.
3 This function can also be specified as ZEXP.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LOG

Examples

EXP (2.0) has the value 7.389056.

EXP (1.3) has the value 3.669297.

The following shows another example:

! Given initial size and growth rate,
! calculates the size of a colony at a given time.
 REAL sizei, sizef, time, rate
 sizei = 10000.0
 time = 40.5
 rate = 0.0875
 sizef = sizei * EXP (rate * time)
 WRITE (*, 100) sizef
100 FORMAT (’ The final size is ’, E12.6)
 END

EXPONENT

Elemental Intrinsic Function (Generic): Returns the exponent part of the argument when
represented as a model number.

Syntax

result = EXPONENT (x)

EXPONENT Page 24 of 58

x
(Input) must be of type real.

Results:

The result type is default integer. If x is not equal to zero, the result value is the exponent part of x.
The exponent must be within default integer range; otherwise, the result is undefined.

If x is zero, the exponent of x is zero. For more information on the exponent part (e) in the real model,
see Model for Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: DIGITS, RADIX, FRACTION, MAXEXPONENT, MINEXPONENT, Data
Representation Models

Examples

EXPONENT (2.0) has the value 2.

If 4.1 is a REAL(4) value, EXPONENT (4.1) has the value 3.

The following shows another example:

REAL(4) r1, r2
REAL(8) r3, r4
r1 = 1.0
r2 = 123456.7
r3 = 1.0D0
r4 = 123456789123456.7
write(*,*) EXPONENT(r1) ! prints 1
write(*,*) EXPONENT(r2) ! prints 17
write(*,*) EXPONENT(r3) ! prints 1
write(*,*) EXPONENT(r4) ! prints 47
END

EXTERNAL

Statement and Attribute: Allows an external or dummy procedure to be used as an actual argument.
(To specify intrinsic procedures as actual arguments, use the INTRINSIC attribute.)

The EXTERNAL attribute can be specified in a type declaration statement or an EXTERNAL
statement, and takes one of the following forms:

Syntax

Type Declaration Statement:

EXTERNAL Page 25 of 58

type, [att-ls,] EXTERNAL [, att-ls] :: ex-pro [, ex-pro]...

Statement:

EXTERNAL ex-pro [, ex-pro]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

ex-pro
Is the name of an external (user-supplied) procedure or dummy procedure.

Rules and Behavior

In a type declaration statement, only functions can be declared EXTERNAL. However, you can use
the EXTERNAL statement to declare subroutines and block data program units, as well as functions,
to be external.

The name declared EXTERNAL is assumed to be the name of an external procedure, even if the
name is the same as that of an intrinsic procedure. For example, if SIN is declared with the
EXTERNAL attribute, all subsequent references to SIN are to a user-supplied function named SIN,
not to the intrinsic function of the same name.

You can include the name of a block data program unit in the EXTERNAL statement to force a
search of the object module libraries for the block data program unit at link time. However, the name
of the block data program unit must not be used in a type declaration statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Program Units and Procedures, Type Declarations, INTRINSIC, Compatible attributes.

Examples

The following example shows type declaration statements specifying the EXTERNAL attribute:

PROGRAM TEST
...
INTEGER, EXTERNAL :: BETA
LOGICAL, EXTERNAL :: COS
...
CALL SUB(BETA) ! External function BETA is an actual argument

You can use a name specified in an EXTERNAL statement as an actual argument to a subprogram,

EXTERNAL Page 26 of 58

and the subprogram can then use the corresponding dummy argument in a function reference or a
CALL statement; for example:

EXTERNAL FACET
CALL BAR(FACET)

SUBROUTINE BAR(F)
EXTERNAL F
CALL F(2)

Used as an argument, a complete function reference represents a value, not a subprogram; for
example, FUNC(B) represents a value in the following statement:

CALL SUBR(A, FUNC(B), C)

The following shows another example:

EXTERNAL MyFunc, MySub
C MyFunc and MySub are arguments to Calc
 CALL Calc (MyFunc, MySub)
C Example of a user-defined function replacing an
C intrinsic
 EXTERNAL SIN
 x = SIN (a, 4.2, 37)

FDATE

Portability Function and Subroutine: Returns the current date and time as an ASCII string.

Module: USE DFPORT

Subroutine Syntax

CALL FDATE ([string])

Function Syntax

result = FDATE ()

string
(Optional; Output) Character*(*). When FDATE is called as a subroutine, string is returned as
a 24-character string in the form:

 Mon Jan 31 04:37:23 1996

Results:

The result of the function FDATE and the value of string returned by the subroutine FDATE(string)
are identical. Newline and NULL are not included in the string.

FDATE Page 27 of 58

When you use FDATE as a function, declare it as:

 CHARACTER*24 FDATE

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

USE DFPORT
CHARACTER*24 today
!
CALL FDATE(today)
write (*,*), ’Today is ’, today
!
write (*,*), ’Today is ’, fdate()

FGETC

Portability Function: Reads the next available character from a file specified by a Fortran unit
number.

Module: USE DFPORT

Syntax

result = FGETC (lunit, char)

lunit
(Input) INTEGER(4). Unit number of a file.

char
(Output) CHARACTER*1. Next available character in the file. If lunit is connected to a
console device, then no characters are returned until the Enter key is pressed.

Results:

The result type is The result type is INTEGER(4). The result is zero if the read is successful, or -1 if
an end-of-file is detected. A positive value is either a system error code or a Fortran I/O error code,
such as:

EINVAL: The specified unit is invalid (either not already open, or an invalid unit number).

If you use WRITE, READ, or any other Fortran I/O statements with lunit, be sure to read Input and
Output With Portability Routines in the Programmer’s Guide.

FGETC Page 28 of 58

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETCHARQQ, READ

Example

USE dfport
CHARACTER inchar
INTEGER istatus
istatus = FGETC(5,inchar)
PRINT *, inchar
END

FIND

Statement: Positions a direct access file at a particular record and sets the associated variable of the
file to that record number. It is comparable to a direct access READ statement with no I/O list, and it
can open an existing file. No data transfer takes place.

Syntax

FIND ([UNIT=]io-unit, REC=r [, ERR=label] [, IOSTAT=i-var])
FIND (io-unit’rec [, ERR=label] [, IOSTAT=i-var])

io-unit
Is a logical unit number. It must refer to a relative organization file (see Unit Specifier).

r
Is the direct access record number. It cannot be less than one or greater than the number of
records defined for the file (see Record Specifier).

label
Is the label of the executable statement that receives control if an error occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs, and as zero if
no error occurs (see I/O Status Specifier).

See Also: Forms for Direct-Access READ Statements, I/O Control List

Example

In the following example, the FIND statement positions logical unit 1 at the first record in the file.
The file’s associated variable is set to one:

 FIND(1, REC=1)

FIND Page 29 of 58

In the following example, the FIND statement positions the file at the record identified by the content
of INDX. The file’s associated variable is set to the value of INDX:

 FIND(4, REC=INDX)

FINDFILEQQ

Run-Time Function: Searches for a specified file in the directories listed in the path contained in the
environment variable.

Module: USE DFLIB

Syntax

result = FINDFILEQQ (filename, varname, pathbuf)

filename
(Input) Character*(*). Name of the file to be found.

varname
(Input) Character*(*). Name of an environment variable containing the path to be searched.

pathbuf
(Output) Character*(*). Buffer to receive the full path of the file found.

Results:

The result type is INTEGER(4). The result is the length of the string containing the full path of the
found file returned in pathbuf, or 0 if no file is found.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FULLPATHQQ, GETFILEINFOQQ, SPLITPATHQQ

Example

USE DFLIB
CHARACTER(256) pathname
INTEGER(4) pathlen
pathlen = FINDFILEQQ("libfmt.lib", "LIB", pathname)
WRITE (*,*) pathname
END

FIXEDFORMLINESIZE

Compiler Directive: Sets the line length for fixed-form Fortran source code.

FIXEDFORMLINESIZE Page 30 of 58

Syntax

cDEC$ FIXEDFORMLINESIZE:{72 | 80 | 132}

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

You can set FIXEDFORMLINESIZE to 72 (the default), 80, or 132 characters. The
FIXEDFORMLINESIZE setting remains in effect until the end of the file, or until it is reset.

The FIXEDFORMLINESIZE directive sets the source-code line length in include files, but not in
USE modules, which are compiled separately. If an include file resets the line length, the change does
not affect the host file.

This directive has no effect on free-form source code.

The following form is also allowed: !MS$FIXEDFORMLINESIZE:{72|80|132}

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FREEFORM and NOFREEFORM, /fixed, Source Forms, General Compiler Directives

Example

 cDEC$ NOFREEFORM
 cDEC$ FIXEDFORMLINESIZE:132
 WRITE (*,*) ’Sentence that goes beyond the 72nd column without continuation.’

FLOAT

Elemental Intrinsic Function: Converts an integer to REAL(4). For more information, see REAL.

FLOODFILL, FLOODFILL_W

Graphics Function: Fills an area using the current color index and fill mask.

Module: USE DFLIB

Syntax

result = FLOODFILL (x, y, bcolor)
result = FLOODFILL_W (wx, wy, bcolor)

x, y
(Input) INTEGER(2). Viewport coordinates for fill starting point.

FLOODFILL, FLOODFILL_W Page 31 of 58

wx, wy
(Input) REAL(8). Window coordinates for fill starting point.

bcolor
(Input) INTEGER(2). Color index of the boundary color.

Results:

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, 0 (occurs if the
fill could not be completed, or if the starting point lies on a pixel with the boundary color bcolor, or if
the starting point lies outside the clipping region).

FLOODFILL begins filling at the viewport-coordinate point (x, y). FLOODFILL_W begins filling
at the window-coordinate point (wx, wy). The fill color used by FLOODFILL and FLOODFILL_W
is set by SETCOLOR. You can obtain the current fill color index by calling GETCOLOR. These
functions allow access only to the colors in the palette (256 or less). To access all available colors on
a VGA (262,144 colors) or a true color system, use the RGB functions FLOODFILLRGB and
FLOODFILLRGB_W.

If the starting point lies inside a figure, the interior is filled; if it lies outside a figure, the background
is filled. In both cases, the fill color is the current graphics color index set by SETCOLOR. The
starting point must be inside or outside the figure, not on the figure boundary itself. Filling occurs in
all directions, stopping at pixels of the boundary color bcolor.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: FLOODFILLRGB, FLOODFILLRGB_W, ELLIPSE, GETCOLOR, GETFILLMASK,
GRSTATUS, PIE, SETCLIPRGN, SETCOLOR, SETFILLMASK

Example

USE DFLIB
INTEGER(2) status, bcolor, red, blue
INTEGER(2) x1, y1, x2, y2, xinterior, yinterior
x1 = 80; y1 = 50
x2 = 240; y2 = 150
red = 4
blue = 1
status = SETCOLOR(red)
status = RECTANGLE($GBORDER, x1, y1, x2, y2)
bcolor = GETCOLOR()
status = SETCOLOR (blue)
xinterior = 160; yinterior = 100
status = FLOODFILL (xinterior, yinterior, bcolor)
END

FLOODFILLRGB, FLOODFILLRGB_W

Graphics Function: Fills an area using the current Red-Green-Blue (RGB) color and fill mask.

FLOODFILLRGB, FLOODFILLRGB_W Page 32 of 58

Module: USE DFLIB

Syntax

result = FLOODFILLRGB (x, y, color)
result = FLOODFILLRGB_W (wx, wy, color)

x, y
(Input) INTEGER(2). Viewport coordinates for fill starting point.

wx, wy
(Input) REAL(8). Window coordinates for fill starting point.

color
(Input) INTEGER(4). RGB value of the boundary color.

Results:

The result type is INTEGER(4). The result is a nonzero value if successful; otherwise, 0 (occurs if the
fill could not be completed, or if the starting point lies on a pixel with the boundary color color, or if
the starting point lies outside the clipping region).

FLOODFILLRGB begins filling at the viewport-coordinate point (x, y). FLOODFILLRGB_W
begins filling at the window-coordinate point (wx, wy). The fill color used by FLOODFILLRGB and
FLOODFILLRGB_W is set by SETCOLORRGB. You can obtain the current fill color by calling
GETCOLORRGB.

If the starting point lies inside a figure, the interior is filled; if it lies outside a figure, the background
is filled. In both cases, the fill color is the current color set by SETCOLORRGB. The starting point
must be inside or outside the figure, not on the figure boundary itself. Filling occurs in all directions,
stopping at pixels of the boundary color color.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: ELLIPSE, FLOODFILL, GETCOLORRGB, GETFILLMASK, GRSTATUS, PIE,
SETCLIPRGN, SETCOLORRGB, SETFILLMASK

Example

! Build as a QuickWin or Standard Graphics App.
USE DFLIB
INTEGER(2) status
INTEGER(4) result, bcolor
INTEGER(2) x1, y1, x2, y2, xinterior, yinterior
x1 = 80; y1 = 50
x2 = 240; y2 = 150
result = SETCOLORRGB(#008080) ! red
status = RECTANGLE($GBORDER, x1, y1, x2, y2)

FLOODFILLRGB, FLOODFILLRGB_W Page 33 of 58

bcolor = GETCOLORRGB()
result = SETCOLORRGB (#FF0000) ! blue
xinterior = 160; yinterior = 100
result = FLOODFILLRGB (xinterior, yinterior, bcolor)
END

FLOOR

Elemental Intrinsic Function (Generic): Returns the greatest integer less than or equal to its argument.

Syntax

result = FLOOR (a [, kind])

a
(Input) Must be of type real.

kind
(Optional; input) Must be a scalar integer initialization expression. This argument is a Fortran
95 feature.

Results:

If kind is present, the kind parameter is that specified by kind; otherwise, the kind parameter is that of
default integer. The result value is equal to the greatest integer less than or equal to a. The result is
undefined if the value cannot be represented in the default integer range.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CEILING

Examples

FLOOR (4.8) has the value 4.

FLOOR (-5.6) has the value -6.

The following shows another example:

I = FLOOR(3.1) ! returns 3
I = FLOOR(-3.1) ! returns -4

FLUSH

Portability Subroutine: Flushes the contents of an external unit buffer into its associated file.

Module: USE DFPORT

FLUSH Page 34 of 58

Syntax

CALL FLUSH (lunit)

lunit
(Input) INTEGER(4). Number of the external unit to be flushed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: COMMITQQ

FOCUSQQ

QuickWin Function: Sets focus to the window with the specified unit number.

Module: USE DFLIB

Syntax

result = FOCUSQQ (iunit)

unit
(Input) INTEGER(4). Unit number of the window to which the focus is set. Unit numbers 0, 5,
and 6 refer to the default startup window.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

Units 0, 5, and 6 refer to the default window only if the program does not specifically open them. If
these units have been opened and connected to windows, they are automatically reconnected to the
console once they are closed.

Unlike SETACTIVEQQ, FOCUSQQ brings the specified unit to the foreground. Note that the
window with the focus is not necessarily the active window (the one that receives graphical output).
A window can be made active without getting the focus by calling SETACTIVEQQ.

A window has focus when it is given the focus by FOCUSQQ, when it is selected by a mouse click,
or when an I/O operation other than a graphics operation is performed on it, unless the window was
opened with IOFOCUS=.FALSE.. The IOFOCUS specifier determines whether a window
receives focus when on I/O statement is executed on that unit. For example:

 OPEN (UNIT = 10, FILE = ’USER’, IOFOCUS = .TRUE.)

By default IOFOCUS=.TRUE., except for child windows opened with as unit *. If

FOCUSQQ Page 35 of 58

IOFOCUS=.TRUE., the child window receives focus prior to each READ, WRITE, PRINT, or
OUTTEXT. Calls to graphics functions (such as OUTGTEXT and ARC) do not cause the focus to
shift.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, SETACTIVEQQ, INQFOCUSQQ.

FOR_CHECK_FLAWED_PENTIUM

Run-Time Function: Checks the processor to determine if it shows characteristics of the Pentium®
floating-point divide flaw.

This routine can be called from a C program. It is invoked by default from a Fortran program unless
/check:noflawed_pentium is specified.

Module: USE DFLIB

Syntax

result = FOR_CHECK_FLAWED_PENTIUM ()

Results:

If the floating-point divide flaw is found, a severe forrtl error message is displayed and the calling
program is terminated.

You can bypass this action by setting environment variable FOR_RUN_FLAWED_PENTIUM to the
value TRUE.

For more information, see Intel Pentium Floating-Point Flaw.

Example

Consider the following C code:

 void __stdcall for_check_flawed_pentium (void);
 for_check_flawed_pentium ();

Consider the following Fortran code that checks for the divide flaw:

 USE DFLIB

 REAL*8 X, Y, Z

 X = 5244795.0
 Y = 3932159.0

FOR_CHECK_FLAWED_PENTIUM Page 36 of 58

 Z = X - (X/Y) * Y
 IF (Z .NE. 0) THEN ! If flawed, Z will be 256
 PRINT *, " FDIV flaw detected on Pentium"
 ENDIF

FOR_GET_FPE

Run-Time Function: Returns the current settings of floating-point exception flags. This routine can
be called from a C or Fortran program.

Module: USE DFLIB

Syntax

result = FOR_GET_FPE ()

Results:

The result type is INTEGER(4). The return value represents the settings of the current floating-point
exception flags. The meanings of the bits are defined in the DFLIB module file.

To set floating-point exception flags after program initialization, use FOR_SET_FPE.

Example

Consider the following:

 USE DFLIB

 INTEGER*4 FOR_GET_FPE, FPE_FLAGS
 EXTERNAL FOR_GET_FPE
 FPE_FLAGS = FOR_GET_FPE ()

FOR_RTL_FINISH_

Run-Time Function: Cleans up the Fortran run-time environment; for example, flushing buffers and
closing files. It also issues messages about floating-point exceptions, if any occur.

This routine should be called from a C main program; it is invoked by default from a Fortran main
program.

Syntax

result = FOR_RTL_FINISH_ ()

Results:

The result is an I/O status value. For information on these status values, see Using the IOSTAT Value
and Fortran Exit Codes.

FOR_RTL_FINISH_ Page 37 of 58

To initialize the Fortran run-time environment, use FOR_RTL_INIT_ .

Example

Consider the following C code:

 int io_status;
 int for_rtl_finish_ ();
 io_status = for_rtl_finish_ ();

FOR_RTL_INIT_

Run-Time Subroutine: Initializes the Fortran run-time environment. It establishes handlers and
floating-point exception handling, so Fortran subroutines behave the same as when called from a
Fortran main program.

This routine should be called from a C main program; it is invoked by default from a Fortran main
program.

Syntax

CALL FOR_RTL_INIT_ (argcount, actarg)

argcount
Is a command-line parameter describing the argument count.

actarg
Is a command-line parameter describing the actual arguments.

To clean up the Fortran run-time environment, use FOR_RTL_FINISH_.

Example

Consider the following C code:

 int argc;
 char **argv;
 void for_rtl_init_ (int *, char **);
 for_rtl_init_ (&argc, argv);

FOR_SET_FPE

Run-Time Function: Sets the floating-point exception flags. This routine can be called from a C or
Fortran program.

Module: USE DFLIB

FOR_SET_FPE Page 38 of 58

Syntax

result = FOR_SET_FPE (a)

a
Must be of type INTEGER(4). It contains bit flags controlling floating-point exception
trapping, reporting, and result handling.

Results:

The result type is INTEGER(4). The return value represents the previous settings of the floating-point
exception flags. The meanings of the bits are defined in the DFLIB module file.

To get the current settings of the floating-point exception flags, use FOR_GET_FPE.

Example

Consider the following:

 USE DFLIB

 INTEGER*4 FOR_SET_FPE, OLD_FPE_FLAGS, NEW_FPE_FLAGS
 EXTERNAL FOR_SET_FPE
 OLD_FPE_FLAGS = FOR_SET_FPE (NEW_FPE_FLAGS)

FOR_SET_REENTRANCY

Run-Time Function: Controls the type of reentrancy protection that the Fortran Run-Time Library
(RTL) exhibits. This routine can be called from a C or Fortran program.

Module: USE DFLIB

Syntax

result = FOR_SET_REENTRANCY (mode)

mode
Must be of type INTEGER(4) and contain one of the following options:

n FOR_K_REENTRANCY_NONE
Tells the Fortran RTL to perform simple locking around critical sections of RTL code.
This type of reentrancy should be used when the Fortran RTL will not be reentered due
to asynchronous system traps (ASTs) or threads within the application.

n FOR_K_REENTRANCY_ASYNCH
Tells the Fortran RTL to perform simple locking and disables ASTs around critical
sections of RTL code. This type of reentrancy should be used when the application
contains AST handlers that call the Fortran RTL.

FOR_SET_REENTRANCY Page 39 of 58

n FOR_K_REENTRANCY_THREADED
Tells the Fortran RTL to perform thread locking. This type of reentrancy should be used
in multithreaded applications.

n FOR_K_REENTRANCY_INFO
Tells the Fortran RTL to return the current reentrancy mode.

Results:

The result type is INTEGER(4). The return value represents the previous setting of the Fortran
Run-Time Library reentrancy mode, unless the argument is FOR_K_REENTRANCY_INFO, in which
case the return value represents the current setting.

You must be using an RTL that supports the level of reentrancy you desire. For example,
FOR_SET_REENTRANCY ignores a request for thread protection
(FOR_K_REENTRANCY_THREADED) if you do not build your program with the thread-safe
RTL.

Example

Consider the following:

 PROGRAM SETREENT
 USE DFLIB

 INTEGER*4 MODE
 CHARACTER*10 REENT_TXT(3) /’NONE ’,’ASYNCH ’,’THREADED’/

 PRINT*,’Setting Reentrancy mode to ’,REENT_TXT(MODE+1)
 MODE = FOR_SET_REENTRANCY(FOR_K_REENTRANCY_NONE)
 PRINT*,’Previous Reentrancy mode was ’,REENT_TXT(MODE+1)

 MODE = FOR_SET_REENTRANCY(FOR_K_REENTRANCY_INFO)
 PRINT*,’Current Reentrancy mode is ’,REENT_TXT(MODE+1)

 END

FORALL

Statement and Construct: The FORALL statement and construct is an element-by-element
generalization of the Fortran 90 masked array assignment (WHERE statement and construct). It
allows more general array shapes to be assigned, especially in construct form.

FORALL is a DIGITAL Fortran extension to Fortran 90, but it is a language feature of Fortran 95.

Syntax

Statement:
FORALL (triplet-spec [,triplet-spec]...[,mask-expr]) assignment-stmt

FORALL Page 40 of 58

Construct:
[name:] FORALL (triplet-spec [,triplet-spec]...[, mask-expr])

forall-body-stmt
[forall-body-stmt]...

END FORALL [name]

triplet-spec
Is a triplet specification with the following form:

subscript-name = subscript-1 : subscript-2 [:stride]

The subscript-name is a scalar of type integer. It is valid only within the scope of the
FORALL; its value is undefined on completion of the FORALL.
The subscripts and stride cannot contain a reference to any subscript-name in triplet-
spec.
The stride cannot be zero. If it is omitted, the default value is 1.
Evaluation of an expression in a triplet specification must not affect the result of
evaluating any other expression in another triplet specification.

mask-expr
Is a logical array expression (called the mask expression). If it is omitted, the value .TRUE. is
assumed. The mask expression can reference the subscript name in triplet-spec.

assignment-stmt
Is an assignment statement or a pointer assignment statement. The variable being assigned to
must be an array element or array section and must reference all subscript names included in all
triplet-specs. The expression being assigned must not be a character expression.

name
Is the name of the FORALL construct.

forall-body-stmt
Is one of the following:

n An assignment-stmt
n A WHERE statement or construct

The WHERE statement and construct use a mask to make the array assignments.
n A FORALL statement or construct

Rules and Behavior

If a construct name is specified in the FORALL statement, the same name must appear in the
corresponding END FORALL statement.

A FORALL statement is executed by first evaluating all bounds and stride expressions in the triplet
specifications, giving a set of values for each subscript name. The FORALL assignment statement is
executed for all combinations of subscript name values for which the mask expression is true.

FORALL Page 41 of 58

The FORALL assignment statement is executed as if all expressions (on both sides of the
assignment) are completely evaluated before any part of the left side is changed. Valid values are
assigned to corresponding elements of the array being assigned to. No element of an array can be
assigned a value more than once.

A FORALL construct is executed as if it were multiple FORALL statements, with the same triplet
specifications and mask expressions. Each statement in the FORALL body is executed completely
before execution begins on the next FORALL body statement.

Any procedure referenced in the mask expression or FORALL assignment statement must be pure.
Pure functions can be used in the mask expression or called directly in a FORALL statement. Pure
subroutines cannot be called directly in a FORALL statement, but can be called from other pure
procedures.

Examples

The following example, which is not expressible using array syntax, sets diagonal elements of an
array to 1:

 REAL, DIMENSION(N, N) :: A
 FORALL (I=1:N) A(I, I) = 1

Consider the following:

 FORALL(I = 1:N, J = 1:N, A(I, J) .NE. 0.0) B(I, J) = 1.0 / A(I, J)

This statement takes the reciprocal of each nonzero element of array A(1:N, 1:N) and assigns it to the
corresponding element of array B. Elements of A that are zero do not have their reciprocal taken, and
no assignments are made to corresponding elements of B.

Every array assignment statement and WHERE statement can be written as a FORALL statement,
but some FORALL statements cannot be written using just array syntax. For example, the preceding
FORALL statement is equivalent to the following:

 WHERE(A /= 0.0) B = 1.0 / A

It is also equivalent to:

FORALL (I = 1:N, J = 1:N)
 WHERE(A(I, J) .NE. 0.0) B(I, J) = 1.0/A(I, J)
END FORALL

However, the following FORALL example cannot be written using just array syntax:

 FORALL(I = 1:N, J = 1:N) H(I, J) = 1.0/REAL(I + J - 1)

This statement sets array element H(I, J) to the value 1.0/REAL(I + J - 1) for values of I and J
between 1 and N.

FORALL Page 42 of 58

Consider the following:

TYPE MONARCH
 INTEGER, POINTER :: P
END TYPE MONARCH

TYPE(MONARCH), DIMENSION(8) :: PATTERN
INTEGER, DIMENSION(8), TARGET :: OBJECT
FORALL(J=1:8) PATTERN(J)%P => OBJECT(1+IEOR(J-1,2))

This FORALL statement causes elements 1 through 8 of array PATTERN to point to elements 3, 4,
1, 2, 7, 8, 5, and 6, respectively, of OBJECT. IEOR can be referenced here because it is pure.

The following example shows a FORALL construct:

FORALL(I = 3:N + 1, J = 3:N + 1)
 C(I, J) = C(I, J + 2) + C(I, J - 2) + C(I + 2, J) + C(I - 2, J)
 D(I, J) = C(I, J)
END FORALL

The assignment to array D uses the values of C computed in the first statement in the construct, not
the values before the construct began execution.

FORMAT

Statement: Specifies the form of data being transferred and the data conversion (editing) required to
achieve that form.

Syntax

FORMAT (format-list)

format-list
Is a list of one or more of the following edit descriptors, separated by commas or slashes (/):

Data edit descriptors: I, B, O, Z, F, E, EN, ES, D, G, L, and A.

Control edit descriptors: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, $, \, and Q.

String edit descriptors: H, ’c’, and "c", where c is a character constant.

A comma can be omitted in the following cases:

n Between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit
descriptor

n Before a slash (/) edit descriptor when the optional repeat specification is not present

n After a slash (/) edit descriptor

FORMAT Page 43 of 58

n Before or after a colon (:) edit descriptor

Edit descriptors can be nested and a repeat specification can precede data edit descriptors, the
slash edit descriptor, or a parenthesized list of edit descriptors.

Rules and Behavior

A FORMAT statement must be labeled.

Named constants are not permitted in format specifications.

If the associated I/O statement contains an I/O list, the format specification must contain at least one
data edit descriptor or the control edit descriptor Q.

Blank characters can precede the initial left parenthesis, and additional blanks can appear anywhere
within the format specification. These blanks have no meaning unless they are within a character
string edit descriptor.

When a formatted input statement is executed, the setting of the BLANK specifier (for the relevant
logical unit) determines the interpretation of blanks within the specification. If the BN or BZ edit
descriptors are specified for a formatted input statement, they supersede the default interpretation of
blanks. (For more information on BLANK defaults, see the OPEN statement.

For formatted input, use the comma as an external field separator. The comma terminates the input of
fields (for noncharacter data types) that are shorter than the number of characters expected. It can also
designate null (zero-length) fields.

The first character of a record transmitted to a line printer or terminal is typically used for carriage
control; it is not printed. The first character of such a record should be a blank, 0, 1, $, +, or ASCII
NUL. Any other character is treated as a blank.

A format specification cannot specify more output characters than the external record can contain.
For example, a line printer record cannot contain more than 133 characters, including the carriage
control character.

Whenever an edit descriptor requires an integer constant, you can specify an integer expression in a
FORMAT statement. The integer expression must be enclosed by angle brackets (< and >). The
following examples are valid format specifications:

 WRITE(6,20) INT1
 20 FORMAT(I<MAX(20,5)>)

 WRITE(6,FMT=30) INT2, INT3
 30 FORMAT(I<J+K>, I<2*M>)

The integer expression can be any valid Fortran expression, including function calls and references to
dummy arguments, with the following restrictions:

FORMAT Page 44 of 58

� Expressions cannot be used with the H edit descriptor.
� Expressions cannot contain graphical relational operators (such as > and <).

The value of the expression is reevaluated each time an input/output item is processed during the
execution of the READ, WRITE, or PRINT statement.

The following table summarizes the edit descriptors:

Data Edit Descriptors

Code Form [1] Effect

A A[w] Transfers character or Hollerith values.

B Bw[.m] Transfers binary values.

D Dw.d Transfers real values with D exponents.

E Ew.d[Ee] Transfers real values with E exponents.

EN
ENw.d
[Ee]

Transfers real values with engineering notation.

ES
ESw.d
[Ee]

Transfers real values with scientific notation.

F Fw.d Transfers real values with no exponent.

G Gw.d[Ee] Transfers values of all intrinsic types.

I Iw[.m] Transfers decimal integer values.

L Lw
Transfers logical values: on input, transfers characters; on output, transfers T or
F.

O Ow[.m] Transfers octal values.

Z Zw[.m] Transfers hexadecimal values.

[1] w is the field width
 m is the minimum number of digits that must be in the field (including zeros).
 d is the number of digits to the right of the decimal point
 E is the exponent field
 e is the number of digits in the exponent

Control Edit Descriptors

Code Form Effect

BN BN Ignores embedded and trailing blanks in a numeric input field.

FORMAT Page 45 of 58

BZ BZ Treats embedded and trailing blanks in a numeric input field as zeros.

P kP Interprets certain real numbers with a specified scale factor.

Q Q Returns the number of characters remaining in an input record.

S S
Reinvokes optional plus sign (+) in numeric output fields; counters the action of
SP and SS.

SP SP Writes optional plus sign (+) into numeric output fields.

SS SS Suppresses optional plus sign (+) in numeric output fields.

T Tn Tabs to specified position.

TL TLn Tabs left the specified number of positions.

TR TRn Tabs right the specified number of positions.

X nX Skips the specified number of positions.

$ $ Suppresses trailing carriage return during interactive I/O.

: : Terminates format control if there are no more items in the I/O list.

/ [r]/ Terminates the current record and moves to the next record.

\ \ Continues the same record; same as $.

String Edit Descriptors

Code Form Effect

H
nHch
[ch...]

Transfers characters following the H edit descriptor to an output record.

'c' [2]
'c'

Transfers the character literal constant (between the delimiters) to an output
record.

[2] These delimiters can also be quotation marks (").

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: I/O Formatting, Format Specifications, Data Edit Descriptors

Example

 INTEGER width, value
 width = 2
 read (*,1) width, value
! if the input is 3123, prints 123, not 12
1 format (i1, i<width>)

FORMAT Page 46 of 58

 print *, value
 END

FP_CLASS

Elemental Intrinsic Function (Generic): Returns the class of an IEEE® real (S_floating, T_floating,
or X_floating) argument.

Syntax

result = FP_CLASS (x)

x
(Input) Must be of type real.

Results:

The result type is default integer. The return value is one of the following:

Class of Argument Return Value

Signaling NaN FOR_K_FP_SNAN

Quiet NaN FOR_K_FP_QNAN

Positive Infinity FOR_K_FP_POS_INF

Negative Infinity FOR_K_FP_NEG_INF

Positive Normalized Number FOR_K_FP_POS_NORM

Negative Normalized Number FOR_K_FP_NEG_NORM

Positive Denormalized Number FOR_K_FP_POS_DENORM

Negative Denormalized NumberFOR_K_FP_NEG_DENORM

Positive Zero FOR_K_FP_POS_ZERO

Negative Zero FOR_K_FP_NEG_ZERO

The return values are defined in file fordef.for in \DF98\INCLUDE.

Example

FP_CLASS (4.0_8) has the value 4 (FOR_K_FP_POS_NORM).

FPUTC

FPUTC Page 47 of 58

Portability Function: Writes a character to the file specified by a Fortran external unit, bypassing
normal Fortran input/output.

Module: USE DFPORT

Syntax

result = FPUTC (lunit, char)

lunit
(Input) INTEGER(4). Unit number of a file.

char
(Output) Character*(*). Variable whose value is to be written to the file corresponding to lunit.

Results:

The result type is INTEGER(4). The result is zero if the write was successful; otherwise, an error
code, such as:

EINVAL The specified unit is invalid (either not already open, or an invalid unit number)

If you use WRITE, READ, or any other Fortran I/O statements with lunit, be sure to read Input and
Output With Portability Routines in the Programmer’s Guide.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: I/O Formatting, Files, Devices, and Input/Output Hardware

Example

use dfport
integer*4 lunit, i4
character*26 string
character*1 char1
lunit = 1
open (lunit,file = ’fputc.dat’)
do i = 1,26
 char1 = char(123-i)
 i4 = fputc(1,char1) !make valid writes
 if (i4.ne.0) iflag = 1
enddo
rewind (1)
read (1,’(a)’) string
print *, string

FRACTION

Elemental Intrinsic Function (Generic): Returns the fractional part of the model representation of the

FRACTION Page 48 of 58

argument value.

Syntax

result = FRACTION (x)

x
(Input) Must be of type real.

Results:

The result type is the same as x. The result has the value x x be. Parameters b and e are defined in
Model for Real Data. If x has the value zero, the result has the value zero.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DIGITS, RADIX, EXPONENT, Data Representation Models

Examples

If 3.0 is a REAL(4) value, FRACTION (3.0) has the value 0.75.

The following shows another example:

REAL result
result = FRACTION(3.0) ! returns 0.75
result = FRACTION(1024.0) ! returns 0.5

FREE

Intrinsic Subroutine: Frees a block of memory that is currently allocated.

Syntax

CALL FREE (i)

i
(Input) Must be of type INTEGER(4) on Intel processors; INTEGER(8) on Alpha processors.
This value is the starting address of the memory block to be freed, previously allocated by
MALLOC.

If the freed address was not previously allocated by MALLOC, or if an address is freed more than
once, results are unpredictable.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

FREE Page 49 of 58

Example

 INTEGER(4) addr, size
 size = 1024 ! size in bytes
 addr = MALLOC(size) ! allocate the memory
 CALL FREE(addr) ! free it
 END

FREEFORM and NOFREEFORM

Compiler Directives: FREEFORM specifies that source code is in free-form format.
NOFREEFORM specifies that source code is in fixed-form format.

Syntax

cDEC$ FREEFORM
cDEC$ NOFREEFORM

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

When the FREEFORM or NOFREEFORM directives are used, they remain in effect for the
remainder of the file, or until the opposite directive is used. When in effect, they apply to include
files, but do not affect USE modules, which are compiled separately.

The following forms are also allowed: !MS$FREEFORM and !MS$NOFREEFORM

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Source Forms, General Compiler Directives, /free

FSEEK

Portability Function: Repositions a file specified by a Fortran external unit.

Module: USE DFPORT

Syntax

result = FSEEK (lunit, offset, from)

lunit
(Input) INTEGER(4). External unit number of a file.

offset
(Input) INTEGER(4). Offset in bytes, relative to from, that is to be the new location of the file

FSEEK Page 50 of 58

marker.

from
(Input) INTEGER(4). A position in the file. Portability defines the following parameters:

n SEEK_SET = 0 - Beginning of the file
n SEEK_CUR = 1 - Current position
n SEEK_END = 2 - End of the file

Results:

The result type is INTEGER(4). The result is zero if the repositioning was successful; otherwise, an
error code, such as:

EINVAL: The specified unit is invalid (either not already open, or an invalid unit number), or
the from parameter is invalid.

The file specified in lunit must be open.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

USE DFPORT
integer(4) istat, offset, ipos
character ichar
OPEN (unit=1,file=’datfile.dat’)
offset = 5
ipos = 0
istat=fseek(1,offset,ipos)
if (.NOT. stat) then
 istat=fgetc(1,ichar)
 print *, ’data is ’,ichar
end if

FSTAT

Portability Function: Returns detailed information about a file specified by a external unit number.

Module: USE DFPORT

Syntax

result = FSTAT (lunit, statb)

lunit
(Input) INTEGER(4). External unit number of the file to examine.

statb

FSTAT Page 51 of 58

(Output) INTEGER(4). One-dimensional array with a size of 12. The following table describes
the elements of the array:

statb
element Return value

statb(1) Device the file resides on (always 0)

statb(2) Inode number (always 0)

statb(3) File type, attributes, and access control information (see the following table)

statb(4) Number of links (always 1)

statb(5) User ID of owner (always 1)

statb(6) Group ID of owner (always 1)

statb(7) Raw device file resides on (always 1)

statb(8) The size of the file in bytes

statb(9) The time of last access (only available on non-FAT file systems; same as
statb(10) on FAT systems.

statb(10) The time of last modification

statb(11) The time of last status change (same as statb(10))

statb(12) Block size (always 1)

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, returns an error code
equal to EINVAL (lunit is not a valid unit number, or is not open).

Mode is a bitmap consisting of an IOR of the following constants (the module DFPORT supplies
parameters with the symbolic names given):

Symbolic name Constant Description Notes

S_IFMT O’0170000’ Type of file

S_IFDIR O’0040000’ Directory

S_IFCHR O’0020000’ Character special Never set

S_IFBLK O’0060000’ Block special Never set

S_IFREG O’0100000’ Regular

FSTAT Page 52 of 58

S_IFLNK O’0120000’ Symbolic link Never set

S_IFSOCK O’0140000’ Socket Never set

S_ISUID O’0004000’ Set user ID on execution Never set

S_ISGID O’0002000’ Set group ID on execution Never set

S_ISVTX O’0001000’ Save swapped text Never set

S_IRWXU O’0000700’ Owner’s file permissions

S_IRUSR, S_IREAD O’0000400’ Owner read permission Always true

S_IWUSR, S_IWRITE O’0000200’ Owner write permission

S_IXUSR, S_IEXEC O’0000100’ Owner execute permission Set if S_IREAD is set

S_IRWXG O’0000070’ Group’s file permissions Same as S_IRWXU

S_IRGRP O’0000040’ Group read permission Same as S_IRUSR

S_IWGRP O’0000020’ Group write permission Same as S_IWUSR

S_IXGRP O’0000010’ Group execute permission Same as S_IXUSR

S_IRWXO O’0000007’ Other’s file permissions Same as S_IRWXU

S_IROTH O’0000004’ Other’s read permission Same as S_IRUSR

S_IWOTH O’0000002’ Other write permission Same as S_IWUSR

S_IXOTH O’0000001’ Other execute permission Same as S_IXUSR

Time values are returned as number of seconds since 0:00:00 Greenwich mean time, January 1, 1970.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INQUIRE

Example

USE DFPORT
integer(4) statarray(12), istat
OPEN (unit=1,file=’datfile.dat’)
ISTAT = FSTAT (1, statarray)
if (.NOT. istat) then
 print *, statarray

FSTAT Page 53 of 58

end if

FTELL

Portability Function: Returns the current position of a file.

Module: USE DFPORT

Syntax

result = FTELL (lunit)

lunit
(Input) INTEGER(4). External unit number of a file.

Results:

The result type is INTEGER(4). The result is the offset, in bytes, from the beginning of the file. A
negative value indicates an error, which is the negation of the IERRNO error code. The following is
an example of an error code:

EINVAL: lunit is not a valid unit number, or is not open.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

C An END statement must be the last statement in a program
C unit:
 PROGRAM MyProg
 WRITE (*, ’("Hello, world!")’)
 END
C
C An example of a named subroutine
C
 SUBROUTINE EXT1 (X,Y,Z)
 Real, Dimension (100,100) :: X, Y, Z
 END SUBROUTINE EXT1

FULLPATHQQ

Run-Time Function: Returns the full path for a specified file or directory.

Module: USE DFLIB

Syntax

result = FULLPATHQQ (name, pathbuf)

FULLPATHQQ Page 54 of 58

name
(Input) Character*(*). Item for which you want the full path. Can be the name of a file in the
current directory, a relative directory or filename, or a network uniform naming convention
(UNC) path.

pathbuf
(Output) Character*(*). Buffer to receive full path of the item specified in name.

Results:

The result type is INTEGER(4). The result is the length of the full path in bytes, or 0 if the function
fails (usually for an invalid name).

The length of the full path depends upon how deeply the directories are nested on the drive you are
using. If the full path is longer than the character buffer provided to return it (pathbuf),
FULLPATHQQ returns only that portion of the path that fits into the buffer.

Check the length of the path before using the string returned in pathbuf. If the longest full path you
are likely to encounter does not fit into the buffer you are using, allocate a larger character buffer.
You can allocate the largest possible path buffer with the following statements:

USE DFLIB
CHARACTER($MAXPATH) pathbuf

$MAXPATH is a symbolic constant defined in module DFLIB.F90 (in the \DF98\INCLUDE
subdirectory) as 260.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SPLITPATHQQ

Example

 USE DFLIB
 CHARACTER($MAXPATH) buf
 CHARACTER(3) drive
 CHARACTER(256) dir
 CHARACTER(256) name
 CHARACTER(256) ext
 CHARACTER(256) file

 INTEGER(4) len

 DO WHILE (.TRUE.)
 WRITE (*,*)
 WRITE (*,’(A, \)’) ’ Enter filename (Hit &
 RETURN to exit): ’
 len = GETSTRQQ(file)
 IF (len .EQ. 0) EXIT
 len = FULLPATHQQ(file, buf)
 IF (len .GT. 0) THEN

FULLPATHQQ Page 55 of 58

 WRITE (*,*) buf(:len)
 ELSE
 WRITE (*,*) ’Can’’t get full path’
 EXIT
 END IF
!
! Split path
 WRITE (*,*)
 len = SPLITPATHQQ(buf, drive, dir, name, ext)
 IF (len .NE. 0) THEN
 WRITE (*, 900) ’ Drive: ’, drive
 WRITE (*, 900) ’ Directory: ’, dir(1:len)
 WRITE (*, 900) ’ Name: ’, name
 WRITE (*, 900) ’ Extension: ’, ext
 ELSE
 WRITE (*, *) ’Can’’t split path’
 END IF
 END DO
900 FORMAT (A, A)
 END

FUNCTION

Statement: The initial statement of a function subprogram. A function subprogram is invoked in an
expression and returns a single value (a function result) that is used to evaluate the expression.

Syntax

[prefix] FUNCTION name ([d-arg-list]) [RESULT (r-name)]

prefix
(Optional) Is one of the following:

type [keyword]
keyword [type]

type
Is a data type specifier.

keyword
Is RECURSIVE, PURE, or ELEMENTAL.

The keyword RECURSIVE indicates a recursive function. A recursive function is one
that calls itself or calls another subprogram, which in turn calls the first function before
the first function has completed execution. The keyword must appear in the function
declaration if the function calls itself either directly or indirectly.

The keyword PURE asserts that the procedure has no side effects. The keyword
ELEMENTAL indicates a restricted form of pure procedure.

name
Is the name of the function. If RESULT is specified, the function name must not appear in any
specification statement in the scoping unit of the function subprogram.

FUNCTION Page 56 of 58

The function name can be followed by the length of the data type. The length is specified by an
asterisk (*) followed by any unsigned, nonzero integer that is a valid length for the function’s
type. For example, REAL FUNCTION LGFUNC*8 (Y, Z) specifies the function result as
REAL(8) (or REAL*8).

This optional length specification is not permitted if the length has already been specified
following the keyword CHARACTER.

d-arg-list
(Optional) Is a list of one or more dummy arguments.

r-name
(Optional) Is the name of the function result. This name must not be the same as the function
name.

Rules and Behavior

The type and kind parameters (if any) of the function’s result can be defined in the FUNCTION
statement or in a type declaration statement within the function subprogram, but not both. If no type
is specified, the type is determined by implicit typing rules in effect for the function subprogram.

Execution begins with the first executable construct or statement following the FUNCTION
statement. Control returns to the calling program unit once the END statement (or a RETURN
statement) is executed.

If you specify CHARACTER*(*), the function assumes the length declared for it in the program unit
that invokes it. This type of character function can have different lengths when it is invoked by
different program units. If the length is specified as an integer constant, the value must agree with the
length of the function specified in the program unit that invokes the function. If no length is specified,
a length of 1 is assumed.

If the function is array-valued or a pointer, the declarations within the function must state these
attributes for the function result name. The specification of the function result attributes, dummy
argument attributes, and the information in the procedure heading collectively define the interface of
the function.

The value of the result variable is returned by the function when it completes execution. Certain rules
apply depending on whether the result is a pointer, as follows:

� If the result is a pointer, its allocation status must be determined before the function completes
execution. (The function must associate a target with the pointer, or cause the pointer to be
explicitly disassociated from a target.)

The shape of the value returned by the function is determined by the shape of the result variable
when the function completes execution.

� If the result is not a pointer, its value must be defined before the function completes execution.
If the result is an array, all the elements must be defined; if the result is a derived-type

FUNCTION Page 57 of 58

structure, all the components must be defined.

A function subprogram cannot contain a SUBROUTINE statement, a BLOCK DATA statement, a
PROGRAM statement, or another FUNCTION statement. ENTRY statements can be included to
provide multiple entry points to the subprogram.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ENTRY, SUBROUTINE, PURE, ELEMENTAL, RESULT Keyword, Function
References, Program Units and Procedures, General Rules for Function and Subroutine Subprograms

Examples

The following example uses the Newton-Raphson iteration method (F(X) = cosh(X) + cos(X) -
A = 0) to get the root of the function:

 FUNCTION ROOT(A)
 X = 1.0
 DO
 EX = EXP(X)
 EMINX = 1./EX
 ROOT = X - ((EX+EMINX)*.5+COS(X)-A)/((EX-EMINX)*.5-SIN(X))
 IF (ABS((X-ROOT)/ROOT) .LT. 1E-6) RETURN
 X = ROOT
 END DO
 END

In the preceding example, the following formula is calculated repeatedly until the difference between
Xi and Xi+1 is less than 1.0E-6:

 -cosh(Xi) + cos(Xi) - A

 Xi+1 = Xi -------------------------

 sinh(Xi) - sin(Xi)

The following example shows an assumed-length character function:

 CHARACTER*(*) FUNCTION REDO(CARG)
 CHARACTER*1 CARG
 DO I=1,LEN(REDO)
 REDO(I:I) = CARG
 END DO
 RETURN
 END FUNCTION

This function returns the value of its argument, repeated to fill the length of the function.

Within any given program unit, all references to an assumed-length character function must have the

FUNCTION Page 58 of 58

same length. In the following example, the REDO function has a length of 1000:

 CHARACTER*1000 REDO, MANYAS, MANYZS
 MANYAS = REDO(’A’)
 MANYZS = REDO(’Z’)

Another program unit within the executable program can specify a different length. For example, the
following REDO function has a length of 2:

 CHARACTER HOLD*6, REDO*2
 HOLD = REDO(’A’)//REDO(’B’)//REDO(’C’)

The following example shows a dynamic array-valued function:

 FUNCTION SUB (N)
 REAL, DIMENSION(N) :: SUB
 ...
 END FUNCTION

The following shows another example:

 INTEGER Divby2
10 PRINT *, ’Enter a number’
 READ *, i
 Print *, Divby2(i)
 GOTO 10
 END
C
C This is the function definition
C
 INTEGER FUNCTION Divby2 (num)
 Divby2=num / 2
 END FUNCTION

GERROR Page 1 of 61

GERROR

Portability Subroutine: Returns a message for the last error detected by a Fortran run-time routine.

Syntax

CALL GERROR (string)

string
(Output) Character*(*). Message corresponding to the last detected error.

The last detected error does not necessarily correspond to the most recent function call. Visual
Fortran resets string only when another error occurs.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PERROR, IERRNO

Example

USE DFPORT
character*40 errtext
character char1
integer*4 iflag, i4
. . .!Open unit 1 here
i4=fgetc(1,char1)
if (i4) then
 iflag = 1
 Call GERROR (errtext)
 print *, errtext
end if

GETACTIVEQQ

QuickWin Function: Returns the unit number of the currently active child window.

Module: USE DFLIB

Syntax

result = GETACTIVEQQ ()

Results:

The result type is INTEGER(4). The result is the unit number of the currently active window. Returns
the parameter QWIN$NOACTIVEWINDOW (defined in DFLIB.F90 in the \DF98\INCLUDE
subdirectory) if no child window is active.

GETACTIVEQQ Page 2 of 61

Compatibility

QUICKWIN GRAPHICS LIB

See Also: SETACTIVEQQ, GETHWNDQQ, Using QuickWin.

GETARCINFO

Graphics Function: Determines the endpoints (in viewport coordinates) of the most recently drawn
arc or pie.

Module: USE DFLIB

Syntax

result = GETARCINFO (pstart, pend, ppaint)

pstart
(Output) Derived type xycoord. Viewport coordinates of the starting point of the arc.

pend
(Output) Derived type xycoord. Viewport coordinates of the end point of the arc.

ppaint
(Output) Derived type xycoord. Viewport coordinates of the point at which the fill begins.

Results:

The result type is INTEGER(2). The result is nonzero if successful. The result is zero if neither the
ARC nor the PIE function has been successfully called since the last time CLEARSCREEN or
SETWINDOWCONFIG was successfully called, or since a new viewport was selected.

GETARCINFO updates the pstart and pend xycoord derived types to contain the endpoints (in
viewport coordinates) of the arc drawn by the most recent call to the ARC or PIE functions. The
xycoord derived type, defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory), is:

TYPE xycoord
 INTEGER(2) xcoord
 INTEGER(2) ycoord
END TYPE xycoord

The returned value in ppaint specifies a point from which a pie can be filled. You can use this to fill a
pie in a color different from the border color. After a call to GETARCINFO, change colors using
SETCOLORRGB. Use the new color, along with the coordinates in ppaint, as arguments for the
FLOODFILLRGB function.

Compatibility

GETARCINFO Page 3 of 61

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: ARC, FLOODFILLRGB, GETCOLORRGB, GRSTATUS, PIE, SETCOLORRGB

Example

USE DFLIB
INTEGER(2) status, x1, y1, x2, y2, x3, y3, x4, y4
TYPE (xycoord) xystart, xyend, xyfillpt
x1 = 80; y1 = 50
x2 = 240; y2 = 150
x3 = 120; y3 = 80
x4 = 90; y4 = 180

status = ARC(x1, y1, x2, y2, x3, y3, x4, y4)
status = GETARCINFO(xystart, xyend, xyfillpt)
END

GETARG

Run-Time Subroutine: Returns the specified command-line argument (where the command itself is
argument number 0).

Module: USE DFLIB

Syntax

CALL GETARG (n, buffer [, status])

n
(Input) INTEGER(2). Position of the command-line argument to retrieve. The command itself
is argument number 0.

buffer
(Output) Character*(*). Command-line argument retrieved.

status
(Optional; output) INTEGER(2). If specified, returns the completion status. If there were no
errors, status returns the number of characters in the retrieved command-line argument before
truncation or blank-padding. (That is, status is the original number of characters in the
command-line argument.) Errors return a value of -1. Errors include specifying an argument
position less than 0 or greater than the value returned by NARGS.

GETARG can be used with two or three arguments. If you use module DFLIB.F90 in the \DF98
\INCLUDE subdirectory (by including the statement USE DFLIB), you can mix calls to GETARG
with two or three arguments. If you do not use DFLIB.F90, you can use either two-argument or three-
argument calls to GETARG but only one type of call within a subprogram.

GETARG returns command-line arguments as they were entered. There is no case conversion.

GETARG Page 4 of 61

If the command-line argument is shorter than buffer, GETARG pads buffer on the right with blanks.
If the argument is longer than buffer, GETARG truncates the argument. If there is an error,
GETARG fills buffer with blanks.

Assume a command-line invocation of ANOVA -g -c -a, and that buffer is at least five characters
long. The following GETARG statements return the corresponding arguments in buffer:

Statement String returned
in buffer

Length returned
in status

CALL GETARG (0, buffer, status) ANOVA 5

CALL GETARG (1, buffer) -g undefined

CALL GETARG (2, buffer, status) -c 2

CALL GETARG (3, buffer) -a undefined

CALL GETARG (4, buffer, status) all blanks -1

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NARGS, IARGC

Example

USE DFLIB
INTEGER(2) result
result = RUNQQ(’prog’, ’-c -r’)
END
! PROG.F90
USE DFLIB
INTEGER(2) n1, n2, status
CHARACTER(80) buf
n1 = 1
n2 = 2
CALL GETARG(n1, buf, status)
WRITE(*,*) buf
CALL GETARG(n2, buf)
WRITE (*,*) buf
END

GETBKCOLOR

Graphics Function: Gets the current background color index for both text and graphics output.

Module: USE DFLIB

Syntax

GETBKCOLOR Page 5 of 61

result = GETBKCOLOR ()

Results:

The result type is INTEGER(4). The result is the current background color index.

GETBKCOLOR returns the current background color index for both text and graphics, as set with
SETBKCOLOR. The color index of text over the background color is set with SETTEXTCOLOR
and returned with GETTEXTCOLOR. The color index of graphics over the background color is set
with SETCOLOR and returned with GETCOLOR. These non-RGB color functions use color
indexes, not true color values, and limit the user to colors in the palette, at most 256. For access to all
system colors, use SETBKCOLORRGB, SETCOLORRGB, and SETTEXTCOLORRGB.

Generally, INTEGER(4) color arguments refer to color values and INTEGER(2) color arguments
refer to color indexes. The two exceptions are GETBKCOLOR and SETBKCOLOR. The default
background index is 0, which is associated with black unless the user remaps the palette with
REMAPPALETTERGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETBKCOLORRGB, SETBKCOLOR, GETCOLOR, GETTEXTCOLOR,
REMAPALLPALETTERGB, REMAPPALETTERGB

Example

USE DFLIB
INTEGER(4) bcindex
bcindex = GETBKCOLOR()

GETBKCOLORRGB

Graphics Function: Gets the current background Red-Green-Blue (RGB) color value for both text
and graphics.

Module: USE DFLIB

Syntax

result = GETBKCOLORRGB ()

Results:

The result type is INTEGER(4). The result is the RGB value of the current background color for both
text and graphics.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit

GETBKCOLORRGB Page 6 of 61

value (2 hex digits). In the value you retrieve with GETBKCOLORRGB, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

GETBKCOLORRGB returns the RGB color value of the current background for both text and
graphics, set with SETBKCOLORRGB. The RGB color value of text over the background color
(used by text functions such as OUTTEXT, WRITE, and PRINT) is set with
SETTEXTCOLORRGB and returned with GETTEXTCOLORRGB. The RGB color value of
graphics over the background color (used by graphics functions such as ARC, OUTGTEXT, and
FLOODFILLRGB) is set with SETCOLORRGB and returned with GETCOLORRGB.

SETBKCOLORRGB (and the other RGB color selection functions SETCOLORRGB and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The non-
RGB color functions (SETBKCOLOR, SETCOLOR, and SETTEXTCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available in the
palette, at most 256. Some display adapters (SVGA and true color) are capable of creating 262,144
(256K) colors or more. To access any available color, you need to specify an explicit RGB value with
an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETCOLORRGB, GETTEXTCOLORRGB, SETBKCOLORRGB, GETBKCOLOR

Example

! Build as a QuickWin or Standard Graphics App.
USE DFLIB
INTEGER(4) back, fore, oldcolor
INTEGER(2) status, x1, y1, x2, y2
x1 = 80; y1 = 50
x2 = 240; y2 = 150
oldcolor = SETCOLORRGB(#FF) ! red
! reverse the screen
back = GETBKCOLORRGB()
fore = GETCOLORRGB()
oldcolor = SETBKCOLORRGB(fore)
oldcolor = SETCOLORRGB(back)
CALL CLEARSCREEN ($GCLEARSCREEN)
status = ELLIPSE($GBORDER, x1, y1, x2, y2)
END

GETC

GETC Page 7 of 61

Portability Function: Reads the next available character from external unit 5, which is normally
connected to the console.

Module: USE DFPORT

Syntax

result = GETC (char)

char
(Output) Character*(*). First character typed at the keyboard after the call to GETC. If unit 5 is
connected to a console device, then no characters are returned until the Enter key is pressed.

Results:

The result type is INTEGER(4). The result is zero if successful, or -1 if an end-of-file was detected.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAHICS WINDOWS DLL LIB

See Also: GETCHARQQ, GETSTRQQ, Programmer’s Guide: Portability Library

Example

 use dfport
 character ans,errtxt*40
 print *, ’Enter a character: ’
 ISTAT = GETC (ans)

if (istat) then
 call gerror(errtxt)
 end if

GETCHARQQ

Run-Time Function: Gets the next keystroke.

Module: USE DFLIB

Syntax

result = GETCHARQQ ()

Results:

The result type is CHARACTER(1). The result is the character representing the key that was pressed.
The value can be any ASCII character.

GETCHARQQ Page 8 of 61

If the key pressed is a represented by a single ASCII character, GETCHARQQ returns the character.
If the key pressed is a function or direction key, a hex #00 or #E0 is returned. If you need to know
which function or direction was pressed, call GETCHARQQ a second time to get the extended code
for the key.

If there is no keystroke waiting in the keyboard buffer, GETCHARQQ waits until there is one, and
then returns it. Compare this to the function PEEKCHARQQ, which returns .TRUE. if there is a
character waiting in the keyboard buffer and .FALSE. if not. You can use PEEKCHARQQ to
determine if GETCHARQQ should be called. This can prevent a program from hanging while
GETCHARQQ waits for a keystroke that isn’t there.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PEEKCHARQQ, GETSTRQQ, INCHARQQ, MBINCHARQQ, GETC, FGETC

Example

! Program to demonstrate GETCHARQQ
USE DFLIB
CHARACTER(1) key / ’A’ /
PARAMETER (ESC = 27)
PARAMETER (NOREP = 0)
WRITE (*,*) ’ Type a key: (or q to quit)’
! Read keys until ESC or q is pressed
DO WHILE (ICHAR (key) .NE. ESC)
 key = GETCHARQQ()
! Some extended keys have no ASCII representation
 IF(ICHAR(key) .EQ. NOREP) THEN
 key = GETCHARQQ()
 WRITE (*, 900) ’Not ASCII. Char = NA’
 WRITE (*,*)
! Otherwise, there is only one key
 ELSE
 WRITE (*,900) ’ASCII. Char = ’
 WRITE (*,901) key
 END IF
 IF (key .EQ. ’q’) THEN
 EXIT
 END IF
 END DO
900 FORMAT (1X, A, \)
901 FORMAT (A)
END

GETCOLOR

Graphics Function: Gets the current graphics color index.

Module: USE DFLIB

Syntax

GETCOLOR Page 9 of 61

result = GETCOLOR ()

Results:

The result type is INTEGER(2). The result is the current color index, if successful; otherwise, - 1.

GETCOLOR returns the current color index used for graphics over the background color as set with
SETCOLOR. The background color index is set with SETBKCOLOR and returned with
GETBKCOLOR. The color index of text over the background color is set with SETTEXTCOLOR
and returned with GETTEXTCOLOR. These non-RGB color functions use color indexes, not true
color values, and limit the user to colors in the palette, at most 256. For access to all system colors,
use SETCOLORRGB, SETBKCOLORRGB, and SETTEXTCOLORRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETCOLORRGB, GETBKCOLOR, GETTEXTCOLOR, SETCOLOR

Example

! Program to demonstrate GETCOLOR
 PROGRAM COLORS
 USE DFLIB
 INTEGER(2) loop, loop1, status, color
 LOGICAL(4) winstat
 REAL rnd1, rnd2, xnum, ynum
 type (windowconfig) wc
 status = SETCOLOR(INT2(0))
! Color random pixels with 15 different colors
 DO loop1 = 1, 15
 color = INT2(MOD(GETCOLOR() +1, 16))
 status = SETCOLOR (color) ! Set to next color
 DO loop = 1, 75
! Set color of random spot, normalized to be on screen
 CALL RANDOM(rnd1)
 CALL RANDOM(rnd2)
 winstat = GETWINDOWCONFIG(wc)
 xnum = wc.numxpixels
 ynum = wc.numypixels
 status = &
 SETPIXEL(INT2(rnd1*xnum+1),INT2(rnd2*ynum))
 status = &
 SETPIXEL(INT2(rnd1*xnum),INT2(rnd2*ynum+1))
 status = &
 SETPIXEL(INT2(rnd1*xnum-1),INT2(rnd2*ynum))
 status = &
 SETPIXEL(INT2(rnd1*xnum),INT2(rnd2*ynum-1))
 END DO
 END DO
 END

GETCOLORRGB

GETCOLORRGB Page 10 of 61

Graphics Function: Gets the current graphics color Red-Green-Blue (RGB) value (used by graphics
functions such as ARC, ELLIPSE, and FLOODFILLRGB).

Module: USE DFLIB

Syntax

result = GETCOLORRGB ()

Results:

The result type is INTEGER(4). The result is the RGB value of the current graphics color.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you retrieve with GETCOLORRGB, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

GETCOLORRGB returns the RGB color value of graphics over the background color (used by
graphics functions such as ARC, ELLIPSE, and FLOODFILLRGB), set with SETCOLORRGB.
GETBKCOLORRGB returns the RGB color value of the current background for both text and
graphics, set with SETBKCOLORRGB. GETTEXTCOLORRGB returns the RGB color value of
text over the background color (used by text functions such as OUTTEXT, WRITE, and PRINT),
set with SETTEXTCOLORRGB.

SETCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The non-
RGB color functions (SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available in the
palette, at most 256. Some display adapters (SVGA and true color) are capable of creating 262,144
(256K) colors or more. To access any available color, you need to specify an explicit RGB value with
an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETBKCOLORRGB, GETTEXTCOLORRGB, SETCOLORRGB, GETCOLOR

Example

GETCOLORRGB Page 11 of 61

! Build as a QuickWin or Standard Graphics App.
USE DFLIB
INTEGER(2) numfonts
INTEGER(4) fore, oldcolor

numfonts = INITIALIZEFONTS ()
oldcolor = SETCOLORRGB(#FF) ! set graphics
 ! color to red
fore = GETCOLORRGB()
oldcolor = SETBKCOLORRGB(fore) ! set background
 ! to graphics color
CALL CLEARSCREEN($GCLEARSCREEN)
oldcolor = SETCOLORRGB (#FF0000) ! set graphics
 ! color to blue

CALL OUTGTEXT("hello, world")
END

GETCONTROLFPQQ (x86 only)

Run-Time Subroutine: Returns the floating-point processor control word. This routine is only
available on Intel® processors.

Module: USE DFLIB

Syntax

CALL GETCONTROLFPQQ (controlword)

controlword
(Output) INTEGER(2). Floating-point processor control word.

The floating-point control word is a bit flag that controls various modes of the floating-point
coprocessor. The DFLIB.F90 module file (in the \DF98\INCLUDE subdirectory) contains constants
defined for the control word as follows:

Parameter name Hex value Description

FPCW$MCW_IC #1000 Infinity control mask

FPCW$AFFINE #1000 Affine infinity

FPCW$PROJECTIVE #0000 Projective infinity

FPCW$MCW_PC #0300 Precision control mask

FPCW$64 #0300 64-bit precision

FPCW$53 #0200 53-bit precision

FPCW$24 #0000 24-bit precision

GETCONTROLFPQQ (x86 only) Page 12 of 61

FPCW$MCW_RC #0C00 Rounding control mask

FPCW$CHOP #0C00 Truncate

FPCW$UP #0800 Round up

FPCW$DOWN #0400 Round down

FPCW$NEAR #0000 Round to nearest

FPCW$MSW_EM #003F Exception mask

FPCW$INVALID #0001 Allow invalid numbers

FPCW$DENORMAL #0002 Allow denormals (very small numbers)

FPCW$ZERODIVIDE #0004 Allow divide by zero

FPCW$OVERFLOW #0008 Allow overflow

FPCW$UNDERFLOW #0010 Allow underflow

FPCW$INEXACT #0020 Allow inexact precision

The defaults for the floating-point control word are 53-bit precision, round to nearest, and the
denormal, underflow and inexact precision exceptions disabled. An exception is disabled if its flag is
set to 1 and enabled if its flag is cleared to 0. Exceptions can be disabled by setting the flags to 1 with
SETCONTROLFPQQ.

If an exception is disabled, it does not cause an interrupt when it occurs. Instead, floating-point
processes generate an appropriate special value (NaN or signed infinity), but the program continues.

You can find out which exceptions (if any) occurred by calling GETSTATUSFPQQ. If errors on
floating-point exceptions are enabled (by clearing the flags to 0 with SETCONTROLFPQQ), the
operating system generates an interrupt when the exception occurs. By default, these interrupts cause
run-time errors, but you can capture the interrupts with SIGNALQQ and branch to your own error-
handling routines.

You can use GETCONTROLFPQQ to retrieve the current control word and
SETCONTROLFPQQ to change the control word. Most users do not need to change the default
settings. For a full discussion of the floating-point control word, exceptions, and error handling, see
The Floating-Point Environment in the Programmer’s Guide.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SETCONTROLFPQQ, GETSTATUSFPQQ, SIGNALQQ, MATHERRQQ

Example

GETCONTROLFPQQ (x86 only) Page 13 of 61

USE DFLIB
INTEGER(2) control
CALL GETCONTROLFPQQ (control)
 !if not rounding down
IF (IAND(control, FPCW$DOWN) .NE. FPCW$DOWN) THEN
 control = IAND(control, NOT(FPCW$MCW_RC)) ! clear all
 ! rounding
 control = IOR(control, FPCW$DOWN) ! set to
 ! round down
 CALL SETCONTROLFPQQ(control)
END IF
END

GETCWD

Portability Function: Retrieves the path of the current working directory.

Module: USE DFPORT

Syntax

result = GETCWD (dirname)

dirname
(Output) Character *(*). Name of the current working directory path, including drive letter.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETDRIVEDIRQQ

Example

 character*30 dirname
! variable dirname must be long enough to hold entire string
 integer(4) istat
 ISTAT = GETCWD (dirname)
 IF (ISTAT == 0) write *, ’Current directory is ’,dirname

GETCURRENTPOSITION, GETCURRENTPOSITION_W

Graphics Subroutines: Get the coordinates of the current graphics position.

Module: USE DFLIB

Syntax

GETCURRENTPOSITION, GETCURRENTPOSITION_W Page 14 of 61

CALL GETCURRENTPOSITION (t)
CALL GETCURRENTPOSITION_W (wt)

t
(Output) Derived type xycoord. Viewport coordinates of current graphics position. The derived
type xycoord is defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory as follows:

TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
END TYPE xycoord

wt
(Output) Derived type wxycoord. Window coordinates of current graphics position. The
derived type wxycoord is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as
follows:

TYPE wxycoord
 REAL(8) wx ! x-coordinate
 REAL(8) wy ! y-coordinate
END TYPE wxycoord

LINETO, MOVETO, and OUTGTEXT all change the current graphics position. It is in the center
of the screen when a window is created.

Graphics output starts at the current graphics position returned by GETCURRENTPOSITION or
GETCURRENTPOSITION_W. This position is not related to normal text output (from
OUTTEXT or WRITE, for example), which begins at the current text position (see
SETTEXTPOSITION). It does, however, affect graphics text output from OUTGTEXT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: LINETO, MOVETO, OUTGTEXT, SETTEXTPOSITION, GETTEXTPOSITION

Example

! Program to demonstrate GETCURRENTPOSITION
USE DFLIB
TYPE (xycoord) position
INTEGER(2) result
result = LINETO(INT2(300), INT2(200))
CALL GETCURRENTPOSITION(position)
IF (position.xcoord .GT. 50) THEN
 CALL MOVETO(INT2(50), position.ycoord, position)
 WRITE(*,*) "Text unaffected by graphics position"
END IF
result = LINETO(INT2(300), INT2(200))
END

GETDAT

GETDAT Page 15 of 61

Run-Time Subroutine: Returns the date.

Module: USE DFLIB

Syntax

CALL GETDAT (iyr, imon, iday)

iyr
(Output) INTEGER(2). Year (xxxx AD).

imon
(Output) INTEGER(2). Month (1-12).

iday
(Output) INTEGER(2). Day of the month (1-31).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: GETTIM, SETDAT, SETTIM, DATE, FDATE, IDATE, JDATE

Example

! Program to demonstrate GETDAT and GETTIM
USE DFLIB
INTEGER(2) tmpday, tmpmonth, tmpyear
INTEGER(2) tmphour, tmpminute, tmpsecond, tmphund
CHARACTER(1) mer

CALL GETDAT(tmpyear, tmpmonth, tmpday)
CALL GETTIM(tmphour, tmpminute, tmpsecond, tmphund)
IF (tmphour .GT. 12) THEN
 mer = ’p’
 tmphour = tmphour - 12
ELSE
 mer = ’a’
END IF
WRITE (*, 900) tmpmonth, tmpday, tmpyear
900 FORMAT(I2, ’/’, I2.2, ’/’, I4.4)
WRITE (*, 901) tmphour,tmpminute,tmpsecond,tmphund,mer
901 FORMAT(I2, ’:’, I2.2, ’:’, I2.2, ’:’, I2.2, ’ ’,&
 A, ’m’)
END

GETDRIVEDIRQQ

Run-Time Function: Gets the path of the current working directory on a specified drive.

Module: USE DFLIB

GETDRIVEDIRQQ Page 16 of 61

Syntax

result = GETDRIVEDIRQQ (drivedir)

drivedir
(Input; output) Character*(*). On input, drive whose current working directory path is to be
returned. On output, string containing the current directory on that drive in the form d:\dir.

Results:

The result type is INTEGER(4). The result is the length (in bytes) of the full path of the directory on
the specified drive. Zero is returned if the path is longer than the size of the character buffer drivedir.

You specify the drive from which to return the current working directory by putting the drive letter
into drivedir before calling GETDRIVEDIRQQ. To make sure you get information about the
current drive, put the symbolic constant FILE$CURDRIVE (defined in DFLIB.F90 in the \DF98
\INCLUDE subdirectory) into drivedir.

Because drives are identified by a single alphabetic character, GETDRIVEDIRQQ examines only
the first letter of drivedir. For instance, if drivedir contains the path c:\fps90\bin,
GETDRIVEDIRQQ (drivedir) returns the current working directory on drive C and disregards the
rest of the path. The drive letter can be uppercase or lowercase.

The length of the path returned depends on how deeply the directories are nested on the drive
specified in drivedir. If the full path is longer than the length of drivedir, GETDRIVEDIRQQ
returns only the portion of the path that fits into drivedir. If you are likely to encounter a long path,
allocate a buffer of size $MAXPATH ($MAXPATH = 260).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: CHANGEDRIVEQQ, CHANGEDIRQQ, GETDRIVESIZEQQ, GETDRIVESQQ,
GETLASTERRORQQ, SPLITPATHQQ

Example

! Program to demonstrate GETDRIVEDIRQQ
USE DFLIB
CHARACTER($MAXPATH) dir
INTEGER(4) length

! Get current directory
dir = FILE$CURDRIVE
length = GETDRIVEDIRQQ(dir)
IF (length .GT. 0) THEN
 WRITE (*,*) ’Current directory is: ’
 WRITE (*,*) dir
ELSE
 WRITE (*,*) ’Failed to get current directory’
END IF

GETDRIVESIZEQQ Page 17 of 61

END

GETDRIVESIZEQQ

Run-Time Function: Gets the total size of the specified drive and space available on it.

Module: USE DFLIB

Syntax

result = GETDRIVESIZEQQ (drive, total, avail)

drive
(Input) Character*(*). String containing the letter of the drive to get information about.

total
(Output) INTEGER(4). Total number of bytes on the drive.

avail
(Output) INTEGER(4). Number of bytes of available space on the drive.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Because drives are identified by a single alphabetic character, GETDRIVESIZEQQ examines only
the first letter of drive. The drive letter can be uppercase or lowercase. You can use the constant
FILE$CURDRIVE (defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory) to get the size of
the current drive.

If GETDRIVESIZEQQ fails, use GETLASTERRORQQ to determine the reason.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETLASTERRORQQ, GETDRIVESQQ, GETDRIVEDIRQQ, CHANGEDRIVEQQ,
CHANGEDIRQQ

Example

! Program to demonstrate GETDRIVESQQ and GETDRIVESIZEQQ
USE DFLIB
CHARACTER(26) drives
CHARACTER(1) adrive
LOGICAL(4) status
INTEGER(4) total, avail
INTEGER(2) i
! Get the list of drives
drives = GETDRIVESQQ()
WRITE (*,’(A, A)’) ’ Drives available: ’, drives

GETDRIVESIZEQQ Page 18 of 61

!
!Cycle through them for free space and write to console
DO i = 1, 26
 adrive = drives(i:i)
 status = .FALSE.
 WRITE (*,’(A, A, A, \)’) ’ Drive ’, CHAR(i + 64), ’:’
 IF (adrive .NE. ’ ’) THEN
 status = GETDRIVESIZEQQ(adrive, total, avail)
 END IF
 IF (status) THEN
 WRITE (*,*) avail, ’ of ’, total, ’ bytes free.’
 ELSE
 WRITE (*,*) ’Not available’
 END IF
END DO
END

GETDRIVESQQ

Run-Time Function: Reports which drives are available to the system.

Module: USE DFLIB

Syntax

result = GETDRIVESQQ ()

Results:

The result is CHARACTER(26). It is the positional character string containing the letters of the
drives available in the system.

The returned string contains letters for drives that are available, and blanks for drives that are not
available. For example, on a system with A, C, and D drives, the string ACD’ is returned.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: GETDRIVEDIRQQ, GETDRIVESIZEQQ, CHANGEDRIVEQQ

Example

See the example for GETDRIVESIZEQQ.

GETENV

Portability Subroutine: Retrieves the value of an environment variable.

Module: USE DFPORT

Syntax

GETENV Page 19 of 61

CALL GETENV (ename, evalue)

ename
(Input) Character*(*). Environment variable to search for.

evalue
(Output) Character*(*). Value found for ename. Blank if ename is not found.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETENVQQ, SETENVQQ

Example

use dfport
character*40 libname
CALL GETENV ("LIB",libname)
TYPE *, "The LIB variable points to ",libname

GETENVQQ

Run-Time Function: Gets the value of a specified environment variable from the current
environment.

Module: USE DFLIB

Syntax

result = GETENVQQ (varname, value)

varname
(Input) Character*(*). Name of environment variable.

value
(Output) Character*(*). Value of the specified environment variable, in uppercase.

Results:

The result type is INTEGER(4). The result is the length of the string returned in value. Zero is
returned if the given variable is not defined.

GETENVQQ searches the list of environment variables for an entry corresponding to varname.
Environment variables define the environment in which a process executes. (For example, the LIB
environment variable defines the default search path for libraries to be linked with a program.)

Compatibility

GETENVQQ Page 20 of 61

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: SETENVQQ, GETLASTERRORQQ

Example

! Program to demonstrate GETENVQQ and SETENVQQ
USE DFLIB
INTEGER(4) lenv, lval
CHARACTER(80) env, val, enval

WRITE (*,900) ’ Enter environment variable name to create, &
 modify, or delete: ’
lenv = GETSTRQQ(env)
IF (lenv .EQ. 0) STOP
WRITE (*,900) ’ Value of variable (ENTER to delete): ’
lval = GETSTRQQ(val)
IF (lval .EQ. 0) val = ’ ’
enval = env(1:lenv) // ’=’ // val(1:lval)
IF (SETENVQQ(enval)) THEN
 lval = GETENVQQ(env(1:lenv), val)
 IF (lval .EQ. 0) THEN
 WRITE (*,*) ’Can’’t get environment variable’
 ELSE IF (lval .GT. LEN(val)) THEN
 WRITE (*,*) ’Buffer too small’
 ELSE
 WRITE (*,*) env(:lenv), ’: ’, val(:lval)
 WRITE (*,*) ’Length: ’, lval
 END IF
ELSE
 WRITE (*,*) ’Can’’t set environment variable’
END IF
900 FORMAT (A, \)
END

GETEXITQQ

QuickWin Function: Gets the setting for a QuickWin application’s exit behavior.

Module: USE DFLIB

Syntax

result = GETEXITQQ ()

Results:

The result type is INTEGER(4). The result is exit mode with one of the following constants (defined
in DFLIB.F90 in the \DF98\INCLUDE subdirectory):

� QWIN$EXITPROMPT: Displays a message box that reads "Program exited with exit status
n. Exit Window?", where n is the exit status from the program. If the user chooses Yes, the
application closes the window and terminates. If the user chooses No, the dialog box
disappears and the user can manipulate the window as usual. The user must then close the

GETEXITQQ Page 21 of 61

window manually.

� QWIN$EXITNOPERSIST: Terminates the application without displaying a message box.

� QWIN$EXITPERSIST: Leaves the application open without displaying a message box.

The default for both QuickWin and Console Graphics applications is QWIN$EXITPROMPT.

Compatibility

STANDARD GRAPHICS QUICKWIN.EXE LIB

See Also: SETEXITQQ, Using QuickWin

Example

! Program to demonstrate GETEXITQQ
 USE DFLIB
 INTEGER i
 i = GETEXITQQ()
 SELECT CASE (i)
 CASE (QWIN$EXITPROMPT)
 WRITE(*, *) "Prompt on exit."
 CASE (QWIN$EXITNOPERSIST)
 WRITE(*,*) "Exit and close."
 CASE (QWIN$EXITPERSIST)
 WRITE(*,*) "Exit and leave open."
 END SELECT
 END

GETFILEINFOQQ

Run-Time Function: Returns information about the specified file. Filenames can contain wildcards
(* and ?).

Module: USE DFLIB

Syntax

result = GETFILEINFOQQ (files, buffer, handle)

files
(Input) Character*(*). Search criteria. Can include a full path. Can include wildcards (* and ?).

buffer
(Output) Derived type file$info. Information about a file that matches the search criteria. The
derived type file$info is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as
follows:

TYPE file$info
 INTEGER(4) CREATION
 INTEGER(4) LASTWRITE

GETFILEINFOQQ Page 22 of 61

 INTEGER(4) LASTACCESS
 INTEGER(4) LENGTH
 INTEGER(4) PERMIT
 CHARACTER(255) NAME
END TYPE file$info

handle
(Input; output) INTEGER(4). Control mechanism. One of the following constants, defined in
DFLIB.F90:

n FILE$FIRST: First matching file found.
n FILE$LAST: Previous file was the last valid file.
n FILE$ERROR: No matching file found.

Results:

The result type is INTEGER(4). The result is the nonblank length of the filename if a match was
found, or 0 if no matching files were found.

To get information about one or more files, set handle to FILE$FIRST and call
GETFILEINFOQQ. This will return information about the first file which matches the name and
return a handle. If the program wants more files, it should call GETFILEINFOQQ with the handle.
GETFILEINFOQQ must be called with the handle until GETFILEINFOQQ sets handle to
FILE$LAST, or system resources may be lost.

The derived-type element variables FILE$INFO.CREATION, FILE$INFO.LASTWRITE, and
FILE$INFO.LASTACCESS contain packed date and time information that indicates when the file
was created, last written to, and last accessed, respectively. To break the time and date into
component parts, call UNPACKTIMEQQ. FILE$INFO.LENGTH contains the length of the file in
bytes. FILE$INFO.PERMIT contains a set of bit flags describing access information about the file as
follows:

If this bit flag is set The file is

FILE$ARCHIVE Marked as having been copied to a backup device.

FILE$DIR A subdirectory of the current directory. Each MS-DOS directory contains
two special files, "." and "..". These are directory aliases created by MS-
DOS for use in relative directory notation. The first refers to the current
directory, and the second refers to the current directory’s parent directory.

FILE$HIDDEN Hidden. It does not appear in the directory list you request from the
command line, the Microsoft visual development environment browser, or
File Manager.

FILE$READONLY Write-protected. You can read the file, but you cannot make changes to it.

FILE$SYSTEM Used by the operating system.

FILE$VOLUME A logical volume, or partition, on a physical disk drive. This type of file
appears only in the root directory of a physical device.

GETFILEINFOQQ Page 23 of 61

You can use the constant FILE$NORMAL to check that all bit flags are set to 0. If the derived-type
element variable FILE$INFO.PERMIT is equal to FILE$NORMAL, the file has no special
attributes. The variable FILE$INFO.NAME contains the short name of the file, not the full path of
the file.

If an error occurs, call GETLASTERRORQQ to retrieve the error message, such as:

� ERR$NOENT: No directory entries matched the file specification.
� ERR$NOENT: Illegal filename specification.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: SETFILEACCESSQQ, SETFILETIMEQQ, UNPACKTIMEQQ

Example

 USE DFLIB
 CALL SHOWPERMISSION()
 END
! SUBROUTINE to demonstrate GETFILEINFOQQ
 SUBROUTINE SHOWPERMISSION()
 USE DFLIB
 CHARACTER(80) files

 INTEGER(4) handle, length
 CHARACTER(5) permit
 TYPE (FILE$INFO) info

WRITE (*, 900) ’ Enter wildcard of files to view: ’
900 FORMAT (A, \)
 length = GETSTRQQ(files)
 handle = FILE$FIRST
 DO WHILE (.TRUE.)
 length = GETFILEINFOQQ(files, info, handle)
 IF ((handle .EQ. FILE$LAST) .OR. &
 (handle .EQ. FILE$ERROR)) THEN
 SELECT CASE (GETLASTERRORQQ())
 CASE (ERR$NOMEM)
 WRITE (*,*) ’Out of memory’
 CASE (ERR$NOENT)
 EXIT
 CASE DEFAULT
 WRITE (*,*) ’Invalid file or path name’
 END SELECT
 END IF
 permit = ’ ’
 IF ((info.permit .AND. FILE$HIDDEN) .NE. 0) &
 permit(1:1) = ’H’
 IF ((info.permit .AND. FILE$SYSTEM) .NE. 0) &
 permit(2:2) = ’S’
 IF ((info.permit .AND. FILE$READONLY) .NE. 0) &
 permit(3:3) = ’R’
 IF ((info.permit .AND. FILE$ARCHIVE) .NE. 0) &
 permit(4:4) = ’A’
 IF ((info.permit .AND. FILE$DIR) .NE. 0) &

GETFILEINFOQQ Page 24 of 61

 permit(5:5) = ’D’
 WRITE (*, 9000) info.name, info.length, permit
 9000 FORMAT (1X, A5, I9, ’ ’,A6)
 END DO
 END SUBROUTINE

GETFILLMASK

Graphics Subroutine: Returns the current pattern used to fill shapes.

Module: USE DFLIB

Syntax

CALL GETFILLMASK (mask)

mask
(Output) INTEGER(1). One-dimensional array of length 8.

There are 8 bytes in mask, and each of the 8 bits in each byte represents a pixel, creating an 8x8
pattern. The first element (byte) of mask becomes the top 8 bits of the pattern, and the eighth element
(byte) of mask becomes the bottom 8 bits.

During a fill operation, pixels with a bit value of 1 are set to the current graphics color, while pixels
with a bit value of 0 are unchanged. The current graphics color is set with SETCOLORRGB or
SETCOLOR. The 8-byte mask is replicated over the entire fill area. If no fill mask is set (with
SETFILLMASK), or if the mask is all ones, solid current color is used in fill operations.

The fill mask controls the fill pattern for graphics routines (FLOODFILLRGB, PIE, ELLIPSE,
POLYGON, and RECTANGLE).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: ELLIPSE, FLOODFILLRGB, PIE, POLYGON, RECTANGLE, SETFILLMASK

Example

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(1) style(8). array(8)
INTEGER(2) i
style = 0
style(1) = #F
style(3) = #F
style(5) = #F
style(7) = #F
CALL SETFILLMASK (style)
...
CALL GETFILLMASK (array)
WRITE (*, *) ’Fill mask in bits: ’
DO i = 1, 8

GETFILLMASK Page 25 of 61

 WRITE (*, ’(B8)’) array(i)
END DO
END

GETFONTINFO

Graphics Function: Gets the current font characteristics.

Module: USE DFLIB

Syntax

result = GETFONTINFO (font)

font
(Output) Derived type fontinfo. Set of characteristics of the current font. The fontinfo
derived type is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

TYPE fontinfo
 INTEGER(4) type ! 1 = truetype, 0 = bit map
 INTEGER(4) ascent ! Pixel distance from top to
 ! baseline
 INTEGER(4) pixwidth ! Character width in pixels,
 ! 0=proportional
 INTEGER(4) pixheight ! Character height in pixels
 INTEGER(4) avgwidth ! Average character width in
 ! pixels
 CHARACTER(32)xfacename ! Font name
 LOGICAL(1) italic ! .TRUE. if current font
 ! formatted italic
 LOGICAL(1) emphasized ! .TRUE. if current font
 ! formatted bold
 LOGICAL(1) underline ! .TRUE. if current font
 ! formatted underlined
END TYPE fontinfo

Results:

The result type is INTEGER(2). The result is zero if successful; otherwise, -1.

You must initialize fonts with INITIALIZEFONTS before calling any font-related function,
including GETFONTINFO.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETGTEXTEXTENT, GETGTEXTROTATION, GRSTATUS, OUTGTEXT,
INITIALIZEFONTS, SETFONT, Using Fonts from the Graphics Library

Example

! Build as QuickWin or Standard Graphics

GETFONTINFO Page 26 of 61

USE DFLIB
TYPE (FONTINFO) info
INTEGER(2) numfonts, return, line_spacing
numfonts = INITIALIZEFONTS ()
return = GETFONTINFO(info)
line_spacing = info.pixheight + 2
END

GETGID

Portability Function: Retrieves the group ID of the user of a process.

Module: USE DFPORT

Syntax

result = GETGID ()

Results:

The result type is INTEGER(4). The result is always 1.

This function is included for compatibility only.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

ISTAT = GETGID()

GETGTEXTEXTENT

Graphics Function: Returns the width in pixels that would be required to print a given string of text
(including any trailing blanks) with OUTGTEXT using the current font.

Module: USE DFLIB

Syntax

result = GETGTEXTEXTENT (text)

text
(Input) Character*(*). Text to be analyzed.

Results:

The result type is INTEGER(2). The result is the width of text in pixels if successful; otherwise, -1
(for example, if fonts have not been initialized with INITIALIZEFONTS).

GETGTEXTEXTENT Page 27 of 61

This function is useful for determining the size of text that uses proportionally spaced fonts. You
must initialize fonts with INITIALIZEFONTS before calling any font-related function, including
GETGTEXTEXTENT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETFONTINFO, OUTGTEXT, SETFONT, INITIALIZEFONTS,
GETGTEXTROTATION

Example

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(2) status, pwidth
CHARACTER(80) text
status= INITIALIZEFONTS()
status= SETFONT(’t’’Arial’’h22w10’)
pwidth= GETGTEXTEXTENT(’How many pixels wide is this?’)
WRITE(*,*) pwidth
END

GETGTEXTROTATION

Graphics Function: Returns the current orientation of the font text output by OUTGTEXT.

Module: USE DFLIB

Syntax

result = GETGTEXTROTATION ()

Results:

INTEGER(4). Current orientation of the font text output in tenths of degrees. Horizontal is 0°, and
angles increase counterclockwise so that 900 tenths of degrees (90°) is straight up, 1800 tenths of
degrees (180°) is upside-down and left, 2700 tenths of degrees (270°) is straight down, and so forth.

The orientation for text output with OUTGTEXT is set with SETGTEXTROTATION.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: OUTGTEXT, SETFONT, SETGTEXTROTATION

GETGTEXTROTATION Page 28 of 61

Example

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER ang
REAL rang
ang = GETGTEXTROTATION()
rang = FLOAT(ang)/10.0
WRITE(*,*) "Text tilt in degrees is: ", rang
END

GETHWNDQQ

QuickWin Function: Converts a window unit number into a Windows handle.

Module: USE DFLIB

Syntax

result = GETHWNDQQ (unit)

unit
(Input) INTEGER(4). Window unit number. If unit is set to QWIN$FRAMEWINDOW
(defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory), the handle of the frame window
is returned.

Results:

The result type is INTEGER(4). The result is a true Windows handle to the window. It returns -1 if
unit is not open.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: GETACTIVEQQ, GETUNITQQ, SETACTIVEQQ Using QuickWin

GETIMAGE, GETIMAGE_W

Graphics Subroutine: Stores the screen image defined by a specified bounding rectangle.

Module: USE DFLIB

Syntax

CALL GETIMAGE (x1, y1, x2, y2, image)
CALL GETIMAGE_W (wx1, wy1, wx2, wy2, image)

x1, y1

GETIMAGE, GETIMAGE_W Page 29 of 61

(Input) INTEGER(2). Viewport coordinates for upper-left corner of bounding rectangle.

x2, y2
(Input) INTEGER(2). Viewport coordinates for lower-right corner of bounding rectangle.

wx1, wy1
(Input) REAL(8). Window coordinates for upper-left corner of bounding rectangle.

wx2, wy2
(Input) REAL(8). Window coordinates for lower-right corner of bounding rectangle.

image
(Output) INTEGER(1). Array of single-byte integers. Stored image buffer.

GETIMAGE defines the bounding rectangle in viewport-coordinate points (x1, y1) and (x2, y2).
GETIMAGE_W defines the bounding rectangle in window-coordinate points (wx1, wy1) and (wx2,
wy2).

The buffer used to store the image must be large enough to hold it. You can determine the image size
by calling IMAGESIZE at run time, or by using the formula described under IMAGESIZE. After
you have determined the image size, you can dimension the buffer accordingly.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: IMAGESIZE, PUTIMAGE

Example

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(1), ALLOCATABLE:: buffer (:)
INTEGER(2) status, x, y, error
INTEGER(4) imsize
x = 50
y = 30
status = ELLIPSE ($GFILLINTERIOR, INT2(x-15), &
 INT2(y-15), INT2(x+15), INT2(y+15))
imsize = IMAGESIZE (INT2(x-16), INT2(y-16), &
 INT2(x+16), INT2(y+16))
ALLOCATE(buffer (imsize), STAT = error)
IF (error .NE. 0) THEN
 STOP ’ERROR: Insufficient memory’
END IF
CALL GETIMAGE (INT2(x-16), INT2(y-16), &
 INT2(x+16), INT2(y+16), buffer)
END

GETLASTERRORQQ

Run-Time Function: Returns the last error set by a run-time procedure.

GERROR Page 30 of 61

Module: USE DFLIB

Syntax

result = GETLASTERRORQQ ()

Results:

The result type is INTEGER(4). The result is the most recent error code generated by a run-time
procedure.

Run-time functions that return a logical or integer value sometimes also provide an error code that
identifies the cause of errors. GETLASTERRORQQ retrieves the most recent error message. The
error constants are in DFLIB.F90 (in the \DF98\INCLUDE subdirectory). The following table shows
the run-time library routines and the errors each routine produces:

This run-time routine Produces these errors

RUNQQ ERR$NOMEM, ERR$2BIG, ERR$INVAL, ERR$NOENT,
ERR$NOEXEC

SYSTEMQQ ERR$NOMEM, ERR$2BIG, ERR$NOENT, ERR$NOEXEC

GETDRIVESIZEQQ ERR$INVAL, ERR$NOENT

GETDRIVESQQ no error

GETDRIVEDIRQQ ERR$NOMEM, ERR$RANGE

CHANGEDRIVEQQ ERR$INVAL, ERR$NOENT

CHANGEDIRQQ ERR$NOMEM, ERR$NOENT

MAKEDIRQQ ERR$NOMEM, ERR$ACCES, ERR$NOENT

DELDIRQQ ERR$NOMEM, ERR$ACCES, ERR$NOENT

FULLPATHQQ ERR$NOMEM, ERR$INVAL

SPLITPATHQQ ERR$NOMEM, ERR$INVAL

GETFILEINFOQQ ERR$NOMEM, ERR$NOENT, ERR$INVAL

SETFILETIMEQQ ERR$NOMEM, ERR$ACCES, ERR$INVAL, ERR$MFILE,
ERR$NOENT

SETFILEACCESSQQ ERR$NOMEM, ERR$INVAL, ERR$ACCES

DELFILESQQ ERR$NOMEM, ERR$ACCES, ERR$NOENT, ERR$INVAL

RENAMEFILEQQ ERR$NOMEM, ERR$ACCES, ERR$NOENT, ERR$XDEV

GETLASTERRORQQ Page 31 of 61

FINDFILEQQ ERR$NOMEM, ERR$NOENT

PACKTIMEQQ no error

UNPACKTIMEQQ no error

COMMITQQ ERR$BADF

GETCHARQQ no error

PEEKCHARQQ no error

GETSTRQQ no error

GETLASTERRORQQ no error

SETERRORMODEQQ no error

GETENVQQ ERR$NOMEM, ERR$NOENT

SETENVQQ ERR$NOMEM, ERR$INVAL

SLEEPQQ no error

BEEPQQ no error

SORTQQ ERR$INVAL

BSEARCHQQ ERR$INVAL

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

GETLINESTYLE

Graphics Function: Returns the current graphics line style.

Module: USE DFLIB

Syntax

result = GETLINESTYLE ()

Results:

The result type is INTEGER(2). The result is the current line style.

GETLINESTYLE retrieves the mask (line style) used for line drawing. The mask is a 16-bit
number, where each bit represents a pixel in the line being drawn.

GETLINESTYLE Page 32 of 61

If a bit is 1, the corresponding pixel is colored according to the current graphics color and logical
write mode; if a bit is 0, the corresponding pixel is left unchanged. The mask is repeated for the entire
length of the line. The default mask is #FFFF (a solid line). A dashed line can be represented by
#FF00 (long dashes) or #F0F0 (short dashes).

The line style is set with SETLINESTYLE. The current graphics color is set with
SETCOLORRGB or SETCOLOR. SETWRITEMODE affects how the line is displayed.

The line style retrieved by GETLINESTYLE affects the drawing of straight lines as in LINETO,
POLYGON and RECTANGLE, but not the drawing of curved lines as in ARC, ELLIPSE or PIE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: LINETO, POLYGON, RECTANGLE, SETCOLORRGB, SETFILLMASK,
SETLINESTYLE, SETWRITEMODE

Example

! Build as Graphics
 USE DFLIB
 INTEGER(2) lstyle

 lstyle = GETLINESTYLE()
 WRITE (*, 100) lstyle, lstyle
100 FORMAT (1X, ’Line mask in Hex ’, Z4, ’ and binary ’, B16)
 END

GETLOG

Portability Subroutine: Retrieves the user’s login name.

Module: USE DFPORT

Syntax

CALL GETLOG (name)

name
(Output) Character*(*). User’s login name, or all blanks if the name cannot be determined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

use dfport
character*20 username

GETLOG Page 33 of 61

CALL GETLOG (username)
print *, "You logged in as ",username

GETPHYSCOORD

Graphics Subroutine: Translates viewport coordinates to physical coordinates.

Module: USE DFLIB

Syntax

CALL GETPHYSCOORD (x, y, t)

x, y
(Input) INTEGER(2). Viewport coordinates to be translated to physical coordinates.

t
(Output) Derived Type xycoord. Physical coordinates of the input viewport position. The
xycoord derived type is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as
follows:

TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
END TYPE xycoord

Physical coordinates refer to the physical screen. Viewport coordinates refer to an area of the screen
defined as the viewport with SETVIEWPORT. Both take integer coordinate values. Window
coordinates refer to a window sized with SETWINDOW or SETWSIZEQQ. Window coordinates
are floating-point values and allow easy scaling of data to the window area. For a more complete
discussion of coordinate systems, see Understanding Coordinate Systems in the Programmer’s Guide.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETVIEWCOORD, GETWINDOWCOORD, SETCLIPRGN, SETVIEWPORT

Example

! Program to demonstrate GETPHYSCOORD, GETVIEWCOORD
! and GETWINDOWCOORD. Build as QuickWin or Standard
! Graphics
USE DFLIB
TYPE (xycoord) viewxy, physxy
TYPE (wxycoord) windxy
CALL SETVIEWPORT(INT2(80), INT2(50), &
 INT2(240), INT2(150))
! Get viewport equivalent of point (100, 90)
CALL GETVIEWCOORD (INT2(100), INT2(90), viewxy)
! Get physical equivalent of viewport coordinates
CALL GETPHYSCOORD (viewxy.xcoord, viewxy.ycoord, &
 physxy)

GETPHYSCOORD Page 34 of 61

! Get physical equivalent of viewport coordinates
CALL GETWINDOWCOORD (viewxy.xcoord, viewxy.ycoord, &
 windxy)

! Write viewport coordinates
WRITE (*,*) viewxy.xcoord, viewxy.ycoord
! Write physical coordinates
WRITE (*,*) physxy.xcoord, physxy.ycoord
! Write window coordinates
WRITE (*,*) windxy.wx, windxy.wy
END

GETPID

Portability Function: Returns the process ID of the current process.

Module: USE DFPORT

Syntax

result = GETPID ()

Results:

The result type is INTEGER(4). The result is the process ID number of the current process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

USE DFPORT
INTEGER(4) istat
istat = GETPID()

GETPIXEL, GETPIXEL_W

Graphics Function: Returns the color index of the pixel at a specified location.

Module: USE DFLIB

Syntax

result = GETPIXEL (x, y)
result = GETPIXEL_W (wx, wy)

x, y
(Input) INTEGER(2). Viewport coordinates for pixel position.

GETPIXEL, GETPIXEL_W Page 35 of 61

wx, wy
(Input) REAL(8). Window coordinates for pixel position.

Results:

The result type is INTEGER(2). The result is the pixel color index if successful; otherwise, -1 (if the
pixel lies outside the clipping region, for example).

Color routines without the RGB suffix, such as GETPIXEL, use color indexes, not true color values,
and limit you to colors in the palette, at most 256. To access all system colors, use SETPIXELRGB
to specify an explicit Red-Green-Blue value and retrieve the value with GETPIXELRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETPIXELRGB, GRSTATUS, REMAPALLPALETTERGB, REMAPPALETTERGB,
SETCOLOR, GETPIXELS, SETPIXEL

GETPIXELRGB, GETPIXELRGB_W

Graphics Function: Returns the Red-Green-Blue (RGB) color value of the pixel at a specified
location.

Module: USE DFLIB

Syntax

result = GETPIXELRGB (x, y)
result = GETPIXELRGB_W (wx, wy)

x, y
(Input) INTEGER(2). Viewport coordinates for pixel position.

wx, wy
(Input) REAL(8). Window coordinates for pixel position.

Results:

The result type is INTEGER(4). The result is the pixel’s current RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you retrieve with GETPIXELRGB, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

GETPIXELRGB, GETPIXELRGB_W Page 36 of 61

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

GETPIXELRGB returns the true color value of the pixel, set with SETPIXELRGB,
SETCOLORRGB, SETBKCOLORRGB, or SETTEXTCOLORRGB, depending on the pixel’s
position and the current configuration of the screen.

SETPIXELRGB (and the other RGB color selection functions SETCOLORRGB,
SETBKCOLORRGB, and SETTEXTCOLORRGB) sets colors to a color value chosen from the
entire available range. The non-RGB color functions (SETPIXELS, SETCOLOR,
SETBKCOLOR, and SETTEXTCOLOR) use color indexes rather than true color values. If you
use color indexes, you are restricted to the colors available in the palette, at most 256. Some display
adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access
any available color, you need to specify an explicit Red-Green-Blue (RGB) value with an RGB color
function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETPIXELRGB, GETPIXELSRGB, SETPIXELSRGB, GETPIXEL, GETPIXEL_W

Example

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(4) pixcolor, rseed
INTEGER(2) status
REAL rnd1, rnd2
LOGICAL(4) winstat
TYPE (windowconfig) wc
CALL GETTIM (status, status, status, INT2(rseed))
CALL SEED (rseed)
CALL RANDOM (rnd1)
CALL RANDOM (rnd2)
! Get the color index of a random pixel, normalized to
! be in the window. Then set current color to that
! pixel color.
winstat = GETWINDOWCONFIG(wc)
xnum = wc.numxpixels
ynum = wc.numypixels
pixcolor = GETPIXELRGB(INT2(rnd1*xnum), INT2(rnd2*ynum))
status = SETCOLORRGB (pixcolor)
END

GETPIXELS

GETPIXELS Page 37 of 61

Graphics Subroutine: Gets the color indexes of multiple pixels.

Module: USE DFLIB

Syntax

CALL GETPIXELS (n, x, y, color)

n
(Input) INTEGER(4). Number of pixels to get. Sets the number of elements in the other
arguments.

x, y
(Input) INTEGER(2). Parallel arrays containing viewport coordinates of pixels to get.

color
(Output) INTEGER(2). Array to be filled with the color indexes of the pixels at x and y.

GETPIXELS fills in the array color with color indexes of the pixels specified by the two input arrays
x and y. These arrays are parallel: the first element in each of the three arrays refers to a single pixel,
the second element refers to the next pixel, and so on.

If the pixel is outside the clipping region, the value placed in the color array is undefined. Calls to
GETPIXELS with n less than 1 are ignored. GETPIXELS is a much faster way to acquire multiple
pixel color indexes than individual calls to GETPIXEL.

The range of possible pixel color index values is determined by the current video mode and palette, at
most 256 colors. To access all system colors you need to specify an explicit Red-Green-Blue (RGB)
value with an RGB color function such as SETPIXELSRGB and retrieve the value with
GETPIXELSRGB, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETPIXELSRGB, SETPIXELSRGB, GETPIXEL, SETPIXELS

GETPIXELSRGB

Graphics Subroutine: Returns the Red-Green-Blue (RGB) color values of multiple pixels.

Module: USE DFLIB

Syntax

CALL GETPIXELSRGB (n, x, y, color)

GETPIXELSRGB Page 38 of 61

n
(Input) INTEGER(4). Number of pixels to get. Sets the number of elements in the other
argument arrays.

x, y
(Input) INTEGER(2). Parallel arrays containing viewport coordinates of pixels.

color
(Output) INTEGER(4). Array to be filled with RGB color values of the pixels at x and y.

GETPIXELS fills in the array color with the RGB color values of the pixels specified by the two
input arrays x and y. These arrays are parallel: the first element in each of the three arrays refers to a
single pixel, the second element refers to the next pixel, and so on.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the values you retrieve with GETPIXELSRGB, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 11111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

GETPIXELSRGB is a much faster way to acquire multiple pixel RGB colors than individual calls to
GETPIXELRGB. GETPIXELSRGB returns an array of true color values of multiple pixels, set
with SETPIXELSRGB, SETCOLORRGB, SETBKCOLORRGB, or SETTEXTCOLORRGB,
depending on the pixels’ positions and the current configuration of the screen.

SETPIXELSRGB (and the other RGB color selection functions SETCOLORRGB,
SETBKCOLORRGB, and SETTEXTCOLORRGB) sets colors to a color value chosen from the
entire available range. The non-RGB color functions (SETPIXELS, SETCOLOR,
SETBKCOLOR, and SETTEXTCOLOR) use color indexes rather than true color values. If you
use color indexes, you are restricted to the colors available in the palette, at most 256. Some display
adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access
any available color, you need to specify an explicit RGB value with an RGB color function, rather
than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETPIXELSRGB, GETPIXELRGB, GETPIXELRGB_W, GETPIXELS, SETPIXELS

Example

GETPIXELSRGB Page 39 of 61

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(4) color(50), result
INTEGER(2) x(50), y(50), status
TYPE (xycoord) pos

result = SETCOLORRGB(#FF)
CALL MOVETO(INT2(0), INT2(0), pos)
status = LINETO(INT2(100), INT2(200))

! Get 50 pixels at line 30 in viewport
DO i = 1, 50
 x(i) = i-1
 y(i) = 30
END DO
CALL GETPIXELSRGB(300, x, y, color)
! Move down 30 pixels and redisplay pixels
DO i = 1, 50
 y(i) = y(i) + 30
END DO
CALL SETPIXELSRGB (50, x, y, color)
END

GETSTATUSFPQQ (x86 only)

Run-Time Subroutine: Returns the floating-point processor status word. This routine is only
available on Intel® processors.

Module: USE DFLIB

Syntax

CALL GETSTATUSFPQQ (status)

status
(Output) INTEGER(2). Floating-point processor status word.

The floating-point status word shows whether various floating-point exception conditions have
occurred. Visual Fortran initially clears (sets to 0) all status flags, but after an exception occurs it
does not reset the flags before performing additional floating-point operations. A status flag with a
value of one thus shows there has been at least one occurence of the corresponding exception. The
following table lists the status flags and their values:

Parameter name Hex value Description

FPSW$MSW_EM #003F Status Mask (set all flags to 1)

FPSW$INVALID #0001 An invalid result occurred

FPSW$DENORMAL #0002 A denormal (very small number) occurred

FPSW$ZERODIVIDE #0004 A divide by zero occurred

GETSTATUSFPQQ (x86 only) Page 40 of 61

FPSW$OVERFLOW #0008 An overflow occurred

FPSW$UNDERFLOW #0010 An underflow occurred

FPSW$INEXACT #0020 Inexact precision occurred

You can use a logical comparison on the status word returned by GETSTATUSFPQQ to determine
which of the six floating-point exceptions listed in the table has occurred.

An exception is disabled if its flag is set to 1 and enabled if its flag is cleared to 0. By default, the
denormal, underflow and inexact precision exceptions are disabled, and the invalid, overflow and
divide-by-zero exceptions are enabled. Exceptions can be enabled and disabled by clearing and
setting the flags with SETCONTROLFPQQ. You can use GETCONTROLFPQQ to determine
which exceptions are currently enabled and disabled.

If an exception is disabled, it does not cause an interrupt when it occurs. Instead, floating-point
processes generate an appropriate special value (NaN or signed infinity), but the program continues.
You can find out which exceptions (if any) occurred by calling GETSTATUSFPQQ.

If errors on floating-point exceptions are enabled (by clearing the flags to 0 with
SETCONTROLFPQQ), the operating system generates an interrupt when the exception occurs. By
default, these interrupts cause run-time errors, but you can capture the interrupts with SIGNALQQ
and branch to your own error-handling routines.

For a full discussion of the floating-point status word, exceptions, and error handling, see The
Floating-Point Environment in the Programmer’s Guide.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: SETCONTROLFPQQ, GETCONTROLFPQQ, SIGNALQQ, MATHERRQQ

Example

! Program to demonstrate GETSTATUSFPQQ
 USE DFLIB
 INTEGER(2) status

 CALL GETSTATUSFPQQ(status)
! check for divide by zero
 IF (IAND(status, FPSW$ZERODIVIDE) .NE. 0) THEN
 WRITE (*,*) ’Divide by zero occurred. Look &
 for NaN or signed infinity in resultant data.’
 END IF
END

GETSTRQQ

Run-Time Function: Reads a character string from the keyboard using buffered input.

GETSTRQQ Page 41 of 61

Module: USE DFLIB

Syntax

result = GETSTRQQ (buffer)

buffer
(Output) Character*(*). Character string returned from keyboard, padded with blanks.

Results:

The result type is INTEGER(4). The result is the number of characters placed in buffer.

The function does not complete until the user presses RETURN or ENTER.

Using GETSTRQQ rather than READ allows you to use MS-DOS command-line editing, or
command-line recall if a recall utility such as DOSKEY is active.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: READ, GETCHARQQ, PEEKCHARQQ

Example

! Program to demonstrate GETSTRQQ
 USE DFLIB
 INTEGER(4) length, result
 CHARACTER(80) prog, args
 WRITE (*, ’(A, \)’) ’ Enter program to run: ’
 length = GETSTRQQ (prog)
 WRITE (*, ’(A, \)’) ’ Enter arguments: ’
 length = GETSTRQQ (args)
 result = RUNQQ (prog, args)
 IF (result .EQ. -1) THEN
 WRITE (*,*) ’Couldn’’t run program’
 ELSE
 WRITE (*, ’(A, Z4, A)’) ’Return code : ’, result, ’h’
 END IF
 END

GETTEXTCOLOR

Graphics Function: Gets the current text color index.

Module: USE DFLIB

Syntax

result = GETTEXTCOLOR ()

GETTEXTCOLOR Page 42 of 61

Results:

The result type is INTEGER(2). It is the current text color index.

GETTEXTCOLOR returns the text color index set by SETTEXTCOLOR. SETTEXTCOLOR
affects text output with OUTTEXT, WRITE, and PRINT. The background color index is set with
SETBKCOLOR and returned with GETBKCOLOR. The color index of graphics over the
background color is set with SETCOLOR and returned with GETCOLOR. These non-RGB color
functions use color indexes, not true color values, and limit the user to colors in the palette, at most
256. To access all system colors, use SETTEXTCOLORRGB, SETBKCOLORRGB, and
SETCOLORRGB.

The default text color index is 15, which is associated with white unless the user remaps the palette.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: OUTTEXT, REMAPPALETTERGB, SETCOLOR, SETTEXTCOLOR

GETTEXTCOLORRGB

Graphics Function: Gets the Red-Green-Blue (RGB) value of the current text color (used with
OUTTEXT, WRITE and PRINT).

Module: USE DFLIB

Syntax

result = GETTEXTCOLORRGB ()

Results:

The result type is INTEGER(4). It is the RGB value of the current text color.

In each RGB color calue, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you retrieve with GETTEXTCOLORRGB, red is the rightmost
byte, followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary (hex FF) the maximum for each of

GETTEXTCOLORRGB Page 43 of 61

the three components. For example, #0000FF yields full-intensity red, #00FF00 full-intensity green,
#FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in bright white.

GETTEXTCOLORRGB returns the RGB color value of text over the background color (used by
text functions such as OUTTEXT, WRITE, and PRINT), set with SETTEXTCOLORRGB. The
RGB color value used for graphics is set and returned with SETCOLORRGB and
GETCOLORRGB. SETCOLORRGB controls the color used by the graphics function
OUTGTEXT, while SETTEXTCOLORRGB controls the color used by all other text output
functions. The RGB background color value for both text and graphics is set and returned with
SETBKCOLORRGB and GETBKCOLORRGB.

SETTEXTCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB, and
SETCOLORRGB) sets the color to a color value chosen from the entire available range. The non-
RGB color functions (SETTEXTCOLOR, SETBKCOLOR, and SETCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available in the
palette, at most 256. Some display adapters (SVGA and true color) are capable of creating 262,144
(256K) colors or more. To access any available color, you need to specify an explicit RGB value with
an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETTEXTCOLORRGB, GETBKCOLORRGB, GETCOLORRGB, GETTEXTCOLOR

Example

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(4) oldtextc, oldbackc, temp
TYPE (rccoord) curpos
! Save color settings
oldtextc = GETTEXTCOLORRGB()
oldbackc = GETBKCOLORRGB()
CALL CLEARSCREEN($GCLEARSCREEN)
! Reset colors
temp = SETTEXTCOLORRGB(#00FFFF) ! full red + full green
 ! = full yellow text
temp = SETBKCOLORRGB(#FF0000) ! blue background
CALL SETTEXTPOSITION(INT2(4), INT2(15), curpos)
CALL OUTTEXT(’Hello, world’)
! Restore colors
temp = SETTEXTCOLORRGB(oldtextc)
temp = SETBKCOLORRGB(oldbackc)
END

GETTEXTPOSITION

Graphics Subroutine: Returns the current text position.

Module: USE DFLIB

Syntax

GETTEXTPOSITION Page 44 of 61

CALL GETTEXTPOSITION (t)

t
(Output) Derived type rccord. Current text position.The derived type rccoord is defined in
DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

 TYPE rccoord
 INTEGER(2) row ! Row coordinate
 INTEGER(2) col ! Column coordinate
 END TYPE rccoord

The text position given by coordinates (1, 1) is defined as the upper-left corner of the text window.
Text output from the OUTTEXT function (and WRITE and PRINT statements) begins at the
current text position. Font text is not affected by the current text position. Graphics output, including
OUTGTEXT output, begins at the current graphics output position, which is a separate position
returned by GETCURRENTPOSITION.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETTEXTPOSITION, GETCURRENTPOSITION, OUTTEXT, WRITE,
SETTEXTWINDOW

Example

! Build as QuickWin or Standard Graphics
 USE DFLIB
 TYPE (rccoord) textpos
 CALL GETTEXTPOSITION (textpos)
 END

GETTEXTWINDOW

Graphics Subroutine: Finds the boundaries of the current text window.

Module: USE DFLIB

Syntax

CALL GETTEXTWINDOW (r1, c1, r2, c2)

r1, c1
(Output) INTEGER(2). Row and column coordinates for upper-left corner of the text window.

r2, c2
(Output) INTEGER(2). Row and column coordinates for lower-right corner of the text window.

GETTEXTWINDOW Page 45 of 61

Output from OUTTEXT and WRITE is limited to the text window. By default, this is the entire
window, unless the text window is redefined by SETTEXTWINDOW.

The window defined by SETTEXTWINDOW has no effect on output from OUTGTEXT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETTEXTPOSITION, OUTTEXT, WRITE, SCROLLTEXTWINDOW,
SETTEXTPOSITION, SETTEXTWINDOW, WRAPON

Example

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(2) top, left, bottom, right
DO i = 1, 10
 WRITE(*,*) "Hello, world"
END DO
! Save text window position
 CALL GETTEXTWINDOW (top, left, bottom, right)
! Scroll text window down seven lines
 CALL SCROLLTEXTWINDOW (INT2(-7))
! Restore text window
 CALL SETTEXTWINDOW (top, left, bottom, right)
 WRITE(*,*) "At beginning again"
 END

GETTIM

Run-Time Subroutine: Returns the time.

Module: USE DFLIB

Syntax

CALL GETTIM (ihr, imin, isec, i100th)

ihr
(Output) INTEGER(2). Hour (0-23).

imin
(Output) INTEGER(2). Minute (0-59).

isec
(Output) INTEGER(2). Second (0-59).

i100th

GETTIM Page 46 of 61

(Output) INTEGER(2). Hundredths of a second (0-99).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: GETDAT, SETDAT, SETTIM, CLOCK, CTIME, DTIME, ETIME, GMTIME, ITIME,
LTIME, RTC, SECNDS, TIME, TIMEF

Example

See the example in GETDAT.

GETUID

Portability Function: Retrieves the user ID of the calling process.

Module: USE DFPORT

Syntax

result = GETUID ()

Results:

The result type is INTEGER(4). The result is always 1.

This function is included for compatibility only.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

USE DFPORT
integer(4) istat
ISTAT = GETUID()

GETUNITQQ

QuickWin Function: Returns the unit number corresponding to the specified Windows handle.

Module: USE DFLIB

Syntax

result = GETUNITQQ (whandle)

GETUNITQQ Page 47 of 61

whandle
(Input) INTEGER(4). The Windows handle to the window; this is a unique ID.

Results:

The result type is INTEGER(4). The result is the unit number corresponding to the specified
Windows handle. It returns -1 if whandle does not exist.

This routine is the inverse of GETHWNDQQ.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: GETHWNDQQ, Using QuickWin

GETVIEWCOORD, GETVIEWCOORD_W

Graphics Subroutine: Translates physical coordinates or window coordinates to viewport
coordinates.

Module: USE DFLIB

Syntax

CALL GETVIEWCOORD (x, y, t)
CALL GETVIEWCOORD_W (wx, wy, wt)

x, y
(Input) INTEGER(2). Physical coordinates to be converted to viewport coordinates.

t
(Output) Derived type xycoord. Viewport coordinates. The xycoord derived type is defined in
DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
END TYPE xycoord

wx, wy
(Input) REAL(8). Window coordinates to be converted to viewport coordinates.

wt
(Output) Derived type xycoord. Viewport coordinates. The xycoord derived type is defined in
DFLIB.F90 (see above).

Viewport coordinates refer to an area of the screen defined as the viewport with SETVIEWPORT.

GETVIEWCOORD, GETVIEWCOORD_W Page 48 of 61

Physical coordinates refer to the whole screen. Both take integer coordinate values. Window
coordinates refer to a window sized with SETWINDOW or SETWSIZEQQ. Window coordinates
are floating-point values and allow easy scaling of data to the window area. For a more complete
discussion of coordinate systems, see Understanding Coordinate Systems in the Programmer’s Guide.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETPHYSCOORD, GETWINDOWCOORD

Example

See the example program in GETPHYSCOORD.

GETWINDOWCONFIG

QuickWin Function: Gets the properties of the current window.

Module: USE DFLIB

Syntax

result = GETWINDOWCONFIG (wc)

wc
(Output) Derived type windowconfig. Contains window properties. The windowconfig
derived type is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

TYPE windowconfig
INTEGER(2) numxpixels ! Number of pixels on x-axis
INTEGER(2) numypixels ! Number of pixels on y-axis
INTEGER(2) numtextcols ! Number of text columns
 ! available
INTEGER(2) numtextrows ! Number of text rows
 ! available
INTEGER(2) numcolors ! Number of color indexes
INTEGER(4) fontsize ! Size of default font. Set
 ! to QWIN$EXTENDFONT when using
 ! multibyte characters, in which case
 ! extendfontsize sets the font size.
CHARACTER(80) title ! window title
INTEGER(2) bitsperpixel ! number of bits per pixel
! The next three parameters support multibyte character
! sets (such as Japanese)
CHARACTER(32) extendfontname ! any nonproportionally
 ! spaced font available on the system
INTEGER(4) extendfontsize ! takes same values as
 ! fontsize, but used for multibyte
 ! character sets when fontsize set to
 ! QWIN$EXTENDFONT
INTEGER(4) extendfontattributes ! font attributes
 ! such as bold and italic for
 ! multibyte character sets

GETWINDOWCONFIG Page 49 of 61

END TYPE windowconfig

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE. (for example,
if there is no active child window).

GETWINDOWCONFIG returns information about the active child window. If you have not set the
window properties with SETWINDOWCONFIG, GETWINDOWCONFIG returns default
window values.

A typical set of values would be 1024 x pixels, 768 y pixels, 128 text columns, 48 text rows, and a
font size of 8x16 pixels. The resolution of the display and the assumed font size of 8x16 pixels
generates the number of text rows and text columns. The resolution (in this case, 1024 x pixels by
768 y pixels) is the size of the virtual window. To get the size of the physical window visible on the
screen, use GETWSIZEQQ. In this case, GETWSIZEQQ returned the following values: (0,0) for
the x and y position of the physical window, 25 for the height or number of rows, and 71 for the
width or number of columns.

The number of colors returned depends on the video drive. The window title defaults to "Graphic1"
for the default window. All of these values can be changed with SETWINDOWCONFIG.

Note that the bitsperpixel field in the windowconfig derived type is an output field only, while the
other fields return output values to GETWINDOWCONFIG and accept input values from
SETWINDOWCONFIG.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETWSIZEQQ SETWINDOWCONFIG, SETACTIVEQQ, Using QuickWin

Example

!Build as QuickWin or Standard Graphics App.
USE DFLIB
LOGICAL(4) status
TYPE (windowconfig) wc
status = GETWINDOWCONFIG(wc)
IF(wc.numtextrows .LT. 10) THEN
 wc.numtextrows = 10
 status = SETWINDOWCONFIG(wc)
 IF(.NOT. status) THEN ! if setwindowconfig error
 status = SETWINDOWCONFIG(wc) ! reset
 ! setwindowconfig with corrected values
 status = GETWINDOWCONFIG(wc)
 IF(wc.numtextrows .NE. 10) THEN
 WRITE(*,*) ’Error: Cannot increase text rows to 10’
 END IF
 END IF
END IF
END

GETWINDOWCOORD Page 50 of 61

GETWINDOWCOORD

Graphics Subroutine: Translates viewport coordinates to window coordinates.

Module: USE DFLIB

Syntax

CALL GETWINDOWCOORD (x, y, wt)

x, y
(Input) INTEGER(2). Viewport coordinates to be converted to window coordinates.

wt
(Output) Derived type wxycoord. Window coordinates. The wxycoord derived type is defined
in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

TYPE wxycoord
 REAL(8) wx ! x-coordinate
 REAL(8) wy ! y-coordinate
END TYPE wxycoord

Physical coordinates refer to the physical screen. Viewport coordinates refer to an area of the screen
defined as the viewport with SETVIEWPORT. Both take integer coordinate values. Window
coordinates refer to a window sized with SETWINDOW or SETWSIZEQQ. Window coordinates
are floating-point values and allow easy scaling of data to the window area. For a more complete
discussion of coordinate systems, see Understanding Coordinate Systems in the Programmer’s Guide.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETCURRENTPOSITION, GETPHYSCOORD, GETVIEWCOORD, MOVETO,
SETVIEWPORT, SETWINDOW

Example

See the example program in GETPHYSCOORD.

GETWRITEMODE

Graphics Function: Returns the current logical write mode, which is used when drawing lines with
the LINETO, POLYGON, and RECTANGLE functions.

Module: USE DFLIB

Syntax

GETWRITEMODE Page 51 of 61

result = GETWRITEMODE ()

Results:

The result type is INTEGER(2). The result is the current write mode. Possible return values are:

� $GPSET: Causes lines to be drawn in the current graphics color. (default)

� $GAND: Causes lines to be drawn in the color that is the logical AND of the current graphics
color and the current background color.

� $GOR: Causes lines to be drawn in the color that is the logical OR of the current graphics
color and the current background color.

� $GPRESET: Causes lines to be drawn in the color that is the logical NOT of the current
graphics color.

� $GXOR: Causes lines to be drawn in the color that is the logical exclusive OR (XOR) of the
current graphics color and the current background color.

The default value is $GPSET. These constants are defined in DFLIB.F90 (in the \DF98\INCLUDE
subdirectory).

The write mode is set with SETWRITEMODE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETWRITEMODE, SETLINESTYLE, LINETO, POLYGON, PUTIMAGE,
RECTANGLE, SETCOLORRGB, SETFILLMASK, GRSTATUS

Example

! Build as QuickWin or Standard Graphics App.
 USE DFLIB
 INTEGER(2) mode
 mode = GETWRITEMODE()
 END

GETWSIZEQQ

QuickWin Function: Gets the size and position of a window.

Module: USE DFLIB

Syntax

GETWSIZEQQ Page 52 of 61

result = GETWSIZEQQ (unit, ireq, winfo)

unit
(Input) INTEGER(4). Specifies the window unit. Unit numbers 0, 5 and 6 refer to the default
startup window only if you have not explicitly opened them with the OPEN statement. To
access information about the frame window (as opposed to a child window), set unit to the
symbolic constant QWIN$FRAMEWINDOW, defined in DFLIB.F90 in the \DF98
\INCLUDE subdirectory.

ireq
(Input) INTEGER(4). Specifies what information is obtained. The following symbolic
constants, defined in DFLIB.F90, are available:

n QWIN$SIZEMAX: Gets information about the maximum window size.
n QWIN$SIZECURR: Gets information about the current window size.

winfo
(Output) Derived type qwinfo. Physical coordinates of the window’s upper-left corner, and the
current or maximum height and width of the window’s client area (the area within the frame).
The derived type qwinfo is defined in DFLIB.F90 as follows:

TYPE QWINFO
 INTEGER(2) TYPE ! request type (controls
 ! SETWSIZEQQ)
 INTEGER(2) X ! x coordinate for upper left
 INTEGER(2) Y ! y coordinate for upper left
 INTEGER(2) H ! window height
 INTEGER(2) W ! window width
END TYPE QWINFO

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

The position and dimensions of child windows are expressed in units of character height and width.
The position and dimensions of the frame window are expressed in screen pixels.

The height and width returned for a frame window reflects the size in pixels of the client area
excluding any borders, menus, and status bar at the bottom of the frame window. You should adjust
the values used in SETWSIZEQQ to take this into account.

The client area is the area actually available to place child windows.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: GETWINDOWCONFIG, SETWSIZEQQ, Using QuickWin

GMTIME Page 53 of 61

GMTIME

Portability Subroutine: Returns the Greenwich mean time in an array of time elements.

Module: USE DFPORT

Syntax

CALL GMTIME (stime, tarray)

stime
(Input) Default integer (INTEGER(4) unless changed by the user). Numeric time data to be
formatted. Number of seconds since 00:00:00 Greenwich mean time, January1970.

tarray
(Output) Default integer (INTEGER(4) unless changed by the user). One-dimensional array
with 9 elements used to contain numeric time data. The elements of tarray are returned as
follows:

Element Value

tarray(1) Seconds (0-59)

tarray(2) Minutes (0-59)

tarray(3) Hours (0-23)

tarray(4) Day of month (1-31)

tarray(5) Month (0-11)

tarray(6) Year number in century (0-99)

tarray(7) Day of week (0-6, where 0 is Sunday)

tarray(8) Day of year (0-365)

tarray(9) Daylight saving flag (0 if standard time, 1 if daylight saving time)

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

use dfport
integer(4) stime, timearray(9)

GMTIME Page 54 of 61

CALL GMTIME (stime, timearray)
print *, timearray

GOTO -- Assigned

Statement: (Obsolescent) Transfers control to the statement whose label was most recently assigned
to a variable.

Syntax

GOTO var [[,] (label-list)]

var
Is a scalar integer variable.

label-list
Is a list of labels (separated by commas) of valid branch target statements in the same scoping
unit as the assigned GO TO statement. The same label can appear more than once in this list.

Rules and Behavior

The variable must have a statement label value assigned to it by an ASSIGN statement (not an
arithmetic assignment statement) before the GO TO statement is executed.

If a list of labels appears, the statement label assigned to the variable must be one of the labels in the
list.

Both the assigned GO TO statement and its associated ASSIGN statement must be in the same
scoping unit.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Obsolescent Features in Fortran 90, GOTO -- Computed GOTO, GOTO -- Unconditional
GOTO, Execution Control

Examples

The following example is equivalent to GO TO 200:

ASSIGN 200 TO IGO
GO TO IGO

The following example is equivalent to GO TO 450:

ASSIGN 450 TO IBEG
GO TO IBEG, (300,450,1000,25)

GOTO -- Assigned Page 55 of 61

The following example shows an invalid use of an assigned variable:

ASSIGN 10 TO I
J = I
GO TO J

In this case, variable J is not the variable assigned to, so it cannot be used in the assigned GO TO
statement.

The following shows another example:

 ASSIGN 10 TO n
 GOTO n
10 CONTINUE

The following example uses an assigned GOTO statement to check the value of view:

C Show user appropriate view of data depending on
C security clearance.
 GOTO view (100, 200, 400)

GOTO -- Computed

Statement: Transfers control to one of a set of labeled branch target statements based on the value of
an expression.

Syntax

GOTO (label-list) [,] expr

label-list
Is a list of labels (separated by commas) of valid branch target statements in the same scoping
unit as the computed GO TO statement. (Also called the transfer list.) The same label can
appear more than once in this list.

expr
Is a scalar numeric expression in the range 1 to n, where n is the number of statement labels in
label-list. If necessary, it is converted to integer data type.

Rules and Behavior

When the computed GO TO statement is executed, the expression is evaluated first. The value of the
expression represents the ordinal position of a label in the associated list of labels. Control is
transferred to the statement identified by the label. For example, if the list contains (30,20,30,40) and
the value of the expression is 2, control is transferred to the statement identified with label 20.

If the value of the expression is less than 1 or greater than the number of labels in the list, control is
transferred to the next executable statement or construct following the computed GO TO statement.

GOTO -- Computed Page 56 of 61

Compatibility

Console Standard Graphics QuickWin Graphics Windows DLL LIB

See Also: GOTO -- Unconditional GOTO, Execution Control

Examples

The following example shows valid computed GO TO statements:

GO TO (12,24,36), INDEX
GO TO (320,330,340,350,360), SITU(J,K) + 1

The following shows another example:

 next = 1
C
C The following statement transfers control to statement 10:
C
 GOTO (10, 20) next
 ...
10 CONTINUE
 ...
20 CONTINUE

GOTO -- Unconditional

Statement: Transfers control to the same branch target statement every time it executes.

Syntax

GO TO label

label
Is the label of a valid branch target statement in the same scoping unit as the GO TO
statement.

The unconditional GO TO statement transfers control to the branch target statement identified by the
specified label.

Compatibility

Console Standard Graphics QuickWin Graphics Windows DLL LIB

See Also: GOTO -- Computed GOTO, Execution Control

Examples

The following are examples of GO TO statements:

GOTO -- Unconditional Page 57 of 61

 GO TO 7734
 GO TO 99999

The following shows another example:

 integer(2) in
10 print *, ’enter a number from one to ten: ’
 read *, in
 select case (in)
 case (1:10)
 exit
 case default
 print *, ’wrong entry, try again’
 goto 10
 end select

GRSTATUS

Graphics Function: Returns the status of the most recently used graphics routine.

Module: USE DFLIB

Syntax

result = GRSTATUS ()

Results:

The result type is INTEGER(2). The result is the status of the most recently used graphics function.

Use GRSTATUS immediately following a call to a graphics routine to determine if errors or
warnings were generated. Return values less than 0 are errors, and values greater than 0 are warnings.

The following symbolic constants are defined in the DFLIB.F90 module file (in the \DF98\INCLUDE
subdirectory) for use with GRSTATUS:

Constant Meaning

$GRFILEWRITEERROR Error writing bitmap file

$GRFILEOPENERROR Error opening bitmap file

$GRIMAGEREADERROR Error reading image

$GRBITMAPDISPLAYERROR Error displaying bitmap

$GRBITMAPTOOLARGE Bitmap too large

$GRIMPROPERBITMAPFORMAT Improper format for bitmap file

GRSTATUS Page 58 of 61

$GRFILEREADERROR Error reading file

$GRNOBITMAPFILE No bitmap file

$GRINVALIDIMAGEBUFFER Image buffer data inconsistent

$GRINSUFFICIENTMEMORY Not enough memory to allocate buffer or to complete a
fill operation

$GRINVALIDPARAMETER One or more parameters invalid

$GRMODENOTSUPPORTED Requested video mode not supported

$GRERROR Graphics error

$GROK Success

$GRNOOUTPUT No action taken

$GRCLIPPED Output was clipped to viewport

$GRPARAMETERALTERED One or more input parameters was altered to be within
range, or pairs of parameters were interchanged to be in
the proper order

After a graphics call, compare the return value of GRSTATUS to $GROK. to determine if an error
has occurred. For example:

 IF (GRSTATUS .LT. $GROK) THEN
 ! Code to handle graphics error goes here
 ENDIF

The following routines cannot give errors, and they all set GRSTATUS to $GROK:

DISPLAYCURSOR GETTEXTCOLORRGB

GETBKCOLOR GETTEXTPOSITION

GETBKCOLORRGB GETTEXTWINDOW

GETCOLOR OUTTEXT

GETCOLORRGB WRAPON

GETTEXTCOLOR

The following table lists other routines with the error or warning messages they produce for
GRSTATUS:

GRSTATUS Page 59 of 61

Function Possible GRSTATUS error codes Possible GRSTATUS warning
codes

ARC, ARC_W $GRINVALIDPARAMETER $GRNOOUTPUT

CLEARSCREEN $GRINVALIDPARAMETER

ELLIPSE, ELLIPSE_W $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT

FLOODFILLRGB $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT

GETARCINFO $GRERROR

GETFILLMASK $GRERROR,
$GRINVALIDPARAMETER

GETFONTINFO $GRERROR

GETGTEXTEXTENT $GRERROR

GETIMAGE $GRINSUFFICIENTMEMORY $GRPARAMETERALTERED

GETPIXEL $GRBITMAPTOOLARGE

GETPIXELRGB $GRBITMAPTOOLARGE

LINETO, LINETO_W $GRNOOUTPUT,
$GRCLIPPED

LOADIMAGE $GRFILEOPENERROR,
$GRNOBITMAPFILE,
$GRALEREADERROR,
$GRIMPROPERBITMAPFORMAT,
$GRBITMAPTOOLARGE,
$GRIMAGEREADERROR

OUTGTEXT $GRNOOUTPUT,
$GRCLIPPED

PIE, PIE_W $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT

POLYGON, POLYGON_W $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT,
$GRCLIPPED

GRSTATUS Page 60 of 61

PUTIMAGE,
PUTIMAGE_W

$GRERROR,
$GRINVALIDPARAMETER,
$GRINVALIDIMAGEBUFFER
$GRBITMAPDISPLAYERROR

$GRPARAMETERALTERED
$GRNOOUTPUT

RECTANGLE,
RECTANGLE_W

$GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT,
$GRCLIPPED

REMAPPALETTERGB $GRERROR,
$GRINVALIDPARAMETER

REMAPALLPALETTERGB $GRERROR,
$GRINVALIDPARAMETER

SAVEIMAGE $GRFILEOPENERROR

SCROLLTEXTWINDOW $GRNOOUTPUT

SETBKCOLOR $GRINVALIDPARAMETER $GRPARAMETERALTERED

SETBKCOLORRGB $GRINVALIDPARAMETER $GRPARAMETERALTERED

SETCLIPRGN $GRPARAMETERALTERED

SETCOLOR $GRPARAMETERALTERED

SETCOLORRGB $GRPARAMETERALTERED

SETFONT $GRERROR,
$GRINSUFFICIENTMEMORY

$GRPARAMETERALTERED

SETPIXEL, SETPIXEL_W $GRNOOUTPUT

SETPIXELRGB,
SETPIXELRGB_W

 $GRNOOUTPUT

SETTEXTCOLOR $GRPARAMETERALTERED

SETTEXTCOLORRGB $GRPARAMETERALTERED

SETTEXTPOSITION $GRPARAMETERALTERED

SETTEXTWINDOW $GRPARAMETERALTERED

SETVIEWPORT $GRPARAMETERALTERED

GRSTATUS Page 61 of 61

SETWINDOW $GRINVALIDPARAMETER $GRPARAMETERALTERED

SETWRITEMODE $GRINVALIDPARAMETER

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: ARC, ELLIPSE, FLOODFILLRGB, LINETO, PIE, POLYGON,
REMAPALLPALETTERGB, SETBKCOLORRGB, SETCOLORRGB, SETPIXELRGB,
SETTEXTCOLORRGB, SETWINDOW, SETWRITEMODE

HOSTNAM Page 1 of 58

HOSTNAM

Portability Function: Retrieves the current host computer name.

Module: USE DFPORT

Syntax

result = HOSTNAM (name)

name
(Output) Character*(*). Name of the current host. Should be at least as long as
MAX_COMPUTERNAME_LENGTH, which is defined in the DFPORT module.

Results:

The result type is INTEGER(4). The result is zero if successful. If name is not long enough to contain
all of the host name, the function truncates the host name and returns - 1.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

use dfport
character*20 hostnam
integer(4) istat
ISTAT = HOSTNAM (hostname)

HUGE

Elemental Intrinsic Function (Generic): Returns the largest number in the model representing the
same type and kind parameters as the argument.

Syntax

result = HUGE (x)

x
(Input) Must be of type integer or real; it can be scalar or array valued.

Results:

The result type is scalar of the same type and kind parameters as x. If x is of type integer, the result
has the value rq - 1. If x is of type real, the result has the value (1 - b-p)be

max.

HUGE Page 2 of 58

Integer parameters r and q are defined in Model for Integer Data; real parameters b, p, and emax are
defined in Model for Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: TINY, Data Representation Models

Examples

If X is of type REAL(4), HUGE (X) has the value (1 - 2-24) x 2128.

IACHAR

Elemental Intrinsic Function (Generic): Returns the position of a character in the ASCII collating sequence.

Syntax

result = IACHAR (c)

c
(Input) Must be of type character of length 1.

Results:

The result type is default integer. If c is in the ASCII collating sequence, the result is the position of c
in that sequence and satisfies the inequality (0 <= IACHAR(c) <= 127).

The results must be consistent with the LGE, LGT, LLE, and LLT lexical comparison functions.
For example, if LLE(C, D) is true, IACHAR(C) .LE. IACHAR(D) is also true.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ASCII and Key Code Charts, ACHAR, CHAR, ICHAR, LGE, LGT, LLE, LLT

Examples

IACHAR (’Y’) has the value 89.

IACHAR (’%’) has the value 37.

IAND

IAND Page 3 of 58

Elemental Intrinsic Function (Generic): Performs a logical AND on corresponding bits. This
function can also be specified as AND.

Syntax

result = IAND (i, j)

i
(Input) Must be of type integer.

j
(Input) Must be of type integer with the same kind parameter as i.

Results:

The result type is the same as i. The result value is derived by combining i and j bit-by-bit according
to the following truth table:

 i j IAND (i, j)

 1 1 1
 1 0 0
 0 1 0
 0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIAND INTEGER(2) INTEGER(2)

JIAND INTEGER(4) INTEGER(4)

KIAN D 1 INTEGER(8) INTEGER(8)

1 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IEOR, IOR, NOT

Examples

IAND (2, 3) has the value 2.

IAND Page 4 of 58

IAND (4, 6) has the value 4.

IARGC

Portability Function: Returns the index of the last command-line argument.

Module: USE DFPORT

Syntax

result = IARGC ()

Results:

The result type is INTEGER(4). The result is the index of the last command-line argument.

IARGC is identical to the intrinsic function NARGS.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NARGS

Example

use dfport
integer(4) no_of_arguments
no_of_arguments = IARGC ()
print *, ’total command line arguments are ’, no_of_arguments

IARGCOUNT (VMS only)

Inquiry Intrinsic Function (Generic): Returns the count of actual arguments passed to the current routine.

Syntax

result = IARGCOUNT ()

Results:

The result type is default integer. Functions with a type of CHARACTER, COMPLEX(8), or REAL(16)
have an extra argument added that is used to return the function value.

Formal (dummy) arguments that can be omitted must be declared VOLATILE.

Examples

IARGCOUNT (VMS only) Page 5 of 58

Consider the following:

 CALL SUB (A,B)
 ...
 SUBROUTINE SUB (X,Y,Z)
 VOLATILE Z
 TYPE *, IARGCOUNT() ! Displays the value 2

IARGPTR

Inquiry Intrinsic Function (Generic): Returns a pointer to the actual argument list for the current routine.

Syntax

result = IARGPTR ()

Results:

The result type is INTEGER(4) on Intel processors; INTEGER(8) on Alpha processors. The actual
argument list is an array of values of the same type.

The first element has the address of the first argument. Formal (dummy) arguments that can be
omitted must be declared VOLATILE.

See Also: VOLATILE

Example

WRITE (*, ’(" Address of argument list is ", Z16.8)’) IARGPTR ()

IBCHNG

Elemental Intrinsic Function (Generic): Reverses the value of a specified bit in an integer.

Syntax

result = IBCHNG (i, pos)

i
(Input) Must be of type integer. This argument contains the bit to be reversed.

pos
(Input) Must be of type integer. This argument is the position of the bit to be changed.

The rightmost (least significant) bit of i is in position 0.

Results:

IBCHNG Page 6 of 58

The result type is the same as i. The result is equal to i with the bit in position pos reversed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BTEST, IAND, IBCLR, IBSET, IEOR, IOR, ISHA, ISHC, ISHL, ISHFT, NOT

Example

 INTEGER J, K
 J = IBCHNG(10, 2) ! returns 14 = 1110
 K = IBCHNG(10, 1) ! returns 8 = 1000

IBCLR

Elemental Intrinsic Function (Generic): Clears one bit to zero.

Syntax

result = IBCLR (i, pos)

i
(Input) Must be of type integer.

pos
Must be of type integer. It must not be negative and it must be less than BIT_SIZE(i).

Results:

The result type is the same as i. The result has the value of the sequence of bits of i, except that bit
pos of i is set to zero. The model for the interpretation of an integer value as a sequence of bits is
shown in Model for Bit Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIBCLR INTEGER(2) INTEGER(2)

JIBCLR INTEGER(4) INTEGER(4)

KIBCLR 1 INTEGER(8) INTEGER(8)

1 Alpha only

Compatibility

IBCLR Page 7 of 58

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BTEST, IAND, IBCHNG, IBSET, IEOR, IOR, ISHA, ISHC, ISHL, ISHFT, NOT

Examples

IBCLR (18, 1) has the value 16.

If V has the value (1, 2, 3, 4), the value of IBCLR (POS = V, I = 15) is (13, 11, 7, 15).

The following shows another example:

INTEGER J, K
J = IBCLR(7, 1) ! returns 5 = 0101
K = IBCLR(5, 1) ! returns 5 = 0101

IBITS

Elemental Intrinsic Function (Generic): Extracts a sequence of bits (a bit field).

Syntax

result = IBITS (i, pos, len)

i
(Input) Must be of type integer.

pos
(Input) Must be of type integer. It must not be negative and pos + len must be less than or equal
to BIT_SIZE(i).

len
(Input) Must be of type integer. It must not be negative.

Results:

The result type is the same as i. The result has the value of the sequence of len bits in i, beginning at
pos right-adjusted and with all other bits zero. The model for the interpretation of an integer value as
a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIBITS INTEGER(2) INTEGER(2)

JIBITS INTEGER(4) INTEGER(4)

IBITS Page 8 of 58

KIBITS 1 INTEGER(8) INTEGER(8)

1 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BTEST, BIT_SIZE, IBCLR, IBSET, ISHFT, ISHFTC, MVBITS

Examples

IBITS (12, 1, 4) has the value 6.

IBITS (10, 1, 7) has the value 5.

IBSET

Elemental Intrinsic Function (Generic): Sets one bit to 1.

Syntax

result = IBSET (i, pos)

i
(Input) Must be of type integer.

pos
(Input) Must be of type integer. It must not be negative and it must be less than BIT_SIZE(i).

Results:

The result type is the same as i. The result has the value of the sequence of bits of i, except that bit
pos of i is set to 1. The model for the interpretation of an integer value as a sequence of bits is shown
in Model for Bit Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIBSET INTEGER(2) INTEGER(2)

JIBSET INTEGER(4) INTEGER(4)

KIBSET 1 INTEGER(8) INTEGER(8)

1 Alpha only

IBSET Page 9 of 58

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BTEST, IAND, IBCHNG, IBCLR, IEOR, IOR, ISHA, ISHC, ISHL, ISHFT, NOT

Examples

IBSET (8, 1) has the value 10.

If V has the value (1, 2, 3, 4), the value of IBSET (POS = V, I = 2) is (2, 6, 10, 18).

The following shows another example:

INTEGER I
I = IBSET(8, 2) ! returns 12 = 1100

ICHAR

Elemental Intrinsic Function (Generic): Returns the position of a character in the ASCII character set.

Syntax

result = ICHAR (c)

c
(Input) Must be of type character of length 1.

Results:

The result type is default integer. The result value is the position of c in the ASCII character set. c is
in the range zero to n - 1, where n is the number of characters in the character set.

For any characters C and D (capable of representation in the processor), C .LE. D is true only if
ICHAR(C) .LE. ICHAR(D) is true, and C .EQ. D is true only if ICHAR(C) .EQ. ICHAR(D) is true.

Specific Name Argument Type Result Type

CHARACTER INTEGER(2)

ICHAR 1 CHARACTER INTEGER(4)

CHARACTER INTEGER(8) 2

1 This specific function cannot be passed as an actual argument.
2 INTEGER(8) is only available on Alpha processors.

ICHAR Page 10 of 58

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IACHAR, CHAR, ASCII and Key Code Charts

Examples

ICHAR (’W’) has the value 87.

ICHAR (’#’) has the value 35.

IDATE

IDATE can be used as an intrinsic subroutine or as a portability routine.

Warning: The two-digit year return value may cause problems with the year 2000. Use
DATE_AND_TIME instead.

IDATE Intrinsic Subroutine

Intrinsic Subroutine: Returns three integer values representing the current month, day, and year.

Syntax

CALL IDATE (i, j, k)

i
Is the current month.

j
Is the current day.

k
Is the current year.

Example

If the current date is September 16, 1996, the values of the integer variables upon return are: I = 9, J =
16, and K = 96.

IDATE Portability Routine

Portability Subroutine: Returns the month, day, and year of the current system.

IDATE Page 11 of 58

Module: USE DFPORT

Syntax

CALL IDATE (i, j, k)

-or-

CALL IDATE (iarray)

i
(Output) INTEGER(4). Current system month.

j
(Output) INTEGER(4). Current system day.

k
(Output) INTEGER(4). Current system year as an offset from 1900.

iarray
(Output) INTEGER(4). Three-element array that holds day as element 1, month as element 2,
and year as element 3. The month is between 1 and 12 and the year is greater than or equal to
1969.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE, DATE_AND_TIME, GETDAT

Example

 use dfport
 integer(4) imonth, iday, iyear, datarray(3)
! If the date is July 11, 1996:
 CALL IDATE(IMONTH, IDAY, IYEAR)
! sets IMONTH to 7, IDAY to 11 and IYEAR to 96.
 CALL IDATE (DATARRAY)
! datarray is (/11,7,96/)

IDENT

Compiler Directive: Specifies a string that identifies an object module. The compiler places the
string in the identification field of an object module when it generates the module for each source
program unit.

Syntax

cDEC$ IDENT string

IDENT Page 12 of 58

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

string
Is a character constant containing up to 31 printable characters.

Only the first IDENT directive is effective; the compiler ignores any additional IDENT directives in
a program unit or module.

See Also: General Compiler Directives

IEOR

Elemental Intrinsic Function (Generic): Performs an exclusive OR on corresponding bits. This
function can also be specified as XOR.

Syntax

result = IEOR (i, j)

i
(Input) Must be of type integer.

j
(Input) Must be of type integer with the same kind parameter as i.

Results:

The result type is the same as i. The result value is derived by combining i and j bit-by-bit according
to the following truth table:

 i j IEOR (i, j)
 1 1 0
 1 0 1
 0 1 1
 0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIEOR INTEGER(2) INTEGER(2)

JIEOR INTEGER(4) INTEGER(4)

IEOR Page 13 of 58

KIEOR 1 INTEGER(8) INTEGER(8)

1 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IAND, IOR, NOT

Examples

IEOR (1, 4) has the value 5.

IEOR (3, 10) has the value 9.

The following shows another example:

INTEGER I
I = IEOR(240, 90) ! returns 170

IERRNO

Portability Function: Returns the number of the last detected error from any routines in the
DFPORT module that return error codes.

Module: USE DFPORT

Syntax

result = IERRNO ()

Results:

Type INTEGER(4). Last error code from any portability routines that return error codes. These error codes
are analogous to errno on a U*X system. The module DFPORT.F90 (in \DF98\INCLUDE) provides
parameter definitions for the following Unix errno names (typically found in errno.h on U*X
systems).

Symbolic name Number Description

EPERM 1 Insufficient permission for operation

ENOENT 2 No such file or directory

ESRCH 3 No such process

EIO 5 I/O error

IERRNO Page 14 of 58

E2BIG 7 Argument list too long

ENOEXEC 8 File is not executable

ENOMEM 12 Not enough resources

EACCES 13 Permission denied

EXDEV 18 Cross-device link

ENOTDIR 20 Not a directory

EINVAL 22 Invalid argument

The value returned by IERRNO is updated only when an error occurs. For example, if an error
occurs on a GETLOG call and then two CHMOD calls succeed, a subsequent call to IERRNO
returns the error for the GETLOG call.

Examine IERRNO immediately after returning from a Portability routine. Other Fortran routines, as
well as any Win32 APIs, can also change the error code to an undefined value. IERRNO is set on a
per thread basis.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

USE DFPORT
CHARACTER*20 username
INTEGER(4) ierrval
ierrval=0 !initialize return value
CALL GETLOG(username)
IF (IERRNO() == ierrval) then
 print *, ’User name is ’,username
 exit
ELSE
 ierrval = ierrno()
 print *, ’Error is ’,ierrval
END IF

IF -- Arithmetic

Statement: Conditionally transfers control to one of three statements, based on the value of an
arithmetic expression. (It is an obsolescent feature in Fortran 90 and Fortran 95.)

Syntax

IF (expr) label1, label2, label3

expr
Is a scalar numeric expression of type integer or real (enclosed in parentheses).

IF -- Arithmetic Page 15 of 58

label1, label2, label3
Are the labels of valid branch target statements that are in the same scoping unit as the
arithmetic IF statement.

Rules and Behavior

All three labels are required, but they do not need to refer to three different statements. The same
label can appear more than once in the same arithmetic IF statement.

During execution, the expression is evaluated first. Depending on the value of the expression, control
is then transferred as follows:

If the Value of expr is: Control Transfers To:

Less than 0 Statement label1

Equal to 0 Statement label2

Greater than 0 Statement label3

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SELECT CASE ... END SELECT, Execution Control, Obsolescent Features in Fortran 90

Examples

The following example transfers control to statement 50 if the real variable THETA is less than or
equal to the real variable CHI. Control passes to statement 100 only if THETA is greater than CHI.

 IF (THETA-CHI) 50,50,100

The following example transfers control to statement 40 if the value of the integer variable NUMBER is
even. It transfers control to statement 20 if the value is odd.

 IF (NUMBER / 2*2 - NUMBER) 20,40,20

The following statement transfers control to statement 10 for n < 10, to statement 20 for n = 10, and
to statement 30 for n > 10:

 IF (n-10) 10, 20, 30

The following statement transfers control to statement 10 if n<= 10, and to statement 30 for n>10:

IF -- Arithmetic Page 16 of 58

 IF (n-10) 10, 10, 30

IF -- Logical

Statement: Conditionally executes one statement based on the value of a logical expression. (This
statement was called a logical IF statement in FORTRAN 77.)

Syntax

IF (expr) stmt

expr
Is a scalar logical expression enclosed in parentheses.

stmt
Is any complete, unlabeled, executable Fortran statement, except for the following:

n A CASE, DO, or IF construct
n Another IF statement
n The END statement for a program, function, or subroutine

When an IF statement is executed, the logical expression is evaluated first. If the value is true, the
statement is executed. If the value is false, the statement is not executed and control transfers to the
next statement in the program.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IF Construct, Execution Control

Examples

The following examples show valid IF statements:

IF (J.GT.4 .OR. J.LT.1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K) * (-1.5D0)

IF (ENDRUN) CALL EXIT

The following shows another example:

 USE DFPORT
 INTEGER(4) istat, errget
 character(inchar)
 real x
 istat = getc(inchar)
 IF (istat) errget = -1
 ...
!

IF -- Logical Page 17 of 58

 IF (x .GT. 2.3) call new_subr(x)
 ...

IF Construct

Statement: Conditionally executes one block of constructs or statements depending on the evaluation
of a logical expression. (This construct was called a block IF statement in FORTRAN 77.)

Syntax

[name:] IF (expr) THEN
block

[ELSE IF (expr) THEN [name]
block]...

[ELSE [name]
block]

END IF [name]

name
(Optional) Is the name of the IF construct.

expr
Is a scalar logical expression enclosed in parentheses.

block
Is a sequence of zero or more statements or constructs.

Rules and Behavior

If a construct name is specified at the beginning of an IF THEN statement, the same name must
appear in the corresponding END IF statement. The same construct name must not be used for
different named constructs in the same scoping unit.

Depending on the evaluation of the logical expression, one block or no block is executed. The logical
expressions are evaluated in the order in which they appear, until a true value is found or an ELSE or
END IF statement is encountered.

Once a true value is found or an ELSE statement is encountered, the block immediately following it
is executed and the construct execution terminates.

If none of the logical expressions evaluate to true and no ELSE statement appears in the construct, no
block in the construct is executed and the construct execution terminates.

Note: No additional statement can be placed after the IF THEN statement in a block IF
construct. For example, the following statement is invalid in the block IF construct:

 IF (e) THEN I = J

IF Construct Page 18 of 58

This statement is translated as the following logical IF statement:

 IF (e) THENI = J

You cannot use branching statements to transfer control to an ELSE IF statement or ELSE
statement. However, you can branch to an END IF statement from within the IF construct.

The following figure shows the flow of control in IF constructs:

Flow of Control in IF Constructs

IF Construct Page 19 of 58

You can include an IF construct in the statement block of another IF construct, if the nested IF
construct is completely contained within a statement block. It cannot overlap statement blocks.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Execution Control, IF -- Logical, IF -- Arithmetic

Examples

IF Construct Page 20 of 58

Examples

The following example shows the simplest form of an IF construct:

 Form Example
 IF (expr) THEN IF (ABS(ADJU) .GE. 1.0E-6) THEN
 block TOTERR = TOTERR + ABS(ADJU)
 QUEST = ADJU/FNDVAL
 END IF END IF

This construct conditionally executes the block of statements between the IF THEN and the END IF
statements.

The following shows another example:

! Simple block IF:
 IF (i .LT. 10) THEN
 ! the next two statements are only executed if i < 10
 j = i
 slice = TAN (angle)
 END IF

The following example shows a named IF construct:

 BLOCK_A: IF (D > 0.0) THEN ! Initial statement for named construct

 RADIANS = ACOS(D) ! These two statements
 DEGREES = ACOSD(D) ! form a block

 END IF BLOCK_A ! Terminal statement for named construct

The following example shows an IF construct containing an ELSE statement:

 Form Example
 IF (expr) THEN IF (NAME .LT. ’N’) THEN
 block1 IFRONT = IFRONT + 1
 FRLET(IFRONT) = NAME(1:2)
 ELSE ELSE
 block2 IBACK = IBACK + 1
 END IF END IF

Block1 consists of all the statements between the IF THEN and ELSE statements. Block2 consists
of all the statements between the ELSE and the END IF statements.

If the value of the character variable NAME is less than ’N’ , block1 is executed. If the value of
NAME is greater than or equal to ’N’, block2 is executed.

The following example shows an IF construct containing an ELSE IF THEN statement:

 Form Example
 IF (expr) THEN IF (A .GT. B) THEN
 block1 D = B

F A B

IF Construct Page 21 of 58

 F = A - B
 ELSE IF (expr) THEN ELSE IF (A .GT. B/2.) THEN
 block2 D = B/2.
 F = A - B/2.
 END IF END IF

If A is greater than B, block1 is executed. If A is not greater than B, but A is greater than B/2, block2
is executed. If A is not greater than B and A is not greater than B/2, neither block1 nor block2 is
executed. Control transfers directly to the next executable statement after the END IF statement.

The following shows another example:

! Block IF with ELSE IF statements:

 IF (j .GT. 1000) THEN
 ! Statements here are executed only if J > 1000
 ELSE IF (j .GT. 100) THEN
 ! Statements here are executed only if J > 100 and j <= 1000
 ELSE IF (j .GT. 10) THEN
 ! Statements here are executed only if J > 10 and j <= 100
 ELSE
 ! Statements here are executed only if j <= 10
 END IF

The following example shows an IF construct containing several ELSE IF THEN statements and an
ELSE statement:

 Form Example
 IF (expr) THEN IF (A .GT. B) THEN
 block1 D = B
 F = A - B
 ELSE IF (expr) THEN ELSE IF (A .GT. C) THEN
 block2 D = C
 F = A - C
 ELSE IF (expr) THEN ELSE IF (A .GT. Z) THEN
 block3 D = Z
 F = A - Z
 ELSE ELSE
 block4 D = 0.0
 F = A
 END IF END IF

If A is greater than B, block1 is executed. If A is not greater than B but is greater than C, block2 is
executed. If A is not greater than B or C but is greater than Z, block3 is executed. If A is not greater
than B, C, or Z, block4 is executed.

The following example shows a nested IF construct:

 Form Example
 IF (expr) THEN IF (A .LT. 100) THEN
 block1 INRAN = INRAN + 1
 IF (expr2) THEN IF (ABS(A-AVG) .LE. 5.) THEN
 block1a INAVG = INAVG + 1
 ELSE ELSE

block1b OUTAVG = OUTAVG + 1

IF Construct Page 22 of 58

 block1b OUTAVG OUTAVG + 1
 END IF END IF
 ELSE ELSE
 block2 OUTRAN = OUTRAN + 1
 END IF END IF

If A is less than 100, the code immediately following the IF is executed. This code contains a nested
IF construct. If the absolute value of A minus AVG is less than or equal to 5, block1a is executed. If
the absolute value of A minus AVG is greater than 5, block1b is executed.

If A is greater than or equal to 100, block2 is executed, and the nested IF construct (in block1) is not
executed.

The following shows another example:

! Nesting of constructs and use of an ELSE statement following
! a block IF without intervening ELSE IF statements:

 IF (i .LT. 100) THEN
 ! Statements here executed only if i < 100
 IF (j .LT. 10) THEN
 ! Statements here executed only if i < 100 and j < 10
 END IF
 ! Statements here executed only if i < 100
 ELSE
 ! Statements here executed only if i >= 100
 IF (j .LT. 10) THEN
 ! Statements here executed only if i >= 100 and j < 10
 END IF
 ! Statements here executed only if i >= 100
 END IF

IF Directive Construct

Compiler Directive: A conditional compilation construct that begins with an IF or IF DEFINED
directive. IF tests whether a logical expression is .TRUE. or .FALSE.. IF DEFINED tests whether a
symbol has been defined.

Syntax

cDEC$ IF (expr) -or- cDEC$ IF DEFINED (name)
block

[cDEC$ ELSEIF (expr)
block]...

[cDEC$ ELSE
block]

cDEC$ ENDIF

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

expr
Is a logical expression that evaluates to .TRUE. or .FALSE..

IF Construct Page 23 of 58

name
Is the name of a symbol to be tested for definition.

block
Are executable statements that are compiled (or not) depending on the value of logical
expressions in the IF directive construct.

Rules and Behavior

The IF and IF DEFINED directive constructs end with an ENDIF directive and can contain one or
more ELSEIF directives and at most one ELSE directive. If the logical condition within a directive
evaluates to .TRUE. at compilation, and all preceding conditions in the IF construct evaluate to
.FALSE., then the statements contained in the directive block are compiled.

A name can be defined with a DEFINE directive, and can optionally be assigned an integer value. If
the symbol has been defined, with or without being assigned a value, IF DEFINED (name) evaluates
to .TRUE.; otherwise, it evaluates to .FALSE..

If the logical condition in the IF or IF DEFINED directive is .TRUE., statements within the IF or IF
DEFINED block are compiled. If the condition is .FALSE., control transfers to the next ELSEIF or
ELSE directive, if any.

If the logical expression in an ELSEIF directive is .TRUE., statements within the ELSEIF block are
compiled. If the expression is .FALSE., control transfers to the next ELSEIF or ELSE directive, if
any.

If control reaches an ELSE directive because all previous logical conditions in the IF construct
evaluated to .FALSE., the statements in an ELSE block are compiled unconditionally.

You can use any Fortran logical or relational operator or symbol in the logical expression of the
directive, including: .LT., <, .GT., >, .EQ., ==, .LE., <=, .GE., >=, .NE., /=, .EQV., .NEQV., .NOT.,
.AND., .OR., and .XOR.. The logical expression can be as complex as you like, but the whole
directive must fit on one line.

Each directive in the construct can begin with !MS$ instead of cDEC$.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DEFINE and UNDEFINE, IF Construct, General Compiler Directives

Example

! When the following code is compiled and run,
! the output is:
! Or this compiled if all preceding conditions .FALSE.

IF Construct Page 24 of 58

!
!DEC$ DEFINE flag=3
!DEC$ IF (flag .LT. 2)
 WRITE (*,*) "This is compiled if flag less than 2."
!DEC$ ELSEIF (flag >= 8)
 WRITE (*,*) "Or this compiled if flag greater than &
 or equal to 8."
!DEC$ ELSE
 WRITE (*,*) "Or this compiled if all preceding &
 conditions .FALSE."
!DEC$ ENDIF
END

IF DEFINED Directive

See the IF Directive Construct.

IFIX

Elemental Intrinsic Function (Generic): Converts a single-precision real argument to an integer by truncating.
For more information, see INT.

ILEN

Elemental Function (Generic): Returns the length (in bits) of the two’s complement representation of an integer.

Syntax

result = ILEN (i)

i
Must be of type integer.

Results:

The result type is the same asi. The result value is (LOG2(i + 1)) if i is not negative; otherwise, the
result value is (LOG2(-i)).

Examples

ILEN (4) has the value 3.
ILEN (-4) has the value 2.

IMAGESIZE, IMAGESIZE_W

Graphics Function: Returns the number of bytes needed to store the image inside the specified

IMAGESIZE, IMAGESIZE_W Page 25 of 58

bounding rectangle. IMAGESIZE is useful for determining how much memory is needed for a call
to GETIMAGE.

Module: USE DFLIB

Syntax

result = IMAGESIZE (x1, y1, x2, y2)
result = IMAGESIZE_W (wx1, wy1, wx2, wy2)

x1, y1
(Input) INTEGER(2). Viewport coordinates for upper-left corner of image.

x2, y2
(Input) INTEGER(2). Viewport coordinates for lower-right corner of image.

wx1, wy1
(Input) REAL(8). Window coordinates for upper-left corner of image.

wx2, wy2
(Input) REAL(8). Window coordinates for lower-right corner of image.

Results:

The result type is INTEGER(4). The result is the storage size of an image in bytes.

IMAGESIZE defines the bounding rectangle in viewport-coordinate points (x1, y1) and (x2, y2).
IMAGESIZE_W defines the bounding rectangle in window-coordinate points (wx1, wy1) and (wx2,
wy2).

IMAGESIZE_W defines the bounding rectangle in terms of window-coordinate points (wx1, wy1)
and (wx2, wy2).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETIMAGE, GRSTATUS, PUTIMAGE

Example

See the example in GETIMAGE.

IMPLICIT

Statement: Overrides the default implicit typing rules for names. (The default data type is
INTEGER for names beginning with the letters I through N, and REAL for names beginning with

IMPLICIT Page 26 of 58

any other letter.)

The IMPLICIT statement takes one of the following forms:

Syntax

IMPLICIT type (a[, a]...)[, type (a[, a]...)]...
IMPLICIT NONE

type
Is a data type specifier (CHARACTER*(*) is not allowed).

a
Is a single letter or a range of letters in alphabetical order. The form for a range of letters is a1-
a2, where the second letter follows the first alphabetically (for example, A-C).

Rules and Behavior

The IMPLICIT statement assigns the specified data type (and kind parameter) to all names that have
no explicit data type and begin with the specified letter or range of letters. It has no effect on the
default types of intrinsic procedures.

When the data type is CHARACTER*len, len is the length for character type. The len is an unsigned
integer constant or an integer initialization expression enclosed in parentheses. The range for len is 1
to 2**31-1 for DIGITAL UNIX and Windows NT systems on Alpha processors; 1 to 65535 for
OpenVMS systems and Intel processors.

Names beginning with a dollar sign ($) are implicitly INTEGER; the data type cannot be changed in
an IMPLICIT statement.

The IMPLICIT NONE statement disables all implicit typing defaults. When IMPLICIT NONE is
used, all names in a program unit must be explicitly declared. An IMPLICIT NONE statement must
precede any PARAMETER statements, and there must be no other IMPLICIT statements in the
scoping unit.

Note: To receive diagnostic messages when variables are used but not declared, you can
specify the /warn:declarations complier option instead of using IMPLICIT NONE.

The following IMPLICIT statement represents the default typing for names when they are not
explicitly typed:

 IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

IMPLICIT Page 27 of 58

See Also: Data Types, Constants, and Variables

Examples

The following are examples of the IMPLICIT statement:

IMPLICIT DOUBLE PRECISION (D)
IMPLICIT COMPLEX (S,Y), LOGICAL(1) (L,A-C)
IMPLICIT CHARACTER*32 (T-V)
IMPLICIT CHARACTER*2 (W)
IMPLICIT TYPE(COLORS) (E-F), INTEGER (G-H)

The following shows another example:

IMPLICIT INTEGER (a-b), CHARACTER*10 (n), TYPE(fried) (c-d)

TYPE fried
 INTEGER e, f
 REAL g, h
END TYPE
age = 10 ! integer
name = ’Paul’ ! character
c%e = 1 ! type fried, integer component

INCHARQQ

QuickWin Function: Reads a single character input from the keyboard and returns the ASCII value
of that character without any buffering.

Module: USE DFLIB

Syntax

result = INCHARQQ ()

Results:

The result type is INTEGER(2). The result is the ASCII key code.

The keystroke is read from the child window that currently has the focus. You must call
INCHARQQ before the keystroke is made (INCHARQQ does not read the keyboard buffer). This
function does not echo its input. For function keys, INCHARQQ returns 0xE0 as the upper 8 bits,
and the ASCII code as the lower 8 bits.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, GETCHARQQ, READ, MBINCHARQQ, GETC.

INCLUDE Page 28 of 58

INCLUDE

Statement: Directs the compiler to stop reading statements from the current file and read statements
in an included file or text module.

The INCLUDE statement takes one of the following forms:

Syntax

INCLUDE ’filename [/[NO]LIST]’

INCLUDE ’[text-lib] (module-name) [/[NO]LIST]’ (VMS only)

filename
Is a character string specifying the name of the file to be included; it must not be a named
constant.
The form of the file name must be acceptable to the operating system, as described in your
system documentation.

/[NO]LIST
Specifies whether the incorporated code is to appear in the compilation source listing. In the
listing, a number precedes each incorporated statement. The number indicates the "include"
nesting depth of the code. The default is /NOLIST. /LIST and /NOLIST must be spelled
completely.

On Windows NT and Windows 95 systems, you can only use /[NO]LIST if you specify the
/vms compiler option (which sets OpenVMS defaults).

text-lib (VMS only)
Is a character string specifying the file name of the text library to be searched.
The form of the file name must be acceptable to the operating system, as described in your
system documentation.

module-name (VMS only)
Is a character string specifying the name of the text library module to be included. The name of
the text module must be enclosed in parentheses. It can be up to 31 characters long and can
contain any alphanumeric character and the special characters dollar sign ($) and underscore (_).

Rules and Behavior

An INCLUDE statement can appear anywhere within a scoping unit. The statement can span more
than one source line, but no other statement can appear on the same line. The source line cannot be
labeled.

An included file or text module cannot begin with a continuation line, and each Fortran statement
must be completely contained within a single file.

An included file or text module can contain any source text but it cannot begin or end with an

INCLUDE Page 29 of 58

An included file or text module can contain any source text, but it cannot begin or end with an
incomplete Fortran statement.

The included statements, when combined with the other statements in the compilation, must satisfy
the statement-ordering restrictions shown in Statements.

Included files or text modules can contain additional INCLUDE statements, but they must not be
recursive. INCLUDE statements can be nested until system resources are exhausted.

When the included file or text module completes execution, compilation resumes with the statement
following the INCLUDE statement.

You can use modules instead of include files to achieve encapsulation of related data types and
procedures. For example, one module can contain derived type definitions as well as special operators
and procedures that apply to those types. For information on how to use modules, see Program Units
and Procedures.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MODULE, USE

Examples

In the following example, a file named COMMON.FOR (in the current working directory) is
included and read as input.

Including Text from a File

Main Program File COMMON.FOR File

PROGRAM
 INCLUDE ’COMMON.FOR’ INTEGER, PARAMETER :: M=100
 REAL, DIMENSION(M) :: Z REAL, DIMENSION(M) :: X, Y
 CALL CUBE COMMON X, Y
 DO I = 1, M
 Z(I) = X(I) + SQRT(Y(I))
 ...
 END DO
END

SUBROUTINE CUBE
 INCLUDE ’COMMON.FOR’
 DO I=1,M
 X(I) = Y(I)**3
 END DO
 RETURN
END

The file COMMON.FOR defines a named constant M, and defines arrays X and Y as part of blank
common.

INCLUDE Page 30 of 58

The following example program declares its common data in an include file. The contents of the file
INCLUDE.INC are inserted in the source code in place of every INCLUDE ’INCLUDE.INC’
statement. This guarantees that all references to common storage variables are consistent.

INTEGER i
REAL x
INCLUDE ’INCLUDE.INC’

DO i = 1, 5
 READ (*, ’(F10.5)’) x
 CALL Push (x)
END DO

INDEX

Elemental Intrinsic Function (Generic): Returns the starting position of a substring within a string.

Syntax

result = INDEX (string, substring [, back])

string
(Input) Must be of type character.

substring
(Input) Must be of type character.

back
(Optional; input) Must be of type logical.

Results:

The result type is default integer.

If back does not appear (or appears with the value false), the value returned is the minimum value of I
such that string (I : I + LEN (substring) - 1) = substring (or zero if there is no such value). If LEN
(string) < LEN (substring), zero is returned. If LEN (substring) = zero, 1 is returned.

If back appears with the value true, the value returned is the maximum value of I such that string (I : I
+ LEN (substring) - 1) = substring (or zero if there is no such value). If LEN(string) < LEN
(substring), zero is returned. If LEN (substring) = zero, LEN (string) + 1 is returned.

Specific Name Argument Type Result Type

INDEX CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

Compatibility

INDEX Page 31 of 58

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SCAN

Examples

INDEX (’FORTRAN’, ’O’, BACK = .TRUE.) has the value 2.

INDEX (’XXXX’, " ", BACK = .TRUE.) has the value 5.

The following shows another example:

I = INDEX(’banana’,’an’, BACK = .TRUE.) ! returns 4
I = INDEX(’banana’, ’an’) ! returns 2

INITIALIZEFONTS

QuickWin Function: Initializes Windows fonts.

Module: USE DFLIB

Syntax

result = INITIALIZEFONTS ()

Results:

The result type is INTEGER(2). The result is the number of fonts initialized.

All fonts in Windows become available after a call to INITIALIZEFONTS. Fonts must be
initialized with INITIALIZEFONTS before any other font-related library function (such as
GETFONTINFO, GETGTEXTEXTENT, SETFONT, OUTGTEXT) can be used. For more
information, see Using Fonts from the Graphics Library in the Programmer’s Guide.

The font functions affect the output of OUTGTEXT only. They do not affect other Fortran I/O
functions (such as WRITE) or graphics output functions (such as OUTTEXT).

For each window you open, you must call INITIALIZEFONTS before calling SETFONT.
INITIALIZEFONTS needs to be executed after each new child window is opened in order for a
subsequent SETFONT call to be successful.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, SETFONT, OUTGTEXT.

INITIALIZEFONTS Page 32 of 58

Example

! build as a QuickWin or Standard Graphics App.
USE DFLIB
INTEGER(2) numfonts
numfonts = INITIALIZEFONTS()
WRITE (*,*) numfonts
END

INITIALSETTINGS

QuickWin Function: Initializes QuickWin.

Module: USE DFLIB

Syntax

result = INITIALSETTINGS ()

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

You can change the initial appearance of an application’s default frame window and menus by
defining an INITIALSETTINGS function. If no user-defined INITIALSETTINGS function is
supplied, QuickWin calls a predefined INITIALSETTINGS routine to control the default frame
window and menu appearance. You do not need to call INITIALSETTINGS unless you define it.
For more information, see Controlling the Initial Menu and Frame Window in the Programmer’s
Guide.

Compatibility

QUICKWIN GRAPHICS WINDOWS LIB

See Also: Using QuickWin, APPENDMENUQQ, INSERTMENUQQ, DELETEMENUQQ.

INQFOCUSQQ

QuickWin Function: Determines which window has the focus.

Module: USE DFLIB

Syntax

result = INQFOCUSQQ (unit)

unit
(Output) INTEGER(4). Unit number of the window that has the I/O focus.

INQFOCUSQQ Page 33 of 58

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero. The function
fails if the window with the focus is associated with a closed unit.

Unit numbers 0, 5, and 6 refer to the default window only if the program has not specifically opened
them. If these units have been opened and connected to windows, they are automatically reconnected
to the console once they are closed.

The window with focus is always in the foreground. Note that the window with the focus is not
necessarily the active window (the one that receives graphical output). A window can be made active
without getting the focus by calling SETACTIVEQQ.

A window has focus when it is given the focus by FOCUSQQ, when it is selected by a mouse click,
or when an I/O operation other than a graphics operation is performed on it, unless the window was
opened with IOFOCUS=.FALSE.. The IOFOCUS specifier determines whether a window
receives focus when on I/O statement is executed on that unit. For example:

 OPEN (UNIT = 10, FILE = ’USER’, IOFOCUS = .TRUE.)

IOFOCUS defaults to .TRUE., except for child windows opened as unit *, in which case
IOFOCUS defaults to .FALSE.. If IOFOCUS=.TRUE., the child window receives focus prior to
each READ, WRITE, PRINT, or OUTTEXT. Calls to graphics functions (such as OUTGTEXT
and ARC) do not cause the focus to shift.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: FOCUSQQ, Programmer’s Guide: Using QuickWin

INQUIRE

Statement: Returns information on the status of specified properties of a file or logical unit. It takes
one of the following forms:

Syntax

Inquiring by File:

INQUIRE (FILE=name [, ERR=label] [, IOSTAT=i-var] [, DEFAULTFILE=def], slist)

Inquiring by Unit:

INQUIRE ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var] slist)

INQUIRE Page 34 of 58

Inquiring by Output List:

INQUIRE (IOLENGTH=len) out-item-list

name
Is a scalar default character expression specifying the name of the file for inquiry.

label
Is the label of the branch target statement that receives control if an error occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no
error occurs.

slist
Is one or more of the following inquiry specifiers (each specifier can appear only once):

ACCESS DELIM NAMED READWRITE

ACTION DIRECT NEXTREC RECL

BINARY EXIST NUMBER RECORDTYPE

BLANK FORM OPENED SEQUENTIAL

BLOCKSIZE FORMATTED ORGANIZATION SHARE

BUFFERED IOFOCUS PAD UNFORMATTED

CARRIAGECONTROL MODE POSITION WRITE

CONVERT NAME READ

def
Is the label of the branch target statement that receives control if an error occurs. Is a scalar
default character expression specifying a default file pathname string. (For more information,
see the DEFAULTFILE specifier under OPEN in the Language Reference.

io-unit
Is an external unit specifier.

The unit does not have to exist, nor does it need to be connected to a file. If the unit is
connected to a file, the inquiry encompasses both the connection and the file.

len
(Output) Is a scalar default integer variable indicating the number of bytes of data that would
result from using out-item-list in an unformatted output statement.

INQUIRE Page 35 of 58

out-item-list
(Output) Is a list of one or more output items (see I/O Lists.

Rules and Behavior

The control specifiers ([UNIT=]io-unit, ERR=label, and IOSTAT=i-var) and inquiry specifiers can
appear anywhere within the parentheses following INQUIRE. However, if the UNIT keyword is
omitted, the io-unit must appear first in the list.

An INQUIRE statement can be executed before, during, or after a file is connected to a unit. The
specifier values returned are those that are current when the INQUIRE statement executes.

To get file characteristics, specify the INQUIRE statement after opening the file.

To inquire about a file using the DEFAULTFILE specifier, the specifier must also appear in the
OPEN statement for that file. You can specify DEFAULTFILE=def in addition to (or in place of)
FILE=name, and the name and def can start with a tilde (~).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INQUIRE Statement, OPEN

Examples

The following are examples of INQUIRE statements:

INQUIRE (FILE=’FILE_B’, EXIST=EXT)
INQUIRE (4, FORM=FM, IOSTAT=IOS, ERR=20)
INQUIRE (IOLENGTH=LEN) A, B

In the last statement, you can use the length returned in LEN as the value for the RECL specifier in
an OPEN statement that connects a file for unformatted direct access. If you have already specified a
value for RECL, you can check LEN to verify that A and B are less than or equal to the record
length you specified.

The following shows another example:

! This program prompts for the name of a data file.
! The INQUIRE statement then determines whether
! the file exists. If it does not, the program
! prompts for another file name.

 CHARACTER*12 fname
 LOGICAL exists

! Get the name of a file:
100 WRITE (*, ’(1X, A\)’) ’Enter the file name: ’
 READ (*, ’(A)’) fname

INQUIRE about file’s existence:

INQUIRE Page 36 of 58

! INQUIRE about file’s existence:
 INQUIRE (FILE = fname, EXIST = exists)

 IF (.NOT. exists) THEN
 WRITE (*,’(2A/)’) ’ >> Cannot find file ’, fname
 GOTO 100
 END IF
 END

INSERTMENUQQ

QuickWin Function: Inserts a menu item into a QuickWin menu and registers its callback routine.

Module: USE DFLIB

Syntax

result = INSERTMENUQQ (menuID, itemID, flag, text, routine)

menuID
(Input) INTEGER(4). Identifies the menu in which the item is inserted, starting with 1 as the
leftmost menu.

itemID
(Input) INTEGER(4). Identifies the position in the menu where the item is inserted, starting
with 0 as the top menu item.

flag
(Input) INTEGER(4). Constant indicating the menu state. Flags can be combined with an
inclusive OR (see Results section below). The following constants are available:

n $MENUGRAYED: Disables and grays out the menu item.
n $MENUDISABLED: Disables but does not gray out the menu item.
n $MENUENABLED: Enables the menu item.
n $MENUSEPARATOR: Draws a separator bar.
n $MENUCHECKED: Puts a check by the menu item.
n $MENUUNCHECKED: Removes the check by the menu item.

text
(Input) Character*(*). Menu item name. Must be a null-terminated C string, for example,
words of text’C.

routine
(Input) EXERNAL. Callback subroutine that is called if the menu item is selected. All routines
must take a single LOGICAL parameter which indicates whether the menu item is checked or
not. You can assign the following predefined routines to menus:

n WINPRINT: Prints the program.
n WINSAVE: Saves the program.
n WINEXIT: Terminates the program.
n WINSELTEXT: Selects text from the current window

INSERTMENUQQ Page 37 of 58

n WINSELTEXT: Selects text from the current window.
n WINSELGRAPH: Selects graphics from the current window.
n WINSELALL: Selects the entire contents of the current window.
n WINCOPY: Copies the selected text and/or graphics from current window to the

Clipboard.
n WINPASTE: Allows the user to paste Clipboard contents (text only) to the current text

window of the active window during a READ.
n WINCLEARPASTE: Clears the paste buffer.
n WINSIZETOFIT: Sizes output to fit window.
n WINFULLSCREEN: Displays output in full screen.
n WINSTATE: Toggles between pause and resume states of text output.
n WINCASCADE: Cascades active windows.
n WINTILE: Tiles active windows.
n WINARRANGE: Arranges icons.
n WINSTATUS: Enables a status bar.
n WININDEX: Displays the index for QuickWin help.
n WINUSING: Displays information on how to use Help.
n WINABOUT: Displays information about the current QuickWin application.
n NUL: No callback routine.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE.

Menus and menu items must be defined in order from left to right and top to bottom. For example,
INSERTMENUQQ fails if you try to insert menu item 7 when 5 and 6 are not defined yet. For a top-
level menu item, the callback routine is ignored if there are subitems under it.

The constants available for flags can be combined with an inclusive OR where reasonable, for
example $MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense,
such as $MENUENABLED and $MENUDISABLED, and lead to undefined behavior.

You can create quick-access keys in the text strings you pass to INSERTMENUQQ as text by
placing an ampersand (&) before the letter you want underlined. For example, to add a Print menu
item with the r underlined, text should be "P&rint". Quick-access keys allow users of your program to
activate that menu item with the key combination ALT+QUICK-ACCESS-KEY (ALT+R in the example)
as an alternative to selecting the item with the mouse.

For more information on customizing QuickWin menus, see Using QuickWin in the Programmer’s
Guide.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: APPENDMENUQQ, DELETEMENUQQ, MODIFYMENUFLAGSQQ,
MODIFYMENUROUTINEQQ, MODIFYMENUSTRINGQQ.

Example

INSERTMENUQQ Page 38 of 58

! build as a QuickWin App.
USE DFLIB
LOGICAL(4) status
! insert new item into Menu 5 (Window)
status= INSERTMENUQQ(5, 5, $MENUCHECKED, ’New Item’C, &
 WINSTATUS)
! insert new menu in position 2
status= INSERTMENUQQ(2, 0, $MENUENABLED, ’New Menu’C, &
 WINSAVE)
END

INT

Elemental Intrinsic Function (Generic): Converts a value to integer type.

Syntax

result = INT (a [, kind])

a
(Input) Must be of type integer, real, or complex.

kind
(Optional; input) Must be a scalar integer initialization expression.

Results:

The result type is default integer. (If the processor cannot represent the result in integer type, the
result is undefined.) If kind is present, the kind parameter is that specified by kind. If kind is not
present, see the following table for the kind parameter.

Functions that cause conversion of one data type to another type have the same affect as the implied
conversion in assignment statements.

The result value depends on the type and absolute value of a, as follows:

� If a is of type integer, INT (a) = a.

� If a is of type real and |a| < 1, INT (a) has the value zero.

If a is of type real and |a| >= 1, INT (a) is the integer whose magnitude is the largest integer
that does not exceed the magnitude of a and whose sign is the same as the sign of a.

� If a is of type complex, INT (a) = a is the value obtained by applying the preceding rules (for a
real argument) to the real part of a.

Specific
Name 1 Argument Type 2

Result Type
2

INTEGER(1), INTEGER(2), INTEGER(4) INTEGER(4)

INT Page 39 of 58

INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8) INTEGER
(8)

IIFIX 3 REAL(4) INTEGER
(2)

IINT REAL(4) INTEGER
(2)

IFIX 4, 5 REAL(4) INTEGER
(4)

JFIX INTEGER(1), INTEGER(2), INTEGER(4), REAL(4), REAL(8),
COMPLEX(4), COMPLEX(8)

INTEGER
(4)

INT 6, 7 REAL(4) INTEGER
(4)

KIFIX REAL(4) INTEGER
(8)

KINT REAL(4) INTEGER
(8)

IIDINT REAL(8) INTEGER
(2)

IDINT 7, 8 REAL(8) INTEGER
(4)

KIDINT REAL(8) INTEGER
(8)

IIQINT REAL(16) INTEGER
(2)

IQINT 7, 9 REAL(16) INTEGER
(4)

KIQINT REAL(16) INTEGER
(8)

COMPLEX(4), COMPLEX(8) INTEGER
(2)

COMPLEX(4), COMPLEX(8) INTEGER
(4)

COMPLEX(4), COMPLEX(8) INTEGER
(8)

INT Page 40 of 58

INT1 INTEGER(1), INTEGER(2), INTEGER(4), REAL(4), REAL(8),
COMPLEX(4), COMPLEX(8)

INTEGER
(1)

INT2 INTEGER(1), INTEGER(2), INTEGER(4), REAL(4), REAL(8),
COMPLEX(4), COMPLEX(8)

INTEGER
(2)

INT4 INTEGER(1), INTEGER(2), INTEGER(4), REAL(4), REAL(8),
COMPLEX(4), COMPLEX(8)

INTEGER
(4)

1 These specific functions cannot be passed as actual arguments.
2 INTEGER(8) is only available on Alpha processors; REAL(16) is available on OpenVMS and DIGITAL UNIX
systems.
3 This function can also be specified as HFIX.
4 The setting of compiler option /integer_size or /real_size can affect IFIX.
5 For compatibility with older versions of Fortran, IFIX can also be specified as a generic function.
6 Or JINT.
7 The setting of compiler option /integer_size can affect INT, IDINT, and IQINT.
8 Or JIDINT. For compatibility with older versions of Fortran, IDINT can also be specified as a generic function.
9 Or JIQINT. For compatibility with older versions of Fortran, IQINT can also be specified as a generic function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NINT, AINT, ANINT, REAL, DBLE, SNGL

Examples

INT (-4.2) has the value -4.

INT (7.8) has the value 7.

INTEGER Directive

Compiler Directive: Specifies the default integer kind.

Syntax

cDEC$ INTEGER:{ 2 | 4 | 8 }

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

Rules and Behavior

The INTEGER directive specifies a size of 2 (KIND=2), 4 (KIND=4), or 8 (KIND=8)
bytes for default integer numbers. INTEGER(KIND=8) is only available on Alpha processors.

When the INTEGER directive is in effect, all default integer variables are of the kind specified. Only

INTEGER Directive Page 41 of 58

numbers specified or implied as INTEGER without KIND are affected.

The INTEGER directive can only appear at the top of a program unit. A program unit is a main
program, an external subroutine or function, a module or a block data program unit. INTEGER
cannot appear between program units, or at the beginning of internal subprograms. It does not affect
modules invoked with the USE statement in the program unit that contains it.

The default logical kind is the same as the default integer kind. So, when you change the default
integer kind you also change the default logical kind.

The following form is also allowed: !MS$INTEGER:{2|4|8}

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INTEGER, REAL Directive, General Compiler Directives.

Example

INTEGER i ! a 4-byte integer
WRITE(*,*) KIND(i)
CALL INTEGER2()
WRITE(*,*) KIND(i) ! still a 4-byte integer
 ! not affected by setting in subroutine
END
SUBROUTINE INTEGER2()
 !DEC$ INTEGER:2
 INTEGER j ! a 2-byte integer
 WRITE(*,*) KIND(j)
END SUBROUTINE

INTEGER

Statement: Specifies the INTEGER data type.

Syntax

INTEGER
INTEGER([KIND=]n)
INTEGER*n

n
Is kind 1, 2, 4, or 8. Kind 8 is only available on Alpha processors.

If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not specified,
integer constants are interpreted as follows:

� If the integer constant is within the default integer kind range the kind is default integer

INTEGER Page 42 of 58

� If the integer constant is within the default integer kind range, the kind is default integer.
� If the integer constant is outside the default integer kind range, the kind of the integer constant

is the smallest integer kind which holds the constant.

The default kind can also be changed by using the INTEGER directive or the /integer_size compiler
option.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INTEGER Directive, Programmer’s Guide: Integer Data Types and Integer Constants.

Examples

! Entity-oriented declarations:
INTEGER, DIMENSION(:), POINTER :: days, hours
INTEGER (2) :: k=4
INTEGER (2), PARAMETER :: limit=12

! Attribute-oriented declarations:
INTEGER days, hours
INTEGER (2):: k=4, limit
DIMENSION days(:), hours(:)
POINTER days, hours
PARAMETER (limit=12)

INTEGERTORGB

QuickWin Subroutine: Converts an RGB color value into its red, green, and blue components.

Module: USE DFLIB

Syntax

CALL INTEGERTORGB (rgb, red, green, blue)

rgb
(Input) INTEGER(4). RGB color value whose red, green, and blue components are to be
returned.

red
(Output) INTEGER(4). Intensity of the red component of the RGB color value.

green
(Output) INTEGER(4). Intensity of the green component of the RGB color value.

blue
(Output) INTEGER(4). Intensity of the blue component of the RGB color value.

INTEGERTORGB Page 43 of 58

INTEGERTORGB separates the four-byte RGB color value into the three components as follows:

Compatibility

QUICKWIN GRAPHICS WINDOWS LIB

See Also: Using QuickWin, RGBTOINTEGER, GETCOLORRGB, GETBKCOLORRGB,
GETPIXELRRGB, GETPIXELSRGB, GETTEXTCOLORRGB.

Example

! build as a QuickWin App.
USE DFLIB
INTEGER(4) r, g, b

CALL INTEGERTORGB(2456, r, g, b)
write(*,*) r, g, b
END

INTENT

Statement and Attribute: Specifies the intended use of one or more dummy arguments.

The INTENT attribute can be specified in a type declaration statement or an INTENT statement, and
takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] INTENT (intent-spec) [, att-ls] :: d-arg [, d-arg]...

Statement:

INTENT (intent-spec) [::] d-arg [, d-arg]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

intent-spec
Is one of the following specifiers:

n IN: Specifies that the dummy argument will be used only to provide data to the
procedure The dummy argument must not be redefined (or become undefined) during

INTENT Page 44 of 58

procedure. The dummy argument must not be redefined (or become undefined) during
execution of the procedure.
Any associated actual argument must be an expression.

n OUT: Specifies that the dummy argument will be used to pass data from the procedure
back to the calling program. The dummy argument is undefined on entry and must be
defined before it is referenced in the procedure.
Any associated actual argument must be definable.

n INOUT: Specifies that the dummy argument can both provide data to the procedure and
return data to the calling program.
Any associated actual argument must be definable.

d-arg
Is the name of a dummy argument. It cannot be a dummy procedure or dummy pointer.

Rules and Behavior

The INTENT statement can only appear in the specification part of a subprogram or interface body.

If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of the
associated actual argument.

If a function specifies a defined operator, the dummy arguments must have intent IN.

If a subroutine specifies defined assignment, the first argument must have intent OUT or INOUT,
and the second argument must have intent IN.

A dummy argument with intent IN (or a subobject of such a dummy argument) must not appear as
any of the following:

� A DO variable or implied-DO variable
� The variable of an assignment statement
� The pointer-object of a pointer assignment statement
� An object or STAT= variable in an ALLOCATE or DEALLOCATE statement
� An input item in a READ statement
� A variable name in a NAMELIST statement if the namelist group name appears in a NML

specifier in a READ statement
� An internal file unit in a WRITE statement
� A definable variable in an INQUIRE statement
� An IOSTAT or SIZE specifier in an I/O statement
� An actual argument in a reference to a procedure with an explicit interface if the associated

dummy argument has intent OUT or INOUT

If an actual argument is an array section with a vector subscript, it cannot be associated with a
dummy array that is defined or redefined (has intent OUT or INOUT).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

INTENT Page 45 of 58

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: Argument Association, Type Declarations, Compatible attributes.

Examples

The following example shows type declaration statements specifying the INTENT attribute:

SUBROUTINE TEST(I, J)
 INTEGER, INTENT(IN) :: I
 INTEGER, INTENT(OUT), DIMENSION(I) :: J

The following are examples of the INTENT statement:

SUBROUTINE TEST(A, B, X)
 INTENT(INOUT) :: A, B
 ...

SUBROUTINE CHANGE(FROM, TO)
 USE EMPLOYEE_MODULE
 TYPE(EMPLOYEE) FROM, TO
 INTENT(IN) FROM
 INTENT(OUT) TO
 ...

The following shows another example:

!Calculate value into a running average and return the average cubed.

TYPE DATA
 INTEGER count
 REAL average
END TYPE
. . .
SUBROUTINE AVERAGE(value,data1,cube_ave)
 TYPE(DATA) data1
 REAL dummy
 ! value cannot be changed, while cube_ave must be defined
 ! before it can be used. Data1 is defined when the procedure is
 ! invoked, and becomes redefined in the subroutine.
 INTENT(IN)::value; INTENT(OUT)::cube_ave
 INTENT(INOUT)::data1

 ! count number of times AVERAGE has been called on the data set
 ! being passed.
 dummy = count*average + value
 data1%count = data1%count + 1
 data1%average = dummy/data1%count
 cube_ave = data1%average**3
END SUBROUTINE

INTERFACE

Statement: Defines explicit interfaces for external or dummy procedures. They can also be used to
define a generic name for procedures, a new operator for functions, and a new form of assignment for
subroutines.

INTERFACE Page 46 of 58

Syntax

INTERFACE [generic-spec]
[interface-body] ...
[MODULE PROCEDURE name-list] ...

END INTERFACE [generic-spec]

generic-spec
(Optional) Is one of the following:

n A generic name
For information on generic names, see Program Units and Procedures.

n OPERATOR (op)

Defines a generic operator (op). It can be a defined unary, defined binary, or extended
intrinsic operator. For information on defined operators, see Program Units and
Procedures.

n ASSIGNMENT (=)

Defines generic assignment. For information on defined assignment, see Assignment --
Defined Assignment.

interface-body
Is one or more function or subroutine subprograms. A function must end with END
FUNCTION and a subroutine must end with END SUBROUTINE.

The subprogram must not contain a statement function or a DATA, ENTRY, or FORMAT
statement; an entry name can be used as a procedure name.

The subprogram can contain a USE statement.

name-list
Is the name of one or more module procedures that are accessible in the host. The MODULE
PROCEDURE statement is only allowed if the interface block specifies a generic-spec and has
a host that is a module (or accesses a module by use association).

The characteristics of module procedures are not given in interface blocks, but are assumed
from the module subprogram definitions.

Rules and Behavior

Interface blocks can appear in the specification part of the program unit that invokes the external or
dummy procedure.

A generic-spec can only appear in the END INTERFACE statement if one appears in the

INTERFACE Page 47 of 58

INTERFACE statement; they must be identical.

The characteristics specified for the external or dummy procedure must be consistent with those
specified in the procedure’s definition.

An interface block must not appear in a block data program unit.

An interface block comprises its own scoping unit, and does not inherit anything from its host
through host association.

Internal, module, and intrinsic procedures are all considered to have explicit interfaces. External
procedures have implicit interfaces by default; when you specify an interface block for them, their
interface becomes explicit. A procedure must not have more than one explicit interface in a given
scoping unit. This means that you cannot include internal, module, or intrinsic procedures in an
interface block, unless you want to define a generic name for them.

A interface block containing generic-spec specifies a generic interface for the following procedures:

� The procedures within the interface block

Any generic name, defined operator, or equals symbol that appears is a generic identifier for all
the procedures in the interface block. For the rules on how any two procedures with the same
generic identifier must differ, see Unambiguous Generic Procedure References.

� The module procedures listed in the MODULE PROCEDURE statement

The module procedures must be accessible by a USE statement.

To make an interface block available to multiple program units (through a USE statement), place the
interface block in a module.

The following rules apply to interface blocks containing pure procedures:

� The interface specification of a pure procedure must declare the INTENT of all dummy
arguments except pointer and procedure arguments.

� A procedure that is declared pure in its definition can also be declared pure in an interface
block. However, if it is not declared pure in its definition, it must not be declared pure in an
interface block.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CALL, FUNCTION, MODULE, MODULE PROCEDURE, SUBROUTINE, PURE,
Procedure Interfaces, Use and Host Association, Determining When Procedures Require Explicit
Interfaces, Defining Generic Names for Procedures, Defining Generic Operators, Defining Generic
Assignment

Examples

INTERFACE Page 48 of 58

Examples

The following example shows a simple procedure interface block with no generic specification:

SUBROUTINE SUB_B (B, FB)
 REAL B
 ...
 INTERFACE
 FUNCTION FB (GN)
 REAL FB, GN
 END FUNCTION
 END INTERFACE

The following shows another example:

!An interface to an external subroutine SUB1 with header:
!SUBROUTINE SUB1(I1,I2,R1,R2)
!INTEGER I1,I2
!REAL R1,R2

INTERFACE
 SUBROUTINE SUB1(int1,int2,real1,real2)
 INTEGER int1,int2
 REAL real1,real2
 END SUBROUTINE SUB1
END INTERFACE

INTEGER int
. . .

INTRINSIC

Statement and Attribute: Allows the specific name of an intrinsic procedure to be used as an actual
argument. (Not all specific names can be used as actual arguments. For more information, see
Functions Not Allowed as Actual Arguments.)

The INTRINSIC attribute can be specified in a type declaration statement or an INTRINSIC
statement, and takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] INTRINSIC [, att-ls] :: in-pro [, in-pro]...

Statement:

INTRINSIC in-pro [, in-pro]...

type
Is a data type specifier.

att-ls

INTRINSIC Page 49 of 58

Is an optional list of attribute specifiers.

in-pro
Is the name of an intrinsic procedure.

Rules and Behavior

In a type declaration statement, only functions can be declared INTRINSIC. However, you can use
the INTRINSIC statement to declare subroutines, as well as functions, to be intrinsic.

The name declared INTRINSIC is assumed to be the name of an intrinsic procedure. If a generic
intrinsic function name is given the INTRINSIC attribute, the name retains its generic properties.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: References to Generic Procedures, Type Declarations, Compatible attributes.

Examples

The following example shows a type declaration statement specifying the INTRINSIC attribute:

PROGRAM EXAMPLE
...
REAL(8), INTRINSIC :: DACOS
...
CALL TEST(X, DACOS) ! Intrinsic function DACOS is an actual argument

The following example shows an INTRINSIC statement:

Main Program Subprogram
EXTERNAL CTN SUBROUTINE TRIG(X,F,Y)
INTRINSIC SIN, COS Y = F(X)
. . . RETURN

END
CALL TRIG(ANGLE,SIN,SINE)
. . . FUNCTION CTN(X)

CTN = COS(X)/SIN(X)
CALL TRIG(ANGLE,COS,COSINE) RETURN
. . . END
CALL TRIG(ANGLE,CTN,COTANGENT)

Note that when TRIG is called with a second argument of SIN or COS, the function reference F(X)
references the Fortran 90 library functions SIN and COS; but when TRIG is called with a second

INTRINSIC Page 50 of 58

argument of CTN, F(X) references the user function CTN.

The following shows another example:

 INTRINSIC SIN, COS
 REAL X, Y, R
 ! SIN and COS are arguments to Calc2:
 R = Calc2 (SIN(x), COS(y))

IOR

Elemental Intrinsic Function (Generic): Performs an inclusive OR on corresponding bits. This function
can also be specified as OR.

Syntax

result = IOR (i, j)

i
(Input) Must be of type integer.

j
(Input) Must be of type integer with the same kind parameter as i.

Results:

The result type is the same as i. The result value is derived by combining i and j bit-by-bit according
to the following truth table:

 i j IOR (i, j)

 1 1 1
 1 0 1
 0 1 1
 0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIOR INTEGER(2) INTEGER(2)

JIOR INTEGER(4) INTEGER(4)

KIOR 1 INTEGER(8) INTEGER(8)

1 Alpha only

IOR Page 51 of 58

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: IAND, IEOR, NOT

Examples

IOR (1, 4) has the value 5.

IOR (1, 2) has the value 3.

The following shows another example:

 INTEGER result
 result = IOR(240, 90) ! returns 250

IRAND, IRANDM

Portability Functions: Return random numbers in the range 0 through (2**31)-1, or 0 through
(2**15)-1 if called without an argument.

Module: USE DFPORT

Syntax

result = IRAND ([iflag])
result = IRANDM (iflag)

iflag
(Input) INTEGER(4). Optional for IRAND. Controls the way the returned random number is
chosen. If iflag is omitted, it is assumed to be 0, and the return range is 0 through (2**15)-1
(inclusive).

Results:

The result type is INTEGER(4). If iflag is 1, the generator is restarted and the first random value is
returned. If iflag is 0, the next random number in the sequence is returned. If iflag is neither zero nor
1, it is used as a new seed for the random number generator, and the functions return the first new
random value.

IRAND and IRANDM are equivalent and return the same random numbers. Both functions are
included to ensure portability of existing code that references one or both of them.

Compatibility

IRAND, IRANDM Page 52 of 58

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM_NUMBER, RANDOM_SEED, Portability Library

Example

 USE DFPORT
 INTEGER(4) istat, flag_value, r_nums(20)
 flag_value=1
 r_nums(1) = IRAND (flag_value)
 flag_value=0
 do istat=2,20
 r_nums(istat) = irand(flag_value)
 end do

ISHA

Elemental Function (Generic): Arithmetically shifts an integer left or right by a specified number of bits.

Syntax

result = ISHA (i, shift)

i
(Input) Must be of type integer. This argument is the value to be shifted.

shift
(Input) Must be of type integer. This argument is the direction and distance of shift.

Positive shifts are left (toward the most significant bit); negative shifts are right (toward the
least significant bit).

Results:

The result type is the same as i. The result is equal to i shifted arithmetically by shift bits.

If shift is positive, the shift is to the left; if shift is negative, the shift is to the right. If shift is zero, no
shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in from the
opposite end.

The kind of integer is important in arithmetic shifting because sign varies among integer
representations (see the following example). If you want to shift a one-byte or two-byte argument,
you must declare it as INTEGER(1) or INTEGER(2).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

ISHA Page 53 of 58

See Also: ISHC, ISHL, ISHFT, ISHFTC

Example

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = -128 ! equal to 10000000
 j = -32768 ! equal to 10000000 00000000
 res1 = ISHA (i, -4) ! returns 11111000 = -8
 res2 = ISHA (j, -4) ! returns 11111000 10100000 = -2048

ISHC

Elemental Intrinsic Function (Generic): Rotates an integer left or right by specified number of bits.
Bits shifted out one end are shifted in the other end. No bits are lost.

Syntax

result = ISHC (i, shift)

i
(Input) Must be of type integer. This argument is the value to be rotated.

shift
(Input) Must be of type integer. This argument is the direction and distance of rotation.

Positive rotations are left (toward the most significant bit); negative rotations are right (toward
the least significant bit).

Results:

The result type is the same as i. The result is equal to i circularly rotated by shift bits.

If shift is positive, i is rotated left shift bits. If shift is negative, i is rotated right shift bits. Bits shifted
out one end are shifted in the other. No bits are lost.

The kind of integer is important in circular shifting. With an INTEGER(4) argument, all 32 bits are
shifted. If you want to rotate a one-byte or two-byte argument, you must declare it as INTEGER(1) or
INTEGER(2).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ISHC, ISHA, ISHL, ISHFT

Example

ISHC Page 54 of 58

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHC (i, -3) ! returns 01000001 = 65
 res2 = ISHC (j, -3) ! returns 01000000 00000001 =
 ! 16385

ISHFT

Elemental Intrinsic Function (Generic): Performs a logical shift.

Syntax

result = ISHFT (i, shift)

i
(Input) Must be of type integer.

shift
(Input) Must be of type integer. The absolute value for shift must be less than or equal to
BIT_SIZE(i).

Results:

The result type is the same as i. The result has the value obtained by shifting the bits of i by shift
positions. If shift is positive, the shift is to the left; if shift is negative, the shift is to the right. If shift
is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in from the
opposite end.

ISHFT with a positive shift can also be specified as LSHIFT. ISHFT with a negative shift can also
be specified as RSHIFT with |shift|.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IISHFT INTEGER(2) INTEGER(2)

JISHFT INTEGER(4) INTEGER(4)

KISHFT 1 INTEGER(8) INTEGER(8)

1 Alpha only

ISHFT Page 55 of 58

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BIT_SIZE, ISHFTC, ISHA, ISHC

Examples

ISHFT (2, 1) has the value 4.

ISHFT (2, -1) has the value 1.

The following shows another example:

 INTEGER(1) i, res1
 INTEGER(2) j, k(3), res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHFT (i, 5) ! returns 01000000 = 64
 res2 = ISHFT (j, 5) ! returns 00000001 01000000 =
 ! 320

 k = ISHFT((/3, 5, 1/), (/1, -1, 0/)) ! returns array
 ! /6, 2, 1/

ISHFTC

Elemental Intrinsic Function (Generic): Performs a circular shift of the rightmost bits.

Syntax

result = ISHFTC (i, shift [, size])

i
(Input) Must be of type integer.

shift
(Input) Must be of type integer. The absolute value of shift must be less than or equal to size.

size
(Optional; input) Must be of type integer. The value of size must be positive and must not
exceed BIT_SIZE(i). If size is omitted, it is assumed to have the value of BIT_SIZE(i).

Results:

The result type is the same as i. The result value is obtained by circular shifting the size rightmost bits
of i by shift positions. If shift is positive, the shift is to the left; if shift is negative, the shift is to the
right. Ifshift is zero, no shift is performed.

ISHFTC Page 56 of 58

No bits are lost. Bits in i beyond the value specified by size are unaffected.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Specific Name Argument Type Result Type

IISHFTC INTEGER(2) INTEGER(2)

JISHFTC INTEGER(4) INTEGER(4)

KISHFTC 1 INTEGER(8) INTEGER(8)

1 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BIT_SIZE, ISHFT, MVBITS

Examples

ISHFTC (4, 2, 4) has the value 1.

ISHFTC (3, 1, 3) has the value 6.

The following shows another example:

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHFTC (i, 2, 3) ! rotates the 3 rightmost
 ! bits by 2 (left) and
 ! returns 00001001 = 9
 res1 = ISHFTC (i, -2, 3) ! rotates the 3 rightmost
 ! bits by -2 (right) and
 ! returns 00001100 = 12
 res2 = ISHFTC (j, 2, 3) ! rotates the 3 rightmost
 ! bits by 2 and returns
 ! 00000000 00001001 = 9

ISHL

ISHL Page 57 of 58

Elemental Intrinsic Function (Generic): Logically shifts an integer left or right by the specified bits.
Zeros are shifted in from the opposite end.

Syntax

result = ISHL (i, shift)

i
(Input) Must be of type integer. This argument is the value to be shifted.

shift
(Input) Must be of type integer. This argument is the direction and distance of shift.

If positive, i is shifted left (toward the most significant bit). If negative, i is shifted right
(toward the least significant bit).

Results:

The result type is the same as i. The result is equal to i logically shifted by shift bits. Zeros are shifted
in from the opposite end.

Unlike circular or arithmetic shifts, which can shift ones into the number being shifted, logical shifts
shift in zeros only, regardless of the direction or size of the shift. The integer kind, however, still
determines the end that bits are shifted out of, which can make a difference in the result (see the
following example).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ISHA, ISHC, ISHFT, ISHFTC

Example

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHL (i, 5) ! returns 01000000 = 64
 res2 = ISHL (j, 5) ! returns 00000001 01000000 = 320

ISNAN

Elemental Intrinsic Function (Generic): Tests whether IEEE® real (S_floating and T_floating) numbers
are Not-a-Number (NaN) values.

Syntax

ISNAN Page 58 of 58

result = ISNAN (x)

x
(Output) Must be of type real.

Results:

The result type is default logical. The result is .TRUE. if x is an IEEE NaN; otherwise, the result is
.FALSE..

Examples

 LOGICAL A
 DOUBLE PRECISION B
 ...
 A = ISNAN(B)

A is assigned the value .TRUE. if B is an IEEE NaN; otherwise, the value assigned is .FALSE..

ITIME

Portability Subroutine: Returns the time in numeric form.

Module: USE DFPORT

Syntax

CALL ITIME (array)

array
(Output) INTEGER(4). A rank one array with three elements used to store numeric time data.

The current time is returned in array in the order hour (array(1)), minute (array(2)), and second
(array(3)).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME, Portability Library

Example

USE DFPORT
 INTEGER(4) time_array(3)
 CALL ITIME (time_array)
 write(*,10) time_array
 10 format (1X,I2,’:’,I2,’:’,I2)
END

JDATE Page 1 of 24

JDATE

Portability Function: Returns an 8-character string with the Julian date in the form "yyddd". Three
spaces terminate this string.

Module: USE DFPORT

Syntax

result = JDATE ()

Results:

The result type is CHARACTER(8). The result is the Julian date, in the form YYDDD, followed by
three spaces.

A Julian date is a five-digit number whose first two digits are the last two digits of the year, and
whose final three represent the day of the year (1 for January 1, 366 for December 31 of a leap year,
and so on). For example, the Julian date for February 1, 1994 is 94032.

Warning: The two-digit year return value may cause problems with the year 2000. Use
DATE_AND_TIME instead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE, DATE_AND_TIME, GETDAT, Portability Library

Example

! Sets julian to today’s julian date
 USE DFPORT
 CHARACTER*8 julian
 julian = JDATE()

KILL

Portability Function: Sends a signal to the process given by ID.

Module: USE DFPORT

Syntax

result = KILL (pid, num)

pid
(Input) INTEGER(4). ID of a process to be signaled.

KILL Page 2 of 24

num
(Input) INTEGER(4). Signal value. For the definition of signal values, see the SIGNAL
function.

Results:

The result type is INTEGER(4). The result is zero if the call was successful; otherwise, an error code.
Possible error codes are:

� EINVAL: The signum is not a valid signal number, or PID is not the same as getpid() and
signum does not equal SIGKILL.

� ESRCH: The given PID could not be found.
� EPERM: The current process does not have permission to send a signal to the process given by

PID.

Arbitrary signals can be sent only to the calling process (where pid = getpid()). Other processes can
send only the SIGKILL signal (signum = 9), and only if the calling process has permission.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RAISEQQ, SIGNALQQ, Portability Library

Example

USE DFPORT
integer(4) id_number, sig_val, istat
id_number=getpid()
ISTAT = KILL (id_number, sig_val)

KIND

Inquiry Intrinsic Function (Generic): Returns the kind parameter of the argument.

Syntax

result = KIND (x)

x
(Input) Can be of any intrinsic type.

Results:

The result is a scalar of type default integer. The result has a value equal to the kind type parameter
value of x.

Compatibility

KIND Page 3 of 24

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SELECTED_INT_KIND, SELECTED_REAL_KIND, CMPLX, INT, REAL, LOGICAL,
CHAR, Intrinsic Data Types

Examples

KIND (0.0) has the kind value of default real type.

KIND (12) has the kind value of default integer type.

The following shows another example:

INTEGER i ! a 4-byte integer
WRITE(*,*) KIND(i)
CALL INTEGER2()
WRITE(*,*) KIND(i) ! still a 4-byte integer
 ! not affected by setting in subroutine
END
SUBROUTINE INTEGER2()
 !DEC$INTEGER:2
 INTEGER j ! a 2-byte integer
 WRITE(*,*) KIND(j)
END SUBROUTINE

LBOUND

Inquiry Intrinsic Function (Generic): Returns the lower bounds for all dimensions of an array, or
the lower bound for a specified dimension.

Syntax

result = LBOUND (array [, dim])

array
(Input) Must be an array (of any data type). It must not be an allocatable array that is not
allocated, or a disassociated pointer.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
array.

Results:

The result type is default integer. If dim is present, the result is a scalar. Otherwise, the result is a
rank-one array with one element for each dimension of array. Each element in the result corresponds
to a dimension of array.

If array is an array section or an array expression that is not a whole array or array structure
component, each element of the result has the value 1.

LBOUND Page 4 of 24

If array is a whole array or array structure component, LBOUND (array, dim) has a value equal to
the lower bound for subscript dim of array (if array(dim) is nonzero). If array(dim) has size zero, the
corresponding element of the result has the value 1.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: UBOUND

Examples

Consider the following:

 REAL ARRAY_A (1:3, 5:8)
 REAL ARRAY_B (2:8, -3:20)

LBOUND(ARRAY_A) is (1, 5). LBOUND(ARRAY_A, DIM=2) is 5.

LBOUND(ARRAY_B) is (2, -3). LBOUND(ARRAY_B (5:8, :)) is (1,1) because the arguments are
array sections.

The following shows another example:

REAL ARRAY (2:6, 8:14)
INTEGER LB(2), LBD
LB = LBOUND(ARRAY) ! returns [2 8]
LBD = LBOUND(ARRAY, DIM = 2) ! returns 8

LCWRQQ (x86 only)

Run-Time Subroutine: Sets the value of the floating-point processor control word. This routine is
only available on Intel® processors.

Module: USE DFLIB

Syntax

CALL LCWRQQ (controlword)

controlword
(Input) INTEGER(2). Floating-point processor control word.

LCWRQQ performs the same function as the run-time subroutine SETCONTROLFPQQ and is
provided for compatibility.

Compatibility

LCWRQQ (x86 only) Page 5 of 24

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

USE DFLIB
INTEGER(2) control
CALL SCWRQQ(control) ! get control word
! Set control word to make processor round up
control = control .AND. (.NOT. FPCW$MCW_RC) ! Clear
 ! control word with inverse
 ! of rounding control mask
control = control .OR. FPCW$UP ! Set control word
 ! to round up
CALL LCWRQQ(control)
WRITE (*, 9000) ’Control word: ’, control
9000 FORMAT (1X, A, Z4)
END

LEADZ

Elemental Intrinsic Function (Generic): Returns the number of leading zero bits in an integer.

Syntax

result = LEADZ (i)

i
Integer.

Results:

The result type is the same as i. The result value is the number of leading zeros in the binary
representation of the integer i.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Example

Consider the following:

 INTEGER*8 J, TWO
 PARAMETER (TWO=2)
 DO J= -1, 40
 TYPE *, LEADZ(TWO**J) ! Prints 64 down to 23 (leading zeros)
 ENDDO
 END

LEN

LEN Page 6 of 24

Inquiry Intrinsic Function (Generic): Returns the length of a character expression.

Syntax

result = LEN (string)

string
(Input) Must be of type character; it can be scalar or array valued. (It can be an array of strings.)

Results:

The result is a scalar of type default integer. The result has a value equal to the number of characters
in string (if it is scalar) or in an element of string (if it is array valued).

Specific Name Argument Type Result Type

LEN CHARACTER INTEGER(4)

CHARACTER INTEGER(8) 1

1 INTEGER(8) is only available on Alpha processors.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LEN_TRIM

Examples

Consider the following example:

 CHARACTER (15) C (50)
 CHARACTER (25) D

LEN (C) has the value 15, and LEN (D) has the value 25.

The following shows another example:

CHARACTER(11) STR(100)
INTEGER I
I = LEN (STR) ! returns 11
I = LEN(’A phrase with 5 trailing blanks. ’)
 ! returns 37

LEN_TRIM

Elemental Intrinsic Function (Generic): Returns the length of the character argument without counting

LEN_TRIM Page 7 of 24

trailing blank characters.

Syntax

result = LEN_TRIM (string)

string
(Input) Must be of type character.

Results:

The result type is default integer. The result has a value equal to the number of characters remaining
after any trailing blanks in string are removed. If the argument contains only blank characters, the
result is zero.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LEN, LNBLNK

Examples

In these examples, the symbol - represents a blank.

LEN_TRIM (’---C--D---’) has the value 7.

LEN_TRIM (’-----’) has the value 0.

The following shows another example:

INTEGER LEN1
LEN1 = LEN_TRIM (’ GOOD DAY ’) ! returns 9
LEN1 = LEN_TRIM (’ ’) ! returns 0

LGE

Elemental Intrinsic Function (Generic): Determines if a string is lexically greater than or equal to
another string, based on the ASCII collating sequence.

Syntax

result = LGE (string_a, string_b)

string_a
(Input) Must be of type character.

string_b
(Input) Must be of type character.

LGE Page 8 of 24

Results:

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if the strings are equal, both strings are of zero length, or if string_a follows
string_b in the ASCII collating sequence; otherwise, the result is false.

Specific Name Argument Type Result Type

LGE 1 CHARACTER LOGICAL(4)

1 This specific function cannot be passed as an actual argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LGT, LLE, LLT, ASCII and Key Code Charts

Examples

LGE (’ONE’, ’SIX’) has the value false.

LGE (’TWO’, ’THREE’) has the value true.

The following shows another example:

LOGICAL L
L = LGE(’ABC’,’ABD’) ! returns .FALSE.
L = LGE (’AB’, ’AAAAAAAB’) ! returns .TRUE.

LGT

Elemental Intrinsic Function (Generic): Determines whether a string is lexically greater than
another string, based on the ASCII collating sequence.

Syntax

result = LGT (string_a, string_b)

string_a
(Input) Must be of type character.

string_b
(Input) Must be of type character.

LGT Page 9 of 24

Results:

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if string_a follows string_b in the ASCII collating sequence; otherwise, the result is
false. If both strings are of zero length, the result is also false.

Specific Name Argument Type Result Type

LGT 1 CHARACTER LOGICAL(4)

1 This specific function cannot be passed as an actual argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LGE, LLE, LLT, ASCII and Key Code Charts

Examples

LGT (’TWO’, ’THREE’) has the value true.

LGT (’ONE’, ’FOUR’) has the value true.

The following shows another example:

LOGICAL L
L = LGT(’ABC’, ’ABC’) ! returns .FALSE.
L = LGT(’ABC’, ’AABC’) ! returns .TRUE.

LINETO, LINETO_W

Graphics Function: Draws a line from the current graphics position up to and including the end
point.

Module: USE DFLIB

Syntax

result = LINETO (x, y)
result = LINETO_W (wx, wy)

x, y
(Input) INTEGER(2). Viewport coordinates of end point.

LINETO, LINETO_W Page 10 of 24

wx, wy
(Input) REAL(8). Window coordinates of end point.

Results:

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, 0.

The line is drawn using the current graphics color, logical write mode, and line style. The graphics
color is set with SETCOLORRGB, the write mode with SETWRITEMODE, and the line style
with SETLINESTYLE.

If no error occurs, LINETO sets the current graphics position to the viewport point (x, y), and
LINETO_W sets the current graphics position to the window point (wx, wy).

If you use FLOODFILLRGB to fill in a closed figure drawn with LINETO, the figure must be
drawn with a solid line style. Line style is solid by default and can be changed with
SETLINESTYLE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS

See Also: GETCURRENTPOSITION, GETLINESTYLE, GRSTATUS, MOVETO, POLYGON,
SETLINESTYLE, SETWRITEMODE

Example

This program draws the figure shown below.

! Build as QuickWin or Standard Graphics
USE DFLIB
INTEGER(2) status
TYPE (xycoord) xy

CALL MOVETO(INT2(80), INT2(50), xy)
status = LINETO(INT2(240), INT2(150))
status = LINETO(INT2(240), INT2(50))
END

Figure: Output of Program LINETO.FOR

LINETOAR

LINETOAR Page 11 of 24

Graphics Function: Draws a line between each x,y point in the from-array to each corresponding x,y
point in the to-array.

Module: USE DFLIB

Syntax

result = LINETOAR (loc(fx), loc(fy), loc(tx) loc(ty), cnt)

fx
(Input) INTEGER(2). From x viewport coordinate array.

fy
(Input) INTEGER(2). From y viewport coordinate array.

tx
(Input) INTEGER(2). To x viewport coordinate array.

ty
(Input) INTEGER(2). To y viewport coordinate array.

cnt
(Input) INTEGER(4). Length of each coordinate array; all should be the same size.

Results:

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, zero.

The lines are drawn using the current graphics color, logical write mode, and line style. The graphics
color is set with SETCOLORRGB, the write mode with SETWRITEMODE, and the line style
with SETLINESTYLE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS

See Also: LINETO, LINETOAREX, LOC, SETCOLORRGB, SETLINESTYLE, SETWRITEMODE

Example

 ! Build for QuickWin or Standard Graphics
 USE DFLIB
 integer(2) fx(3),fy(3),tx(3),ty(3),result
 integer(4) cnt, i
 ! load the points
 do i = 1,3
 !from here
 fx(i) =20*i
 fy(i) =10

LINETOAR Page 12 of 24

 !to there
 tx(i) =20*i
 ty(i) =60
 end do
 ! draw the lines all at once
 ! 3 white vertical lines in upper left corner
 result = LINETOAR(loc(fx),loc(fy),loc(tx),loc(ty), 3)
 end

LINETOAREX

Graphics Function: Draws a line between each x,y point in the from-array to each corresponding x,y
point in the to-array. Each line is drawn with the specified graphics color and line style.

Module: USE DFLIB

Syntax

result = LINETOAREX (loc(fx), loc(fy), loc(tx) loc(ty), loc(C), loc(S),cnt)

fx
(Input) INTEGER(2). From x viewport coordinate array.

fy
(Input) INTEGER(2). From y viewport coordinate array.

tx
(Input) INTEGER(2). To x viewport coordinate array.

ty
(Input) INTEGER(2). To y viewport coordinate array.

C
(Input) INTEGER(4). Color array.

S
(Input) INTEGER(4). Style array.

cnt
(Input) INTEGER(4). Length of each coordinate array; also the length of the color array and
style array. All of the arrays should be the same size.

Results:

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, zero.

The lines are drawn using the specified graphics colors and line styles, and with the current write
mode. The current write mode is set with SETWRITEMODE.

If the color has the #80000000 bit set, the color is an RGB color; otherwise, the color is a palette

LINETOAREX Page 13 of 24

color.

The styles are as follows from wingdi.h:

 SOLID 0
 DASH 1 /* ------- */
 DOT 2 /* */
 DASHDOT 3 /* _._._._ */
 DASHDOTDOT 4 /* _.._.._ */
 NULL 5

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS

See Also: LINETO, LINETOAR, LOC, SETWRITEMODE

Example

 ! Build for QuickWin or Standard Graphics
 USE DFLIB
 integer(2) fx(3),fy(3),tx(3),ty(3),result
 integer(4) C(3),S(3),cnt,i,color

 color = #000000FF

 ! load the points
 do i = 1,3
 S(i) = 0 ! all lines solid
 C(i) = IOR(#80000000,color)
 color = color*256 ! pick another of RGB
 if(IAND(color,#00FFFFFF).eq.0) color = #000000FF
 !from here
 fx(i) =20*i
 fy(i) =10
 !to there
 tx(i) =20*i
 ty(i) =60
 end do
 ! draw the lines all at once
 ! 3 vertical lines in upper left corner, Red, Green, and Blue
 result = LINETOAREX(loc(fx),loc(fy),loc(tx),loc(ty),loc(C),loc(S),3)
 end

LLE

Elemental Intrinsic Function (Generic): Determines whether a string is lexically less than or equal to
another string, based on the ASCII collating sequence.

Syntax

result = LLE (string_a, string_b)

string_a

LLE Page 14 of 24

(Input) Must be of type character.

string_b
(Input) Must be of type character.

Results:

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if the strings are equal, both strings are of zero length, or if string_a precedes
string_b in the ASCII collating sequence; otherwise, the result is false.

Specific Name Argument Type Result Type

LLE 1 CHARACTER LOGICAL(4)

1 This specific function cannot be passed as an actual argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LGE, LGT, LLT, ASCII and Key Code Charts

Examples

LLE ('TWO', 'THREE') has the value false.

LLE ('ONE', 'FOUR') has the value false.

The following shows another example:

LOGICAL L
L = LLE(’ABC’, ’ABC’) ! returns .TRUE.
L = LLE(’ABC’, ’AABCD’) ! returns .FALSE.

LLT

Elemental Intrinsic Function (Generic): Determines whether a string is lexically less than
another string, based on the ASCII collating sequence.

Syntax

result = LLT (string_a, string_b)

string_a
(Input) Must be of type character.

LLT Page 15 of 24

string_b
(Input) Must be of type character.

Results:

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if string_a precedes string_b in the ASCII collating sequence; otherwise, the result
is false. If both strings are of zero length, the result is also false.

Specific Name Argument Type Result Type

LLT 1 CHARACTER LOGICAL(4)

1 This specific function cannot be passed as an actual argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LGE, LGT, LLE, ASCII and Key Code Charts

Examples

LLT (’ONE’, ’SIX’) has the value true.

LLT (’ONE’, ’FOUR’) has the value false.

The following shows another example:

LOGICAL L
L = LLT (’ABC’, ’ABC’) ! returns .FALSE.
L = LLT (’AAXYZ’, ’ABCDE’) ! returns .TRUE.

LNBLNK

Portability Function: Locates the position of the last nonblank character in a string.

Module: USE DFPORT

Syntax

result = LNBLNK (string)

string
(Input) Character*(*). String to be searched. Cannot be an array.

LNBLNK Page 16 of 24

Results:

The result type is INTEGER(4). The result is the index of the last nonblank character in string.

LNBLNK is very similar to the intrinsic function LEN_TRIM, except that string cannot be an array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LEN_TRIM, Portability Library

Example

USE DFPORT
integer(4) p
p = LNBLNK(’ GOOD DAY ’) ! returns 9
p = LNBLNK(’ ’) ! returns 0

LOADIMAGE, LOADIMAGE_W

Graphics Function: Reads an image from a Windows bitmap file and displays it at a specified
location.

Module: USE DFLIB

Syntax

result = LOADIMAGE (filename, xcoord, ycoord)
result = LOADIMAGE_W (filename, wxcoord, wycoord)

filename
(Input) Character*(*). Path of the bitmap file.

xcoord, ycoord
(Input) INTEGER(4). Viewport coordinates for upper-left corner of image display.

wxcoord, wycoord
(Input) REAL(8). Window coordinates for upper-left corner of image display.

Results:

 The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The image is displayed with the colors in the bitmap file. If the color palette in the bitmap file is
different from the current system palette, the current palette is discarded and the bitmap’s palette is
loaded.

LOADIMAGE, LOADIMAGE_W Page 17 of 24

LOADIMAGE specifes the screen placement of the image in viewport coordinates.
LOADIMAGE_W specifies the screen placement of the image in window coordinates.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SAVEIMAGE, SAVEIMAGE_W

LOC

Inquiry Intrinsic Function (Generic): Returns the internal address of a storage item. This function
cannot be passed as an actual argument.

Syntax

result = LOC (x)

x
(Input) Is a variable, an array or record field reference, a procedure, or a constant; it can be of
any data type. It must not be the name of an internal procedure or statement function. If it is a
pointer, it must be defined and associated with a target.

Results:

The result type is INTEGER(4) on Intel processors; INTEGER(8) on Alpha processors. The value of
the result represents the address of the data object or, in the case of pointers, the address of its
associated target. If the argument is not valid, the result is undefined.

LOC performs the same function as the %LOC built-in function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

! Mixed language example passing Integer Pointer to C

! Fortran main program
 INTERFACE
 SUBROUTINE Ptr_Sub (p)
!DEC$ ATTRIBUTES C, ALIAS:’_Ptr_Sub’ :: Ptr_Sub
 INTEGER p
 END SUBROUTINE Ptr_Sub
 END INTERFACE

 REAL A[10], VAR[10]
 POINTER (p, VAR) ! VAR is the pointer-based
 ! variable, p is the integer
 ! pointer

LOC Page 18 of 24

 p = LOC(A)

 CALL Ptr_Sub (p)
 WRITE(*,*) "A(4) = ", A(4)
 END

! C subprogram
void Ptr_Sub (int *p)
{
 float a[10];
 a[3] = 23.5;
 *p = a;
}

%LOC

Built-in Function: Computes the internal address of a storage item.

Syntax

result = %LOC (a)

a
(Input) Is the name of an actual argument. It must be a variable, an expression, or the name of a
procedure. (It must not be the name of an internal procedure or statement function.)

The %LOC function produces an integer (INTEGER(4) on Windows NT and Windows 95 systems;
INTEGER(8) on OpenVMS and DIGITAL UNIX systems) value that represents the location of the
given argument. You can use this integer value as an item in an arithmetic expression.

The LOC intrinsic function serves the same purpose as the %LOC built-in function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

LOG

Elemental Intrinsic Function (Generic): Returns the natural logarithm of the argument.

Syntax

result = LOG (x)

x
(Input) Must be of type real or complex. If x is real, its value must be greater than zero. If x is
complex, its value must not be zero.

Results:

The result type is the same as x. The result value is approximately equal to logex. If the arguments

LOG Page 19 of 24

are complex, the result is the principal value of imaginary part omega in the range -pi < omega <= pi.
The imaginary part of the result is pi if the real part of the argument is less than zero and the
imaginary part of the argument is zero.

Specific Name Argument Type Result Type

ALOG 1 REAL(4) REAL(4)

DLOG REAL(8) REAL(8)

QLOG 2 REAL(16) REAL(16)

CLOG 1 COMPLEX(4) COMPLEX(4)

CDLOG 3 COMPLEX(8) COMPLEX(8)

1 The setting of compiler option /real_size can affect ALOG and CLOG.
2 VMS and U*X
3 This function can also be specified as ZLOG.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EXP, LOG10

Examples

LOG (8.0) has the value 2.079442.

LOG (25.0) has the value 3.218876.

The following shows another example:

REAL r
r = LOG(10.0) ! returns 2.302585

LOG10

Elemental Intrinsic Function (Generic): Returns the common logarithm of the argument.

Syntax

result = LOG10 (x)

x
(Input) Must be of type real. The value of x must be greater than zero.

LOG10 Page 20 of 24

Results:

The result type is the same as x. The result has a value equal to log10x.

Specific Name Argument Type Result Type

ALOG10 1 REAL(4) REAL(4)

DLOG10 REAL(8) REAL(8)

QLOG10 2 REAL(16) REAL(16)

1 The setting of compiler option /real_size can affect ALOG10.
2 VMS and U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LOG

Examples

LOG10 (8.0) has the value 0.9030900.

LOG10 (15.0) has the value 1.176091.

The following shows another example:

REAL r
r = LOG10(10.0) ! returns 1.0

LOGICAL Function

Elemental Intrinsic Function (Generic): Converts the logical value of the argument to a logical
value with different kind parameters.

Syntax

result = LOGICAL(l [, kind])

l
(Input) Must be of type logical.

kind
(Optional; input) Must be a scalar integer initialization expression.

LOGICAL Function Page 21 of 24

Results:

The result type is logical. If kind is present, the kind parameter is that specified by kind; otherwise,
the kind parameter is that of default logical. The result value is that of l.

The setting of compiler option /integer_size can affect this function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CMPLX, INT, REAL

Examples

LOGICAL (L .OR. .NOT. L) has the value true and is of type default logical regardless of the kind
parameter of logical variable L.

LOGICAL (.FALSE., 2) has the value false, with the kind parameter of default integer.

LOGICAL

Statement: Specifies the LOGICAL data type.

Syntax

LOGICAL
LOGICAL([KIND=]n)
LOGICAL*n

n
Is kind 1, 2, 4, or 8. Kind 8 is only available on Alpha processors.

If a kind parameter is specified, the logical constant has the kind specified. If no kind parameter is
specified, the kind of the constant is default logical.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Logical Data Types, Logical Constants, Data Types, Constants, and Variables

Example

LOGICAL, ALLOCATABLE :: flag1, flag2
LOGICAL (2), SAVE :: doit, dont=.FALSE.
LOGICAL switch

! An equivalent declaration is:

LOGICAL Page 22 of 24

LOGICAL flag1, flag2
LOGICAL (2) doit, dont=.FALSE.
ALLOCATABLE flag1, flag2
SAVE doit, dont

LONG

Portability Function: Returns an INTEGER(2) value as an INTEGER(4) type.

Module: USE DFPORT

Syntax

result = LONG (int2)

int2
(Input) INTEGER(2). Value to be converted.

Results:

The result type is INTEGER(4). The result is the value of int2 with type INTEGER(4). The upper 16
bits of the result are zeros and the lower 16 are equal to int2.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INT, KIND, Portability Library

LSHIFT

Elemental Intrinsic Function: Shifts the bits in an integer left by a specified number of positions.
For more information, see ISHFT.

LSTAT

Portability Function: Returns detailed information about a file.

Module: USE DFPORT

Syntax

result = LSTAT (name, statb)

name
(Input) Character*(*). Name of the file to examine.

statb

LSTAT Page 23 of 24

(Output) INTEGER(4). One-dimensional array with a size of 12. See STAT for the possible
values returned in statb.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code (see
IERRNO.

LSTAT returns detailed information about the file named in name. In this implementation, LSTAT
returns exactly the same information as STAT (because there are no symbolic links). STAT is the
preferred function.

INQUIRE also provides information about file properties.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INQUIRE, GETFILEINFOQQ, STAT, FSTAT, Portability Library

Example

USE DFPORT
INTEGER(4) info_array(12), istatus
character*20 file_name
print *, "Enter name of file to examime: "
read *, file_name
ISTATUS = LSTAT (file_name, info_array)
if (.NOT. ISTATUS) then
 print *, info_array
else
 print *, ’Error ’,istatus
end if

LTIME

Portability Subroutine: Returns the components of the local time zone time in a nine-element array.

Module: USE DFPORT

Syntax

CALL LTIME (time, array)

time
(Input) Integer(4). An elapsed time in seconds since 00:00:00 Greenwich mean time, January 1,
1970.

array
(Output) Integer(4). One-dimensional array with 9 elements to contain local date and time data
derived from time.

LTIME Page 24 of 24

The elements of array are returned as follows:

Element of array Data returned

array(1) Seconds (0 - 59)

array(2) Minutes (0 - 59)

array(3) Hours (0 - 23)

array(4) Day of month (1 - 31)

array(5) Month (0 - 11)

array(6) Year number in century (0 - 99)

array(7) Day of week (0 - 6, where 0 is Sunday)

array(8) Day of year (1 - 365)

array(9) 1 if daylight saving time is in effect; otherwise, 0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME, Portability Library

Example

USE DFPORT
INTEGER(4) input_time, time_array
! find number of seconds since 1/1/70
input_time=TIME()
! convert number of seconds to time array
CALL LTIME (input_time, time_array)
PRINT *, time_array

MAKEDIRQQ Page 1 of 75

MAKEDIRQQ

Run-Time Function: Creates a new directory with a specified name.

Module: USE DFLIB

Syntax

result = MAKEDIRQQ (dirname)

dirname
(Input) Character*(*). Name of directory to be created.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

MAKEDIRQQ can create only one directory at a time. You cannot create a new directory and a
subdirectory below it in a single command. MAKEDIRQQ does not translate path delimiters. You
can use either slash (/) or backslash (\) as valid delimiters.

If an error occurs, call GETLASTERRORQQ to retrieve the error message. Possible errors include:

� ERR$ACCESS: The directory was not created. The given name is the name of an existing file,
directory, or device.

� ERR$NOENT: The path was not found.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DELDIRQQ, CHANGEDIRQQ, GETLASTERRORQQ

Example

USE DFLIB
LOGICAL(4) result
result = MAKEDIRQQ(’mynewdir’)
IF (result) THEN
 WRITE (*,*) ’New subdirectory successfully created’
ELSE
 WRITE (*,*) ’Failed to create subdirectory’
END IF
END

MALLOC

Elemental Intrinsic Function (Specific): Allocates a block of memory. This specific function cannot be
passed as an actual argument.

MALLOC Page 2 of 75

Syntax

result = MALLOC (i)

i
(Input) Must be of type INTEGER(4). This value is the size (in bytes) of memory to be
allocated.

Results:

The result type is INTEGER(4) on Intel processors; INTEGER(8) on Alpha processors. The result is
the starting address of the allocated memory. The memory allocated can be freed by using the FREE
intrinsic function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

 INTEGER(4) addr, size
 size = 1024 ! size in bytes
 addr = MALLOC(size) ! allocate the memory
 CALL FREE(addr) ! free it
 END

MAP...END MAP

Statement: Specifies mapped field declarations that are part of a UNION declaration within a
STRUCTURE statement. For more information, see UNION...END UNION.

Example

UNION
 MAP
 CHARACTER*20 string
 END MAP
 MAP
 INTEGER*2 number(10)
 END MAP
END UNION

UNION
 MAP
 RECORD /Cartesian/ xcoord, ycoord
 END MAP
 MAP
 RECORD /Polar/ length, angle
 END MAP
END UNION

MATHERRQQ (x86 only)

MATHERRQQ (x86 only) Page 3 of 75

Run-Time Subroutine: Handles run-time math errors. This routine is only available on Intel®
processors.

Module: USE DFLIB

Syntax

CALL MATHERRQQ (name, nlen, info, retcode)

name
(Output) Character*(*). Name of the function causing the error. The parameter name is a
typeless version of the function called. For example, if an error occurs in a SIN function, the
name will be returned as sin for real arguments and csin for complex arguments even though
the function may have actually been called with an alternate name such as DSIN or CDSIN, or
with SIN and complex arguments.

nlen
(Output) INTEGER(2). Length of name.

info
(Output) Structure. Record containing data about the error. The MTH$E_INFO structure is
defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

 STRUCTURE /MTH$E_INFO/
 INTEGER*4 ERRCODE ! One of the MTH$ values below
 INTEGER*4 FTYPE ! One of the TY$ values below
 UNION
 MAP
 REAL*4 R4ARG1 ! INPUT: First argument
 CHARACTER*12 R4FILL1
 REAL*4 R4ARG2 ! INPUT: Second argument (if any)
 CHARACTER*12 R4FILL2
 REAL*4 R4RES ! OUTPUT : Desired result
 CHARACTER*12 R4FILL3
 END MAP
 MAP
 REAL*8 R8ARG1 ! INPUT : First argument
 CHARACTER*8 R8FILL1
 REAL*8 R8ARG2 ! INPUT : Second argument (if any)
 CHARACTER*8 R8FILL2
 REAL*8 R8RES ! OUTPUT : Desired result
 CHARACTER*8 R8FILL3
 END MAP
 MAP
 COMPLEX*8 C8ARG1 ! INPUT : First argument
 CHARACTER*8 C8FILL1
 COMPLEX*8 C8ARG2 ! INPUT : Second argument (if any)
 CHARACTER*8 C8FILL2
 COMPLEX*8 C8RES ! OUTPUT : Desired result
 CHARACTER*8 C8FILL1
 END MAP
 MAP
 COMPLEX*16 C16ARG1 ! INPUT : First argument
 COMPLEX*16 C16ARG2 ! INPUT : Second argument (if any)
 COMPLEX*16 C16RES ! OUTPUT : Desired result

MATHERRQQ (x86 only) Page 4 of 75

 END MAP
 END UNION
 END STRUCTURE

retcode
(Output) INTEGER(2). Return code passed back to the run-time library. The value of retcode
should be set by the user’s MATHERRQQ routine to indicate whether the error was resolved.
Set this value to 0 to indicate that the error was not resolved and that the program should fail
with a run-time error. Set it to any nonzero value to indicate that the error was resolved and the
program should continue.

If you are not compiling with full optimization (using the /Ox compiler option), errors in math
functions generate a call to the MATHERRQQ subroutine. You can write a MATHERRQQ
function that resolves the error or takes other appropriate action based on arguments passed to the
function. If you do not provide your own MATHERRQQ function, a default MATHERRQQ
provided with the library terminates the process.

Under the ANSI definition of Fortran, there is no handling of math errors. The programmer is
responsible for making sure that arguments to math intrinsics are valid. If they are not valid, the result
is undefined. Handling of math errors in math debug mode is a language extension. This mode
provides more safety, but the performance of math functions is significantly slower.

The ERRCODE element in the MTH$E_INFO structure specifies the type of math error that
occurred, and can have one of the following values:

Value Meaning

MTH$E_DOMAIN Argument domain error

MTH$E_OVERFLOW Overflow range error

MTH$E_PLOSS Partial loss of significance

MTH$E_SINGULARITY Argument singularity

MTH$E_TLOSS Total loss of significance

MTH$E_UNDERFLOW Underflow range error

The FTYPE element of the info structure identifies the data type of the math function as
TY$REAL4, TY$REAL8, TY$CMPLX4, or TY$CMPLX8. Internally, REAL(4) and COMPLEX
(4) arguments are converted to REAL(8) and COMPLEX(8). This means that the corresponding
mapped sections of the structure are never used.

In general, a MATHERRQQ function should test the FTYPE value and take separate action for
TY$REAL8 or TY$CMPLX8 using the appropriate mapped values. If you want to resolve the error,
set the R8RES or C8RES field to an appropriate value such as 0.0. You can do calculations within the
MATHERRQQ function using the approprate ARG1 and ARG2 fields, but avoid doing any
calculations that would cause an error resulting in another call to MATHERRQQ.

MATHERRQQ (x86 only) Page 5 of 75

Note: You cannot use MATHERRQQ in DLLs or in a program that links with a DLL.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS LIB

Example

See the example MATHERRQQ in Handling Run-Time Math Exceptions in the Programmer’s Guide.

MATMUL

Transformational Intrinsic Function (Generic): Performs matrix multiplication of numeric
or logical matrices.

Syntax

result = MATMUL (matrix_a, matrix_b)

matrix_a
(Input) Must be an array of rank one or two. It must be of numeric (integer, real, or complex) or
logical type.

matrix_b
(Input) Must be an array of rank one or two. It must be of numeric type if matrix_a is of
numeric type or logical type if matrix_a is logical type.

At least one argument must be of rank two. The size of the first (or only) dimension of
matrix_b must equal the size of the last (or only) dimension of matrix_a.

Results:

The result is an array whose type depends on the data type of the arguments, according to the rules
shown in Conversion Rules for Numeric Assignment Statements. The rank and shape of the result
depends on the rank and shapes of the arguments, as follows:

� If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result is a rank-two array with
shape (n, k).

� If matrix_a has shape (m) and matrix_b has shape (m, k), the result is a rank-one array with
shape (k).

� If matrix_a has shape (n, m) and matrix_b has shape (m), the result is a rank-one array with
shape (n).

If the arguments are of numeric type, element (i, j) of the result has the value SUM ((row i of
matrix_a) * (column j of matrix_b)). If the arguments are of logical type, element (i, j) of the result

MATMUL Page 6 of 75

has the value ANY ((row i of matrix_a) .AND. (column j of matrix_b)).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: TRANSPOSE, PRODUCT

Examples

A is matrix

 [2 3 4]
 [3 4 5],

B is matrix

 [2 3]
 [3 4]
 [4 5],

X is vector (1, 2), and Y is vector (1, 2, 3).

The result of MATMUL (A, B) is the matrix-matrix product AB with the value

 [29 38]
 [38 50].

The result of MATMUL (X, A) is the vector-matrix product XA with the value (8, 11, 14).

The result of MATMUL (A, Y) is the matrix-vector product AY with the value (20, 26).

The following shows another example:

 INTEGER a(2,3), b(3,2), c(2), d(3), e(2,2), f(3), g(2)
 a = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))
 ! a is 1 3 5
 ! 2 4 6
 b = RESHAPE((/1, 2, 3, 4, 5, 6/), (/3, 2/))
 ! b is 1 4
 ! 2 5
 ! 3 6
 c = (/1, 2/) ! c is [1 2]
 d = (/1, 2, 3/) ! d is [1 2 3]

 e = MATMUL(a, b) ! returns 22 49
 ! 28 64

 f = MATMUL(c,a) ! returns [5 11 17]
 g = MATMUL(a,d) ! returns [22 28]
 WRITE(*,*) e, f, g
 END

MAX Page 7 of 75

MAX

Elemental Intrinsic Function (Generic): Returns the maximum value of the arguments.

Syntax

result = MAX (a1, a2 [, a3] ...)

a1, a2, a3
(Input) Must all have the same type (integer or real) and kind parameters.

Results:

For MAX0, AMAX1, DMAX1, QMAX1, IMAX0, JMAX0, and KMAX0, the result type is the
same as the arguments. For MAX1, IMAX1, JMAX1, and KMAX1, the result type is integer. For
AMAX0, AIMAX0, AJMAX0, and AKMAX0, the result type is real. The value of the result is that
of the largest argument.

Specific Name 1 Argument Type Result Type

INTEGER(1) INTEGER(1)

INTEGER(1) REAL(4)

IMAX0 INTEGER(2) INTEGER(2)

AIMAX0 INTEGER(2) REAL(4)

MAX0 2 INTEGER(4) INTEGER(4)

AMAX0 3, 4 INTEGER(4) REAL(4)

KMAX0 5 INTEGER(8) INTEGER(8)

AKMAX0 5 INTEGER(8) REAL(4)

IMAX1 REAL(4) INTEGER(2)

MAX1 4, 6, 7 REAL(4) INTEGER(4)

KMAX1 5 REAL(4) INTEGER(8)

AMAX1 8 REAL(4) REAL(4)

DMAX1 REAL(8) REAL(8)

QMAX1 9 REAL(16) REAL(16)

MAX Page 8 of 75

1 These specific functions cannot be passed as actual arguments.
2 Or JMAX0.
3 Or AJMAX0. AMAX0 is the same as REAL (MAX).
4 In Fortran 90, AMAX0 and MAX1 are specific functions with no generic name. For compatibility with older
versions of Fortran, these functions can also be specified as generic functions.
5 Alpha only
6 Or JMAX1. MAX1 is the same as INT (MAX).
7 The setting of compiler option /integer_size can affect MAX1.
8 The setting of compiler option /real_size can affect AMAX1.
9 VMS and U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MIN

Examples

MAX (2.0, -8.0, 6.0) has the value 6.0.

MAX (14, 32, -50) has the value 32.

The following shows another example:

 INTEGER m1, m2
 REAL r1, r2
 m1 = MAX(5, 6, 7) ! returns 7
 m2 = MAX1(5.7, 3.2, -8.3) ! returns 5
 r1 = AMAX0(5, 6, 7) ! returns 7.0
 r2 = AMAX1(6.4, -12.2, 4.9) ! returns 6.4

MAXEXPONENT

Inquiry Intrinsic Function (Generic): Returns the maximum exponent in the model representing the same
type and kind parameters as the argument.

Syntax

result = MAXEXPONENT (x)

x
(Input) Must be of type real; it can be scalar or array valued.

Results:

The result is a scalar of type default integer. The result has the value emax, as defined in Model for
Real Data.

MAXEXPONENT Page 9 of 75

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MINEXPONENT

Examples

 REAL(4) x
 INTEGER i
 i = MAXEXPONENT(x) ! returns 128.

MAXLOC

Transformational Intrinsic Function (Generic): Returns the location of the maximum value of all
elements in an array, a set of elements in an array, or elements in a specified dimension of an array.

Syntax

result = MAXLOC (array [, dim] [, mask])

array
(Input) Must be an array of type integer or real.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array. This argument is a Fortran 95 feature.

mask
(Optional; input) Must be a logical array that is conformable with array.

Results:

The result is an array of type default integer.

The following rules apply if dim is omitted:

� The array result has rank one and a size equal to the rank of array.

� If MAXLOC(array) is specified, the elements in the array result form the subscript of the
location of the element with the maximum value in array.

� If MAXLOC(array, MASK=mask) is specified, the elements in the array result form the
subscript of the location of the element with the maximum value corresponding to the
condition specified bymask.

The following rules apply if dim is specified:

MAXLOC Page 10 of 75

� The array result has a rank that is one less than array, and shape (d1, d2,...ddim-1, ddim+1,...dn),

where (d1, d2,...dn) is the shape of array.

� If array has rank one, MAXLOC(array, dim [,mask]) has a value equal to that of MAXLOC
(array [, MASK = mask]). Otherwise, the value of element (s1, s2,...sdim-1, sdim+1,...sn) of

MAXLOC(array, dim [,mask]) is equal to MAXLOC(array (s1, s2,...sdim-1, :, sdim+1,...sn) [,

MASK = mask (s1, s2,...sdim-1, :, sdim+1,...sn)]).

If more than one element has maximum value, the element whose subscripts are returned is the first
such element, taken in array element order. If array has size zero, the value of the result is undefined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MAXVAL, MINLOC, MINVAL

Examples

The value of MAXLOC((/3, 7, 4, 7/)) is (2), which is the subscript of the location of the first
occurrence of the maximum value in the rank-one array.

A is the array

 [4 0 -3 2]
 [3 1 -2 6]
 [-1 -4 5 -5].

MAXLOC (A, MASK=A .LT. 5) has the value (1, 1) because these are the subscripts of the location
of the maximum value (4) that is less than 5.

MAXLOC (A, DIM=1) has the value (1, 2, 3, 2). 1 is the subscript of the location of the maximum
value (4) in column 1; 2 is the subscript of the location of the maximum value (1) in column 2; and so
forth.

MAXLOC (A, DIM=2) has the value (1, 4, 3). 1 is the subscript of the location of the maximum
value in row 1; 4 is the subscript of the location of the maximum value in row 2; and so forth.

The following shows another example:

 INTEGER i, max
 INTEGER i, maxl(1)
 INTEGER array(3, 3)
 INTEGER, ALLOCATABLE :: AR1(:)
 ! put values in array
 array = RESHAPE((/7, 9, -1, -2, 5, 0, 3, 6, 9/), &
 (/3, 3/))
 ! array is 7 -2 3
 ! 9 5 6
 ! -1 0 9

MAXLOC Page 11 of 75

 i = SIZE(SHAPE(array)) ! Get number of dimensions
 ! in array
 ALLOCATE (AR1(i)) ! Allocate AR1 to number
 ! of dimensions in array
 AR1 = MAXLOC (array, MASK = array .LT. 7) ! Get
 ! the location (subscripts) of
 ! largest element less than 7
 ! in array

 !
 ! MASK = array .LT. 7 creates a mask array the same
 ! size and shape as array whose elements are .TRUE. if
 ! the corresponding element in array is less than 7,
 ! and .FALSE. if it is not. This mask causes MAXLOC to
 ! return the index of the element in array with the
 ! greatest value less than 7.
 !
 ! array is 7 -2 3 and MASK=array .LT. 7 is F T T
 ! 9 5 6 F T T
 ! -1 0 9 T T F
 ! and AR1 = MAXLOC(array, MASK = array .LT. 7) returns
 ! (2, 3), the location of the element with value 6

 maxl = MAXLOC((/1, 4, 3, 4/)) ! returns 2, the first
 ! occurrence of maximum
 END

MAXVAL

Transformational Intrinsic Function (Generic): Returns the maximum value of all elements in an
array, a set of elements in an array, or elements in a specified dimension of an array.

Syntax

result = MAXVAL (array [, dim] [, mask])

array
(Input) Must be an array of type integer or real.

dim
(Optional; input) Must be a scalar integer expression with a value in the range 1 to n, where n
is the rank of array.

mask
(Optional; input) Must be a logical array that is conformable with array.

Results:

The result is an array or a scalar of the same data type as array.

The result is scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

MAXVAL Page 12 of 75

� If MAXVAL (array) is specified, the result has a value equal to the maximum value of all the
elements in array.

� If MAXVAL (array, MASK=mask) is specified, the result has a value equal to the maximum
value of the elements in array corresponding to the condition specified by mask.

The following rules apply if dim is specified:

� An array result has a rank that is one less than array, and shape (d1, d2,...,ddim-1, ddim+1, ..., dn),

where (d1, d2, ..., dn) is the shape of array.

� If array has rank one, MAXVAL (array, dim [,mask]) has a value equal to that of MAXVAL
(array [,MASK = mask]). Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of

MAXVAL (array, dim, [,mask]) is equal to MAXVAL (array (s1, s2, ..., sdim-1, :, sdim+1, ..., sn)

[,MASK = mask (s1, s2, ..., sdim-1, :, sdim+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim is omitted), or each
element in the result array (if dim is specified), has the value of the negative number of the largest
magnitude supported by the processor for numbers of the type and kind parameters of array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MAXLOC, MINVAL, MINLOC

Examples

The value of MAXVAL ((/2, 3, 4/)) is 4 because that is the maximum value in the rank-one array.

MAXVAL (B, MASK=B .LT. 0.0) finds the maximum value of the negative elements of B.

C is the array

 [2 3 4]
 [5 6 7].

MAXVAL (C, DIM=1) has the value (5, 6, 7). 5 is the maximum value in column 1; 6 is the
maximum value in column 2; and so forth.

MAXVAL (C, DIM=2) has the value (4, 7). 4 is the maximum value in row 1 and 7 is the maximum
value in row 2.

The following shows another example:

 INTEGER array(2,3), i(2), max

MAXVAL Page 13 of 75

 INTEGER, ALLOCATABLE :: AR1(:), AR2(:)
 array = RESHAPE((/1, 4, 5, 2, 3, 6/),(/2, 3/))
 ! array is 1 5 3
 ! 4 2 6
 i = SHAPE(array) ! i = [2 3]
 ALLOCATE (AR1(i(2))) ! dimension AR1 to the number of
 ! elements in dimension 2
 ! (a column) of array
 ALLOCATE (AR2(i(1))) ! dimension AR2 to the number of
 ! elements in dimension 1
 ! (a row) of array
 max = MAXVAL(array, MASK = array .LT. 4) ! returns 3
 AR1 = MAXVAL(array, DIM = 1) ! returns [4 5 6]
 AR2 = MAXVAL(array, DIM = 2) ! returns [5 6]
 END

MBCharLen

NLS Function: Returns the length, in bytes, of the first character in a multibyte-character string.

Module: USE DFNLS

Syntax

result = MBCharLen (string)

string
(Input) Character*(*). String containing the character whose length is to be determined. Can
contain multibyte characters.

Results:

The result type is INTEGER(4). The result is the number of bytes in the first character contained in
string. Returns 0 if string has no characters (is length 0).

MBCharLen does not test for multibyte character validity.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBCurMax, MBLead, MBLen, MBLen_Trim

MBConvertMBToUnicode

NLS Function: Converts a multibyte-character string from the current codepage to a Unicode string.

Module: USE DFNLS

Syntax

MBConvertMBToUnicode Page 14 of 75

result = MBConvertMBToUnicode (mbstr, unicodestr [, flags])

mbstr
(Input) Character*(*). Multibyte codepage string to be converted.

unicodestr
(Output) INTEGER(2). Array of integers that is the translation of the input string into Unicode.

flags
(Optional; input) INTEGER(4). If specified, modifies the string conversion. If flags is omitted,
the value NLS$Precomposed is used. Available values (defined in DFNLS.F90) are:

n NLS$Precomposed: Use precomposed characters always. (default)
n NLS$Composite: Use composite wide characters always.
n NLS$UseGlyphChars: Use glyph characters instead of control characters.
n NLS$ErrorOnInvalidChars: Returns - 1 if an invalid input character is encountered.

The flags NLS$Precomposed and NLS$Composite are mutually exclusive. You can combine
NLS$UseGlyphChars with either NLS$Precomposed or NLS$Composite using an inclusive
OR (IOR or OR).

Results:

The result type is INTEGER(4). If no error occurs, returns the number of bytes written to unicodestr
(bytes are counted, not characters), or the number of bytes required to hold the output string if
unicodestr has zero size. If the unicodestr array is bigger than needed to hold the translation, the extra
elements are set to space characters. If unicodestr has zero size, the function returns the number of
bytes required to hold the translation and nothing is written to unicodestr.

If an error occurs, one of the following negative values is returned:

� NLS$ErrorInsufficentBuffer: The unicodestr argument is too small, but not zero size so that
the needed number of bytes would be returned.

� NLS$ErrorInvalidFlags: The flags argument has an illegal value.
� NLS$ErrorInvalidCharacter: A character with no Unicode translation was encountered in

mbstr. This error can occur only if the NLS$InvalidCharsError flag was used in flags.

By default, or if flags is set to NLS$Precomposed, the function MBConvertMBToUnicode
attempts to translate the multibyte codepage string to a precomposed Unicode string. If a
precomposed form does not exist, the function attempts to translate the codepage string to a
composite form.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBConvertUnicodeToMB

MBConvertUnicodeToMB Page 15 of 75

MBConvertUnicodeToMB

NLS Function: Converts a Unicode string to a multibyte-character string from the current codepage.

Module: USE DFNLS

Syntax

result = MBConvertUnicodeToMB (unicodestr, mbstr [, flags])

unicodestr
(Input) INTEGER(2). Array of integers holding the Unicode string to be translated.

mbstr
(Output) Character*(*). Translation of Unicode string into multibyte character string from the
current codepage.

flags
(Optional; input) INTEGER(4). If specified, argument to modify the string conversion. If flags
is omitted, no extra checking of the conversion takes place. Available values (defined in
DFNLS.F90) are:

n NLS$CompositeCheck: Convert composite characters to precomposed.
n NLS$SepChars: Generate separate characters.
n NLS$DiscardDns: Discard nonspacing characters.
n NLS$DefaultChars: Replace exceptions with default character.

The last three flags (NLS$SepChars, NLS$DiscardDns, and NLS$DefaultChars) are
mutually exclusive and can be used only if NLS$CompositeCheck is set, in which case one
(and only one) of them is combined with NLS$CompositeCheck using an inclusive OR (IOR
or OR). These flags determine what translation to make when there is no precomposed
mapping for a base character/nonspace character combination in the Unicode wide character
string. The default (IOR(NLS$CompositeCheck, NLS$SepChars)) is to generate separate
characters.

Results:

The result type is INTEGER(4). If no error occurs, returns the number of bytes written to mbstr (bytes
are counted, not characters), or the number of bytes required to hold the output string if mbstr has
zero length. If mbstr is longer than the translation, it is blank-padded. If mbstr is zero length, the
function returns the number of bytes required to hold the translation and nothing is written to mbstr.

If an error occurs, one of the following negative values is returned:

� NLS$ErrorInsufficentBuffer: The mbstr argument is too small, but not zero length so that the
needed number of bytes is returned.

� NLS$ErrorInvalidFlags: The flags argument has an illegal value.

MBConvertUnicodeToMB Page 16 of 75

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBConvertMBToUnicode

MBCurMax

NLS Function: Returns the longest possible multibyte character length, in bytes, for the current
codepage.

Module: USE DFNLS

Syntax

result = MBCurMax ()

Results:

The result type is INTEGER(4). The result is the longest possible multibyte character, in bytes, for
the current codepage.

The MBLenMax parameter, defined in the module DFNLS.F90, is the longest length, in bytes, of
any character in any codepage installed on the system.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBCharLen

MBINCHARQQ

NLS Function: Performs the same function as INCHARQQ except that it can read a single
multibyte character at once, and it returns the number of bytes read as well as the character.

Module: USE DFNLS

Syntax

result = MBINCHARQQ (string)

string
(Output) CHARACTER(MBLenMax). String containing the read characters, padded with
blanks up to the length MBLenMax. The MBLenMax parameter, defined in the module
DFNLS.F90 (in \DF98\INCLUDE), is the longest length, in bytes, of any character in any
codepage installed on the system.

MBINCHARQQ Page 17 of 75

Results:

The result type is INTEGER(4). The result is the number of characters read.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INCHARQQ, MBCurMax, MBCharLen, MBLead

MBINDEX

NLS Function: Performs the same function as INDEX except that the strings manipulated can
contain multibyte characters.

Module: USE DFNLS

Syntax

result = MBINDEX (string, substring [, back])

string
(Input) CHARACTER*(*). String to be searched for the presence of substring. Can contain
multibyte characters.

substring
(Input) CHARACTER*(*). Substring whose position within string is to be determined. Can
contain multibyte characters.

back
(Optional; input) LOGICAL(4). If specified, determines direction of the search. If back is
.FALSE. or is omitted, the search starts at the beginning of string and moves toward the end. If
back is .TRUE., the search starts end of string and moves toward the beginning.

Results:

The result type is INTEGER(4). If back is omitted or is .FALSE., returns the leftmost position in
string that contains the start of substring. If back is .TRUE., returns the rightmost position in string
which contains the start of substring. If string does not contain substring, returns 0. If substring
occurs more than once, returns the starting position of the first occurrence ("first" is determined by
the presence and value of back).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INDEX, MBSCAN, MBVERIFY

MBJISToJMS and MBJMSToJIS Page 18 of 75

MBJISToJMS and MBJMSToJIS

NLS Functions: Convert Japan Industry Standard (JIS) characters to Microsoft Kanji (JMS)
characters or converts JMS characters to JIS characters.

Module: USE DFNLS

Syntax

result = MBJISToJMS (char)
result = MBJMSToJIS (char)

char
(Input) CHARACTER(2). JIS or JMS character to be converted.

A JIS character is converted only if the lead and trail bytes are in the hexadecimal range 21
through 7E.

A JMS character is converted only if the lead byte is in the hexadecimal range 81 through 9F or
E0 through FC, and the trail byte is in the hexadecimal range 40 through 7E or 80 through FC.

Results:

The result type is CHARACTER(2). MBJISToJMS returns a Microsoft Kanji (Shift JIS or JMS)
character. MBJMSToJIS returns a Japan Industry Standard (JIS) character.

Only computers with Japanese installed as one of the available languages can use the MBJISToJMS
and MBJMSToJIS conversion functions.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSEnumLocales, NLSEnumCodepages, NLSGetLocale, NLSSetLocale

MBLead

NLS Function: Determines whether a given character is the lead (first) byte of a multibyte character
sequence.

Module: USE DFNLS

Syntax

result = MBLead (char)

char

MBLead Page 19 of 75

(Input) CHARACTER(1). Character to be tested for lead status.

Results:

The result type is LOGICAL(4). The result is .TRUE. if char is the first character of a multibyte
character sequence; otherwise, .FALSE..

MBLead only works stepping forward through a whole multibyte character string. For example:

 DO i = 1, LEN(str) ! LEN returns the number of bytes, not the
 ! number of characters in str
 WRITE(*, 100) MBLead (str(i:i))
 END DO
 100 FORMAT (L2, \)

MBLead is passed only one character at a time and must start on a lead byte and step through a string
to establish context for the character. MBLead does not correctly identify a nonlead byte if it is
passed only the second byte of a multibyte character because the status of lead byte or trail byte
depends on context.

The function MBStrLead is passed a whole string and can identify any byte within the string as a
lead or trail byte because it performs a context-sensitive test, scanning all the way back to the
beginning of a string if necessary to establish context. So, MBStrLead can be much slower than
MBLead (up to n times slower, where n is the length of the string).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBStrLead, MBCharLen

MBLen

NLS Function: Returns the number of characters in a multibyte-character string, including trailing
blanks.

Module: USE DFNLS

Syntax

result = MBLen (string)

string
(Input) CHARACTER*(*). String whose characters are to be counted. Can contain multibyte
characters.

Results:

The result type is INTEGER(4). The result is the number of characters in string.

MBLen Page 20 of 75

MBLen recognizes multibyte-character sequences according to the multibyte codepage currently in
use. It does not test for multibyte-character validity.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBLen_Trim, MBStrLead

MBLen_Trim

NLS Function: Returns the number of characters in a multibyte-character string, not including
trailing blanks.

Module: USE DFNLS

Syntax

result = MBLen_Trim (string)

string
(Input) Character*(*). String whose characters are to be counted. Can contain multibyte
characters.

Results:

The result type is INTEGER(4). The result is the number of characters in string minus any trailing
blanks (blanks are bytes containing character 32 (hex 20) in the ASCII collating sequence).

MBLen_Trim recognizes multibyte-character sequences according to the multibyte codepage
currently in use. It does not test for multibyte-character validity.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBLen, MBStrLead

MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE

NLS Functions: Perform the same functions as LGE, LGT, LLE, LLT and the logical operators
.EQ. and .NE. except that the strings being compared can include multibyte characters, and optional
flags can modify the comparison.

Module: USE DFNLS

Syntax

MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE Page 21 of 75

result = MBLGE (string_a, string_b, [flags])
result = MBLGT (string_a, string_b, [flags])
result = MBLLE (string_a, string_b, [flags])
result = MBLLT (string_a, string_b, [flags])
result = MBLEQ (string_a, string_b, [flags])
result = MBLNE (string_a, string_b, [flags])

string_a, string_b
(Input) Character*(*). Strings to be compared. Can contain multibyte characters.

flags
(Optional; input) INTEGER(4). If specified, determines which character traits to use or ignore
when comparing strings. You can combine several flags using an inclusive OR (IOR or OR).
There are no illegal combinations of flags, and the functions may be used without flags, in
which case all flag options are turned off. The available values (defined in DFNLS.F90) are:

n NLS$MB_IgnoreCase: Ignore case.
n NLS$MB_IgnoreNonspace: Ignore nonspacing characters (this flag removes Japanese

accent characters if they exist).
n NLS$MB_IgnoreSymbols: Ignore symbols.
n NLS$MB_IgnoreKanaType: Do not differentiate between Japanese Hiragana and

Katakana characters (corresponding Hiragana and Katakana characters will compare as
equal).

n NLS$MB_IgnoreWidth: Do not differentiate between a single-byte character and the
same character as a double byte.

n NLS$MB_StringSort: Sort all symbols at the beginning, including the apostrophe and
hyphen (See last paragraph below).

Results:

The result type is LOGICAL(4). Comparisons are made using the current locale, not the current
codepage. The codepage used is the default for the language/country combination of the current
locale.

MBLGE returns .TRUE. if the strings are equal or string_a comes last in the collating sequence.
Otherwise, it returns .FALSE..

MBLGT returns .TRUE. if string_a comes last in the collating sequence. Otherwise, it returns
.FALSE..

MBLLE returns .TRUE. if the strings are equal or string_a comes first in the collating sequence.
Otherwise, it returns .FALSE..

MBLLT returns .TRUE. if string_a comes first in the collating sequence. Otherwise, it returns
.FALSE..

MBLEQ returns .TRUE. if the strings are equal in the collating sequence. Otherwise, it returns
.FALSE..

MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE Page 22 of 75

MBLNE returns .TRUE. if the strings are not equal in the collating sequence. Otherwise, it returns
.FALSE..

If the two strings are of different lengths, they are compared up to the length of the shortest one. If
they are equal to that point, then the return value indicates that the longer string is greater.

If flags is invalid, the functions return .FALSE..

If the strings supplied contain Arabic Kashidas, the Kashidas are ignored during the comparison.
Therefore, if the two strings are identical except for Kashidas within the strings, the functions return a
value indicating they are "equal" in the collation sense, though not necessarily identical.

When not using the NLS$MB_StringSort flag, the hyphen and apostrophe are special symbols and
are treated differently than others. This is to ensure that words like coop and co-op stay together
within a list. All symbols, except the hyphen and apostrophe, sort before any other alphanumeric
character. If you specify the NLS$MB_StringSort flag, hyphen and apostrophe sort at the beginning
also.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LGE, LGT, LLE, LLT

MBNext

NLS Function: Returns the position of the first lead byte or single-byte character immediately
following the given position in a multibyte-character string.

Module: USE DFNLS

Syntax

result = MBNext (string, position)

string
(Input) Character*(*). String to be seached for the first lead byte or single-byte character after
the current position. Can contain multibyte characters.

position
(Input) INTEGER(4). Position in string to search from. Must be the position of a lead byte or a
single-byte character. Cannot be the position of a trail (second) byte of a multibyte character.

Results:

The result type is INTEGER(4). The result is the position of the first lead byte or single-byte
character in string immediately following the position given in position, or 0 if no following first byte

MBNext Page 23 of 75

is found in string.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBPrev

MBPrev

NLS Function: Returns the position of the first lead byte or single-byte character immediately
preceding the given string position in a multibyte-character string.

Module: USE DFNLS

Syntax

result = MBPrev (string, position)

string
(Input) Character*(*). String to be seached for the first lead byte or single-byte character before
the current position. Can contain multibyte characters.

position
(Input) INTEGER(4). Position in string to search from. Must be the position of a lead byte or
single-byte character. Cannot be the position of the trail (second) byte of a multibyte character.

Results:

The result type is INTEGER(4). The result is the position of the first lead byte or single-byte
character in string immediately preceding the position given in position, or 0 if no preceding first byte
is found in string.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBNext

MBSCAN

NLS Function: Performs the same function as SCAN except that the strings manipulated can contain
multibyte characters.

Module: USE DFNLS

Syntax

MBSCAN Page 24 of 75

result = MBSCAN (string, set [, back])

string
(Input) Character*(*). String to be searched for the presence of any character in set.

set
(Input) Character*(*). Characters to search for.

back
(Optional; input) LOGICAL(4). If specified, determines direction of the search. If back is
.FALSE. or is omitted, the search starts at the beginning of string and moves toward the end. If
back is .TRUE., the search starts end of string and moves toward the beginning.

Results:

The result type is INTEGER(4). If back is .FALSE. or is omitted, returns the position of the leftmost
character in string that is in set. If back is .TRUE., returns the rightmost character in string that is in
set. If no characters in string are in set, returns 0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SCAN, MBINDEX, MBVERIFY

MBStrLead

NLS Function: Performs a context-senstive test to determine whether a given character byte in a
string is a multibyte-character lead byte.

Module: USE DFNLS

Syntax

result = MBStrLead (string, position)

string
(Input) Character*(*). String containing the character byte to be tested for lead status.

position
(Input) INTEGER(4). Position in string of the character byte in the string to be tested.

Results:

The result type is LOGICAL(4). The result is .TRUE. if the character byte in position of string is a
lead byte; otherwise, .FALSE..

MBStrLead Page 25 of 75

MBStrLead is passed a whole string and can identify any byte within the string as a lead or trail byte
because it performs a context-sensitive test, scanning all the way back to the beginning of a string if
necessary to establish context.

MBLead is passed only one character at a time and must start on a lead byte and step through a string
one character at a time to establish context for the character. So, MBStrLead can be much slower
than MBLead (up to n times slower, where n is the length of the string).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MBLead

MBVERIFY

NLS Function: Performs the same function as VERIFY except that the strings manipulated can
contain multibyte characters.

Module: USE DFNLS

Syntax

result = MBVERIFY (string, set [, back])

string
(Input) Character*(*). String to be searched for presence of any character not in set.

set
(Input) Character*(*). Set of characters tested to verify that it includes all the characters in
string.

back
(Optional; input) LOGICAL(4). If specified, determines direction of the search. If back is
.FALSE. or is omitted, the search starts at the beginning of string and moves toward the end. If
back is .TRUE., the search starts end of string and moves toward the beginning.

Results:

The result type is INTEGER(4). If back is .FALSE. or is omitted, returns the position of the leftmost
character in string that is not in set. If back is .TRUE., returns the rightmost character in string that is
not in set. If all the characters in string are in set, returns 0.

Compatibility

MBVERIFY Page 26 of 75

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: VERIFY, MBINDEX, MBSCAN

MERGE

Elemental Intrinsic Function (Generic): Selects between two values or between corresponding elements in
two arrays, according to the condition specified by a logical mask.

Syntax

result = MERGE (tsource, fsource, mask)

tsource
(Input) Must be a scalar or array (of any data type).

fsource
(Input) Must be a scalar or array of the same type and type parameters as tsource.

mask
(Input) Must be a logical array.

Results:

The result type is the same as tsource. The value of mask determines whether the result value is taken
from tsource (if mask is true) or fsource (if mask is false).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MVBITS

Examples

For MERGE (1.0, 0.0, R < 0), R = -3 has the value 1.0, and R = 7 has the value 0.0.

TSOURCE is the array

 [1 3 5]
 [2 4 6],

FSOURCE is the array

 [8 9 0]
 [1 2 3],

MERGE Page 27 of 75

and MASK is the array

 [F T T]
 [T T F].

MERGE (TSOURCE, FSOURCE, MASK) produces the result:

 [8 3 5]
 [2 4 3].

The following shows another example:

 INTEGER tsource(2, 3), fsource(2, 3), AR1 (2, 3)
 LOGICAL mask(2, 3)
 tsource = RESHAPE((/1, 4, 2, 5, 3, 6/),(/2, 3/))
 fsource = RESHAPE((/7, 0, 8, -1, 9, -2/), (/2, 3/))
 mask = RESHAPE((/.TRUE., .FALSE., .FALSE., .TRUE., &
 .TRUE., .FALSE./), (/2,3/))
 ! tsource is 1 2 3 , fsource is 7 8 9 , mask is T F T
 ! 4 5 6 0 -1 -2 F T F

 AR1 = MERGE(tsource, fsource, mask) ! returns 1 8 3
 ! 0 5 -2
 END

MESSAGE

Compiler Directive: Specifies a character string to be sent to the standard output device during the
first compiler pass; this aids debugging.

Syntax

cDEC$ MESSAGE:string

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

string
Is a character constant specifying a message.

The following form is also allowed: !MS$MESSAGE:string

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: General Compiler Directives.

Example

MESSAGE Page 28 of 75

!DEC$ MESSAGE:’Compiling Sound Speed Equations’

MESSAGEBOXQQ

QuickWin Function: Displays a message box in a QuickWin window.

Module: USE DFLIB

Syntax

result = MESSAGEBOXQQ (msg, caption, mtype)

msg
(Input) Character*(*). Null-terminated C string. Message the box displays.

caption
(Input) Character*(*). Null-terminated C string. Caption that appears in the title bar.

mtype
(Input) INTEGER(4). Symbolic constant that determines the objects (buttons and icons) and
attributes of the message box. You can combine several constants (defined in DFLIB.F90 in the
\DF98\INCLUDE subdirectory) using an inclusive OR (IOR or OR). The symbolic constants
and their associated objects or attributes are:

n MB$ABORTRETRYIGNORE: The Abort, Retry, and Ignore buttons.
n MB$DEFBUTTON1: The first button is the default.
n MB$DEFBUTTON2: The second button is the default.
n MB$DEFBUTTON3: The third button is the default.
n MB$ICONASTERISK: Lowercase i in blue circle icon.
n MB$ICONEXCLAMATION: The exclamation-mark icon.
n MB$ICONHAND: The stop-sign icon.
n MB$ICONINFORMATION: Lowercase i in blue circle icon.
n MB$ICONQUESTION: The question-mark icon.
n MB$ICONSTOP: The stop-sign icon.
n MB$OK: The OK button.
n MB$OKCANCEL: The OK and Cancel buttons.
n MB$RETRYCANCEL: The Retry and Cancel buttons.
n MB$SYSTEMMODAL: Box is system-modal: all applications are suspended until the

user responds.
n MB$YESNO: The Yes and No buttons.
n MB$YESNOCANCEL: The Yes, No, and Cancel buttons.

Results:

The result type is INTEGER(4). The result is zero if memory is not sufficient for displaying the
message box. Otherwise, the result is one of the following values, indicating the user’s response to the
message box:

MESSAGEBOXQQ Page 29 of 75

� MB$IDABORT: The Abort button was pressed.
� MB$IDCANCEL: The Cancel button was pressed.
� MB$IDIGNORE: The Ignore button was pressed.
� MB$IDNO: The No button was pressed.
� MB$IDOK: The OK button was pressed.
� MB$IDRETRY: The Retry button was pressed.
� MB$IDYES: The Yes button was pressed.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: ABOUTBOXQQ, SETMESSAGEQQ, Using QuickWin

Example

 ! Build as QuickWin app
 USE DFLIB
 message = MESSAGEBOXQQ(’Do you want to continue?’C, &
 ’Matrix’C, &
 MB$ICONQUESTION.OR.MB$YESNO.OR.MB$DEFBUTTON1)
 END

MIN

Elemental Intrinsic Function (Generic): Returns the minimum value of the arguments.

Syntax

result = MIN (a1, a2 [, a3...])

a1, a2, a3
(Input) Must all have the same type (integer or real) and kind parameters.

Results:

For MIN0, AMIN1, DMIN1, QMIN1, IMIN0, JMIN0, and KMIN0, the result type is the same as
the arguments. For MIN1, IMIN1, JMIN1, and KMIN1, the result type is integer. For AMIN0,
AIMIN0, AJMIN0, and AKMIN0, the result type is real. The value of the result is that of the
smallest argument.

Specific Name 1 Argument Type Result Type

INTEGER(1) INTEGER(1)

INTEGER(1) REAL(4)

IMIN0 INTEGER(2) INTEGER(2)

MIN Page 30 of 75

AIMIN0 INTEGER(2) REAL(4)

MIN0 2 INTEGER(4) INTEGER(4)

AMIN0 3, 4 INTEGER(4) REAL(4)

KMIN0 5 INTEGER(8) INTEGER(8)

AKMIN0 5 INTEGER(8) REAL(4)

IMIN1 REAL(4) INTEGER(2)

MIN1 4, 6, 7 REAL(4) INTEGER(4)

KMIN1 5 REAL(4) INTEGER(8)

AMIN1 8 REAL(4) REAL(4)

DMIN1 REAL(8) REAL(8)

QMIN1 9 REAL(16) REAL(16)

1 These specific functions cannot be passed as actual arguments.
2 Or JMIN0.
3 Or AJMIN0. AMIN0 is the same as REAL (MIN).
4 In Fortran 90, AMIN0 and MIN1 are specific functions with no generic name. For compatibility with older versions
of Fortran, these functions can also be specified as generic functions.
5 Alpha only
6 Or JMIN1. MIN1 is the same as INT (MIN).
7 The setting of compiler option /integer_size can affect MIN1.
8 The setting of compiler option /real_size can affect AMIN1.
7 VMS and U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MAX

Examples

MIN (2.0, -8.0, 6.0) has the value -8.0.

MIN (14, 32, -50) has the value -50.

The following shows another example:

 INTEGER m1, m2
 REAL r1, r2
 m1 = MIN (5, 6, 7) ! returns 5
 m2 = MIN1 (-5.7, 1.23, -3.8) ! returns -5

MIN Page 31 of 75

 r1 = AMIN0 (-5, -6, -7) ! returns -7.0
 r2 = AMIN1(-5.7, 1.23, -3.8) ! returns -5.7

MINEXPONENT

Inquiry Intrinsic Function (Generic): Returns the minimum exponent in the model representing
the same type and kind parameters as the argument.

Syntax

result = MINEXPONENT (x)

x
(Input) must be of type real; it can be scalar or array valued.

Results:

The result is a scalar of type default integer. The result has the value emin, as defined in Model for

Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MAXEXPONENT

Examples

If X is of type REAL(4), MINEXPONENT (X) has the value -125.

The following shows another example:

 REAL(8) r1 ! DOUBLE PRECISION REAL
 INTEGER i
 i = MINEXPONENT (r1) ! returns - 1021.

MINLOC

Transformational Intrinsic Function (Generic): Returns the location of the minimum value of all
elements in an array, a set of elements in an array, or elements in a specified dimension of an array.

Syntax

result = MINLOC (array [, dim] [, mask])

array
(Input) Must be an array of type integer or real.

dim

MINLOC Page 32 of 75

(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array. This argument is a Fortran 95 feature.

mask
(Optional; input) Must be a logical array that is conformable with array.

Results:

The result is an array of type default integer.

The following rules apply if DIM is omitted:

� The array result has rank one and a size equal to the rank of array.

� If MINLOC(array) is specified, the elements in the array result form the subscript of the
location of the element with the minimum value in array.

� If MINLOC(array, MASK=mask) is specified, the elements in the array result form the
subscript of the location of the element with the minimum value corresponding to the condition
specified by mask.

The following rules apply if dim is specified:

� The array result has a rank that is one less than array, and shape (d1, d2,...ddim-1, ddim+1,...dn),

where (d1, d2,...dn) is the shape of array.

� If array has rank one, MINLOC(array, dim [,mask]) has a value equal to that of MINLOC
(array [,MASK = mask]). Otherwise, the value of element (s1, s2,...sdim-1, sdim+1,...sn) of

MINLOC(array, dim [,mask]) is equal to MINLOC(array (s1, s2,...sdim-1, :, sdim+1,...sn) [,

MASK = mask (s1, s2,...sdim-1, :, sdim+1,...sn)]).

If more than one element has minimum value, the element whose subscripts are returned is the first
such element, taken in array element order. If array has size zero, the value of the result is undefined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MAXLOC, MINVAL, MAXVAL

Examples

The value of MINLOC ((/3, 1, 4, 1/)) is (2), which is the subscript of the location of the first
occurrence of the minimum value in the rank-one array.

A is the array

 [4 0 -3 2]

MINLOC Page 33 of 75

 [3 1 -2 6]
 [-1 -4 5 -5].

MINLOC (A, MASK=A .GT. -5) has the value (3, 2) because these are the subscripts of the location
of the minimum value (-4) that is greater than -5.

MINLOC (A, DIM=1) has the value (3, 3, 1, 3). 3 is the subscript of the location of the minimum
value (-1) in column 1; 3 is the subscript of the location of the minimum value (-4) in column 2; and
so forth.

MINLOC (A, DIM=2) has the value (3, 3, 4). 3 is the subscript of the location of the minimum value
(-3) in row 1; 3 is the subscript of the location of the minimum value (-2) in row 2; and so forth.

The following shows another example:

 INTEGER i, minl(1)
 INTEGER array(2, 3)
 INTEGER, ALLOCATABLE :: AR1(:)
 ! put values in array
 array = RESHAPE((/-7, 1, -2, -9, 5, 0/),(/2, 3/))
 ! array is -7 -2 5
 ! 1 -9 0
 i = SIZE(SHAPE(array)) ! Get the number of dimensions
 ! in array
 ALLOCATE (AR1 (i)) ! Allocate AR1 to number
 ! of dimensions in array
 AR1 = MINLOC (array, MASK = array .GT. -5) ! Get the
 ! location (subscripts) of
 ! smallest element greater
 ! than -5 in array

 !
 ! MASK = array .GT. -5 creates a mask array the same
 ! size and shape as array whose elements are .TRUE. if
 ! the corresponding element in array is greater than
 ! -5, and .FALSE. if it is not. This mask causes MINLOC
 ! to return the index of the element in array with the
 ! smallest value greater than -5.
 !
 !array is -7 -2 5 and MASK= array .GT. -5 is F T T
 ! 1 -9 0 T F T
 ! and AR1 = MINLOC(array, MASK = array .GT. -5) returns
 ! (1, 2), the location of the element with value -2

 minl = MINLOC((/-7,2,-7,5/)) ! returns 1, first
 ! occurrence of minimum
 END

MINVAL

Transformational Intrinsic Function (Generic): Returns the minimum value of all elements in
an array, a set of elements in an array, or elements in a specified dimension of an array.

Syntax

result = MINVAL(array [, dim] [, mask])

MINVAL Page 34 of 75

array
(Input) Must be an array of type integer or real.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array.

mask
(Optional; input) Must be a logical array that is conformable with array.

Results:

The result is an array or a scalar of the same data type as array.

The result is scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

� If MINVAL(array) is specified, the result has a value equal to the minimum value of all the
elements in array.

� If MINVAL(array, MASK=mask) is specified, the result has a value equal to the minimum
value of the elements in array corresponding to the condition specified by mask.

The following rules apply if dim is specified:

� An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ...,

dn), where (d1, d2, ..., dn) is the shape of array.

� If array has rank one, MINVAL(array, dim [,mask]) has a value equal to that of MINVAL
(array [,MASK = mask]). Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of

MINVAL(array, dim, [,mask]) is equal to MINVAL(array (s1, s2, ..., sdim-1, :, sdim+1, ..., sn)

[,MASK = mask (s1, s2, ..., sdim-1, :, sdim+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim is omitted), or each
element in the result array (if dim is specified), has the value of the positive number of the largest
magnitude supported by the processor for numbers of the type and kind parameters of array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MAXVAL, MINLOC, MAXLOC

Examples

MINVAL Page 35 of 75

The value of MINVAL ((/2, 3, 4/)) is 2 because that is the minimum value in the rank-one array.

The value of MINVAL (B, MASK=B .GT. 0.0) finds the minimum value of the positive elements of
B.

C is the array

 [2 3 4]
 [5 6 7].

MINVAL (C, DIM=1) has the value (2, 3, 4). 2 is the minimum value in column 1; 3 is the minimum
value in column 2; and so forth.

MINVAL (C, DIM=2) has the value (2, 5). 2 is the minimum value in row 1 and 5 is the minimum
value in row 2.

The following shows another example:

 INTEGER array(2, 3), i(2), minv
 INTEGER, ALLOCATABLE :: AR1(:), AR2(:)
 array = RESHAPE((/1, 4, 5, 2, 3, 6/), (/2, 3/))
 ! array is 1 5 3
 ! 4 2 6
 i = SHAPE(array) ! i = [2 3]
 ALLOCATE(AR1(i(2))) ! dimension AR1 to number of
 ! elements in dimension 2
 ! (a column) of array.
 ALLOCATE(AR2(i(1))) ! dimension AR2 to number of
 ! elements in dimension 1
 ! (a row) of array
 minv = MINVAL(array, MASK = array .GT. 4) ! returns 5
 AR1 = MINVAL(array, DIM = 1) ! returns [1 2 3]
 AR2 = MINVAL(array, DIM = 2) ! returns [1 2]
 END

MOD

Elemental Intrinsic Function (Generic): Returns the remainder when the first argument is divided by the
second argument.

Syntax

result = MOD (a, p)

a
(Input) Must be of type integer or real.

p
(Input)Must have the same type and kind parameters as a.

MOD Page 36 of 75

Results:

The result type is the same as a. If p is not equal to zero, the value of the result is a - INT(a / p) * p. If
p is equal to zero, the result is undefined.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IMOD INTEGER(2) INTEGER(2)

MOD 1 INTEGER(4) INTEGER(4)

KMOD 2 INTEGER(8) INTEGER(8)

AMOD 3 REAL(4) REAL(4)

QMOD 4 REAL(16) REAL(16)

1 Or JMOD.
2 Alpha only
3 The setting of compiler option /real_size can affect AMOD.
4 VMS and U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MODULO

Examples

MOD (7, 3) has the value 1.

MOD (9, -6) has the value 3.

MOD (-9, 6) has the value -3.

The following shows more examples:

 INTEGER I
 REAL R
 R = MOD(9.0, 2.0) ! returns 1.0
 I = MOD(18, 5) ! returns 3
 I = MOD(-18, 5) ! returns -3

MODIFYMENUFLAGSQQ

MODIFYMENUFLAGSQQ Page 37 of 75

QuickWin Function: Modifies a menu item’s state.

Module: USE DFLIB

Syntax

result = MODIFYMENUFLAGSQQ (menuID, itemID, flag)

menuID
(Input) INTEGER(4). Identifies the menu containing the item whose state is to be modified,
starting with 1 as the leftmost menu.

itemID
(Input) INTEGER(4). Identifies the menu item whose state is to be modified, starting with 0 as
the top item.

flags
(Input) INTEGER(4). Constant indicating the menu state. Flags can be combined with an
inclusive OR (see below). The following constants are available:

n $MENUGRAYED: Disables and grays out the menu item.
n $MENUDISABLED: Disables but does not gray out the menu item.
n $MENUENABLED: Enables the menu item.
n $MENUSEPARATOR: Draws a separator bar.
n $MENUCHECKED: Puts a check by the menu item.
n $MENUUNCHECKED: Removes the check by the menu item.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The constants available for flags can be combined with an inclusive OR where reasonable, for
example $MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense,
such as $MENUENABLED and $MENUDISABLED, and lead to undefined behavior.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: APPENDMENUQQ, DELETEMENUQQ, INSERTMENUQQ
MODIFYMENUROUTINEQQ, MODIFYMENUSTRINGQQ, Using QuickWin

Example

 USE DFLIB
 LOGICAL(4) result
 CHARACTER(20) str

 ! Append item to the bottom of the first (FILE) menu

MODIFYMENUFLAGSQQ Page 38 of 75

 str = ’&Add to File Menu’C
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)
 ! Gray out and disable the first two menu items in the
 ! first (FILE) menu
 result = MODIFYMENUFLAGSQQ (1, 1, $MENUGRAYED)
 result = MODIFYMENUFLAGSQQ (1, 2, $MENUGRAYED)
 END

MODIFYMENUROUTINEQQ

QuickWin Function: Changes a menu item’s callback routine.

Module: USE DFLIB

Syntax

result = MODIFYMENUROUTINEQQ (menuIdD, itemID, routine)

menuID
(Input) INTEGER(4). Identifies the menu that contains the item whose callback routine is be
changed, starting with 1 as the leftmost menu.

itemID
(Input) INTEGER(4). Identifies the menu item whose callback routine is to be changed,
starting with 0 as the top item.

routine
(Input) EXTERNAL. Callback subroutine called if the menu item is selected. All routines must
take a single LOGICAL parameter that indicates whether the menu item is checked or not. The
following predefined routines are available for assigning to menus:

n WINPRINT: Prints the program.
n WINSAVE: Saves the program.
n WINEXIT: Terminates the program.
n WINSELTEXT: Selects text from the current window.
n WINSELGRAPH: Selects graphics from the current window.
n WINSELALL: Selects the entire contents of the current window.
n WINCOPY: Copies the selected text and/or graphics from the current window to the

Clipboard.
n WINPASTE: Allows the user to paste Clipboard contents (text only) to the current text

window of the active window during a READ.
n WINCLEARPASTE: Clears the paste buffer.
n WINSIZETOFIT: Sizes output to fit window.
n WINFULLSCREEN: Displays output in full screen.
n WINSTATE: Toggles between pause and resume states of text output.
n WINCASCADE: Cascades active windows.
n WINTILE: Tiles active windows.
n WINARRANGE: Arranges icons.
n WINSTATUS: Enables a status bar.
n WININDEX: Displays the index for QuickWin Help.

MODIFYMENUROUTINEQQ Page 39 of 75

n WINUSING: Displays information on how to use Help.
n WINABOUT: Displays information about the current QuickWin application.
n NUL: No callback routine.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Compatibility

QUICKWIN GRAPHICS LIB

See Also: APPENDMENUQQ, DELETEMENUQQ, INSERTMENUQQ,
MODIFYMENUFLAGSQQ, MODIFYMENUSTRINGQQ, Using QuickWin

MODIFYMENUSTRINGQQ

QuickWin Function: Changes a menu item’s text string.

Module: USE DFLIB

Syntax

result = MODIFYMENUSTRINGQQ (menuID, itemID, text)

menuID
(Input) INTEGER(4). Identifies the menu containing the item whose text string is to be
changed, starting with 1 as the leftmost item.

itemID
(Input) INTEGER(4). Identifies the menu item whose text string is to be changed, starting with
0 as the top menu item.

text
(Input) Character*(*). Menu item name. Must be a null-terminated C string. For example,
words of text’C.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise,.FALSE..

You can add access keys in your text strings by placing an ampersand (&) before the letter you want
underlined. For example, to add a Print menu item with the r underlined, use "P&rint"C as text.

Compatibility

QUICKWIN GRAPHICS LIB

MODIFYMENUSTRINGQQ Page 40 of 75

See Also: APPENDMENUQQ, DELETEMENUQQ, INSERTMENUQQ, SETMESSAGEQQ
MODIFYMENUFLAGSQQ, MODIFYMENUROUTINEQQ, Using QuickWin

Example

 USE DFLIB
 LOGICAL(4) result
 CHARACTER(25) str

 ! Append item to the bottom of the first (FILE) menu
 str = ’&Add to File Menu’C
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)
 ! Change the name of the first item in the first menu
 str =’&Browse’C
 result = MODIFYMENUSTRINGQQ (1, 1, str)
 END

MODULE

Statement: Marks the beginning of a module program unit, which contains specifications and
definitions that can be made accessible to other program units.

Syntax

MODULE name
[specification-part]

[CONTAINS
module-subprogram
[module-subprogram]...]

END [MODULE [name]]

name
Is the name of the module.

specification-part
Is one or more specification statements, except for the following:

n ENTRY
n FORMAT
n AUTOMATIC (or its equivalent attribute)
n INTENT (or its equivalent attribute)
n OPTIONAL (or its equivalent attribute)
n Statement functions

An automatic object must not appear in a specification statement.

module-subprogram
Is a function or subroutine subprogram that defines the module procedure. A function must end
with END FUNCTION and a subroutine must end with END SUBROUTINE.

MODULE Page 41 of 75

A module subprogram can contain internal procedures.

Rules and Behavior

If a name follows the END statement, it must be the same as the name specified in the MODULE
statement.

The module name cannot be the same as any local name in the main program or the name of any
other program unit, external procedure, or common block in the executable program.

A module is host to any module procedures it contains, and entities in the module are accessible to
the module procedures through host association.

A module must not reference itself (either directly or indirectly).

Although ENTRY statements, FORMAT statements, and statement functions are not allowed in the
specification part of a module, they are allowed in the specification part of a module subprogram.

Any executable statements in a module can only be specified in a module subprogram.

A module can contain one or more procedure interface blocks, which let you specify an explicit
interface for an external subprogram or dummy subprogram.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PUBLIC, PRIVATE, USE, Procedure Interfaces, Program Units and Procedures

Examples

The following example shows a simple module that can be used to provide global data:

MODULE MOD_A
 INTEGER :: B, C
 REAL E(25,5)
END MODULE MOD_A
...
SUBROUTINE SUB_Z
 USE MOD_A ! Makes scalar variables B and C, and array
 ... ! E available to this subroutine
END SUBROUTINE SUB_Z

The following example shows a module procedure:

MODULE RESULTS
...
CONTAINS
 FUNCTION MOD_RESULTS(X,Y) ! A module procedure
 ...

MODULE Page 42 of 75

 END FUNCTION MOD_RESULTS
END MODULE RESULTS

The following example shows a module containing a derived type:

MODULE EMPLOYEE_DATA
 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE
END MODULE

The following example shows a module containing an interface block:

MODULE ARRAY_CALCULATOR
 INTERFACE
 FUNCTION CALC_AVERAGE(D)
 REAL :: CALC_AVERAGE
 REAL, INTENT(IN) :: D(:)
 END FUNCTION
 END INTERFACE
END MODULE ARRAY_CALCULATOR

The following example shows a derived-type definition that is public with components that are
private:

MODULE MATTER
 TYPE ELEMENTS
 PRIVATE
 INTEGER C, D
 END TYPE
...
END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

This design allows you to change components of a type without affecting other program units that use
the module.

If a derived type is needed in more than one program unit, the definition should be placed in a module
and accessed by a USE statement whenever it is needed, as follows:

MODULE STUDENTS
 TYPE STUDENT_RECORD
 ...
 END TYPE
CONTAINS
 SUBROUTINE COURSE_GRADE(...)
 TYPE(STUDENT_RECORD) NAME
 ...
 END SUBROUTINE
END MODULE STUDENTS

MODULE Page 43 of 75

...

PROGRAM SENIOR_CLASS
 USE STUDENTS
 TYPE(STUDENT_RECORD) ID
 ...
END PROGRAM

Program SENIOR_CLASS has access to type STUDENT_RECORD, because it uses module
STUDENTS. Module procedure COURSE_GRADE also has access to type STUDENT_RECORD,
because the derived-type definition appears in its host.

The following shows another example:

 MODULE mod1
 REAL(8) a,b,c,d
 INTEGER(4) Int1, Int2, Int3
 CONTAINS
 function fun1(x)

 end function fun1
 END MODULE

MODULE PROCEDURE

Statement: Identifies module procedures in an interface block that specifies a generic name. For
more information, see INTERFACE and MODULE.

Example

!A program that changes non-default integers and reals !into default integers and r
 PROGRAM CHANGE_KIND
 USE Module1
 INTERFACE DEFAULT
 MODULE PROCEDURE Sub1, Sub2
 END INTERFACE

 integer(2) in
 integer indef
 indef = DEFAULT(in)
 END PROGRAM
! procedures sub1 and sub2 defined as follows:
 MODULE Module1
 CONTAINS
 FUNCTION Sub1(y)
 REAL(8) y
 sub1 = REAL(y)
 END FUNCTION
 FUNCTION Sub2(z)
 INTEGER(2) z
 sub2 = INT(z)
 END FUNCTION
 END MODULE

MODULO

Elemental Intrinsic Function (Generic): Returns the modulo of the arguments.

MODULO Page 44 of 75

Syntax

result = MODULO (a, p)

a
(Input) Must be of type integer or real.

p
(Input) Must have the same type and kind parameters as a.

Results:

The result type is the same a. The result value depends on the type of a, as follows:

� If a is of type integer and P is not equal to zero, the value of the result is a - FLOOR(REAL(a)
/ REAL(p)) * p.

� If a is of type real and p is not equal to zero, the value of the result is a - FLOOR(a / p) * p.

If p is equal to zero (regardless of the type of a), the result is undefined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MOD

Examples

MODULO (7, 3) has the value 1.

MODULO (9, -6) has the value -3.

MODULO (-9, 6) has the value 3.

The following shows more examples:

 INTEGER I
 REAL R
 I= MODULO(8, 5) ! returns 3 Note: q=1
 I= MODULO(-8, 5) ! returns 2 Note: q=-2
 I= MODULO(8, -5) ! returns -2 Note: q=-2
 R= MODULO(7.285, 2.35) ! returns 0.2350001 Note: q=3
 R= MODULO(7.285, -2.35) ! returns -2.115 Note: q=-4

MOVETO, MOVETO_W

Graphics Subroutine: Moves the current graphics position to a specified point. No drawing occurs.

MOVETO, MOVETO_W Page 45 of 75

Module: USE DFLIB

Syntax

CALL MOVETO (x, y, t)
CALL MOVETO_W (wx, wy, w)

x, y
(Input) INTEGER(2). Viewport coordinates of the new graphics position.

wx, wy
(Input) REAL(8). Window coordinates of the new graphics position.

t
(Output) Derived type xycoord. Viewport coordinates of the previous graphics position. The
derived type xycoord is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as
follows:

 TYPE xycoord
 INTEGER(2) xcoord ! x coordinate
 INTEGER(2) ycoord ! y coordinate
 END TYPE xycoord

wt
(Output) Derived type wxycoord. Window coordinates of the previous graphics position. The
derived type wxycoord is defined in DFLIB.F90 as follows:

 TYPE wxycoord
 REAL(8) wx ! x window coordinate
 REAL(8) wy ! y window coordinate
 END TYPE wxycoord

MOVETO sets the current graphics position to the viewport coordinate (x, y). MOVETO_W sets
the current graphics position to the window coordinate (wx, wy).

MOVETO and MOVETO_W assign the coordinates of the previous position to t and wt,
respectively.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETCURRENTPOSITION, LINETO, OUTGTEXT

Example

 ! Build as QuickWin or Standard Graphics ap.
 USE DFLIB
 INTEGER(2) status, x, y
 INTEGER(4) result
 TYPE (xycoord) xy

MOVETO, MOVETO_W Page 46 of 75

 RESULT = SETCOLORRGB(#FF0000) ! blue
 x = 60
 ! Draw a series of lines
 DO y = 50, 92, 3
 CALL MOVETO(x, y, xy)
 status = LINETO(INT2(x + 20), y)
 END DO
 END

MULT_HIGH (Alpha only)

Elemental Intrinsic Function (Specific): Multiplies two 64-bit unsigned integers.

Syntax

result = MULT_HIGH (i, j)

i
INTEGER(8).

j
INTEGER(8).

Results:

The result type is INTEGER(8). The result value is the upper (leftmost) 64 bits of the 128-bit
unsigned result.

Example

Consider the following:

 INTEGER(8) I,J,K
 I=2_8**53
 J=2_8**51
 K = MULT_HIGH (I,J)
 PRINT *,I,J,K
 WRITE (6,1000)I,J,K
 1000 FORMAT (’ ’, 3(Z,1X))
 END

This example prints the following:

 9007199254740992 2251799813685248 1099511627776
 20000000000000 8000000000000 10000000000

MVBITS

Elemental Intrinsic Subroutine: Copies a sequence of bits (a bit field) from one location to another.

MVBITS Page 47 of 75

Syntax

CALL MVBITS (from, frompos, len, to, topos)

from
(Input) Integer. Can be of any integer type. It represents the location from which a bit field is
transferred.

frompos
(Input) Can be of any integer type; it must not be negative. It identifies the first bit position in
the field transferred from from. frompos + len must be less than or equal to BIT_SIZE(from).

len
(Input) Can be of any integer type; it must not be negative. It identifies the length of the field
transferred from from.

to
(Input; output) Can be of any integer type, but must have the same kind parameter as from. It
represents the location to which a bit field is transferred. to is set by copying the sequence of
bits of length len, starting at position frompos of from to position topos of to. No other bits of
to are altered.

On return, the len bits of to (starting at topos) are equal to the value that len bits of from
(starting at frompos) had on entry.

topos
(Input) Can be of any integer type; it must not be negative. It identifies the starting position
(within to) for the bits being transferred. topos + len must be less than or equal to BIT_SIZE
(to).

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

You can also use the following specific routines:

IMVBITS All arguments must be INTEGER(2)

JMVBITS Arguments can be INTEGER(2) or INTEGER(4); at least one must be INTEGER
(4)

KMVBITS
1

Arguments can be INTEGER(2), INTEGER(4), or INTEGER(8); at least one must
be INTEGER(8)

1 Alpha only

Compatibility

MVBITS Page 48 of 75

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BIT_SIZE, IBCLR, IBSET, ISHFT, ISHFTC

Examples

If TO has the initial value of 6, its value after a call to MVBITS with arguments (7, 2, 2, TO, 0) is 5.

The following shows another example:

 INTEGER(1) :: from = 13 ! 00001101
 INTEGER(1) :: to = 6 ! 00000110
 CALL MVBITS(from, 2, 2, to, 0) ! returns to = 00000111
 END

NAMELIST

Statement: Associates a name with a list of variables. This group name can be referenced in some
input/output operations.

Syntax

NAMELIST /group/ var-list [[,] /group/ var-list]...

group
Is the name of the group.

var-list
Is a list of variables (separated by commas) that are to be associated with the preceding group
name. The variables can be of any data type.

Rules and Behavior

The namelist group name is used by namelist I/O statements instead of an I/O list. The unique group
name identifies a list whose entities can be modified or transferred.

A variable can appear in more than one namelist group.

Each variable in var-list must be accessed by use or host association, or it must have its type, type
parameters, and shape explicitly or implicitly specified in the same scoping unit. If the variable is
implicitly typed, it can appear in a subsequent type declaration only if that declaration confirms the
implicit typing.

The following variables cannot be specified in a namelist group:

� An array dummy argument with nonconstant bounds
� A variable with assumed character length
� An allocatable array

NAMELIST Page 49 of 75

� An automatic object
� A pointer
� A variable of a type that has a pointer as an ultimate component
� A subobject of any of the above objects

Only the variables specified in the namelist can be read or written in namelist I/O. It is not necessary
for the input records in a namelist input statement to define every variable in the associated namelist.

The order of variables in the namelist controls the order in which the values appear on namelist
output. Input of namelist values can be in any order.

If the group name has the PUBLIC attribute, no item in the variable list can have the PRIVATE
attribute.

The group name can be specified in more than one NAMELIST statement in a scoping unit. The
variable list following each successive appearance of the group name is treated as a continuation of
the list for that group name.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: READ, WRITE, Namelist Specifier, Namelist Input, Namelist Output.

Examples

In the following example, D and E are added to the variables A, B, and C for group name LIST:

NAMELIST /LIST/ A, B, C

NAMELIST /LIST/ D, E

In the following example, two group names are defined:

CHARACTER*30 NAME(25)
NAMELIST /INPUT/ NAME, GRADE, DATE /OUTPUT/ TOTAL, NAME

Group name INPUT contains variables NAME, GRADE, and DATE. Group name OUTPUT
contains variables TOTAL and NAME.

The following shows another example:

 NAMELIST /example/ i1, l1, r4, r8, z8, z16, c1, c10, iarray

 ! The corresponding input statements could be:
 &example
 i1 = 11
 l1 = .TRUE.
 r4 = 24.0
 r8 = 28.0d0
 z8 = (38.0, 0.0)

NAMELIST Page 50 of 75

 z16 = (316.0d0, 0.0d0)
 c1 = ’A’
 c10 = ’abcdefghij’
 iarray(8) = 41, 42, 43
 /

A sample program, NAMELIST.F90, is included in the \DF\SAMPLES\TUTORIAL subdirectory.

NARGS

Run-Time Function: Returns the total number of command-line arguments, including the command.

Module: USE DFLIB

Syntax

result = NARGS ()

Results:

The result type is INTEGER(4). The result is the number of command-line arguments, including the
command. For example, NARGS returns 4 for the command-line invocation of PROG1 -g -c -a.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETARG, IARGC

Example

 USE DFLIB
 INTEGER(2) result
 result = RUNQQ(’myprog’, ’-c -r’)
 END

 ! MYPROG.F90 responds to command switches -r, -c,
 ! and/or -d
 USE DFLIB
 INTEGER(4) count, num
 INTEGER(2) i, status
 CHARACTER(80) buf
 REAL r1 / 0.0 /
 COMPLEX c1 / (0.0,0.0) /
 REAL(8) d1 / 0.0 /

 num = 5
 count = NARGS()
 DO i = 1, count-1
 CALL GETARG(i, buf, status)
 IF (buf(2:status) .EQ.’r’) THEN
 r1 = REAL(num)
 WRITE (*,*) ’r1 = ’,r1
 ELSE IF (buf(2:status) .EQ.’c’) THEN
 c1 = CMPLX(num)

MAKEDIRQQ Page 51 of 75

 WRITE (*,*) ’c1 = ’, c1
 ELSE IF (buf(2:status) .EQ.’d’) THEN
 d1 = DBLE(num)
 WRITE (*,*) ’d1 = ’, d1
 ELSE
 WRITE(*,*) ’Invalid command switch’
 EXIT
 END IF
 END DO
 END

NEAREST

Elemental Intrinsic Function (Generic): Returns the nearest different number (representable on
the processor) in a given direction.

Syntax

result = NEAREST (x, s)

x
(Input) Must be of type real.

s
(Input) Must be of type real and nonzero.

Results:

The result type is the same as x. The result has a value equal to the machine representable number
that is different from and nearest to x, in the direction of infinity, with the same sign as s.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EPSILON

Examples

If 3.0 and 2.0 are REAL(4) values, NEAREST (3.0, 2.0) has the value 3 + 2-22, which equals
approximately 3.0000002. (For more information on the model for REAL(4), see Model for Real
Data.

The following shows another example:

 REAL(4) r1
 REAL(8) r2, result
 r1 = 3.0
 result = NEAREST (r1, -2.0)
 WRITE(*,*) result ! writes 2.999999761581421

 ! When finding nearest to REAL(8), can’t see
 ! the difference unless output in HEX

NEAREST Page 52 of 75

 r2 = 111502.07D0
 result = NEAREST(r2, 2.0)
 WRITE(*,’(1x,Z16)’) result ! writes 40FB38E11EB851ED
 result = NEAREST(r2, -2.0)
 WRITE(*,’(1x,Z16)’) result ! writes 40FB38E11EB851EB
 END

NINT

Elemental Intrinsic Function (Generic): Returns the nearest integer to the argument.

Syntax

result = NINT (a [, kind])

a
(Input) Must be of type real.

kind
(Optional; input) Must be a scalar integer initialization expression.

Results:

The result type is integer. If kind is present, the kind parameter is that specified by kind; otherwise,
see the following table for the kind parameter. If a is greater than zero, NINT(a) has the value INT(a
+ 0.5); if a is less than or equal to zero, NINT(a) has the value INT(a - 0.5).

Specific Name Argument Type Result Type

ININT REAL(4) INTEGER(2)

NINT 1, 2 REAL(4) INTEGER(4)

KNINT 3 REAL(4) INTEGER(8)

IIDNNT REAL(8) INTEGER(2)

IDNINT 2, 4 REAL(8) INTEGER(4)

KIDNNT 3 REAL(8) INTEGER(8)

IIQNNT 5 REAL(16) INTEGER(2)

IQNINT 2, 5 REAL(16) INTEGER(4)

KIQNNT 5, 6 REAL(16) INTEGER(8)

1 Or JNINT.
2 The setting of compiler option /integer_size can affect NINT, IDNINT, and IQNINT.
3 Alpha only

NINT Page 53 of 75

4 Or JIDNNT. For compatibility with older versions of Fortran, IDNINT can also be specified as a generic function.
5 VMS, U*X
6 This specific function cannot be passed as an actual argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ANINT, INT

Examples

NINT (3.879) has the value 4.

NINT (-2.789) has the value -3.

The following shows another example:

 INTEGER(4) i1, i2
 i1 = NINT(2.783) ! returns 3
 i2 = IDNINT(-2.783D0) ! returns -3

NLSEnumCodepages

NLS Function: Returns an array containing the codepages supported by the system, with each array
element describing one valid codepage.

Module: USE DFNLS

Syntax

ptr => NLSEnumCodepages ()

Results:

The result is a pointer to an array of codepages, with each element describing one supported
codepage.

After use, the pointer returned by NLSEnumCodepages should be deallocated with the
DEALLOCATE statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSEnumLocales

NLSEnumLocales

NLSEnumLocales Page 54 of 75

NLS Function: Returns an array containing the language and country combinations supported by the
system, in which each array element describes one valid combination.

Module: USE DFNLS

Syntax

ptr => NLSEnumLocales ()

Results:

The result is a pointer to an array of locales, in which each array element describes one supported
language and country combination. Each element has the following structure:

 TYPE NLS$EnumLocale
 CHARACTER*(NLS$MaxLanguageLen) Language
 CHARACTER*(NLS$MaxCountryLen) Country
 INTEGER(4) DefaultWindowsCodepage
 INTEGER(4) DefaultConsoleCodepage
 END TYPE

If the application is a Windows or QuickWin application, NLS$DefaultWindowsCodepage is the
codepage used by default for the given language and country combination. If the application is a
console application, NLS$DefaultConsoleCodepage is the codepage used by default for the given
language and country combination.

Note: After use, the pointer returned by NLSEnumLocales should be deallocated with the
DEALLOCATE statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSEnumCodepages

NLSFormatCurrency

NLS Function: Returns a correctly formatted currency string for the current locale.

Module: USE DFNLS

Syntax

result = NLSFormatCurrency (outstr, instr [, flags])

outstr
(Output) Character*(*). String containing the correctly formatted currency for the current
locale. If outstr is longer than the formatted currency, it is blank-padded.

NLSFormatCurrency Page 55 of 75

intstr
(Input) Character*(*). Number string to be formatted. Can contain only the characters 0’
through 9’, one decimal point (a period) if a floating-point value, and a minus sign in the first
position if negative. All other characters are invalid and cause the function to return an error.

flags
(Optional; input) INTEGER(4). If specified, modifies the currency conversion. If you omit
flags, the flag NLS$Normal is used. Available values (defined in DFNLS.F90) are:

n NLS$Normal: No special formatting
n NLS$NoUserOverride: Do not use user overrides

Results:

The result type is INTEGER(4). The result is the number of characters written to outstr (bytes are
counted, not multibyte characters). If an error occurs, the result is one of the following negative
values:

� NLS$ErrorInsufficentBuffer: outstr buffer is too small
� NLS$ErrorInvalidFlags: flags has an illegal value
� NLS$ErrorInvalidInput: instr has an illegal value

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSFormatNumber, NLSFormatDate, NLSFormatTime

Example

 USE DFNLS
 CHARACTER(40) str
 INTEGER(4) i
 i = NLSFormatCurrency(str, "1.23")
 print *, str ! prints $1.23
 i = NLSFormatCurrency(str, "1000000.99")
 print *, str ! prints $1,000,000.99
 i = NLSSetLocale("Spanish", "Spain")
 i = NLSFormatCurrency(str, "1.23")
 print *, str ! prints 1 Pts
 i = NLSFormatCurrency(str, "1000000.99")
 print *, str ! prints 1.000.001 Pts

NLSFormatDate

NLS Function: Returns a correctly formatted string containing the date for the current locale.

Module: USE DFNLS

Syntax

NLSFormatDate Page 56 of 75

result = NLSFormatDate (outstr [, intime] [, flags])

outstr
(Output) Character*(*). String containing the correctly formatted date for the current locale. If
outstr is longer than the formatted date, it is blank-padded.

intime
(Optional; input) INTEGER(4). If specified, date to be formatted for the current locale. Must be
an integer date such as the packed time created with PACKTIMEQQ. If you omit intime, the
current system date is formatted and returned in outstr.

flags
(Optional; input) INTEGER(4). If specified, modifies the date conversion. If you omit flags,
the flag NLS$Normal is used. Available values (defined in DFNLS.F90 in /DF/INCLUDE)
are:

n NLS$Normal: No special formatting
n NLS$NoUserOverride: Do not use user overrides
n NLS$UseAltCalendar: Use the locale’s alternate calendar
n NLS$LongDate: Use local long date format
n NLS$ShortDate: Use local short date format

Results:

The result type is INTEGER(4). The result is the number of characters written to outstr (bytes are
counted, not multibyte characters). If an error occurs, the result is one of the following negative
values:

� NLS$ErrorInsufficentBuffer: outstr buffer is too small
� NLS$ErrorInvalidFlags: flags has an illegal value
� NLS$ErrorInvalidInput: intime has an illegal value

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSFormatTime, NLSFormatCurrency, NLSFormatNumber

Examples

 USE DFNLS
 INTEGER(4) i
 CHARACTER(40) str
 i = NLSFORMATDATE(str, NLS$NORMAL) ! 8/1/94
 i = NLSFORMATDATE(str, NLS$USEALTCALENDAR) ! 8/1/94
 i = NLSFORMATDATE(str, NLS$LONGDATE) ! Monday, August 1, 1994
 i = NLSFORMATDATE(str, NLS$SHORTDATE) ! 8/1/94
 END

NLSFormatNumber Page 57 of 75

NLSFormatNumber

NLS Function: Returns a correctly formatted number string for the current locale.

Module: USE DFNLS

Syntax

result = NLSFormatNumber (outstr, instr [, flags])

outstr
(Output) Character*(*). String containing the correctly formatted number for the current locale.
If outstr is longer than the formatted number, it is blank-padded.

instr
(Input) Character*(*). Number string to be formatted. Can only contain the characters 0’
through 9’, one decimal point (a period) if a floating-point value, and a minus sign in the first
position if negative. All other characters are invalid and cause the function to return an error.

flags
(Optional; input) INTEGER(4). If specified, modifies the number conversion. If you omit flags,
the flag NLS$Normal is used. Available values (defined in DFNLS.F90 in /DF/INCLUDE)
are:

n NLS$Normal: No special formatting
n NLS$NoUserOverride: Do not use user overrides

Results:

The result type is INTEGER(4). The result is the number of characters written to outstr (bytes are
counted, not multibyte characters). If an error occurs, the result is one of the following negative
values:

� NLS$ErrorInsufficentBuffer: outstr buffer is too small
� NLS$ErrorInvalidFlags: flags has an illegal value
� NLS$ErrorInvalidInput: instr has an illegal value

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSFormatTime, NLSFormatCurrency, NLSFormatDate

Example

 USE DFNLS
 CHARACTER(40) str
 INTEGER(4) i

NLSFormatNumber Page 58 of 75

 i = NLSFormatNumber(str, "1.23")
 print *, str ! prints 1.23
 i = NLSFormatNumber(str, "1000000.99")
 print *, str ! prints 1,000,000.99
 i = NLSSetLocale("Spanish", "Spain")
 i = NLSFormatNumber(str, "1.23")
 print *, str ! prints 1,23
 i = NLSFormatNumber(str, "1000000.99")
 print *, str ! prints 1.000.000,99

NLSFormatTime

NLS Function: Returns a correctly formatted string containing the time for the current locale.

Module: USE DFNLS

Syntax

result = NLSFormatTime (outstr [, intime] [, flags])

outstr
(Output) Character*(*). String containing the correctly formatted time for the current locale. If
outstr is longer than the formatted time, it is blank-padded.

intime
(Optional; input) INTEGER(4). If specified, time to be formatted for the current locale. Must
be an integer time such as the packed time created with PACKTIMEQQ. If you omit intime,
the current system time is formatted and returned in outstr.

flags
(Optional; input) INTEGER(4). If specified, modifies the time conversion. If you omit flags,
the flag NLS$Normal is used. Available values (defined in DFNLS.F90 in /DF/INCLUDE)
are:

n NLS$Normal: No special formatting
n NLS$NoUserOverride: Do not use user overrides
n NLS$NoMinutesOrSeconds: Do not return minutes or seconds
n NLS$NoSeconds: Do not return seconds
n NLS$NoTimeMarker: Do not add a time marker string
n NLS$Force24HourFormat: Return string in 24 hour format

Results:

The result type is INTEGER(4). The result is the number of characters written to outstr (bytes are
counted, not multibyte characters). If an error occurs, the result is one of the following negative
values:

� NLS$ErrorInsufficentBuffer: outstr buffer is too small
� NLS$ErrorInvalidFlags: flags has an illegal value
� NLS$ErrorInvalidInput: intime has an illegal value

NLSFormatTime Page 59 of 75

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSFormatCurrency, NLSFormatDate, NLSFormatNumber

Examples

 USE DFNLS
 INTEGER(4) i
 CHARACTER(20) str
 i = NLSFORMATTIME(str, NLS$NORMAL) ! 11:38:28 PM
 i = NLSFORMATTIME(str, NLS$NOMINUTESORSECONDS) ! 11 PM
 i = NLSFORMATTIME(str, NLS$NOTIMEMARKER) ! 11:38:28 PM
 i = NLSFORMATTIME(str, IOR(NLS$FORCE24HOURFORMAT, &
 & NLS$NOSECONDS)) ! 23:38 PM
 END

NLSGetEnvironmentCodepage

NLS Function: Returns the codepage number for the system (Window) codepage or the console
codepage.

Module: USE DFNLS

Syntax

result = NLSGetEnvironmentCodepage (flags)

flags
(Input) INTEGER(4). Tells the function which codepage number to return. Available values
(defined in DFNLS.F90 in /DF/INCLUDE) are:

n NLS$ConsoleEnvironmentCodepage: Gets the codepage for the console
n NLS$WindowsEnvironmentCodepage: Gets the current Windows codepage

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, it returns one of the
following error codes:

� NLS$ErrorInvalidFlags: flags has an illegal value
� NLS$ErrorNoConsole: There is no console associated with the given application; therefore,

operations with the console codepage are not possible

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

NLSGetEnvironmentCodepage Page 60 of 75

See Also: NLSSetEnvironmentCodepage

NLSGetLocale

NLS Subroutine: Retrieves the current language, country, or codepage.

Module: USE DFNLS

Syntax

CALL NLSGetLocale ([language] [, country] [, codepage])

language
(Optional; output) Character*(*). Current language.

country
(Optional; output) Character*(*). Current country.

codepage
(Optional; output) INTEGER(4). Current codepage.

NLSGetLocale returns a valid codepage in codepage. It does not return one of the NLS$... symbolic
constants that can be used with NLSSetLocale.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSSetLocale

Example

 USE DFNLS
 CHARACTER(50) cntry, lang
 INTEGER(4) code
 CALL NLSGetLocale (lang, cntry, code) ! get all three
 CALL NLSGetLocale (CODEPAGE = code) ! get the codepage
 CALL NLSGetLocale (COUNTRY = cntry, CODEPAGE =code) ! get country
 ! and codepage

NLSGetLocaleInfo

NLS Function: Returns information about the current locale.

Module: USE DFNLS

Syntax

NLSGetLocaleInfo Page 61 of 75

result = NLSGetLocaleInfo (type, outstr)

type
(Input) INTEGER(4). NLS parameter requested. A list of parameter names is given in the NLS
Locale Info Parameters Table.

outstr
(Output) Character*(*). Parameter setting for the current locale. All parameter settings placed
in outstr are character strings, even numbers. If a parameter setting is numeric, the ASCII
representation of the number is used. If the requested parameter is a date or time string, an
explanation of how to interpret the format in outstr is given in NLS Date and Time Format.

Results:

The result type is INTEGER(4). The result is the number of characters written to outstr if successful,
or if outstr has 0 length, the number of characters required to hold the requested information.
Otherwise, the result is one of the following error codes (defined in DFNLS.F90):

� NLS$ErrorInvalidLIType: The given type is invalid
� NLS$ErrorInsufficientBuffer: The outstr buffer was too small, but was not 0 (so that the

needed size would be returned)

The NLS$LI parameters are used for the argument type and select the locale information returned by
NLSGetLocaleInfo in outstr. You can perform an inclusive OR with NLS$NoUserOverride and
any NLS$LI parameter. This causes NLSGetLocaleInfo to bypass any user overrides and always
return the system default value. The following table lists the NLS$LI parameters and describes each.

NLS Locale Info Parameters Table

Parameter Description

NLS$LI_ILANGUAGE An ID indicating the language.

NLS$LI_SLANGUAGE The full localized name of the language.

NLS$LI_SENGLANGUAGE The full English name of the language from the ISO
Standard 639. This will always be restricted to
characters that map into the ASCII 127 character
subset.

NLS$LI_SABBREVLANGNAME The abbreviated name of the language, created by
taking the 2-letter language abbreviation as found in
ISO Standard 639 and adding a third letter as
appropriate to indicate the sublanguage.

NLS$LI_SNATIVELANGNAME The native name of the language.

NLS$LI_ICOUNTRY The country code, based on international phone
codes, also referred to as IBM country codes.

NLSGetLocaleInfo Page 62 of 75

NLS$LI_SCOUNTRY The full localized name of the country.

NLS$LI_SENGCOUNTRY The full English name of the country. This will
always be restricted to characters that map into the
ASCII 127 character subset.

NLS$LI_SABBREVCTRYNAME The abbreviated name of the country as per ISO
Standard 3166.

NLS$LI_SNATIVECTRYNAME The native name of the country.

NLS$LI_IDEFAULTLANGUAGE Language ID for the principal language spoken in
this locale. This is provided so that partially specified
locales can be completed with default values.

NLS$LI_IDEFAULTCOUNTRY Country code for the principal country in this locale.
This is provided so that partially specified locales can
be completed with default values.

NLS$LI_IDEFAULTANSICODEPAGE ANSI code page associated with this locale.

NLS$LI_IDEFAULTOEMCODEPAGE OEM code page associated with the locale.

NLS$LI_SLIST Character(s) used to separate list items, for example,
comma in many locales.

NLS$LI_IMEASURE This value is 0 if the metric system (S.I.) is used and
1 for the U.S. system of measurements.

NLS$LI_SDECIMAL The character(s) used as decimal separator. This is
restricted such that it can not be set to digits 0 - 9.

NLS$LI_STHOUSAND The character(s) used as separator between groups of
digits left of the decimal. This is restricted such that
it can not be set to digits 0 - 9.

NLS$LI_SGROUPING Sizes for each group of digits to the left of the
decimal. An explicit size is needed for each group;
sizes are separated by semicolons. If the last value is
0 the preceding value is repeated. To group
thousands, specify "3;0".

NLS$LI_IDIGITS The number of decimal digits.

NLS$LI_ILZERO Determines whether to use leading zeros in decimal
fields:
0 - Use no leading zeros
1 - Use leading zeros

NLS$LI_INEGNUMBER Determines how negative numbers are represented:
0 - Puts negative numbers in parentheses: (1.1)
1 - Puts a minus sign in front: -1.1

NLSGetLocaleInfo Page 63 of 75

2 - Puts a minus sign followed by a space in front: -
1.1
3 - Puts a minus sign after: 1.1-
4 - Puts a space then a minus sign after: 1.1 -

NLS$LI_SNATIVEDIGITS The ten characters that are the native equivalent to
the ASCII 0-9.

NLS$LI_SCURRENCY The string used as the local monetary symbol. Cannot
be set to digits 0-9.

NLS$LI_SINTLSYMBOL Three characters of the International monetary
symbol specified in ISO 4217 "Codes for the
Representation of Currencies and Funds", followed
by the character separating this string from the
amount.

NLS$LI_SMONDECIMALSEP The character(s) used as monetary decimal separator.
This is restricted such that it cannot be set to digits 0-
9.

NLS$LI_SMONTHOUSANDSEP The character(s) used as monetary separator between
groups of digits left of the decimal. Cannot be set to
digits 0-9.

NLS$LI_SMONGROUPING Sizes for each group of monetary digits to the left of
the decimal. If the last value is 0, the preceding value
is repeated. To group thousands, specify "3;0".

NLS$LI_ICURRDIGITS Number of decimal digits for the local monetary
format.

NLS$LI_IINTLCURRDIGITS Number of decimal digits for the international
monetary format.

NLS$LI_ICURRENCY Determines how positive currency is represented:
0 - Puts currency symbol in front with no separation:
$1.1
1 - Puts currency symbol in back with no separation:
1.1$
2 - Puts currency symbol in front with single space
after: $ 1.1
3 - Puts currency symbol in back with single space
before: 1.1 $

NLS$LI_INEGCURR Determines how negative currency is represented:
0 ($1.1)
1 -$1.1
2 $-1.1
3 $1.1-
4 (1.1$)
5 -1.1$

NLSGetLocaleInfo Page 64 of 75

6 1.1-$
7 1.1$-
8 -1.1 $ (space before $)
9 -$ 1.1 (space after $)
10 1.1 $- (space before $)
11 $ 1.1- (space after $)
12 $ -1.1 (space after $)
13 1.1- $ (space before $)
14 ($ 1.1) (space after $)
15 (1.1 $) (space before $)

NLS$LI_SPOSITIVESIGN String value for the positive sign. Cannot be set to
digits 0-9.

NLS$LI_SNEGATIVESIGN String value for the negative sign. Cannot be set to
digits 0-9.

NLS$LI_IPOSSIGNPOSN Determines the formatting index for positive values:
0 - Parenthesis surround the amount and the
monetary symbol
1 - The sign string precedes the amount and the
monetary symbol
2 - The sign string follows the amount and the
monetary symbol
3 - The sign string immediately precedes the
monetary symbol
4 - The sign string immediately follows the monetary
symbol

NLS$LI_INEGSIGNPOSN Determines the formatting index for negative values.
Same values as for NLS$LI_IPOSSIGNPOSN.

NLS$LI_IPOSSYMPRECEDES 1 if the monetary symbol precedes, 0 if it follows a
positive amount.

NLS$LI_IPOSSEPBYSPACE 1 if the monetary symbol is separated by a space
from a positive amount, 0 otherwise.

NLS$LI_INEGSYMPRECEDES 1 if the monetary symbol precedes, 0 if it follows a
negative amount.

NLS$LI_INEGSEPBYSPACE 1 if the monetary symbol is separated by a space
from a negative amount, 0 otherwise.

NLS$LI_STIMEFORMAT Time formatting string. See the NLS Date and Time
Format section for explanations of the valid strings.

NLS$LI_STIME Character(s) for the time separator. Cannot be set to
digits 0-9.

NLS$LI_ITIME Time format:
0 - Use 12-hour format

NLSGetLocaleInfo Page 65 of 75

1 - Use 24-hour format

NLS$LI_ITLZERO Determines whether to use leading zeros in time
fields:
0 - Use no leading zeros
1 - Use leading zeros for hours

NLS$LI_S1159 String for the AM designator.

NLS$LI_S2359 String for the PM designator.

NLS$LI_SSHORTDATE Short Date formatting string for this locale. The d, M
and y should have the day, month, and year
substituted, respectively. See the NLS Date and Time
Format section for explanations of the valid strings.

NLS$LI_SDATE Character(s) for the date separator. Cannot be set to
digits 0-9.

NLS$LI_IDATE Short Date format ordering:
0 - Month-Day-Year
1 - Day-Month-Year
2 - Year-Month-Day

NLS$LI_ICENTURY Specifies whether to use full 4-digit century for the
short date only:
0 - Two-digit year
1 - Full century

NLS$LI_IDAYLZERO Specifies whether to use leading zeros in day fields
for the short date only:
0 - Use no leading zeros
1 - Use leading zeros

NLS$LI_IMONLZERO Specifies whether to use leading zeros in month
fields for the short date only:
0 - Use no leading zeros
1 - Use leading zeros

NLS$LI_SLONGDATE Long Date formatting string for this locale. The
string returned may contain a string within single
quotes (’ ’). Any characters within single quotes
should be left as is. The d, M and y should have the
day, month, and year substituted, respectively.

NLS$LI_ILDATE Long Date format ordering:
0 - Month-Day-Year
1 - Day-Month-Year
2 - Year-Month-Day

NLS$LI_ICALENDARTYPE Specifies which type of calendar is currently being
used:

NLSGetLocaleInfo Page 66 of 75

1 - Gregorian (as in United States)
2 - Gregorian (English strings always)
3 - Era: Year of the Emperor (Japan)
4 - Era: Year of the Republic of China
5 - Tangun Era (Korea)

NLS$LI_IOPTIONALCALENDAR Specifies which additional calendar types are valid
and available for this locale. This can be a null
separated list of all valid optional calendars:
0 - No additional types valid
1 - Gregorian (localized)
2 - Gregorian (English strings always)
3 - Era: Year of the Emperor (Japan)
4 - Era: Year of the Republic of China
5 - Tangun Era (Korea)

NLS$LI_IFIRSTDAYOFWEEK Specifies which day is considered first in a week:
0 - SDAYNAME1
1 - SDAYNAME2
2 - SDAYNAME3
3 - SDAYNAME4
4 - SDAYNAME5
5 - SDAYNAME6
6 - SDAYNAME7

NLS$LI_IFIRSTWEEKOFYEAR Specifies which week of the year is considered first:
0 - Week containing 1/1
1 - First full week following 1/1
2 - First week containing at least 4 days

NLS$LI_SDAYNAME1 -
NLS$LI_SDAYNAME7

Native name for each day of the week. 1= Monday,
2 = Tuesday, etc.

NLS$LI_SABBREVDAYNAME1 -
NLS$LI_SABBREVDAYNAME7

Native abbreviated name for each day of the week.
1 = Mon, 2 = Tue, etc.

NLS$LI_SMONTHNAME1 -
NLS$LI_SMONTHNAME13

Native name for each month. 1 = January,
2 = February, etc. 13 = the 13th month, if it exists in
the locale.

NLS$LI_SABBREVMONTHNAME1 -
NLS$LI_SABBREVMONTHNAME13

Native abbreviated name for each month. 1 = Jan,
2 = Feb, etc. 13 = the 13th month, if it exists in the
locale.

NLS Date and Time Format

When NLSGetLocaleInfo (type, outstr) returns information about the date and time formats of the
current locale, the value returned in outstr can be interpreted according to the following tables. Any
text returned within a date and time string that is enclosed within single quotes should be left in the
string in its exact form; that is, do not change the text or the location within the string.

NLS Date and Time Format Page 67 of 75

Day

The day can be displayed in one of four formats using the letter "d". The table below shows the four
variations:

d Day of the month as digits without leading zeros for single-digit days

dd Day of the month as digits with leading zeros for single-digit days

ddd Day of the week as a three-letter abbreviation (SABBREVDAYNAME)

dddd Day of the week as its full name (SDAYNAME)

Month

The month can be displayed in one of four formats using the letter "M". The uppercase "M"
distinguishes months from minutes. The table below shows the four variations:

M Month as digits without leading zeros for single-digit months

MM Month as digits with leading zeros for single-digit months

MMM Month as a three-letter abbreviation (SABBREVMONTHNAME)

MMMM Month as its full name (SMONTHNAME)

Year

The year can be displayed in one of three formats using the letter "y". The table below shows the
three variations:

y Year represented by only the last digit

yy Year represented by only the last two digits

yyyy Year represented by the full 4 digits

Period/Era

The period/era string is displayed in a single format using the letters "gg".

gg Period/Era string

Time

NLS Date and Time Format Page 68 of 75

The time can be displayed in one of many formats using the letter "h" or "H" to denote hours, the
letter "m" to denote minutes, the letter "s" to denote seconds and the letter "t" to denote the time
marker. The table below shows the numerous variations of the time format. Lowercase "h" denotes
the 12 hour clock and uppercase "H" denotes the 24 hour clock. The lowercase "m" distinguishes
minutes from months.

h Hours without leading zeros for single-digit hours (12 hour clock)

hh Hours with leading zeros for single-digit hours (12 hour clock)

H Hours without leading zeros for single-digit hours (24 hour clock)

HH Hours with leading zeros for single-digit hours (24 hour clock)

m Minutes without leading zeros for single-digit minutes

mm Minutes with leading zeros for single-digit minutes

s Seconds without leading zeros for single-digit seconds

ss Seconds with leading zeros for single-digit seconds

t One-character time marker string

tt Multicharacter time marker string

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSGetLocale, NLSFormatDate, NLSFormatTime, NLSSetLocale

Example

 USE DFNLS
 INTEGER(4) strlen
 CHARACTER(40) str
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME1, str)
 print *, str ! prints Monday if language is English
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME2, str)
 print *, str ! prints Tuesday if language is English

NLSSetEnvironmentCodepage

NLS Function: Sets the codepage for the current console. The specified codepage affects the current
console program and any other programs launched from the same console. It does not affect other
open consoles or any consoles opened later.

Module: USE DFNLS

NLSSetEnvironmentCodepage Page 69 of 75

Syntax

result = NLSSetEnvironmentCodepage (codepage, flags)

codepage
(Input) INTEGER(4). Number of the codepage to set as the console codepage.

flags
(Input) INTEGER(4). Must be set to NLS$ConsoleEnvironmentCodepage.

Results:

The result type is INTEGER(4). The result is zero if successful. Otherwise, returns one of the
following error codes (defined in DFNLS.F90 in /DF/INCLUDE):

� NLS$ErrorInvalidCodepage: codepage is invalid or not installed on the system
� NLS$ErrorInvalidFlags: flags is not valid
� NLS$ErrorNoConsole: There is no console associated with the given application; therefore

operations, with the console codepage are not possible

The flags argument must be NLS$ConsoleEnvironmentCodepage; it cannot be
NLS$WindowsEnvironmentCodepage. NLSSetEnvironmentCodepage does not affect the
Windows codepage.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: NLSGetEnvironmentCodepage

NLSSetLocale

NLS Function: Sets the current language, country, or codepage.

Module: USE DFNLS

Syntax

result = NLSSetLocale (language [, country] [, codepage])

language
(Input) Character*(*). One of the languages supported by the Win32 NLS APIs.

country
(Optional; input) Character*(*). If specified, characterizes the language further. If omitted, the
default country for the language is set.

NLSSetLocale Page 70 of 75

codepage
(Optional; input) INTEGER(4). If specified, codepage to use for all character-oriented NLS
functions. Can be any valid supported codepage or one of the following predefined values
(defined in DFNLS.F90 in /DF/INCLUDE/):

n NLS$CurrentCodepage: The codepage is not changed. Only the language and country
settings are altered by the function.

n NLS$ConsoleEnvironmentCodepage: The codepage is changed to the default
environment codepage currently in effect for console programs.

n NLS$ConsoleLanguageCodepage: The codepage is changed to the default console
codepage for the language and country combination specified.

n NLS$WindowsEnvironmentCodepage: The codepage is changed to the default
environment codepage currently in effect for Windows programs.

n NLS$WindowsLanguageCodepage: The codepage is changed to the default Windows
codepage for the language and country combination specified.

If you omit codepage, it defaults to NLS$WindowsLanguageCodepage. At program startup,
NLS$WindowsEnvironmentCodepage is used to set the codepage.

Results:

The result type is INTEGER(4). The result is zero if successful. Otherwise, one of the following error
codes (defined in DFNLS.F90) may be returned:

� NLS$ErrorInvalidLanguage: language is invalid or not supported
� NLS$ErrorInvalidCountry: country is invalid or is not valid with the language specified
� NLS$ErrorInvalidCodepage: codepage is invalid or not installed on the system

NLSSetLocale works on installed locales only. Windows NT and Windows 95 support many locales,
but these must be installed through the system Windows NT Control Panel/International menu or the
Windows 95 Control Panel/Regional Settings menu.

Note that when doing mixed-language programming with Fortran and C, calling NLSSetLocale with
a codepage other than the default environment Windows codepage causes the codepage in the C run-
time library to change by calling C’s setmbcp() routine with the new codepage. Conversely,
changing the C run-time library codepage does not change the codepage in the Fortran NLS library.

Calling NLSSetLocale has no effect on the locale used by C programs. The locale set with C’s
setlocale() routine is independent of NLSSetLocale.

Calling NLSSetLocale with the default environment console codepage,
NLS$ConsoleEnvironmentCodepage, causes an implicit call to the Win32 API
SetFileApisToOEM(). Calling NLSSetLocale with any other codepage causes a call to
SetFileApisToANSI().

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

NLSSetLocale Page 71 of 75

See Also: NLSGetLocale

NOT

Elemental Intrinsic Function (Generic): Returns the logical complement of the argument.

Syntax

result = NOT (i)

i
(Input) Must be of type integer.

Results:

The result type is the same as i. The result value is obtained by complementing i bit-by-bit according
to the following truth table:

 I NOT (I)

 1 0
 0 1

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

INOT INTEGER(2) INTEGER(2)

JNOT INTEGER(4) INTEGER(4)

KNOT 1 INTEGER(8) INTEGER(8)

1 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BTEST, IAND, IBCHNG, IBCLR, IBSET, IEOR, IOR, ISHA, ISHC, ISHL, ISHFT,
ISHFTC

Examples

NOT Page 72 of 75

If I has a value equal to 10101010 (base 2), NOT (I) has the value 01010101 (base 2).

The following shows another example:

 INTEGER(2) i(2), j(2)
 i = (/4, 132/) ! i(1) = 0000000000000100
 ! i(2) = 0000000010000100
 j = NOT(i) ! returns (-5,-133)
 ! j(1) = 1111111111111011
 ! j(2) = 1111111101111011

NULL

Transformational Intrinsic Function (Generic): Returns a disassociated pointer. This is a Fortran 95
intrinsic function.

Syntax

result = NULL ([mold])

mold
Must be a pointer; it can be of any type. Its pointer association status can be associated,
disassociated, or undefined. If its status is associated, the target does not have to be defined
with a value.

Results:

The result type is the same as mold, if present; otherwise, it is determined as follows:

If NULL () Appears... Type is Determined From...

On the right side of pointer assignment The pointer on the left side

As initialization for an object in a declaration The object

As default initialization for a component The component

In a structure constructor The corresponding component

As an actual argument The corresponding dummy argument

In a DATA statement The corresponding pointer object

The result is a pointer with disassociated association status.

Examples

Consider the following:

NULL Page 73 of 75

 INTEGER, POINTER :: POINT1 => NULL()

This statement defines the initial association status of POINT1 to be disassociated.

NULLIFY

Statement: Disassociates a pointer from a target.

Syntax

NULLIFY (pointer-object [, pointer-object]...)

pointer-object
Is a structure component or the name of a variable; it must be a pointer (have the POINTER
attribute).

Rules and Behavior

The initial association status of a pointer is undefined. You can use NULLIFY to initialize an
undefined pointer, giving it disassociated status. Then the pointer can be tested using the intrinsic
function ASSOCIATED.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALLOCATE, ASSOCIATED, DEALLOCATE, POINTER, TARGET, NULL, Pointer
Assignments.

Examples

The following is an example of the NULLIFY statement:

 REAL, TARGET :: TAR(0:50)
 REAL, POINTER :: PTR_A(:), PTR_B(:)
 PTR_A => TAR
 PTR_B => TAR
 ...
 NULLIFY(PTR_A)

After these statements are executed, PTR_A will have disassociated status, while PTR_B will
continue to be associated with variable TAR.

The following shows another example:

! POINTER2.F90 Pointing at a Pointer and Target
!DEC$ FIXEDFORMLINESIZE:80

NULLIFY Page 74 of 75

 REAL, POINTER :: arrow1 (:)
 REAL, POINTER :: arrow2 (:)
 REAL, ALLOCATABLE, TARGET :: bullseye (:)

 ALLOCATE (bullseye (7))
 bullseye = 1.
 bullseye (1:7:2) = 10.
 WRITE (*,’(/1x,a,7f8.0)’) ’target ’,bullseye

 arrow1 => bullseye
 WRITE (*,’(/1x,a,7f8.0)’) ’pointer’,arrow1

 arrow2 => arrow1
 IF (ASSOCIATED(arrow2)) WRITE (*,’(/a/)’) ’ ARROW2 is pointed.’
 WRITE (*,’(1x,a,7f8.0)’) ’pointer’,arrow2

 NULLIFY (arrow2)
 IF (.NOT.ASSOCIATED(arrow2)) WRITE (*,’(/a/)’) ’ ARROW2 is not pointed.’
 WRITE (*,’(1x,a,7f8.0)’) ’pointer’,arrow1
 WRITE (*,’(/1x,a,7f8.0)’) ’target ’,bullseye

 END

NUMBER_OF_PROCESSORS

Inquiry Intrinsic Function (Specific): Returns the total number of processors (peers) available
to the program.

Syntax

result = NUMBER_OF_PROCESSORS ([dim])

dim
(Optional) Has no effect on currently available configurations of DIGITAL systems. This
option is provided for compatibility with the High Performance Fortran (HPF) language
specification. If dim is specified, it must have the value of 1.

Results:

The result type is default integer scalar. The result value is the total number of processors (peers)
available to the program.

For single-processor workstations, the result value is 1.

NWORKERS

Inquiry Intrinsic Function (Specific): Returns the number of processes executing a routine. This
is a specific function with no generic name. It is provided for compatibility with DIGITAL Fortran 77
for OpenVMS VAX systems.

Syntax

result = NWORKERS ()

NWORKERS Page 75 of 75

Results:

The result is always 1.

OBJCOMMENT Page 1 of 50

OBJCOMMENT

Compiler Directive: Specifies a library search path in an object file.

Syntax

cDEC$ OBJCOMMENT LIB:library

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

library
Is a character constant specifying the name and, if necessary, the path of the library that the
linker is to search.

Rules and Behavior

The linker searches for the library named in OBJCOMMENT as if you named it on the command
line, that is, before default library searches. You can place multiple library search directives in the
same source file. Each search directive appears in the object file in the order it is encountered in the
source file.

If the OBJCOMMENT directive appears in the scope of a module, any program unit that uses the
module also contains the directive, just as if the OBJCOMMENT directive appeared in the source
file using the module.

If you want to have the OBJCOMMENT directive in a module, but do not want it in the program
units that use the module, place the directive outside the module that is used.

The following form is also allowed: !MS$OBJCOMMENT LIB:library

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: General Compiler Directives.

Example

 ! MOD1.F90
 MODULE a
 !DEC$ OBJCOMMENT LIB: "opengl32.lib"
 END MODULE a

 ! MOD2.F90
 !DEC$ OBJCOMMENT LIB: "graftools.lib"
 MODULE b
 !
 END MODULE b

OBJCOMMENT Page 2 of 50

 ! USER.F90
 PROGRAM go
 USE a ! library search contained in MODULE a
 ! included here
 USE b ! library search not included
 END

OPEN

Statement: Connects an external file to a unit, creates a new file and connects it to a unit, creates a
preconnected file, or changes certain properties of a connection.

Syntax

OPEN ([UNIT=]io-unit [, FILE=name] [, ERR=label] [, IOSTAT=i-var], slist)

io-unit
Is an external unit specifier.

name
Is a character or numeric expression specifying the name of the file to be connected. For more
information, see FILE Specifier and STATUS Specifier.

label
Is the label of the branch target statement that receives control if an error occurs.

i-var
Is a scalar integer variable that is defined as a positive integer (the number of the error
message) if an error occurs, a negative integer if an end-of-file record is encountered, and zero
if no error occurs. For more information, see I/O Status Specifier.

slist
Is one or more of the following OPEN specifiers in the form specifier = value or specifier
(each specifier can appear only once):

ACCESS CONVERT MODE RECORDTYPE

ACTION DEFAULTFILE NAME SHARE

ASSOCIATEVARIABLE DELIM ORGANIZATION SHARED

BLANK DISPOSE PAD STATUS

BLOCKSIZE FILE POSITION TITLE

BUFFERCOUNT FORM READONLY TYPE

BUFFERED IOFOCUS RECL USEROPEN

CARRIAGECONTROL MAXREC RECORDSIZE

OPEN Page 3 of 50

The OPEN specifiers and their acceptable values are summarized in the OPEN Statement in the
Language Reference.

The control specifiers that can be specified in an OPEN statement are discussed in I/O Control List in
the Language Reference.

Rules and Behavior

The control specifiers ([UNIT=]io-unit, ERR=label, and IOSTAT=i-var) and OPEN specifiers can
appear anywhere within the parentheses following OPEN. However, if the UNIT specifier is omitted,
the io-unit must appear first in the list.

Specifier values that are scalar numeric expressions can be any integer or real expression. The value
of the expression is converted to integer data type before it is used in the OPEN statement.

Only one unit at a time can be connected to a file, but multiple OPENs can be performed on the same
unit. If an OPEN statement is executed for a unit that already exists, the following occurs:

� If FILE is not specified, or FILE specifies the same file name that appeared in a previous
OPEN statement, the current file remains connected.

If the file names are the same, the values for the BLANK, CONVERT, DELIM, ERR,
IOSTAT, and PAD specifiers can be changed. Other OPEN specifier values cannot be
changed, and the file position is unaffected.

� If FILE specifies a different file name, the previous file is closed and the new file is connected
to the unit.

The ERR and IOSTAT specifiers from any previously executed OPEN statement have no effect on
any currently executing OPEN statement. If an error occurs, no file is opened or created.

Secondary operating system messages do not display when IOSTAT is specified. To display these
messages, remove IOSTAT or use a platform-specific method.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: READ, WRITE, CLOSE, FORMAT, INQUIRE, OPEN Statement

Examples

You can specify character values at run time by substituting a character expression for a specifier
value in the OPEN statement. The character value can contain trailing blanks but not leading or
embedded blanks; for example:

 CHARACTER*6 FINAL /’ ’/

OPEN Page 4 of 50

 ...
 IF (expr) FINAL = ’DELETE’
 OPEN (UNIT=1, STATUS=’NEW’, DISP=FINAL)

The following statement creates a new sequential formatted file on unit 1 with the default file name
fort.1:

 OPEN (UNIT=1, STATUS=’NEW’, ERR=100)

The following statement creates a file on magnetic tape:

 OPEN (UNIT=I, FILE=’/dev/rmt8’, &
 STATUS=’NEW’, ERR=14, RECL=1024)

The following statement opens the file (created in the previous example) for input:

 OPEN (UNIT=I, FILE=’/dev/rmt8’, READONLY, STATUS=’OLD’, &
 RECL=1024)

The following example opens the existing file /usr/users/someone/test.dat:

 OPEN (unit=10, DEFAULTFILE=’/usr/users/someone/’, FILE=’test.dat’,
 1 FORM=’FORMATTED’, STATUS=’OLD’)

The following example opens a new file:

 ! Prompt user for a filename and read it:
 CHARACTER*64 filename
 WRITE (*, ’(A\)’) ’ enter file to create: ’
 READ (*, ’(A)’) filename
 ! Open the file for formatted sequential access as unit 7.
 ! Note that the specified access need not have been specified,
 ! since it is the default (as is "formatted").
 OPEN (7, FILE = filename, ACCESS = ’SEQUENTIAL’, STATUS = ’NEW’)
 The following example opens an existing file called DATA3.TXT:
 ! Open a file created by an editor, "DATA3.TXT", as unit 3:
 OPEN (3, FILE = ’DATA3.TXT’)

OPTIONAL

Statement and Attribute: Permits dummy arguments to be omitted in a procedure reference.

The OPTIONAL attribute can be specified in a type declaration statement or an OPTIONAL
statement, and takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] OPTIONAL [, att-ls] :: d-arg [, d-arg]...

OPTIONAL Page 5 of 50

Statement:

OPTIONAL [::] d-arg [, d-arg]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

d-arg
Is the name of a dummy argument.

Rules and Behavior

The OPTIONAL attribute can only appear in the scoping unit of a subprogram or an interface body,
and can only be specified for dummy arguments.

A dummy argument is "present" if it associated with an actual argument. A dummy argument that is
not optional must be present. You can use the PRESENT intrinsic function to determine whether an
optional dummy argument is associated with an actual argument.

To call a procedure that has an optional argument, you must use an explicit interface.

If argument keywords are not used, argument association is positional. The first dummy argument
becomes associated with the first actual argument, and so on. If argument keywords are used,
arguments are associated by the keyword name, so actual arguments can be in a different order than
dummy arguments. A keyword is required for an argument only if a preceding optional argument is
omitted or if the argument sequence is changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PRESENT, Argument Keywords in Intrinsic Procedures, Optional Arguments, Argument
Association, Type Declarations, Compatible attributes

Examples

The following example shows a type declaration statement specifying the OPTIONAL attribute:

SUBROUTINE TEST(A)
REAL, OPTIONAL, DIMENSION(-10:2) :: A
END SUBROUTINE

The following is an example of the OPTIONAL statement:

OPTIONAL Page 6 of 50

SUBROUTINE TEST(A, B, L, X)
OPTIONAL :: B
INTEGER A, B, L, X

IF (PRESENT(B)) THEN ! Printing of B is conditional
 PRINT *, A, B, L, X ! on its presence

ELSE
 PRINT *, A, L, X

ENDIF
END SUBROUTINE

INTERFACE
 SUBROUTINE TEST(ONE, TWO, THREE, FOUR)

 INTEGER ONE, TWO, THREE, FOUR
 OPTIONAL :: TWO
 END SUBROUTINE
END INTERFACE

INTEGER I, J, K, L

I = 1
J = 2
K = 3
L = 4

CALL TEST(I, J, K, L) ! Prints: 1 2 3 4
CALL TEST(I, THREE=K, FOUR=L) ! Prints: 1 3 4
END

Note that in the second call to subroutine TEST, the second positional (optional) argument is omitted.
In this case, all following arguments must be keyword arguments.

The following shows another example:

 SUBROUTINE ADD (a,b,c,d)
 REAL a, b, d
 REAL, OPTIONAL :: c

 IF (PRESENT(c)) THEN
 d = a + b + c + d
 ELSE
 d = a + b + d
 END IF
 END SUBROUTINE

Consider the following:

 SUBROUTINE EX (a, b, c)
 REAL, OPTIONAL :: b,c

This subroutine can be called with any of the following statements:

 CALL EX (x, y, z) !All 3 arguments are passed.

 CALL EX (x) !Only the first argument is passed.

 CALL EX (x, c=z) !The first optional argument is omitted.

Note that you cannot use a series of commas to indicate omitted optional arguments, as in the

OPTIONAL Page 7 of 50

following example:

 CALL EX (x,,z) !Invalid statement.

This results in a compile-time error.

OPTIONS Directive

Compiler Directive: Controls alignment of fields in record structures and data items in common
blocks. The fields and data items can be naturally aligned (for performance reasons) or they can be
packed together on arbitrary byte boundaries.

Syntax

cDEC$ OPTIONS /[NO]ALIGN[= p]
...

cDEC$ END OPTIONS

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

p
Is a specifier with one of the following forms:

[class =] rule
(class = rule,...)
ALL
NONE

class
Is one of the following keywords:

n COMMONS: For common blocks
n RECORDS: For records
n STRUCTURES: A synonym for RECORDS

rule
Is one of the following keywords:

n PACKED
Packs fields in records or data items in common blocks on arbitrary byte boundaries.

n NATURAL
Naturally aligns fields in records and data items in common blocks on up to 64-bit
boundaries (inconsistent with the Fortran 90 standard).
This keyword causes the compiler to naturally align all data in a common block,
including INTEGER(KIND=8), REAL(KIND=8), and all COMPLEX data.

n STANDARD
Naturally aligns data items in common blocks on up to 32-bit boundaries (consistent
with the Fortran 90 standard).

OPTIONS Directive Page 8 of 50

This keyword only applies to common blocks; so, you can specify
OPTIONS /ALIGN=COMMONS=STANDARD, but you cannot specify /ALIGN=STANDARD.

ALL
Is the same as specifying OPTIONS /ALIGN, OPTIONS /ALIGN=NATURAL, and OPTIONS
/ALIGN=(RECORDS=NATURAL,COMMONS=NATURAL).

NONE
Is the same as specifying OPTIONS /NOALIGN, OPTIONS /ALIGN=PACKED, and OPTIONS
/ALIGN=(RECORDS=PACKED,COMMONS=PACKED).

Rules and Behavior

The OPTIONS (and accompanying END OPTIONS) directives must come after OPTIONS,
SUBROUTINE, FUNCTION, and BLOCK DATA statements (if any) in the program unit, and
before the executable part of the program unit.

The OPTIONS directive supersedes the /alignment compiler option.

For performance reasons, DIGITAL Fortran aligns local data items on natural boundaries. However,
EQUIVALENCE, COMMON, RECORD, and STRUCTURE data declaration statements can
force misaligned data. By default, you receive compiler messages when misaligned data is
encountered.

Note: Misaligned data significantly increases the time it takes to execute a program. As the
number of misaligned fields encountered increases, so does the time needed to complete
program execution. Specifying cDEC$ OPTIONS/ALIGN (or the /alignment compiler option)
minimizes misaligned data.

If you want aligned data in common blocks, do one of the following:

� Specify OPTIONS /ALIGN=COMMONS=STANDARD for data items up to 32 bits in length.
� Specify OPTIONS /ALIGN=COMMONS=NATURAL for data items up to 64 bits in length.
� Place source data declarations within the common block in descending size order, so that each

data item is naturally aligned.

If you want packed unaligned data in a record structure, do one of the following:

� Specify OPTIONS /ALIGN=RECORDS=PACKED.
� Place source data declarations in the record structure so that the data is naturally aligned.

See Also: General Compiler Directives

Example

! directives can be nested up to 100 levels
 CDEC$ OPTIONS /ALIGN=PACKED ! Start of Group A
 declarations
 CDEC$ OPTIONS /ALIGN=RECO=NATU ! Start of nested Group B

OPTIONS Directive Page 9 of 50

 more declarations
 CDEC$ END OPTIONS ! End of Group B
 still more declarations
 CDEC$ END OPTIONS ! End of Group A

The CDEC$ OPTIONS specification for Group B only applies to RECORDS; common blocks within
Group B will be PACKED. This is because COMMONS retains the previous setting (in this case,
from the Group A specification).

OPTIONS

Statement: Overrides or confirms the compiler options in effect for a program unit.

Syntax

OPTIONS option [option...]

option
Is one of the following:

/ASSUME = [NO]UNDERSCORE (Alpha only)

/CHECK = ALL
[NO]BOUNDS
[NO]OVERFLOW
[NO]UNDERFLOW
NONE

/NOCHECK

/CONVERT = BIG_ENDIAN
CRAY
FDX
FGX
IBM
LITTLE_ENDIAN
NATIVE
VAXD
VAXG

/[NO]EXTEND_SOURCE

/[NO]F77

/FLOAT = D_FLOAT (VMS only)
G_FLOAT (VMS only)
IEEE_FLOAT

/[NO]G_FLOATING (VMS only)

/[NO]I4

OPTIONS Page 10 of 50

/[NO]RECURSIVE

Note that an option must always be preceded by a slash (/).

Some OPTIONS statement options are equivalent to compiler options.

Rules and Behavior

The OPTIONS statement must be the first statement in a program unit, preceding the PROGRAM,
SUBROUTINE, FUNCTION, MODULE, and BLOCK DATA statements.

OPTIONS statement options override compiler options, but only until the end of the program unit
for which they are defined. If you want to override compiler options in another program unit, you
must specify the OPTIONS statement before that program unit.

Example

The following are valid OPTIONS statements:

 OPTIONS /CHECK=ALL/F77
 OPTIONS /I4

OR

Elemental Intrinsic Function: Performs a bitwise inclusive OR on its arguments. For more
information, see IOR.

Example

 INTEGER i
 i = OR(3, 10) ! returns 11

OUTGTEXT

Graphics Subroutine: In graphics mode, sends a string of text to the screen, including any trailing
blanks.

Module: USE DFLIB

Syntax

CALL OUTGTEXT (text)

text
(Input) Character*(*). String to be displayed.

OUTGTEXT Page 11 of 50

Text output begins at the current graphics position, using the current font set with SETFONT and the
current color set with SETCOLORRGB or SETCOLOR. No formatting is provided. After it
outputs the text, OUTGTEXT updates the current graphics position.

Before you call OUTGTEXT, you must call INITIALIZEFONTS.

Because OUTGTEXT is a graphics function, the color of text is affected by the SETCOLORRGB
function, not by SETTEXTCOLORRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETFONTINFO, GETGTEXTEXTENT, INITIALIZEFONTS, MOVETO,
SETCOLORRGB, SETFONT, SETGTEXTROTATION

Example

 ! build as a QuickWin App.
 USE DFLIB
 INTEGER(2) result
 INTEGER(4) i
 TYPE (xycoord) xys

 result = INITIALIZEFONTS()
 result = SETFONT(’t’’Arial’’h18w10pvib’)
 do i=1,6
 CALL MOVETO(INT2(0),INT2(30*(i-1)),xys)
 grstat=SETCOLOR(INT2(i))
 CALL OUTGTEXT(’This should be ’)
 SELECT CASE (i)
 CASE (1)
 CALL OUTGTEXT(’Blue’)
 CASE (2)
 CALL OUTGTEXT(’Green’)
 CASE (3)
 CALL OUTGTEXT(’Cyan’)
 CASE (4)
 CALL OUTGTEXT(’Red’)
 CASE (5)
 CALL OUTGTEXT(’Magenta’)
 CASE (6)
 CALL OUTGTEXT(’Orange’)
 END SELECT
 END DO
 END

OUTTEXT

Graphics Subroutine: In text or graphics mode, sends a string of text to the screen, including any
trailing blanks.

Module: USE DFLIB

OUTTEXT Page 12 of 50

Syntax

CALL OUTTEXT (text)

text
(Input) Character*(*). String to be displayed.

Text output begins at the current text position in the color set with SETTEXTCOLORRGB or
SETTEXTCOLOR. No formatting is provided. After it outputs the text, OUTTEXT updates the
current text position.

To output text using special fonts, you must use the OUTGTEXT function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETTEXTPOSITION, SETTEXTCOLORRGB, WRITE

Example

 USE DFLIB
 INTEGER(2) oldcolor
 TYPE (rccoord) rc

 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL SETTEXTPOSITION (INT2(1), INT2(5), rc)
 oldcolor = SETTEXTCOLOR(INT2(4))
 CALL OUTTEXT (’Hello, everyone’)
 END

PACK Directive

Compiler Directive: Specifies the memory starting addresses of derived-type items (and record
structure items).

Syntax

cDEC$ PACK:[{1 | 2 | 4}]

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

Rules and Behavior

Items of derived types, unions, and structures are aligned in memory on the smaller of two sizes: the
size of the type of the item, or the current alignment setting. The current alignment setting can be 1, 2,
4, or 8 bytes. The default initial setting is 8 bytes (unless /alignment or /vms specifies otherwise). By
reducing the alignment setting, you can pack variables closer together in memory.

PACK Directive Page 13 of 50

The PACK directive lets you control the packing of derived-type or record structure items inside your
program by overriding the current memory alignment setting.

For example, if CDEC$ PACK:1 is specified, all variables begin at the next available byte, whether
odd or even. Although this slightly increases access time, no memory space is wasted. If CDEC$
PACK:4 is specified, INTEGER(1), LOGICAL(1), and all character variables begin at the next
available byte, whether odd or even. INTEGER(2) and LOGICAL(2) begin on the next even byte; all
other variables begin on 4-byte boundaries.

If the PACK directive is specified without a number, packing reverts to the compiler option setting
(if any), or the default setting of 8.

The directive can appear anywhere in a program before the derived-type definition or record structure
definition. It cannot appear inside a derived-type or record structure definition.

The following form is also allowed: !MS$PACK:[{1|2|4}]

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Derived Type, STRUCTURE...END STRUCTURE, UNION...END UNION, General
Compiler Directives.

Example

 ! Use 4-byte packing for this derived type
 ! Note PACK is used outside of the derived type definition
 !DEC$ PACK:4
 TYPE pair
 INTEGER a, b
 END TYPE
 ! revert to default or compiler option
 !DEC$ PACK:

PACK

Transformational Intrinsic Function (Generic): Takes elements from an array and packs them
into a rank-one array under the control of a mask.

Syntax

result = PACK (array, mask [, vector])

array
(Input) Must be an array (of any data type).

mask
(Input) Must be of type logical and conformable with array. It determines which elements are

PACK Page 14 of 50

taken from array.

vector
(Optional; input) Must be a rank-one array with the same type and type parameters as array. Its
size must be at least t, where t is the number of true elements in mask. If mask is a scalar with
value true, vector must have at least as many elements as there are in array.

Elements in vector are used to fill out the result array if there are not enough elements selected
by mask.

Results:

The result is a rank-one array with the same type and type parameters as array. If vector is present,
the size of the result is that of vector. Otherwise, the size of the result is the number of true elements
in mask, or the number of elements in array (if mask is a scalar with value true).

Elements in array are processed in array element order to form the result array. Element i of the result
is the element of array that corresponds to the ith true element of mask. If vector is present and has
more elements than there are true values in mask, any result elements that are empty (because they
were not true according to mask) are set to the corresponding values in vector.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: UNPACK

Examples

N is the array

 [0 8 0]
 [0 0 0]
 [7 0 0].

PACK (N, MASK=N .NE. 0, VECTOR=(/1, 3, 5, 9, 11, 13/)) produces the result (7, 8, 5, 9, 11, 13).

PACK (N, MASK=N .NE. 0) produces the result (7, 8).

The following shows another example:

 INTEGER array(2, 3), vec1(2), vec2(5)
 LOGICAL mask (2, 3)
 array = RESHAPE((/7, 0, 0, -5, 0, 0/), (/2, 3/))
 mask = array .NE. 0
 ! array is 7 0 0 and mask is T F F
 ! 0 -5 0 F T F

 VEC1 = PACK(array, mask) ! returns (7, -5)
 VEC2 = PACK(array, array .GT. 0, VECTOR= (/1,2,3,4,5/))
 ! returns (7, 2, 3, 4, 5)

PACKTIMEQQ Page 15 of 50

PACKTIMEQQ

Run-Time Subroutine: Packs time and date values.

Module: USE DFLIB

Syntax

CALL PACKTIMEQQ (timedate, iyr, imon, iday, ihr, imin, isec)

timedate
(Output) INTEGER(4). Packed time and date information.

iyr
(Input) INTEGER(2). Year (xxxx AD).

imon
(Input) INTEGER(2). Month (1 - 12).

iday
(Input) INTEGER(2). Day (1 - 31)

ihr
(Input) INTEGER(2). Hour (0 - 23)

imin
(Input) INTEGER(2). Minute (0 - 59)

isec
(Input) INTEGER(2). Second (0 - 59)

The packed time is the number of seconds since 00:00:00 Greenwich mean time, January 1, 1970.
Because packed time values can be numerically compared, you can use PACKTIMEQQ to work
with relative date and time values. Use UNPACKTIMEQQ to unpack time information.
SETFILETIMEQQ uses packed time.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

See Also: UNPACKTIMEQQ, SETFILETIMEQQ, GETFILEINFOQQ, TIME

Example

 USE DFLIB
 INTEGER(2) year, month, day, hour, minute, second, &
 hund
 INTEGER(4) timedate

PACKTIMEQQ Page 16 of 50

 CALL GETDAT (year, month, day)
 CALL GETTIM (hour, minute, second, hund)
 CALL PACKTIMEQQ (timedate, year, month, day, hour, &
 minute, second)
 END

PARAMETER

Statement and Attribute: Defines a named constant.

The PARAMETER attribute can be specified in a type declaration statement or a PARAMETER
statement, and takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] PARAMETER [, att-ls] :: c = expr [, c = expr] ...

Statement:

PARAMETER [(] c = expr [, c = expr] ...[)]

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

c
Is the name of the constant.

expr
Is an initialization expression. It can be of any data type.

Rules and Behavior

The type, type parameters, and shape of the named constant are determined in one of the following
ways:

� By an explicit type declaration statement in the same scoping unit.

� By the implicit typing rules in effect for the scoping unit. If the named constant is implicitly
typed, it can appear in a subsequent type declaration only if that declaration confirms the
implicit typing.

For example, consider the following statement:

PARAMETER Page 17 of 50

 PARAMETER (MU=1.23)

According to implicit typing, MU is of integer type, so MU=1. For MU to equal 1.23, it should
previously be declared REAL in a type declaration or be declared in an IMPLICIT statement.

A named constant must not appear in a format specification or as the character count for Hollerith
constants. For compilation purposes, writing the name is the same as writing the value.

If the named constant is used as the length specifier in a CHARACTER declaration, it must be
enclosed in parentheses.

The name of a constant cannot appear as part of another constant, although it can appear as either the
real or imaginary part of a complex constant.

You can only use the named constant within the scoping unit containing the defining PARAMETER
statement.

Any named constant that appears in the initialization expression must have been defined previously in
the same type declaration statement (or in a previous type declaration statement or PARAMETER
statement), or made accessible by use or host association.

The use of parentheses is optional and can be controlled using the /[no]altparam compiler option.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATA, Type Declarations, Using the Compiler and Linker from the Command Line,
Compatible attributes, Initialization Expressions, IMPLICIT, Alternative syntax for the
PARAMETER statement.

Examples

The following example shows a type declaration statement specifying the PARAMETER attribute:

 REAL, PARAMETER :: C = 2.9979251, Y = (4.1 / 3.0)

The following is an example of the PARAMETER statement:

 REAL(4) PI, PIOV2
 REAL(8) DPI, DPIOV2
 LOGICAL FLAG
 CHARACTER*(*) LONGNAME

 PARAMETER (PI=3.1415927, DPI=3.141592653589793238D0)
 PARAMETER (PIOV2=PI/2, DPIOV2=DPI/2)
 PARAMETER (FLAG=.TRUE., LONGNAME=’A STRING OF 25 CHARACTERS’)

The following shows another example:

PARAMETER Page 18 of 50

 ! implicit integer type
 PARAMETER (nblocks = 10)

 ! implicit real type
 IMPLICIT REAL (L-M)
 PARAMETER (loads = 10.0, mass = 32.2)

 ! typed by PARAMETER statement
 ! Requires compiler option
 PARAMETER mass = 47.3, pi = 3.14159
 PARAMETER bigone = ’This constant is larger than forty characters’

 ! PARAMETER in attribute syntax
 REAL, PARAMETER :: mass=47.3, pi=3.14159, loads=10.0, mass=32.2

PASSDIRKEYSQQ

QuickWin Function: Determines the behavior of direction and page keys in a QuickWin
application.

Module: USE DFLIB

Syntax

result = PASSDIRKEYSQQ (val)

val
A value of .TRUE. causes direction and page keys to be input as normal characters (the
PassDirKeys flag is turned on). A value of .FALSE. causes direction and page keys to be used
for scrolling.

Results:

The return value indicates the previous setting of the PassDirKeys flag.

When the PassDirKeys flag is turned on, the mouse must be used for scrolling since the direction and
page keys are treated as normal input characters.

The PASSDIRKEYSQQ function is meant to be used primarily with the GETCHARQQ and
INCHARQQ functions. Do not use normal input statements (such as READ) with the PassDirKeys
flag turned on, unless your program is prepared to interpret direction and page keys.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETCHARQQ, INCHARQQ.

Example

PASSDIRKEYSQQ Page 19 of 50

use dflib

logical*4 res
character*1 ch, ch1

Print *,"Type X to exit, S to scroll, D to pass Direction keys"

123 continue
ch = getcharqq()
! check for escapes
! 0x00 0x?? is a function key
! 0xE0 0x?? is a direction key
if (ichar(ch) .eq. 0) then
 ch1 = getcharqq()
 print *,"function key follows escape = ",ichar(ch), " ",ichar(ch1)," ",ch1
 goto 123
else if (ichar(ch) .eq. 224) then
 ch1 = getcharqq()
 print *,"direction key follows escape = ",ichar(ch)," ",ichar(ch1)," ",ch1
 goto 123
else
 print *,ichar(ch)," ",ch

 if(ch .eq. ’S’) then
 res = passdirkeysqq(.false.)
 print *, "Entering Scroll mode ",res
 endif

 if(ch .eq. ’D’) then
 res = passdirkeysqq(.true.)
 print *, "Entering Direction keys mode ",res
 endif

 if(ch .ne. ’X’) go to 123

endif
end

PAUSE

Statement: Temporarily suspends program execution and lets you execute operating system
commands during the suspension. The PAUSE statement is an obsolescent feature in Fortran 90,
which has been deleted in Fortran 95. DIGITAL Fortran fully supports features deleted in Fortran 95.

Syntax

PAUSE [pause-code]

pause-code
(Optional) Is an optional message. It can be either of the following:

n A scalar character constant of type default character.
n A string of up to six digits; leading zeros are ignored. (Fortran 90 and FORTRAN 77

limit digits to five.)

Rules and Behavior

OBJCOMMENT Page 20 of 50

If you specify pause-code, the PAUSE statement displays the specified message and then displays the
default prompt.

If you do not specify pause-code, the system displays the following default message:

 FORTRAN PAUSE

The following prompt is then displayed:

� On Windows NT and Windows 95 systems:

Fortran Pause - Enter command<CR> or <CR> to continue.

� On OpenVMS systems, the system prompt

� On DIGITAL UNIX systems:

PAUSE prompt>

Effect on Windows NT and Windows 95 Systems

The program waits for input on stdin. If you enter a blank line, execution resumes at the next
executable statement.

Anything else is treated as a DOS command and is executed by a system() call. The program loops,
letting you execute multiple DOS commands, until a blank line is entered. Execution then resumes at
the next executable statement.

Effect on OpenVMS Systems

The effect of PAUSE differs depending on whether the program is an interactive or batch process, as
follows:

� If a program is an interactive process, the program is suspended until you enter one of the
following commands:

n CONTINUE resumes execution at the next executable statement.

n DEBUG resumes execution under control of the OpenVMS Debugger.

n EXIT terminates execution.

In general, most other commands also terminate execution.

� If a program is a batch process, the program is not suspended. If you specify a value for pause-
code, this value is written to SYS$OUTPUT.

PAUSE Page 21 of 50

Effect on DIGITAL UNIX Systems

The effect of PAUSE differs depending on whether the program is a foreground or background
process, as follows:

� If a program is a foreground process, the program is suspended until you enter the
CONTINUE command. Execution then resumes at the next executable statement.

Any other command terminates execution.

� If a program is a background process, the behavior depends on stdin, as follows:

n If stdin is redirected from a file, the system displays the following (after the pause code
and prompt):

To continue from background, execute ’kill -15 n’

In this message, n is the process id of the program.

n If stdin is not redirected from a file, the program becomes a suspended background job,
and you must specify fg to bring the job into the foreground. You can then enter a
command to resume or terminate processing.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: STOP, SYSTEM, Obsolescent and Deleted Language Features

Examples

The following examples show valid PAUSE statements:

 PAUSE 701
 PAUSE ’ERRONEOUS RESULT DETECTED’

The following shows another example:

 CHARACTER*24 filename
 PAUSE ’Enter DIR to see available files or press RETURN’ &
 &’ if you already know filename.’
 READ(*,’(A\)’) filename
 OPEN(1, FILE=filename)
 . . .

PEEKCHARQQ

PEEKCHARQQ Page 22 of 50

Run-Time Function: Checks the keystroke buffer for a recent console keystroke and returns .TRUE.
if there is a character in the buffer or .FALSE. if there is not.

Module: USE DFLIB

Syntax

result = PEEKCHARQQ ()

Results:

The result type is LOGICAL(4). The result is .TRUE. if there is a character waiting in the keyboard
buffer; otherwise, .FALSE..

To find out the value of the key in the buffer, call GETCHARQQ. If there is no character waiting in
the buffer when you call GETCHARQQ, GETCHARQQ waits until there is a character in the
buffer. If you call PEEKCHARQQ first, you prevent GETCHARQQ from halting your process
while it waits for a keystroke. If there is a keystroke, GETCHARQQ returns it and resets
PEEKCHARQQ to .FALSE..

Compatibility

CONSOLE DLL LIB

See Also: GETCHARQQ, INCHARQQ, GETSTRQQ, FGETC, GETC

Example

 USE DFLIB
 LOGICAL(4) pressed / .FALSE. /

 DO WHILE (.NOT. pressed)
 WRITE(*,*) ’ Press any key’
 pressed = PEEKCHARQQ ()
 END DO
 END

PERROR

Portability Subroutine: Sends a message to the standard error stream, preceded by a specified
string, for the last detected error.

Module: USE DFPORT

Syntax

CALL PERROR (string)

string

PERROR Page 23 of 50

(Input) Character*(*). Message to precede the standard error message.

The string sent is the same as that given by GERROR.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also:R GERROR, IERRNO

Example

 USE DFPORT
 character*24 errtext
 errtext = ’In my opinion, ’
 . . .
 ! any error message generated by errtext is
 ! preceded by ’In my opinion, ’
 Call PERROR (errtext)

PIE, PIE_W

Graphics Function: Draws a pie-shaped wedge in the current graphics color.

Module: USE DFLIB

Syntax

result = PIE (i, x1, y1, x2, y2, x3, y3, x4, y4)
result = PIE_W (i, wx1, wy1, wx2, wy2, wx3, wy3, wx4, wy4)

i
(Input) INTEGER(2). Fill flag. One of the following symbolic constants (defined in
DFLIB.F90 in the \DF98\INCLUDE subdirectory):

n $GFILLINTERIOR: Fills the figure using the current color and fill mask.
n $GBORDER: Does not fill the figure.

x1, y1
(Input) INTEGER(2). Viewport coordinates for upper-left corner of bounding rectangle.

x2, y2
(Input) INTEGER(2). Viewport coordinates for lower-right corner of bounding rectangle.

x3, y3
(Input) INTEGER(2). Viewport coordinates of start vector.

x4, y4
(Input) INTEGER(2). Viewport coordinates of end vector.

PIE, PIE_W Page 24 of 50

wx1, wy1
(Input) REAL(8). Window coordinates for upper-left corner of bounding rectangle.

wx2, wy2
(Input) REAL(8). Window coordinates for lower-right corner of bounding rectangle.

wx3, wy3
(Input) REAL(8). Window coordinates of start vector.

wx4, wy4
(Input) REAL(8). Window coordinates of end vector.

Results:

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0. If the pie is clipped
or partially out of bounds, the pie is considered successfully drawn and the return is 1. If the pie is
drawn completely out of bounds, the return is 0.

The border of the pie wedge is drawn in the current color set by SETCOLORRGB.

The PIE function uses the viewport-coordinate system. The center of the arc is the center of the
bounding rectangle, which is specified by the viewport-coordinate points (x1, y1) and (x2, y2). The
arc starts where it intersects an imaginary line extending from the center of the arc through (x3, y3). It
is drawn counterclockwise about the center of the arc, ending where it intersects an imaginary line
extending from the center of the arc through (x4, y4).

The PIE_W function uses the window-coordinate system. The center of the arc is the center of the
bounding rectangle specified by the window-coordinate points (wx1, wy1) and (wx2, wy2). The arc
starts where it intersects an imaginary line extending from the center of the arc through (wx3, wy3). It
is drawn counterclockwise about the center of the arc, ending where it intersects an imaginary line
extending from the center of the arc through (wx4, wy4).

The fill flag option $GFILLINTERIOR is equivalent to a subsequent call to FLOODFILLRGB
using the center of the pie as the starting point and the current graphics color (set by
SETCOLORRGB) as the fill color. If you want a fill color different from the boundary color, you
cannot use the $GFILLINTERIOR option. Instead, after you have drawn the pie wedge, change the
current color with SETCOLORRGB and then call FLOODFILLRGB. You must supply
FLOODFILLRGB with an interior point in the figure you want to fill. You can get this point for the
last drawn pie or arc by calling GETARCINFO.

If you fill the pie with FLOODFILLRGB, the pie must be bordered by a solid line style. Line style is
solid by default and can be changed with SETLINESTYLE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETCOLORRGB, SETFILLMASK, SETLINESTYLE, FLOODFILLRGB,

PIE, PIE_W Page 25 of 50

GETARCINFO, ARC, ELLIPSE, GRSTATUS, LINETO, POLYGON, RECTANGLE

Example

 ! build as Graphics App.
 USE DFLIB
 INTEGER(2) status, dummy
 INTEGER(2) x1, y1, x2, y2, x3, y3, x4, y4
 x1 = 80; y1 = 50
 x2 = 180; y2 = 150
 x3 = 110; y3 = 80
 x4 = 90; y4 = 180

 status = SETCOLOR(INT2(4))
 dummy = PIE($GFILLINTERIOR, x1, y1, x2, y2, &
 x3, y3, x4, y4)
 END

Figure: Coordinates Used to Define PIE and PIE_W

POINTER -- Fortran 90

Statement and Attribute: Specifies that an object is a pointer (a dynamic variable). A pointer does
not contain data, but points to a scalar or array variable where data is stored. A pointer has no initial
storage set aside for it; memory storage is created for the pointer as a program runs.

The POINTER attribute can be specified in a type declaration statement or a POINTER statement,
and takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] POINTER [, att-ls] :: ptr [(d-spec)] [, ptr [(d-spec)]]...

Statement:

POINTER [::] ptr [(d-spec)] [, ptr [(d-spec)]]...

type-spec
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

POINTER -- Fortran 90 Page 26 of 50

ptr
Is the name of the pointer. The pointer cannot be declared with the INTENT or PARAMETER
attributes.

d-spec
(Optional) Is a deferred-shape specification (: [,:]...). Each colon represents a dimension of the
array.

Rules and Behavior

No storage space is created for a pointer until it is allocated with an ALLOCATE statement or until
it is assigned to a allocated target. A pointer must not be referenced or defined until memory is
associated with it.

Each pointer has an association status, which tells whether the pointer is currently associated with a
target object. When a pointer is initially declared, its status is undefined. You can use the
ASSOCIATED intrinsic function to find the association status of a pointer.

If the pointer is an array, and it is given the DIMENSION attribute elsewhere in the program, it must
be declared as a deferred-shape array.

A pointer cannot be specified in a DATA, EQUIVALENCE, or NAMELIST statement.

Fortran 90 pointers are not the same as integer pointers. For more information, see the POINTER --
DIGITAL Fortran statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALLOCATE, ASSOCIATED, DEALLOCATE, NULLIFY, TARGET, Deferred-Shape
Arrays, Pointer Assignments, Pointer Association, Pointer Arguments, NULL, DIGITAL Fortran
POINTER statement, Type Declarations, Compatible attributes.

Examples

The following example shows type declaration statements specifying the POINTER attribute:

 TYPE(SYSTEM), POINTER :: CURRENT, LAST
 REAL, DIMENSION(:,:), POINTER :: I, J, REVERSE

The following is an example of the POINTER statement:

 TYPE(SYSTEM) :: TODAYS
 POINTER :: TODAYS, A(:,:)

See also the examples POINTER.F90 and POINTER2.F90 in /DF98/SAMPLES/TUTORIAL.

POINTER -- Fortran 90 Page 27 of 50

The following shows another example:

 REAL, POINTER :: arrow (:)
 REAL, ALLOCATABLE, TARGET :: bullseye (:,:)

 ! The following statement associates the pointer with an unused
 ! block of memory.

 ALLOCATE (arrow (1:8), STAT = ierr)
 IF (ierr.eq.0) WRITE (*,’(/1x,a)’) ’ARROW allocated’
 arrow = 5.
 WRITE (*,’(1x,8f8.0/)’) arrow
 ALLOCATE (bullseye (1:8,3), STAT = ierr)
 IF (ierr.eq.0) WRITE (*,*) ’BULLSEYE allocated’
 bullseye = 1.
 bullseye (1:8:2,2) = 10.
 WRITE (*,’(1x,8f8.0)’) bullseye

 ! The following association breaks the association with the first
 ! target, which being unnamed and unassociated with other pointers,
 ! becomes lost. ARROW acquires a new shape.

 arrow => bullseye (2:7,2)
 WRITE (*,’(/1x,a)’) ’ARROW is repointed & resized, all the 5s are lost’
 WRITE (*,’(1x,8f8.0)’) arrow

 NULLIFY (arrow)
 IF (.NOT.ASSOCIATED(arrow)) WRITE (*,’(/a/)’) ’ ARROW is not pointed’

 DEALLOCATE (bullseye, STAT = ierr)
 IF (ierr.eq.0) WRITE (*,*) ’Deallocation successful.’
 END

POINTER -- DIGITAL Fortran

Statement: Establishes pairs of variables and pointers, in which each pointer contains the address of
its paired variable. This statement is different from the Fortran 90 POINTER statement.

Syntax

POINTER (pointer, pointee) [, (pointer, pointee)] . . .

pointer
Is a variable whose value is used as the address of the pointee.

pointee
Is a variable; it can be an array name or array specification.

Rules and Behavior

The following are pointer rules and behavior:

� Two pointers can have the same value, so pointer aliasing is allowed.

POINTER -- DIGITAL Fortran Page 28 of 50

� When used directly, a pointer is treated like an integer variable. On Windows NT and Windows
95 systems, a pointer occupies one numeric storage unit, so it is a 32-bit quantity (INTEGER
(4)).

� A pointer cannot be a pointee.

� A pointer cannot appear in an ASSIGN statement and cannot have the following attributes:

ALLOCATABLE INTRINSIC POINTER
EXTERNAL PARAMETER TARGET

A pointer can appear in a DATA statement with integer literals only.

� Integers can be converted to pointers, so you can point to absolute memory locations.

� A pointer variable cannot be declared to have any other data type.

� A pointer cannot be a function return value.

� You can give values to pointers by doing the following:
n Retrieve addresses by using the LOC intrinsic function (or the %LOC built-in function)
n Allocate storage for an object by using the MALLOC intrinsic function

For example:

Using %LOC: Using MALLOC:

INTEGER I(10) INTEGER I(10)
INTEGER I1(10) /10*10/ POINTER (P,I)
POINTER (P,I) P = MALLOC(40)
P = %LOC(I1) I(2) = I(2) + 1
I(2) = I(2) + 1

� The value in a pointer is used as the pointee's base address.

The following are pointee rules and behavior:

� A pointee is not allocated any storage. References to a pointee look to the current contents of
its associated pointer to find the pointee's base address.

� A pointee cannot be data-initialized or have a record structure that contains data-initialized
fields.

� A pointee can appear in only one (DIGITAL Fortran) POINTER statement.

� A pointee array can have fixed, adjustable, or assumed dimensions.

� A pointee cannot appear in a COMMON, DATA, EQUIVALENCE, or NAMELIST

POINTER -- DIGITAL Fortran Page 29 of 50

statement, and it cannot have the following attributes:
ALLOCATABLE OPTIONAL SAVE
AUTOMATIC PARAMETER STATIC
INTENT POINTER TARGET

� A pointee cannot be:
n A dummy argument
n A function return value
n A record field or an array element
n Zero-sized
n An automatic object
n The name of a generic interface block

� If a pointee is of derived type, it must be of sequence type.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LOC, MALLOC, FREE

Example

 POINTER (p, k(2))
 INTEGER j(2)

 ! This has the same effect as j(1) = 0, j(2) = 5
 p = LOC(j)
 k(1) = 0
 p = p + 4 ! for 4-byte integer
 k(2) = 5

POLYGON, POLYGON_W

Graphics Function: Draws a polygon using the current graphics color, logical write mode, and line
style.

Module: USE DFLIB

Syntax

result = POLYGON (control, ppoints, cpoints)
result = POLYGON_W (control, wppoints, cpoints)

control
(Input) INTEGER(2). Fill flag. One of the following symbolic constants (defined in
DFLIB.F90 in the \DF98\INCLUDE subdirectory):

n $GFILLINTERIOR: Draws a solid polygon using the current color and fill mask.
n $GBORDER: Draws the border of a polygon using the current color and line style.

POLYGON, POLYGON_W Page 30 of 50

ppoints
(Input) Derived type xycoord. Array of derived types defining the polygon vertices in viewport
coordinates. The derived type xycoord is defined in DFLIB.F90 as follows:

 TYPE xycoord
 INTEGER(2) xcoord
 INTEGER(2) ycoord
 END TYPE xycoord

cpoints
(Input) INTEGER(2). Number of polygon vertices.

wppoints (Input) Derived type wxycoord. Array of derived types defining the polygon vertices
in window coordinates. The derived type wxycoord is defined in DFLIB.F90 as follows:

 TYPE wxycoord
 REAL(8) wx
 REAL(8) wy
 END TYPE wxycoord

Results:

The result type is INTEGER(2). The result is nonzero if anything is drawn; otherwise, 0.

The border of the polygon is drawn in the current graphics color, logical write mode, and line style,
set with SETCOLORRGB, SETWRITEMODE, and SETLINESTYLE, respectively. The
POLYGON routine uses the viewport-coordinate system (expressed in xycoord derived types), and
the POLYGON_W routine uses real-valued window coordinates (expressed in wxycoord types).

The arguments ppoints and wppoints are arrays whose elements are xycoord or wxycoord derived
types. Each element specifies one of the polygon’s vertices. The argument cpoints is the number of
elements (the number of vertices) in the ppoints or wppoints array.

Note that POLYGON draws between the vertices in their order in the array. Therefore, when
drawing outlines, skeletal figures, or any other figure that is not filled, you need to be careful about
the order of the vertices. If you don’t want lines between some vertices, you may need to repeat
vertices to make the drawing backtrack and go to another vertex to avoid drawing across your figure.
Also, POLYGON draws a line from the last specified vertex back to the first vertex.

If you fill the polygon using FLOODFILLRGB, the polygon must be bordered by a solid line style.
Line style is solid by default and can be changed with SETLINESTYLE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETCOLORRGB, SETFILLMASK, SETLINESTYLE, FLOODFILLRGB, GRSTATUS,
LINETO, RECTANGLE, SETWRITEMODE

Example

POLYGON, POLYGON_W Page 31 of 50

! Build as a Graphics App.
 !
 ! Draw a skeletal box
 USE DFLIB

 INTEGER(2) status
 TYPE (xycoord) poly(12)

 ! Set up box vertices in order they will be drawn, &
 ! repeating some to avoid unwanted lines across box

 poly(1).xcoord = 50
 poly(1).ycoord = 80
 poly(2).xcoord = 85
 poly(2).ycoord = 35
 poly(3).xcoord = 185
 poly(3).ycoord = 35
 poly(4).xcoord = 150
 poly(4).ycoord = 80
 poly(5).xcoord = 50
 poly(5).ycoord = 80
 poly(6).xcoord = 50
 poly(6).ycoord = 180
 poly(7).xcoord = 150
 poly(7).ycoord = 180
 poly(8).xcoord = 185
 poly(8).ycoord = 135
 poly(9).xcoord = 185
 poly(9).ycoord = 35
 poly(10).xcoord = 150
 poly(10).ycoord = 80
 poly(11).xcoord = 150
 poly(11).ycoord = 180
 poly(12).xcoord = 150
 poly(12).ycoord = 80

 status = SETCOLORRGB(#0000FF)
 status = POLYGON($GBORDER, poly, INT2(12))
 END

POPCNT

Elemental Intrinsic Function (Generic): Returns the number of 1 bits in an integer.

Syntax

result = POPCNT (i)

i
Integer.

Results:

The result type is the same as i. The result value is the number of 1 bits in the binary representation of
the integer i.

POPCNT Page 32 of 50

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Example

If the value of I is B’0...00011010110’, the value of POPCNT(I) is 5.

POPPAR

Elemental Intrinsic Function (Generic): Returns the parity of an integer.

Syntax

result = POPPAR (i)

i
Integer.

Results:

The result type is the same as i. The result value is one if there are an odd number of 1 bits in the
binary representation of the integer i and zero if there are an even number.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

Example

If the value of I is B’0...00011010110’, the value of POPPAR(I) is 1.

PRECISION

Inquiry Intrinsic Function (Generic): Returns the decimal precision in the model representing
real numbers with the same kind parameter as the argument.

Syntax

result = PRECISION (x)

x
(Input) Must be of type real or complex. It can be scalar or array valued.

Results:

The result is a scalar of type default integer. The result has the value INT((DIGITS(x) - 1) * LOG10
(RADIX(x))). If RADIX(x) is an integral power of 10, 1 is added to the result.

PRECISION Page 33 of 50

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

If X is a REAL(4) value, PRECISION(X) has the value 6. The value 6 is derived from INT ((24-1) *
LOG10 (2.)) = INT (6.92...). For more information on the model for REAL(4), see Model for Real
Data.

PRESENT

Inquiry Intrinsic Function (Generic): Returns whether or not an optional dummy argument is
present (has an associated actual argument).

Syntax

result = PRESENT (a)

a
(Input) Must be an optional argument of the current procedure.

Results:

The result type is default logical scalar. The result is .TRUE. if a is present; otherwise, the result is
.FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: OPTIONAL

Examples

Consider the following:

SUBROUTINE CHECK (X, Y)
 REAL X, Z
 REAL, OPTIONAL :: Y
 ...
 IF (PRESENT (Y)) THEN
 Z = Y
 ELSE
 Z = X * 2
 END IF
END
...
CALL CHECK (15.0, 12.0) ! Causes B to be set to 12.0
CALL CHECK (15.0) ! Causes B to be set to 30.0

PRESENT Page 34 of 50

The following shows another example:

 CALL who(1, 2) ! prints "A present" "B present"
 CALL who(1) ! prints "A present"
 CALL who(b = 2) ! prints "B present"
 CALL who() ! prints nothing
 CONTAINS
 SUBROUTINE who(a, b)
 INTEGER(4), OPTIONAL :: a, b
 IF (PRESENT(a)) PRINT *,’A present’
 IF (PRESENT(b)) PRINT *,’B present’
 END SUBROUTINE who
 END

PRINT

Statement: Displays output on the screen. TYPE is a synonym for PRINT. All forms and rules for
the PRINT statement also apply to the TYPE statement.

The PRINT statement is the same as a formatted, sequential WRITE statement, except that the
PRINT statement must never transfer data to user-specified I/O units.

A PRINT statement takes one of the following forms:

Syntax

Formatted

PRINT form [, io-list]

Formatted: List-Directed

PRINT * [, io-list]

Formatted: Namelist

PRINT nml

form
Is the nonkeyword form of a format specifier (no FMT=).

io-list
Is an I/O list.

*
Is the format specifier indicating list-directed formatting.

nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist formatting.

PRINT Page 35 of 50

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PUTC, READ, WRITE, FORMAT, Data Transfer I/O Statements, File Operation I/O
Statements

Examples

In the following example, one record (containing four fields of data) is printed to the implicit output
device:

 CHARACTER*16 NAME, JOB
 PRINT 400, NAME, JOB
400 FORMAT (’NAME=’, A, ’JOB=’, A)

The following shows another example:

! The following statements are equivalent:
 PRINT ’(A11)’, ’Abbottsford’
 WRITE (*, ’(A11)’) ’Abbottsford’
 TYPE ’(A11)’, ’Abbottsford’

PRIVATE

Statement and Attribute: Specifies that entities in a module can be accessed only within the module
itself.

The PRIVATE attribute can be specified in a type declaration statement or a PRIVATE statement,
and takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] PRIVATE [, att-ls] :: entity [, entity]...

Statement:

PRIVATE [[::] entity [, entity]...]

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

entity

PRIVATE Page 36 of 50

Is one of the following:

n A variable name
n A procedure name
n A derived type name
n A named constant
n A namelist group name

In statement form, an entity can also be a generic identifier (a generic name, defined operator,
or defined assignment).

Rules and Behavior

The PRIVATE attribute can only appear in the scoping unit of a module.

Only one PRIVATE statement without an entity list is permitted in the scoping unit of a module; it
sets the default accessibility of all entities in the module.

If no PRIVATE statements are specified in a module, the default is PUBLIC accessibility. Entities
with PUBLIC accessibility can be accessed from outside the module by means of a USE statement.

If a derived type is declared PRIVATE in a module, its components are also PRIVATE. The derived
type and its components are accessible to any subprograms within the defining module through host
association, but they are not accessible from outside the module.

If the derived type is declared PUBLIC in a module, but its components are declared PRIVATE, any
scoping unit accessing the module though use association (or host association) can access the
derived-type definition, but not its components.

If a module procedure has a dummy argument or a function result of a type that has PRIVATE
accessibility, the module procedure must have PRIVATE accessibility. If the module has a generic
identifier, it must also be declared PRIVATE.

If a procedure has a generic identifier, the accessibility of the procedure’s specific name is
independent of the accessibility of its generic identifier. One can be declared PRIVATE and the other
PUBLIC.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: MODULE, PUBLIC, TYPE, Defining Generic Names for Procedures, USE, Use and Host
Association, Type Declarations, Compatible attributes.

Examples

The following examples show type declaration statements specifying the PUBLIC and PRIVATE
attributes:

PRIVATE Page 37 of 50

REAL, PRIVATE :: A, B, C
INTEGER, PUBLIC :: LOCAL_SUMS

The following is an example of the PUBLIC and PRIVATE statements:

MODULE SOME_DATA
 REAL ALL_B
 PUBLIC ALL_B
 TYPE RESTRICTED_DATA
 REAL LOCAL_C
 DIMENSION LOCAL_C(50)
 END TYPE RESTRICTED_DATA
 PRIVATE RESTRICTED_DATA
END MODULE

The following derived-type declaration statement indicates that the type is restricted to the module:

TYPE, PRIVATE :: DATA
 ...
END TYPE DATA

The following example shows a PUBLIC type with PRIVATE components:

MODULE MATTER
 TYPE ELEMENTS
 PRIVATE
 INTEGER C, D
 END TYPE
...
END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER, can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

The following shows another example:

 !LENGTH in module VECTRLEN calculates the length of a 2-D vector.
 !The module contains both private and public procedures
 MODULE VECTRLEN
 PRIVATE SQUARE
 PUBLIC LENGTH
 CONTAINS
 SUBROUTINE LENGTH(x,y,z)
 REAL,INTENT(IN) x,y
 REAL,INTENT(OUT) z
 CALL SQUARE(x,y)
 z = SQRT(x + y)
 RETURN
 END SUBROUTINE
 SUBROUTINE SQUARE(x1,y1)
 REAL x1,y1
 x1 = x1**2
 y1 = y1**2

PRIVATE Page 38 of 50

 RETURN
 END SUBROUTINE
 END MODULE

PROCESSORS_SHAPE

Inquiry Intrinsic Function (Specific): Returns the shape of an implementation-dependent
hardware processor array.

Syntax

result = PROCESSORS_SHAPE ()

Results:

The result is a rank-one array of size zero.

This function is provided for compatibility with High Performance Fortran.

PRODUCT

Transformational Intrinsic Function (Generic): Returns the product of all the elements in an
entire array or in a specified dimension of an array.

Syntax

result = PRODUCT (array [, dim] [, mask])

array
(Input) Must be an array of type integer or real.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array.

mask
(Optional; input) Must be of type logical and conformable with array.

Results:

The result is an array or a scalar of the same data type as array.

The result is scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

� If PRODUCT(array) is specified, the result is the product of all elements of array. If array has
size zero, the result is 1.

PRODUCT Page 39 of 50

� If PRODUCT(array, MASK=mask) is specified, the result is the product of all elements of
array corresponding to true elements of mask. If there are no true elements, the result is 1.

The following rules apply if dim is specified:

� If array has rank one, the value is the same as PRODUCT(array [,MASK=mask]).

� An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ...,

dn), where (d1, d2, ..., dn) is the shape of array.

� The value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of PRODUCT(array, dim [,mask]) is

equal to PRODUCT(array (s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK=mask (s1, s2, ..., sdim-1,

:, sdim+1, ..., sn)]).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SUM

Examples

PRODUCT ((/2, 3, 4/)) returns the value 24 (the product of 2 * 3 * 4). PRODUCT ((/2, 3, 4/),
DIM=1) returns the same result.

PRODUCT (C, MASK=C .LT. 0.0) returns the product of the negative elements of C.

A is the array

 [1 4 7]
 [2 3 5].

PRODUCT (A, DIM=1) returns the value (2, 12, 35), which is the product of all elements in each
column. 2 is the product of 1 * 2 in column 1. 12 is the product of 4 * 3 in column 2, and so forth.

PRODUCT (A, DIM=2) returns the value (28, 30), which is the product of all elements in each row.
28 is the product of 1 * 4 * 7 in row 1. 30 is the product of 2 * 3 * 5 in row 2.

If array has shape (2, 2, 2), mask is omitted, and dim is 1, the result is an array result with shape (2,
2) whose elements have the following values.

PRODUCT Page 40 of 50

Resultant array element Value

result(1, 1) array(1, 1, 1) * array(2, 1, 1)

result(2, 1) array(1, 2, 1) * array(2, 2, 1)

result(1, 2) array(1, 1, 2) * array(2, 1, 2)

result(2, 2) array(1, 2, 2) * array(2, 2, 2)

The following shows another example:

 INTEGER array (2, 3)
 INTEGER AR1(3), AR2(2)
 array = RESHAPE((/1, 4, 2, 5, 3, 6/),(/2,3/))
 ! array is 1 2 3
 ! 4 5 6

 AR1 = PRODUCT(array, DIM = 1) ! returns [4 10 18]
 AR2 = PRODUCT(array, MASK = array .LT. 6, DIM = 2)
 ! returns [6 20]
 END

PROGRAM

Statement: Identifies the program unit as a main program and gives it a name.

Syntax

[PROGRAM name]
[specification-part]
[execution-part]

[CONTAINS
internal-subprogram-part]

END [PROGRAM [name]]

name
Is the name of the program.

specification-part
Is one or more specification statements, except for the following:

n INTENT (or its equivalent attribute)
n OPTIONAL (or its equivalent attribute)
n PUBLIC and PRIVATE (or their equivalent attributes)

An automatic object must not appear in a specification statement. If a SAVE statement is
specified, it has no effect.

PROGRAM Page 41 of 50

execution-part
Is one or more executable constructs or statements, except for ENTRY or RETURN
statements.

internal-subprogram-part
Is one or more internal subprograms (defining internal procedures). The internal-subprogram-
part is preceded by a CONTAINS statement.

Rules and Behavior

The PROGRAM statement is optional. Within a program unit, a PROGRAM statement can be
preceded only by comment lines or an OPTIONS statement.

If a name follows the END statement, it must be the same as the name specified in the PROGRAM
statement. The program name cannot be the same as any local name in the main program or the name
of any other program unit, external procedure, or common block in the executable program.

A main program must not reference itself (either directly or indirectly).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Building Programs and Libraries

Examples

The following is an example of a main program:

PROGRAM TEST
 INTEGER C, D, E(20,20) ! Specification part
 CALL SUB_1 ! Executable part
...
CONTAINS
 SUBROUTINE SUB_1 ! Internal subprogram
 ...
 END SUBROUTINE SUB_1
END PROGRAM TEST

The following shows another example:

 PROGRAM MyProg
 PRINT *, ’hello world’
 END

PSECT

Compiler Directive: Modifies several characteristics of a common block.

PSECT Page 42 of 50

Syntax

cDEC$ PSECT /common-name/ a [, a]...

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

common-name
Is the name of the common block. The slashes (/) are required.

a
Is one of the following:

ALIGN=val or ALIGN=keyword

Specifies alignment for the common block.

The val must be a constant ranging from 0 through 16 on VMS systems, 0 through 6 on
Windows NT and Windows 95 systems, and 0 through 4 on DIGITAL UNIX systems.
The specified number is interpreted as a power of 2. The value of the expression is the
alignment in bytes.

The keyword is one of the following:

Keyword Equivalent to val

BYTE 0

WORD 1

LONG 2

QUAD 3

OCTA 4

PAGE (VMS only)1 16

1 On DIGITAL UNIX, Windows NT and Windows 95 systems, this keyword produces an error.

Rules and Behavior

If one program unit changes one or more characteristics of a common block, all other units that
reference that common block must also change those characteristics in the same way.

Default characteristics apply if you do not modify them with a PSECT directive. The following table
shows the default common block alignment and how it can be modified by PSECT:

PSECT Page 43 of 50

Default Alignment PSECT Modification

On Intel processors:

Octaword alignment 1 (4) 0 through 6 2

On Alpha processors:

Octaword alignment 1 (4) VMS: 0 through 16 3

Windows NT: 0 through 6 2

DIGITAL UNIX: 0 through 4 2

1 An address that is an integral multiple of 16.
2 Or keywords BYTE through OCTA.
3 Or keywords BYTE through PAGE.

See Also: General Compiler Directives.

PUBLIC

Statement and Attribute: Specifies that entities in a module can be accessed from outside the
module (by specifying a USE statement).

The PUBLIC attribute can be specified in a type declaration statement or a PUBLIC statement, and
takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] PUBLIC [, att-ls] :: entity [, entity]...

Statement:

PUBLIC [[::] entity [, entity]...]

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

entity
Is one of the following:

n A variable name

PUBLIC Page 44 of 50

n A procedure name
n A derived type name
n A named constant
n A namelist group name

In statement form, an entity can also be a generic identifier (a generic name, defined operator,
or defined assignment).

Rules and Behavior

The PUBLIC attribute can only appear in the scoping unit of a module.

Only one PUBLIC statement without an entity list is permitted in the scoping unit of a module; it
sets the default accessibility of all entities in the module.

If no PRIVATE statements are specified in a module, the default is PUBLIC accessibility.

If a derived type is declared PUBLIC in a module, but its components are declared PRIVATE, any
scoping unit accessing the module though use association (or host association) can access the
derived-type definition, but not its components.

If a module procedure has a dummy argument or a function result of a type that has PRIVATE
accessibility, the module procedure must have PRIVATE accessibility. If the module has a generic
identifier, it must also be declared PRIVATE.

If a procedure has a generic identifier, the accessibility of the procedure’s specific name is
independent of the accessibility of its generic identifier. One can be declared PRIVATE and the other
PUBLIC.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PRIVATE, MODULE, TYPE, Defining Generic Names for Procedures, USE, Use and
Host Association, Type Declarations, Compatible attributes.

Examples

The following examples show type declaration statements specifying the PUBLIC and PRIVATE
attributes:

REAL, PRIVATE :: A, B, C
INTEGER, PUBLIC :: LOCAL_SUMS

The following is an example of the PUBLIC and PRIVATE statements:

MODULE SOME_DATA
 REAL ALL_B
 PUBLIC ALL_B

PUBLIC Page 45 of 50

 TYPE RESTRICTED_DATA
 REAL LOCAL_C
 DIMENSION LOCAL_C(50)
 END TYPE RESTRICTED_DATA
 PRIVATE RESTRICTED_DATA
END MODULE

The following example shows a PUBLIC type with PRIVATE components:

MODULE MATTER
 TYPE ELEMENTS
 PRIVATE
 INTEGER C, D
 END TYPE
...
END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER, can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

The following shows another example:

 !LENGTH in module VECTRLEN calculates the length of a 2-D vector.
 !The module contains both private and public procedures
 MODULE VECTRLEN
 PRIVATE SQUARE
 PUBLIC LENGTH
 CONTAINS
 SUBROUTINE LENGTH(x,y,z)
 REAL,INTENT(IN) x,y
 REAL,INTENT(OUT) z
 CALL SQUARE(x,y)
 z = SQRT(x + y)
 RETURN
 END SUBROUTINE
 SUBROUTINE SQUARE(x1,y1)
 REAL x1,y1
 x1 = x1**2
 y1 = y1**2
 RETURN
 END SUBROUTINE
 END MODULE

PURE

Keyword: Asserts that a user-defined procedure has no side effects. This kind of procedure is
specified by using the prefix PURE (or ELEMENTAL) in a FUNCTION or SUBROUTINE
statement. Pure procedures are a Fortran 95 feature.

A pure procedure has no side effects. It has no effect on the state of the program, except for the
following:

� For functions: It returns a value.
� For subroutines: It modifies INTENT(OUT) and INTENT(INOUT) parameters.

PURE Page 46 of 50

The following intrinsic and library procedures are implicitly pure:

� All intrinsic functions
� The elemental intrinsic subroutine MVBITS

A statement function is pure only if all functions that it references are pure.

Rules and Behavior

Except for procedure arguments and pointer arguments, the following intent must be specified for all
dummy arguments in the specification part of the procedure:

� For functions: INTENT(IN)
� For subroutines: any INTENT (IN, OUT, or INOUT)

A local variable declared in a pure procedure (including variables declared in any internal procedure)
must not:

� Specify the SAVE attribute
� Be initialized in a type declaration statement or a DATA statement

The following variables have restricted use in pure procedures (and any internal procedures):

� Global variables
� Dummy arguments with INTENT(IN) (or no declared intent)
� Objects that are storage associated with any part of a global variable

They must not be used in any context that does either of the following:

� Causes their value to change. For example, they must not be used as:

n The left side of an assignment statement or pointer assignment statement
n An actual argument associated with a dummy argument with INTENT(OUT), INTENT

(INOUT), or the POINTER attribute
n An index variable in a DO or FORALL statement, or an implied-do clause
n The variable in an ASSIGN statement
n An input item in a READ statement
n An internal file unit in a WRITE statement
n An object in an ALLOCATE, DEALLOCATE, or NULLIFY statement
n An IOSTAT or SIZE specifier in an I/O statement, or the STAT specifier in a

ALLOCATE or DEALLOCATE statement

� Creates a pointer to that variable. For example, they must not be used as:

n The target in a pointer assignment statement
n The right side of an assignment to a derived-type variable (including a pointer to a

derived type) if the derived type has a pointer component at any level

PURE Page 47 of 50

A pure procedure must not contain the following:

� Any external I/O statement (including a READ or WRITE statement whose I/O unit is an
external file unit number or *)

� A PAUSE statement
� A STOP statement

A pure procedure can be used in contexts where other procedures are restricted; for example:

� It can be called directly in a FORALL statement or be used in the mask expression of a
FORALL statement.

� It can be called from a pure procedure. Pure procedures can only call other pure procedures.
� It can be passed as an actual argument to a pure procedure.

If a procedure is used in any of these contexts, its interface must be explicit and it must be declared
pure in that interface.

See Also: FUNCTION, SUBROUTINE, FORALL, ELEMENTAL prefix

Examples

Consider the following:

PURE FUNCTION DOUBLE(X)
 REAL, INTENT(IN) :: X
 DOUBLE = 2 * X
END FUNCTION DOUBLE

The following shows another example:

PURE INTEGER FUNCTION MANDELBROT(X)
 COMPLEX, INTENT(IN) :: X
 COMPLEX__:: XTMP
 INTEGER__:: K
 ! Assume SHARED_DEFS includes the declaration
 ! INTEGER ITOL
 USE SHARED_DEFS

 K = 0
 XTMP = -X
 DO WHILE (ABS(XTMP) < 2.0 .AND. K < ITOL)
 XTMP = XTMP**2 - X
 K = K + 1
 END DO
 ITER = K
END FUNCTION

The following shows the preceding function used in an interface block:

INTERFACE
 PURE INTEGER FUNCTION MANDELBROT(X)
 COMPLEX, INTENT(IN) :: X
 END FUNCTION MANDELBROT

PURE Page 48 of 50

END INTERFACE

The following shows a FORALL construct calling the MANDELBROT function to update all the
elements of an array:

FORALL (I = 1:N, J = 1:M)
 A(I,J) = MANDELBROT(COMPLX((I-1)*1.0/(N-1), (J-1)*1.0/(M-1))
END FORALL

PUTC

Portability Function: Writes a character to Fortran external unit number 6.

Module: USE DFPORT

Syntax

result = PUTC (char)

char
(Input) Character. Character to be written to external unit 6.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETC, WRITE, PRINT, FPUTC, Portability Library

Example

 use dfport
 integer(4) i4
 character*1 char1
 do i = 1,26
 char1 = char(123-i)
 i4 = putc(char1)
 if (i4.ne.0) iflag = 1
 enddo

PUTIMAGE, PUTIMAGE_W

Graphics Subroutine: Transfers the image stored in memory to the screen.

Module USE DFLIB

Syntax

PUTIMAGE, PUTIMAGE_W Page 49 of 50

CALL PUTIMAGE (x, y, image, action)
CALL PUTIMAGE_W (wx, wy, image, action)

x, y
(Input) INTEGER(2). Viewport coordinates for upper-left corner of the image when placed on
the screen.

wx, wy
(Input) REAL(8). Window coordinates for upper-left corner of the image when placed on the
screen.

image
(Input) INTEGER(1). Array of single-byte integers. Stored image buffer.

action
(Input) INTEGER(2). Interaction of the stored image with the existing screen image. One of the
following symbolic constants (defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory):

n $GAND: Forms a new screen display as the logical AND of the stored image and the
existing screen display. Points that have the same color in both the existing screen image
and the stored image remain the same color, while points that have different colors are
joined by a logical AND.

n $GOR: Superimposes the stored image onto the existing screen display. The resulting
image is the logical OR of the image.

n $GPRESET: Transfers the data point-by-point onto the screen. Each point has the
inverse of the color attribute it had when it was taken from the screen by GETIMAGE,
producing a negative image.

n $GPSET: Transfers the data point-by-point onto the screen. Each point has the exact
color attribute it had when it was taken from the screen by GETIMAGE.

n $GXOR: Causes points in the existing screen image to be inverted wherever a point
exists in the stored image. This behavior is like that of a cursor. If you perform an
exclusive OR of an image with the background twice, the background is restored
unchanged. This allows you to move an object around without erasing the background.
The $GXOR constant is a special mode often used for animation.

n In addition, the following ternary raster operation constants can be used (described in the
online documentation for the WIN32 API BitBlt):

n $GSRCCOPY (same as $GPSET)
n $GSRCPAINT (same as $GOR)
n $GSRCAND (same as $GAND)
n $GSRCINVERT (same as $GXOR)
n $GSRCERASE
n $GNOTSRCCOPY (same as $GPRESET)
n $GNOTSRCERASE
n $GMERGECOPY
n $GMERGEPAINT
n $GPATCOPY
n $GPATPAINT
n $GPATINVERT

PUTIMAGE, PUTIMAGE_W Page 50 of 50

n $GDSTINVERT
n $GBLACKNESS
n $GWHITENESS

PUTIMAGE places the upper-left corner of the image at the viewport coordinates (x,y).
PUTIMAGE_W places the upper-left corner of the image at the window coordinates (wx, wy).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETIMAGE, GRSTATUS, IMAGESIZE

Example

 ! Build as a Graphics App.
 USE DFLIB
 INTEGER(1), ALLOCATABLE :: buffer(:)
 INTEGER(2) status, x
 INTEGER(4) imsize

 status = SETCOLOR(INT2(4))
 ! draw a circle
 status = ELLIPSE($GFILLINTERIOR,INT2(40),INT2(55), &
 INT2(70),INT2(85))
 imsize = IMAGESIZE (INT2(39),INT2(54),INT2(71), &
 INT2(86))
 ALLOCATE (buffer(imsize))
 CALL GETIMAGE(INT2(39),INT2(54),INT2(71),INT2(86), &
 buffer)
 ! copy a row of circles beneath it
 DO x = 5 , 395, 35
 CALL PUTIMAGE(x, INT2(90), buffer, $GPSET)
 END DO
 DEALLOCATE(buffer)
 END

QEXT (VMS and U*X) Page 1 of 41

QEXT (VMS and U*X)

Elemental Intrinsic Function (Generic): Converts a number to quad precision (REAL(16)) type.

Syntax

result = QEXT (a)

a
(Input) Must be of type integer, real, or complex.

Results:

The result type is REAL(16) (REAL*16). Functions that cause conversion of one data type to another
type have the same effect as the implied conversion in assignment statements.

If a is of type REAL(16), the result is the value of the a with no conversion (QEXT(a) = a).

If a is of type integer or real, the result has as much precision of the significant part of a as a REAL
(16) value can contain.

If a is of type complex, the result has as much precision of the significant part of the real part of a as
a REAL(16) value can contain.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(16)

INTEGER(2) REAL(16)

INTEGER(4) REAL(16)

INTEGER(8) REAL(16)

QEXT REAL(4) REAL(16)

QEXTD REAL(8) REAL(16)

REAL(16) REAL(16)

COMPLEX(8) REAL(16)

COMPLEX(16) REAL(16)

1 These specific functions cannot be passed as actual arguments.

Examples

QEXT (4) has the value 4.0 (rounded; there are 32 places to the right of the decimal point).

QEXT (VMS and U*X) Page 2 of 41

QEXT ((3.4, 2.0)) has the value 3.4 (rounded; there are 32 places to the right of the decimal point).

QFLOAT (VMS and U*X)

Elemental Intrinsic Function (Generic): Converts an integer to quad precision (REAL(16)) type.

Syntax

result = QFLOAT (a)

a
(Input) Must be of type integer.

Results:

The result type is REAL(16) (REAL*16).

Functions that cause conversion of one data type to another type have the same affect as the implied
conversion in assignment statements.

Examples

QFLOAT (-4) has the value -4.0 (rounded; there are 32 places to the right of the decimal point).

QSORT

Portability Subroutine: Performs a quick sort on an array of rank one.

Module: USE DFPORT

Syntax

CALL QSORT (array, len, isize, compar)

array
(Input) Any type. One-dimensional array to be sorted.

len
(Input) INTEGER(4). Number of elements in array.

isize
(Input) INTEGER(4). Size, in bytes, of a single element of array:

n 4 if array is of type REAL(4)
n 8 if array is REAL(8) or complex
n 16 if array is COMPLEX(8)

QSORT Page 3 of 41

compar
(Input) INTEGER(2). Name of a user-defined ordering function that determines sort order. The
type declaraton of compar takes the form:

INTEGER(2) FUNCTION compar(arg1, arg2)

where arg1 and arg2 have the same type as array. Once you have created an ordering scheme,
implement your sorting function so that it returns the following:

n Negative if arg1 should precede arg2
n Zero if arg1 is equivalent to arg2
n Positive if arg1 should follow arg2

Dummy argument compar must be declared as external.

If you use QSORT several times with different data types, your program must have a USE DFPORT
statement in order for all the calls to work correctly. In addition, if you wish to use QSORT with a
derived type, you must include an overload for the generic subroutine QSORT. Examples of how to
do this are in the portability module’s source file, DFPORT.F90, located in your \DF98\INCLUDE
subdirectory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

 PROGRAM SORTQ
 USE DFPORT
 integer(2), external :: cmp_function
 integer(2) insort(26), i
 integer (4) array_len, array_size
 array_len = 26
 array_size = 2
 do i=90,65,-1
 insort(i-64)=91 - i
 end do
 print *, "Before: "
 print *,insort
 CALL qsort(insort,array_len,array_size,cmp_function)
 print *, ’After: ’
 print *, insort
 END
 !
 integer(2) function cmp_function(a1, a2)
 integer(2) a1, a2
 cmp_function=a1-a2
 end function

RADIX

Inquiry Intrinsic Function (Generic): Returns the base of the model representing numbers of

RADIX Page 4 of 41

the same type and kind as the argument.

Syntax

result = RADIX (x)

x
(Input) Must be of type integer or real; it can be scalar or array valued.

Results:

The result is a scalar of type default integer. For an integer argument, the result has the value r (as
defined in Model for Integer Data). For a real argument, the result has the value b (as defined in
Model for Real Data).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DIGITS, EXPONENT, FRACTION, Data Representation Models

Example

If X is a REAL(4) value, RADIX (X) has the value 2.

RAISEQQ

Run-Time Function: Sends a signal to the executing program.

Module: USE DFLIB

Syntax

result = RAISEQQ (sig)

sig
(Input) INTEGER(4). Signal to raise. One of the following constants (defined in DFLIB.F90 in
the \DF98\INCLUDE subdirectory):

n SIG$ABORT: Abnormal termination
n SIG$FPE: Floating-point error
n SIG$ILL: Illegal instruction
n SIG$INT: CTRL+C signal
n SIG$SEGV: Illegal storage access
n SIG$TERM: Termination request

If you do not install a signal handler (with SIGNALQQ, for example), when a signal occurs
the system by default terminates the program with exit code 3.

RAISEQQ Page 5 of 41

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

If a signal-handling routine for sig has been installed by a prior call to SIGNALQQ, RAISEQQ
causes that routine to be executed. If no handler routine has been installed, the system terminates the
program (the default action).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SIGNALQQ, SIGNAL, KILL

RAN

RAN can be used as an intrinsic function or as a run-time routine.

RAN Intrinsic Function

Nonelemental Intrinsic Function (Specific): Returns the next number from a sequence of pseudorandom
numbers of uniform distribution over the range 0 to 1. RAN is not a pure function, so it cannot be
referenced inside a FORALL construct.

Syntax

result = RAN (i)

i
(Input) Must be an INTEGER(4) variable or array element.
It should initially be set to a large, odd integer value. The RAN function stores a value in the
argument that is later used to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on
separate runs to obtain different random numbers.

Results:

The result type is REAL(4). The result is a floating-point number that is uniformly distributed in the
range between 0.0 inclusive and 1.0 exclusive. It is set equal to the value associated with the
argument i.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

RAN Page 6 of 41

See Also: RANDOM, RANDOM_NUMBER

Example

In RAN (I), if variable I has the value 3, RAN has the value 4.8220158E-05.

RAN Run-Time Routine

Run-Time Function: Returns a pseudorandom number greater than or equal to zero and less than
one from the uniform distribution.

Syntax

result = RAN (iseed)

iseed
(Input) INTEGER(4). Seed for the random number generator.

Results:

The result type is REAL(4). The result is a pseudorandom number, x, where 0 <= x < 1.

To ensure different random values for each run of a program, use different initial values of iseed (for
example, use a reading from the system clock). The argument iseed should initially be set to a large,
odd integer value. RAN stores a value in the argument iseed that it later uses to calculate the next
random number.

The procedures RANDOM, RAN, and RANDOM_NUMBER, and the portability functions
DRAND, DRANDM, RAND, IRANDM, RAND, and RANDOM use the same algorithms and thus
return the same answers. They are all compatible and can be used interchangeably. (The algortihm
used is a "Prime Modulus M Multiplicative Linear Congruential Generator," a modified version of
the random number generator by Park and Miller in "Random Number Generators: Good Ones Are
Hard to Find," CACM, October 1988, Vol. 31, No. 10.)

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM, RANDOM_NUMBER

Example

 INTEGER(4) iseed
 REAL(4) rnd
 iseed = 425001
 rnd = RAN(iseed)

RAND, RANDOM Page 7 of 41

RAND, RANDOM

Portability Functions: Return real random numbers in the range 0.0 through 1.0.

Module: USE DFLIB

Syntax

result = RAND ([iflag])
result = RANDOM (iflag)

iflag
(Input) INTEGER(4). Optional for RAND. Controls the way the random number is selected.

Results:

The result type is REAL(4). RAND and RANDOM return random numbers in the range 0.0 through
1.0.

Value of
iflag Selection process

1 The generator is restarted and the first random value is selected.

0 The next random number in the sequence is selected.

Otherwise The generator is reseeded using iflag, restarted, and the first random value is
selected.

When RAND is called without an argument, iflag is assumed to be 0.

There is no difference between RAND and RANDOM. Both functions are included to ensure
portability of existing code that references one or both of them. The intrinsic functions
RANDOM_NUMBER and RANDOM_SEED provide the same functionality.

Note: Because Visual Fortran offers an intrinsic subroutine also called RANDOM in the default
library, the only way to access this portability function is with the USE DFPORT statement. Without
it, you can only access the default subroutine.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM_NUMBER, RANDOM_SEED, RANDOM

RANDOM

RANDOM Page 8 of 41

Run-Time Subroutine: Returns a pseudorandom number greater than or equal to zero and less than
one from the uniform distribution.

Module: USE DFLIB

Syntax

CALL RANDOM (ranval)

ranval
(Output) REAL(4). Pseudorandom number, 0 <= ranval < 1, from the uniform distribution.

A given seed always produces the same sequence of values from RANDOM.

If SEED is not called before the first call to RANDOM, RANDOM begins with a seed value of one.
If a program must have a different pseudorandom sequence each time it runs, pass the constant
RND$TIMESEED (defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory) to SEED before
the first call to RANDOM.

All the random procedures (RANDOM, RAN, and RANDOM_NUMBER, and the portability
functions DRAND, DRANDM, RAND, IRANDM, RAND, and RANDOM) use the same
algorithms and thus return the same answers. They are all compatible and can be used
interchangeably. (The algorithm used is a "Prime Modulus M Multiplicative Linear Congruential
Generator," a modified version of the random number generator by Park and Miller in "Random
Number Generators: Good Ones Are Hard to Find," CACM, October 1988, Vol. 31, No. 10.)

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM_NUMBER, SEED, DRAND and DRANDM, IRAND and IRANDM, RAN,
RAND

Example

 USE DFLIB
 REAL(4) ran

 CALL SEED(1995)
 CALL RANDOM(ran)

RANDOM_NUMBER

Intrinsic Subroutine: Returns one pseudorandom number or an array of such numbers.

Syntax

CALL RANDOM_NUMBER (harvest)

RANDOM_NUMBER Page 9 of 41

harvest
(Output) Must be of type real. It can be a scalar or an array variable. It is set to contain
pseudorandom numbers from the uniform distribution within the range 0 <= x < 1.

The seed for the pseudorandom number generator used by RANDOM_NUMBER can be set or
queried with RANDOM_SEED. If RANDOM_SEED is not used, the processor sets the seed for
RANDOM_NUMBER to a processor-dependent value.

The RANDOM_NUMBER generator uses two separate congruential generators together to produce
a period of approximately 10**18, and produces real pseudorandom results with a uniform
distribution in (0,1). It accepts two integer seeds, the first of which is reduced to the range [1,
2147483562]. The second seed is reduced to the range [1, 2147483398]. This means that the
generator effectively uses two 31-bit seeds.

For more information on the algorithm, see the following:

� Communications of the ACM vol 31 num 6 June 1988, titled: Efficient and Portable Combined
Random Number Generators by Pierre L’ecuyer.

� Springer-Verlag New York, N. Y. 2nd ed. 1987, titled: A Guide to Simulation by Bratley, P.,
Fox, B. L., and Schrage, L. E.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM_SEED, RANDOM, SEED, DRAND and DRANDM, IRAND and IRANDM,
RAN, RAND and RANDOM

Examples

Consider the following:

REAL Y, Z (5, 5)
! Initialize Y with a pseudorandom number
CALL RANDOM_NUMBER (HARVEST = Y)
CALL RANDOM_NUMBER (Z)

Y and Z contain uniformly distributed random numbers.

The following shows another example:

 REAL x, array1 (5, 5)
 CALL RANDOM_SEED()
 CALL RANDOM_NUMBER(x)
 CALL RANDOM_NUMBER(array1)

Consider also the following:

RANDOM_NUMBER Page 10 of 41

 program testrand
 intrinsic random_seed, random_number
 integer size, seed(2), gseed(2), hiseed(2), zseed(2)
 real harvest(10)
 data seed /123456789, 987654321/
 data hiseed /-1, -1/
 data zseed /0, 0/
 call random_seed(SIZE=size)
 print *,"size ",size
 call random_seed(PUT=hiseed(1:size))
 call random_seed(GET=gseed(1:size))
 print *,"hiseed gseed", hiseed, gseed
 call random_seed(PUT=zseed(1:size))
 call random_seed(GET=gseed(1:size))
 print *,"zseed gseed ", zseed, gseed
 call random_seed(PUT=seed(1:size))
 call random_seed(GET=gseed(1:size))
 call random_number(HARVEST=harvest)
 print *, "seed gseed ", seed, gseed
 print *, "harvest"
 print *, harvest
 call random_seed(GET=gseed(1:size))
 print *,"gseed after harvest ", gseed
 end program testrand

RANDOM_SEED

Intrinsic Subroutine: Changes or queries the seed (starting point) for the pseudorandom number
generator used by RANDOM_NUMBER.

Syntax

CALL RANDOM_SEED([size] [, put] [, get])

size
(Optional; output) Must be scalar and of type default integer. Number of integers the processor
uses to hold the value of the seed.

put
(Optional; input) Must be a default integer array of rank one. It is used by the processor to reset
the value of the seed.

get
(Optional; output) Must be a default integer array of rank one. It is set to the current value of
the seed.

No more than one argument can be specified. Both put and get must be greater than or equal to the
size of the array the processor uses to store the seed. You can determine this size by calling
RANDOM_SEED with the size argument (see second example).

If no argument is specified, a random number based on the date and time is assigned to the seed.

Compatibility

RANDOM_SEED Page 11 of 41

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM_NUMBER, SEED, SRAND

Examples

Consider the following:

CALL RANDOM_SEED ! Processor initializes the
 ! seed randomly from the date
 ! and time
CALL RANDOM_SEED (SIZE = M) ! Sets M to N
CALL RANDOM_SEED (PUT = SEED (1 : M)) ! Sets user seed
CALL RANDOM_SEED (GET = OLD (1 : M)) ! Reads current seed

The following shows another example:

 INTEGER I
 INTEGER, ALLOCATABLE :: new (:), old(:)
 CALL RANDOM_SEED () ! Processor reinitializes the seed
 ! randomly from the date and time
 CALL RANDOM_SEED (SIZE = I) ! I is set to the size of
 ! the seed array
 ALLOCATE (new(I))
 ALLOCATE (old(I))
 CALL RANDOM_SEED (GET=old(1:I)) ! Gets the current seed
 WRITE(*,*) old
 new = 5
 CALL RANDOM_SEED (PUT=new(1:I)) ! Sets seed from array
 ! new
 END

RANDU

Intrinsic Subroutine: Computes a pseudorandom number as a single-precision value.

Syntax

CALL RANDU (i1, i2, x)

i1, i2
INTEGER(2) variables or array elements that contain the seed for computing the random
number. These values are updated during the computation so that they contain the updated
seed.

x
A REAL(4) variable or array element where the computed random number is returned.

Results:

The result is returned in x, which must be of type REAL(4). The result value is a pseudorandom

RANDU Page 12 of 41

number in the range 0.0 to 1.0. The algorithm for computing the random number value is based on
the values for i1 and i2.

If i1=0 and i2=0, the generator base is set as follows:

 x(n + 1 = 2**16 + 3)

Otherwise, it is set as follows:

 x(n + 1 = (2**16 + 3) * x(n) mod 2**32)

The generator base x(n + 1) is stored in i1, i2. The result is x(n + 1) scaled to a real value y(n + 1), for
0.0 <= y(n + 1) < 1.

Example

REAL X
INTEGER(2) I, J
...
CALL RANDU (I, J, X)

If I and J are values 4 and 6, X stores the value 5.4932479E-04.

RANGE

Inquiry Intrinsic Function (Generic): Returns the decimal exponent range in the model representing
numbers with the same kind parameter as the argument.

Syntax

result = RANGE (x)

x
(Input) Must be of type integer, real, or complex. It can be scalar or array valued.

Results:

The result is a scalar of type default integer.

For an integer argument, the result has the value INT(LOG10 (HUGE(X))). For information on the
integer model, see Model for Integer Data.

For a real or complex argument, the result has the value INT(MIN (LOG10(HUGE(X)), - LOG10(
TINY(X)))). For information on the real model, see Model for Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

RANGE Page 13 of 41

See Also: HUGE, TINY

Examples

If X is a REAL(4) value, RANGE (X) has the value 37. (HUGE(X) = (1 - 2-24) x 2128 and TINY(X)
= 2-126)

READ

Statement: Transfers input data from external sequential, direct-access, or internal records.

Syntax

Sequential

Formatted

READ (eunit, format [, advance] [, size] [, iostat] [, err] [, end] [, eor]) [io-list]
READ form [, io-list]

Formatted: List-Directed

READ (eunit, * [, iostat] [, err] [, end]) [io-list]
READ * [, io-list]

Formatted: Namelist

READ (eunit, nml-group [, iostat] [, err] [, end])
READ nml

Unformatted

READ (eunit [, iostat] [, err] [, end]) [io-list]

Direct-Access

Formatted

READ (eunit, format, rec [, iostat] [, err]) [io-list]

Unformatted

READ (eunit, rec [, iostat] [, err]) [io-list]

Indexed (VMS only)

READ Page 14 of 41

Formatted

READ (eunit, format, key [,keyid] [,iostat] [,err]) [io-list]

Unformatted

READ (eunit, key [,keyid] [,iostat] [,err]) [io-list]

Internal

READ (iunit, format [, iostat] [, err] [, end]) [io-list]

eunit
Is an external unit specifier, optionally prefaced by UNIT=. UNIT= is required if eunit is not
the first specifier in the list.

format
Is a format specifier. It is optionally prefaced by FMT= if format is the second specifier in the
list and the first specifier indicates a logical or internal unit specifier without the optional
keyword UNIT=.

For internal READs, an asterisk (*) indicates list-directed formatting. For direct-access
READs, an asterisk is not permitted.

advance
Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is ’YES’, the statement uses
advancing input; if the value is ’NO’, the statement uses nonadvancing input. The default value
is ’YES’.

size
Is a character count specifier (SIZE=i-var). It can only be specified for nonadvancing READ
statements.

iostat
Is the name of a variable to contain the completion status of the I/O operation. Optionally
prefaced by IOSTAT=.

err, end, eor
Are branch specifiers if an error (ERR=label), end-of-file (END=label), or end-of-record
(EOR=label) condition occurs.

EOR can only be specified for nonadvancing READ statements.

io-list
Is an I/O list: the names of the variables, arrays, array elements, or character substrings from
which or to which data will be transferred. Optionally an implied-DO list.

form

READ Page 15 of 41

Is the nonkeyword form of a format specifier (no FMT=).

*
Is the format specifier indicating list-directed formatting. (It can also be specified as FMT=*.)

nml-group
Is the namelist group specification for namelist I/O. Optionally prefaced by NML=. NML= is
required if nml-group is not the second I/O specifier.

nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist I/O.

rec
Is the cell number of a record to be accessed directly. Optionally prefaced by REC=.

key (VMS only)

Is a key specifier (KEY[con]=value).

keyid (VMS only)

Is a key-of-reference specifier (KEYID=kn).

iunit
Is an internal unit specifier, optionally prefaced by UNIT=. UNIT= is required if iunit is not
the first specifier in the list.

It must be a character variable. It must not be an array section with a vector subscript.

If a parameter of the READ statement is an expression that calls a function, that function must not
execute an I/O statement or the EOF intrinsic function, because the results are unpredictable.

If I/O is to or from a formatted device, io-list cannot contain derived type variables, but it can contain
components of derived types. If I/O is to a binary or unformatted device, io-list can contain either
derived type components or a derived type variable.

The READ statement can disrupt the results of certain graphics text functions (such as
SETTEXTWINDOW) that alter the location of the cursor. You can avoid the problem by getting
keyboard input with the GETCHARQQ function and echoing the keystrokes to the screen using
OUTTEXT. Alternatively, you can use SETTEXTPOSITION to control cursor location.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: I/O Lists, I/O Control List, Forms for Sequential READ Statements, Forms for Direct-
Access READ Statements, Forms for Indexed READ Statements (VMS only), Forms and Rules for
Internal READ Statements, PRINT, WRITE, I/O Formatting

Example

READ Page 16 of 41

 DIMENSION ia(10,20)
 ! Read in the bounds for the array.
 ! Then read in the array in nested implied-DO lists
 ! with input format of 8 columns of width 5 each.
 READ (6, 990) il, jl, ((ia(i,j), j = 1, jl), i =1, il)
 990 FORMAT (2I5, /, (8I5))

 ! Internal read gives a variable string-represented numbers
 CHARACTER*12 str
 str = ’123456’
 READ (str,’(i6)’) i

 ! List-directed read uses no specified format
 REAL x, y
 INTEGER i, j
 READ (*,*) x, y, i, j

REAL Directive

Compiler Directive: Specifies the default real kind.

Syntax

cDEC$ REAL:{ 4 | 8 }

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

Rules and Behavior

The REAL directive selects a size of 4 or 8 bytes (KIND=4 or KIND=8) for default real numbers.
When the directive is in effect, all default real variables are of the kind specified in the directive.
Only numbers specified or implied as REAL without KIND are affected.

The REAL directive can appear only at the top of a program unit. A program unit is a main program,
an external subroutine or function, a module, or a block data program unit. REAL cannot appear
between program units, or at the beginning of internal subprograms. It does not affect modules
invoked with the USE statement in the program unit that contains it.

The following form is also allowed: !MS$REAL:{4 | 8}

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: REAL, INTEGER Directive, General Compiler Directives

Example

 REAL r ! a 4-byte REAL
 WRITE(*,*) KIND(r)
 CALL REAL8()

REAL Directive Page 17 of 41

 WRITE(*,*) KIND(r) ! still a 4-byte REAL
 ! not affected by setting in subroutine
 END
 SUBROUTINE REAL8()
 !DEC$ REAL:8
 REAL s ! an 8-byte REAL
 WRITE(*,*) KIND(s)
 END SUBROUTINE

REAL Function

Elemental Intrinsic Function (Generic): Converts a value to real type.

Syntax

result = REAL (a [, kind])

a
(Input) Must be of type integer, real, or complex.

kind
(Optional; input) Must be a scalar integer initialization expression.

Results:

The result is real type. If kind is present, the kind parameter is that specified by kind. If kind is not
present, see the following table for the kind parameter.

Functions that cause conversion of one data type to another type have the same affect as the implied
conversion in assignment statements.

If a is integer or real, the result is equal to an approximation of a. If a is complex, the result is equal
to an approximation of the real part of a.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(4)

FLOATI INTEGER(2) REAL(4)

FLOAT 2, 3 INTEGER(4) REAL(4)

REAL 2 INTEGER(4) REAL(4)

FLOATK 4 INTEGER(8) REAL(4)

REAL(4) REAL(4)

SNGL 2, 5 REAL(8) REAL(4)

REAL Function Page 18 of 41

SNGLQ 6 REAL(16) REAL(4)

COMPLEX(4) REAL(4)

COMPLEX(8) REAL(8)

1 These specific functions cannot be passed as actual arguments.
2 The setting of compiler option /real_size can affect FLOAT, REAL, and SNGL.
3 Or FLOATJ. For compatibility with older versions of Fortran, FLOAT can also be specified as a generic function.
4 Alpha only
5 For compatibility with older versions of Fortran, SNGL can also be specified as a generic function. The generic
SNGL includes specific function REAL, which takes a REAL(4) argument and produces a REAL(4) result.
6 VMS, U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DFLOAT, DREAL, DBLE

Examples

REAL (-4) has the value -4.0.

REAL (Y) has the same kind parameter and value as the real part of complex variable Y.

REAL

Statement: Specifies the REAL data type.

Syntax

REAL
REAL([KIND=]n)
REAL*n
DOUBLE PRECISION

n
Is kind 4 or 8.

If a kind parameter is specified, the real constant has the kind specified. If a kind parameter is not
specified, the kind is default real.

DOUBLE PRECISION is REAL(8). No kind parameter is permitted for data declared with type
DOUBLE PRECISION.

To change the default kind value, use the /real_size compiler option or the cDEC$ REAL:8 directive.

REAL Page 19 of 41

REAL(4) and REAL*4 (single precision) are the same data type. REAL(8), REAL*8, and
DOUBLE PRECISION are the same data type.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DOUBLE PRECISION, REAL directive, Real Data Types, General Rules for Real
Constants, REAL(4) Constants, REAL(8) or DOUBLE PRECISION Constants

Examples

Entity-oriented examples are:

 MODULE DATDECLARE
 REAL (8), OPTIONAL :: testval=50.d0
 REAL, SAVE :: a(10), b(20,30)
 REAL, PARAMETER :: x = 100.

 Attribute-oriented examples are:
 MODULE DATDECLARE
 REAL (8) testval=50.d0
 REAL x, a(10), b(20,30)
 OPTIONAL testval
 SAVE a, b
 PARAMETER (x = 100.)

RECORD

Statement: Declares a record structure as an entity with a name.

Syntax

RECORD /structure-name/record-namelist
[, /structure-name/record-namelist]
. . .
[, /structure-name/record-namelist]

structure-name
Is the name of a previously declared structure.

record-namelist
Is a list of one or more variable names, array names, or array specifications, separated by
commas. All of the records named in this list have the same structure and are allocated
separately in memory.

Rules and Behavior

You can use record names in COMMON and DIMENSION statements, but not in DATA,
EQUIVALENCE, or NAMELIST statements.

RECORD Page 20 of 41

Records initially have undefined values unless you have defined their values in structure declarations.

STRUCTURE and RECORD constructs have been replaced by derived types, which should be used
in writing new code. See Derived Type and TYPE.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Derived Type, MAP...END MAP, STRUCTURE...END STRUCTURE, TYPE,
UNION...END UNION, Record Structures

Example

 STRUCTURE /address/
 LOGICAL*2 house_or_apt
 INTEGER*2 apt
 INTEGER*2 housenumber
 CHARACTER*30 street
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER*4 zip
 END STRUCTURE

 RECORD /address/ mailing_addr(20), shipping_addr(20)

RECTANGLE, RECTANGLE_W

Graphics Function: Draws a rectangle using the current graphics color, logical write mode, and line
style.

Module: USE DFLIB

Syntax

result = RECTANGLE (control, x1, y1, x2, y2)
result = RECTANGLE_W (control, wx1, wy1, wx2, wy2)

control
(Input) INTEGER(2). Fill flag. One of the following symbolic constants (defined in
DFLIB.F90 in the \DF98\INCLUDE subdirectory):

n $GFILLINTERIOR: Draws a solid figure using the current color and fill mask.
n $GBORDER: Draws the border of a rectangle using the current color and line style.

x1, y1
(Input) INTEGER(2). Viewport coordinates for upper-left corner of rectangle.

x2, y2
(Input) INTEGER(2). Viewport coordinates for lower-right corner of rectangle.

RECTANGLE, RECTANGLE_W Page 21 of 41

wx1, wy1
(Input) REAL(8). Window coordinates for upper-left corner of rectangle.

wx2, wy2
(Input) REAL(8). Window coordinates for lower-right corner of rectangle.

Results:

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0.

The RECTANGLE function uses the viewport-coordinate system. The viewport coordinates (x1, y1)
and (x2, y2) are the diagonally opposed corners of the rectangle.

The RECTANGLE_W function uses the window-coordinate system. The window coordinates (wx1,
wy1) and (wx2, wy2) are the diagonally opposed corners of the rectangle.

SETCOLORRGB sets the current graphics color. SETFILLMASK sets the current fill mask. By
default, filled graphic shapes are filled solid with the current color.

If you fill the rectangle using FLOODFILLRGB, the rectangle must be bordered by a solid line
style. Line style is solid by default and can be changed with SETLINESTYLE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETFILLMASK, GRSTATUS, LINETO, POLYGON, FLOODFILLRGB,
SETLINESTYLE, SETCOLOR, SETWRITEMODE

Example

This program draws the rectangle shown below.

 ! Build as a QuickWin or Standard Graphics App.
 USE DFLIB
 INTEGER(2) dummy, x1, y1, x2, y2
 x1 = 80; y1 = 50
 x2 = 240; y2 = 150
 dummy = RECTANGLE($GBORDER, x1, y1, x2, y2)
 END

Figure: Output of Program RECTNGL.FOR

RECURSIVE Page 22 of 41

RECURSIVE

Keyword: Specifies that a subroutine or function can call itself directly or indirectly. Recursion is
permitted if the keyword is specified in a FUNCTION or SUBROUTINE statement, or if
RECURSIVE is specified as a compiler option or in an OPTIONS statement.

If a function is directly recursive and array valued, the keywords RECURSIVE and RESULT must
both be specified in the FUNCTION statement.

The procedure interface is explicit within the subprogram in the following cases:

� When RECURSIVE is specified for a subroutine

� When RECURSIVE and RESULT are specified for a function

The keyword RECURSIVE must be specified if any of the following applies (directly or indirectly):

� The subprogram invokes itself.

� The subprogram invokes a subprogram defined by an ENTRY statement in the same
subprogram.

� An ENTRY procedure in the same subprogram invokes one of the following:

n Itself
n Another ENTRY procedure in the same subprogram
n The subprogram defined by the FUNCTION or SUBROUTINE statement

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ENTRY, FUNCTION, SUBROUTINE, /recursive, OPTIONS, Program Units and
Procedures

Example

 ! RECURS.F90
 !
 i = 0
 CALL Inc (i)
 END

 RECURSIVE SUBROUTINE Inc (i)
 i = i + 1
 CALL Out (i)
 IF (i.LT.20) CALL Inc (i) ! This also works in OUT
 END SUBROUTINE Inc

 SUBROUTINE Out (i)

RECURSIVE Page 23 of 41

 WRITE (*,*) i
 END SUBROUTINE Out

%REF

Built-in Function: Changes the form of an actual argument. Passes the argument by reference. In
Visual Fortran, passing by reference is the default.

Syntax

result = %REF (a)

a
(Input) An expression, record name, procedure name, array, character array section, or array
element.

You must specify %REF in the actual argument list of a CALL statement or function reference. You
cannot use it in any other context.

The following table lists the DIGITAL Fortran defaults for argument passing, and the allowed uses of
%REF:

Actual Argument Data Type Default %REF

Expressions:

Logical REF Yes

Integer REF Yes

REAL(4) REF Yes

REAL(8) REF Yes

REAL(16) 1 REF Yes

COMPLEX(4) REF Yes

COMPLEX(8) REF Yes

Character See table note 2 Yes

Hollerith REF No

Aggregate 3 REF Yes

Derived REF Yes

Array Name:

Numeric REF Yes

%REF Page 24 of 41

Character See table note 2 Yes

Aggregate 3 REF Yes

Derived REF Yes

Procedure Name:

Numeric REF Yes

Character See table note 2 Yes

1 VMS, U*X
2 On DIGITAL UNIX, Windows NT and Windows 95 systems, a character argument is passed by
address and hidden length.
3 In DIGITAL Fortran record structures

See Also: CALL, %VAL

Example

 CHARACTER(LEN=10) A, B
 CALL SUB(A, %REF(B))

Variable A is passed by address and hidden length. Variable B is passed by reference.

REGISTERMOUSEEVENT

QuickWin Function: Registers the application-supplied callback routine to be called when a
specified mouse event occurs in a specified window.

Module: USE DFLIB

Syntax

result = REGISTERMOUSEEVENT (unit, mouseevents, callbackroutine)

unit
(Input) INTEGER(4). Unit number of the window whose callback routine on mouse events is
to be registered.

mouseevents
(Input) INTEGER(4). One or more mouse events to be handled by the callback routine to be
registered. Symbolic constants (defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory)
for the possible mouse events are:

REGISTERMOUSEEVENT Page 25 of 41

n MOUSE$LBUTTONDOWN: Left mouse button down
n MOUSE$LBUTTONUP: Left mouse button up
n MOUSE$LBUTTONDBLCLK: Left mouse button double-click
n MOUSE$RBUTTONDOWN: Right mouse button down
n MOUSE$RBUTTONUP: Right mouse button up
n MOUSE$RBUTTONDBLCLK: Right mouse button double-click
n MOUSE$MOVE: Mouse moved

callbackroutine
(Input) EXTERNAL. Routine to be called on specified mouse event in the specified window.
For a prototype mouse callback routine, see Using QuickWin.

Results:

The result type is INTEGER(4). The result is zero or a positive integer if successful; otherwise, a
negative integer that can be one of the following:

� MOUSE$BADUNIT: The unit specified is not open, or is not associated with a QuickWin
window.

� MOUSE$BADEVENT: The event specified is not supported.

For every BUTTONDOWN or BUTTONDBLCLK event there is an associated BUTTONUP event.
When the user double clicks, four events happen: BUTTONDOWN and BUTTONUP for the first
click, and BUTTONDBLCLK and BUTTONUP for the second click. The difference between getting
BUTTONDBLCLK and BUTTONDOWN for the second click depends on whether the second click
occurs in the double click interval, set in the system’s CONTROL PANEL/MOUSE.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, UNREGISTERMOUSEEVENT, WAITONMOUSEEVENT.

REMAPALLPALETTERGB, REMAPPALETTERGB

Graphics Function: REMAPALLPALETTERGB remaps a set of Red-Green-Blue (RGB) color
values to indexes recognized by the video hardware. REMAPPALETTERGB remaps one color
index to an RGB color value.

Module: USE DFLIB

Syntax

result = REMAPALLPALETTERGB (colors)
result = REMAPPALETTERGB (index, color)

colors

REMAPALLPALETTERGB, REMAPPALETTERGB Page 26 of 41

(Input) INTEGER(4). Ordered array of RGB color values to be mapped in order to indexes.
Must hold 0-255 elements.

color
(Input) INTEGER(4). RGB color value to assign to a color index.

index
(Input) INTEGER(4). Color index to be reassigned an RGB color.

Results:

The result type is INTEGER(4). REMAPALLPALETTERGB returns 0 if successful; otherwise, -1.
REMAPPALETTERGB returns the previous color assigned to the index.

The REMAPALLPALETTERGB function remaps all of the available color indexes simultaneously
(up to 236; 20 indexes are reserved by the operating system). The colors argument points to an array
of RGB color values. The default mapping between the first 16 indexes and color values is shown in
the following table. The 16 default colors are provided with symbolic constants in DFLIB.F90 (in the
\DF98\INCLUDE subdirectory).

Index Color Index Color

0 $BLACK 8 $GRAY

1 $BLUE 9 $LIGHTBLUE

2 $GREEN 10 $LIGHTGREEN

3 $CYAN 11 $LIGHTCYAN

4 $RED 12 $LIGHTRED

5 $MAGENTA 13 $LIGHTMAGENTA

6 $BROWN 14 $YELLOW

7 $WHITE 15 $BRIGHTWHITE

The number of colors mapped can be fewer than 236 if the number of colors supported by the current
video mode is fewer, but at most 236 colors can be mapped by REMAPALLPALETTERGB. Most
Windows graphics drivers support a palette of 256K colors or more, of which only a few can be
mapped into the 236 palette indexes at a time. To access and use all colors on the system, bypass the
palette and use direct RGB color functions such as such as SETCOLORRGB and
SETPIXELSRGB.

Any RGB colors can be mapped into the 236 palette indexes. Thus, you could specify a palette with
236 shades of red. For further details on using different color procedures see Adding Color in the
Programmer’s Guide.

In each RGB color value, each of the three colors, red, green and blue, is represented by an eight-bit

REMAPALLPALETTERGB, REMAPPALETTERGB Page 27 of 41

value (2 hex digits). In the values you specify with REMAPALLPALETTERGB or
REMAPPALETTERGB, red is the rightmost byte, followed by green and blue. The RGB value’s
internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 11111111 (hex FF) the maximum
for each of the three components. For example, #008080 yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETBKCOLORRGB, SETCOLORRGB, SETBKCOLOR, SETCOLOR

Example

 ! Build as QuickWin or Standard Graphics App.

 USE DFLIB
 INTEGER(4) colors(3)
 INTEGER(2) status

 colors(1) = #00FFFF ! yellow
 colors(2) = #FFFFFF ! bright white
 colors(3) = 0 ! black
 status = REMAPALLPALETTERGB(colors)

 status = REMAPPALETTERGB(INT2(47), #45A315)
 END

RENAME

Portability Function: Renames a file.

Module: USE DFPORT

Syntax

result = RENAME (from, to)

from
(Input) Character*(*). Path of an existing file.

to
(Input) Character*(*). The new path.

Results:

RENAME Page 28 of 41

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code, such as:

� EACCES: File or directory specified by to could not be created (invalid path). This error is
also returned if the drive specified is not currently connected to a device.

� ENOENT: File or path specified by from could not be found.
� EXDEV: Attempt to move a file to a different device.

If the file specified in to exists, RENAME deletes it first.

It is possible to rename a file to itself without error.

The paths may use forward (/) or backward (\) slashes as path separators and can include drive letters.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RENAMEFILEQQ

Example

 use dfport
 integer(4) istatus
 character*12 old_name, new_name
 print *, "Enter file to rename: "
 read *, old_name
 print *, "Enter new name: "
 read *, new_name
 ISTATUS = RENAME (old_name, new_name)

RENAMEFILEQQ

Run-Time Function: Renames a file.

Module: USE DFLIB

Syntax

result = RENAMEFILEQQ (oldname, newname)

oldname
(Input) Character*(*). Current name of the file to be renamed.

newname
(Input) Character*(*). New name of the file to be renamed.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

RENAMEFILEQQ Page 29 of 41

You can use RENAMEFILEQQ to move a file from one directory to another on the same drive by
giving a different path in the newname parameter.

If the function fails, call GETLASTERRORQQ to determine the reason. One of the following
errors can be returned:

� ERR$ACCESS: The file specified by newname already exists or could not be created (invalid
path).

� ERR$NOENT: File or path specified by oldname not found.
� ERR$XDEV: Attempt to move a file to a different device.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FINDFILEQQ, RENAME

Example

 USE DFLIB
 INTEGER(4) len
 CHARACTER(80) oldname, newname
 LOGICAL(4) result

 WRITE(*,’(A, \)’) ’ Enter old name: ’
 len = GETSTRQQ(oldname)
 WRITE(*,’(A, \)’) ’ Enter new name: ’
 len = GETSTRQQ(newname)
 result = RENAMEFILEQQ(oldname, newname)
 END

REPEAT

Transformational Intrinsic Function (Generic): Concatenates several copies of a string.

Syntax

result = REPEAT (string, ncopies)

string
(Input) Must be scalar and of type character.

ncopies
(Input) Must be scalar and of type integer. It must not be negative.

Results:

The result is a scalar of type character and length ncopies x LEN(string). The kind parameter is the
same as string. The value of the result is the concatenation of ncopies copies of string.

REPEAT Page 30 of 41

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SPREAD

Example

REPEAT (’S’, 3) has the value SSS.

REPEAT (’ABC’, 0) has the value of a zero-length string.

The following shows another example:

 CHARACTER(6) str
 str = REPEAT(’HO’, 3) ! returns HOHOHO

RESHAPE

Transformational Intrinsic Function (Generic): Constructs an array with a different shape from the
argument array.

Syntax

result = RESHAPE (source, shape [, pad] [, order])

source
(Input) Must be an array (of any data type). It supplies the elements for the result array. Its size
must be greater than or equal to PRODUCT(shape) if pad is omitted or has size zero.

shape
(Input) Must be an integer array of up to 7 elements, with rank one and constant size. It defines
the shape of the result array. Its size must be positive; its elements must not have negative
values.

pad
(Optional; input) Must be an array with the same type and kind parameters as source. It is used
to fill in extra values if the result array is larger than source.

order
(Optional; input) Must be an integer array with the same shape as shape. Its elements must be a
permutation of (1,2,...,n), where n is the size of shape. If order is omitted, it is assumed to be
(1,2,...,n).

Results:

The result is an array of shape shape with the same type and kind parameters as source. The size of
the result is the product of the values of the elements of shape.

RESHAPE Page 31 of 41

In the result array, the array elements of source are placed in the order of dimensions specified by
order. If order is omitted, the array elements are placed in normal array element order.

The array elements of source are followed (if necessary) by the array elements of pad in array
element order. If necessary, additional copies of pad follow until all the elements of the result array
have values.

In standard Fortran array element order, the first dimension varies fastest. For example, element order
in a two-dimensional array would be (1,1), (2,1), (3,1) and so on. In a three-dimensional array, each
dimension having two elements, the array element order would be (1,1,1), (2, 1, 1), (1, 2, 1), (2, 2, 1),
(1, 1, 2), (2, 1, 2), (1, 2, 2), (2, 2, 2).

RESHAPE can be used to reorder a Fortran array to match C array ordering before the array is
passed from a Fortran to a C procedure.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PACK, SHAPE, TRANSPOSE

Examples

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 3/)) has the value

 [3 5 7]
 [4 6 8].

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 4/), (/1, 1/), (/2, 1/)) has the value

 [3 4 5 6]
 [7 8 1 1].

The following shows another example:

 INTEGER AR1(2, 5)
 REAL F(5,3,8)
 REAL C(8,3,5)
 AR1 = RESHAPE((/1,2,3,4,5,6/),(/2,5/),(/0,0/),(/2,1/))
 ! returns 1 2 3 4 5
 ! 6 0 0 0 0
 !
 ! Change Fortran array order to C array order
 C = RESHAPE(F, (/8,3,5/), ORDER = (/3, 2, 1/))
 END

RESULT

Keyword: Specifies a name for a function result.

RESULT Page 32 of 41

Normally, a function result is returned in the function’s name, and all references to the function name
are references to the function result.

However, if you use the RESULT keyword in a FUNCTION statement, you can specify a local
variable name for the function result. In this case, all references to the function name are recursive
calls, and the function name must not appear in specification statements.

The RESULT name must be different from the name of the function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FUNCTION, ENTRY, RECURSIVE, Program Units and Procedures

Examples

The following shows an example of a recursive function specifying a RESULT variable:

 RECURSIVE FUNCTION FACTORIAL(P) RESULT(L)
 INTEGER, INTENT(IN) :: P
 INTEGER L
 IF (P == 1) THEN
 L = 1
 ELSE
 L = P * FACTORIAL(P - 1)
 END IF
 END FUNCTION

The following shows another example:

 recursive function FindSame(Aindex,Last,Used) &
 & result(FindSameResult)
 type(card) Last
 integer Aindex, i
 logical matched, used(5)
 if(Aindex > 5) then
 FindSameResult = .true.
 return
 endif
 . . .

RETURN

Statement: Transfers control from a subprogram to the calling program unit.

Syntax

RETURN [expr]

expr

RETURN Page 33 of 41

Is a scalar expression that is converted to an integer value if necessary.

The expr is only allowed in subroutines; it indicates an alternate return. (An alternate return is
an obsolescent feature in Fortran 90 and Fortran 95.)

Rules and Behavior

When a RETURN statement is executed in a function subprogram, control is transferred to the
referencing statement in the calling program unit.

When a RETURN statement is executed in a subroutine subprogram, control is transferred to the first
executable statement following the CALL statement that invoked the subroutine, or to the alternate
return (if one is specified).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CALL, CASE

Examples

The following shows how alternate returns can be used in a subroutine:

 CALL CHECK(A, B, *10, *20, C)
 ...
10 ...
20 ...
 SUBROUTINE CHECK(X, Y, *, *, C)
 ...
50 IF (X) 60, 70, 80
60 RETURN
70 RETURN 1
80 RETURN 2
 END

The value of X determines the return, as follows:

� If X < 0, a normal return occurs and control is transferred to the first executable statement
following CALL CHECK in the calling program.

� If X = = 0, the first alternate return (RETURN 1) occurs and control is transferred to the
statement identified with label 10.

� If X > 0, the second alternate return (RETURN 2) occurs and control is transferred to the
statement identified with label 20.

Note that an asterisk (*) specifies the alternate return. An ampersand (&) can also specify an alternate
return in a CALL statement, but not in a subroutine’s dummy argument list.

The following shows another example:

RETURN Page 34 of 41

 SUBROUTINE Loop
 CHARACTER in
 10 READ (*, ’(A)’) in
 IF (in .EQ. ’Y’) RETURN
 GOTO 10
 ! RETURN implied by the following statement:
 END

 !The following example demonstrates alternate returns:
 CALL AltRet (i, *10, *20, *30)
 WRITE (*, *) ’normal return’
 GOTO 40
 10 WRITE (*, *) ’I = 10’
 GOTO 40
 20 WRITE (*, *) ’I = 20’
 GOTO 40
 30 WRITE (*, *) ’I = 30’
 40 CONTINUE
 END
 SUBROUTINE AltRet (i, *, *, *)
 IF (i .EQ. 10) RETURN 1
 IF (i .EQ. 20) RETURN 2
 IF (i .EQ. 30) RETURN 3
 END

In this example, RETURN 1 specifies the list’s first alternate-return label, which is a symbol for the
actual argument *10 in the CALL statement. RETURN 2 specifies the second alternate-return label,
and RETURN 3 specifies the third alternate-return label.

REWIND

Statement: Positions a sequential file at the beginning of the file (the initial point). It takes one of the
following forms:

Syntax

REWIND ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])
REWIND io-unit

io-unit
(Input) Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error occurs.

i-var
(Output)Is a scalar integer variable that is defined as a positive integer if an error occurs and
zero if no error occurs.

Rules and Behavior

The unit number must refer to a file on disk or magnetic tape, and the file must be open for sequential
or append access.

REWIND Page 35 of 41

A REWIND statement is not allowed for a file that is open for direct access unless the compiler
option fpscomp:general is specified.

If a file is already positioned at the initial point, a REWIND statement has no effect.

If a REWIND statement is specified for a unit that is not open, it has no effect.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: OPEN, READ, WRITE, Data Transfer I/O Statements, Branch Specifiers

Examples

The following statement repositions the file connected to I/O unit 3 to the beginning of the file:

REWIND 3

Consider the following statement:

REWIND (UNIT=9, IOSTAT=IOS, ERR=10)

This statement positions the file connected to unit 9 at the beginning of the file. If an error occurs,
control is transferred to the statement labeled 10, and a positive integer is stored in variable IOS.

The following shows another example:

 WRITE (7, ’(I10)’) int
 REWIND (7)
 READ (7, ’(I10)’) int

REWRITE

Statement: Rewrites the current record.

Formatted

REWRITE (eunit, format [, iostat] [, err]) [io-list]

Unformatted

REWRITE (eunit [, iostat] [, err]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).

REWRITE Page 36 of 41

format
Is a format specifier ([FMT=]format).

iostat
Is a status specifier (IOSTAT=i-var).

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

In the REWRITE statement, data (translated if formatted; untranslated if unformatted) is written to
the current (existing) record in a file with direct access.

The current record is the last record accessed by a preceding, successful sequential, or direct-access
READ statement.

Between a READ and REWRITE statement, you should not specify any other I/O statement (except
INQUIRE) on that logical unit. Execution of any other I/O statement on the logical unit destroys the
current-record context and causes the current record to become undefined.

Only one record can be rewritten in a single REWRITE statement operation.

The output list (and format specification, if any) must not specify more characters for a record than
the record size. (Record size is specified by RECL in an OPEN statement.)

If the number of characters specified by the I/O list (and format, if any) do not fill a record, blank
characters are added to fill the record.

Example

In the following example, the current record (contained in the relative organization file connected to
logical unit 3) is updated with the values represented by NAME, AGE, and BIRTH:

 REWRITE (3, 10, ERR=99) NAME, ,AGE, BIRTH
10 FORMAT (A16, I2, A8)

RGBTOINTEGER

QuickWin Function: Converts three integers specifying red, green, and blue color intensities into a
four-byte RGB integer for use with RGB functions and subroutines.

Module: USE DFLIB

Syntax

result = RGBTOINTEGER (red, green, blue)

RGBTOINTEGER Page 37 of 41

red
(Input) INTEGER(4). Intensity of the red component of the RGB color value. Only the lower 8
bits of red are used.

green
(Input) INTEGER(4). Intensity of the green component of the RGB color value. Only the lower
8 bits of green are used.

blue
(Input) INTEGER(4). Intensity of the blue component of the RGB color value. Only the lower
8 bits of blue are used.

Results:

The result type is INTEGER(4). The result is the combined RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value returned with RGBTOINTEGER, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, INTEGERTORGB, SETCOLORRGB, SETBKCOLORRGB,
SETPIXELRGB, SETPIXELSRGB, SETTEXTCOLORRGB.

Example

 ! Build as a QuickWin App.
 USE DFLIB
 INTEGER r, g, b, rgb, result
 INTEGER(2) status
 r = #F0
 g = #F0
 b = 0
 rgb = RGBTOINTEGER(r, g, b)
 result = SETCOLORRGB(rgb)
 status = ELLIPSE($GFILLINTERIOR,INT2(40), INT2(55), &
 INT2(90), INT2(85))
 END

RINDEX Page 38 of 41

RINDEX

Portability Function: Locates the index of the last occurrence of a substring within a string.

Module: USE DFPORT

Syntax

result = RINDEX (string, substr)

string
(Input) Character*(*). Original string to search.

substr
(Input) Character*(*). String to search for.

Results:

The result type is INTEGER(4). The result is the starting position of the final occurence of substrg in
string. Returns 0 if substring does not occur in string.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INDEX

Example

 USE DFPORT
 character*80 mainstring
 character*4 shortstr
 integer(4) where
 mainstring="Hello Hello Hello Hello There There There"
 shortstr="Hello"
 where=rindex(mainstring,shortstr)
 ! where is 19

RRSPACING

Elemental Intrinsic Function (Generic): Returns the reciprocal of the relative spacing of model
numbers near the argument value.

Syntax

result = RRSPACING (x)

x
(Input) Must be of type real.

RRSPACING Page 39 of 41

Results:

The result type is the same as x. The result has the value |x * b-e| x bp. Parameters b, e, p are defined
in Model for Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SPACING, Data Representation Models

Examples

If -3.0 is a REAL(4) value, RRSPACING (-3.0) has the value 0.75 x 224.

The following shows another example:

 REAL(4) res4
 REAL(8) res8, r2
 res4 = RRSPACING(3.0) ! returns 1.258291E+07
 res4 = RRSPACING(-3.0) ! returns 1.258291E+07
 r2 = 487923.3
 res8 = RRSPACING(r2) ! returns 8.382458680573952E+015
 END

RSHIFT

Elemental Intrinsic Function: Shifts the bits in an integer right by a specified number of positions.
For more information, see ISHFT.

RTC

Portability Function: Returns the number of seconds elapsed since a specific Greenwich mean time.

Module:USE DFPORT

Syntax

result = RTC ()

Results:

The result type is REAL(8). The result is the number of seconds elapsed since 00:00:00 Greenwich
mean time, January 1, 1970.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

RTC Page 40 of 41

See Also: DATE_AND_TIME, TIME

Example

 USE DFPORT
 real(8) s, s1, time_spent
 INTEGER(4) i, j
 s = RTC()
 call sleep(4)
 s1 = RTC()
 time_spent = s1 - s
 PRINT *, ’It took ’,time_spent, ’seconds to run.’

RUNQQ

Run-Time Function: Executes another program and waits for it to complete.

Module: USE DFLIB

Syntax

result = RUNQQ (filename, commandline)

filename
(Input) Character*(*). Filename of a program to be executed.

commandline
(Input) Character*(*). Command-line arguments passed to the program to be executed.

Results:

The result type is INTEGER(2). If the program executed with RUNQQ terminates normally, the exit
code of that program is returned to the program that launched it. If the program fails, -1 is returned.

The RUNQQ function executes a new process for the operating system using the same path,
environment, and resources as the process that launched it. The launching process is suspended until
execution of the launched process is complete.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SYSTEM, NARGS

Example

See example in NARGS.

 USE DFLIB
 INTEGER(2) result

RUNQQ Page 41 of 41

 result = RUNQQ(’myprog’, ’-c -r’)
 END

SAVE Page 1 of 96

SAVE

Statement and Attribute: Causes the values and definition of objects to be retained after execution
of a RETURN or END statement in a subprogram.

The SAVE attribute can be specified in a type declaration statement or a SAVE statement, and takes
one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] SAVE [, att-ls] :: [object [, object]...]

Statement:

SAVE [object [, object]...]

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

object
Is the name of an object, or the name of a common block enclosed in slashes (/common-block-
name/).

Rules and Behavior

In DIGITAL Fortran, the definitions of COMMON variables, and local variables of non- recursive
subprograms (other than allocatable arrays or variables declared AUTOMATIC), are saved by
default. To enhance portability and avoid possible compiler warning messages, DIGITAL
recommends that you use the SAVE statement to name variables whose values you want to preserve
between subprogram invocations.

When a SAVE statement does not explicitly contain a list, all allowable items in the scoping unit are
saved.

A SAVE statement cannot specify the following (their values cannot be saved):

� A blank common
� An object in a common block
� A procedure
� A dummy argument
� A function result
� An automatic object

SAVE Page 2 of 96

� A PARAMETER (named) constant

Even though a common block can be included in a SAVE statement, individual variables within the
common block can become undefined (or redefined) in another scoping unit.

If a common block is saved in any scoping unit of a program (other than the main program), it must
be saved in every scoping unit in which the common block appears.

A SAVE statement has no effect in a main program.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: COMMON, DATA, RECURSIVE, MOLULE, MODULE PROCEDURE, Type
Declarations, Compatible attributes.

Examples

The following example shows a type declaration statement specifying the SAVE attribute:

SUBROUTINE TEST()
 REAL, SAVE :: X, Y

The following is an example of the SAVE statement:

SAVE A, /BLOCK_B/, C, /BLOCK_D/, E

The following shows another example:

 SUBROUTINE MySub
 COMMON /z/ da, in, a, idum(10)
 real(8) x,y
 ...

 SAVE x, y, /z/
! alternate declaration
 REAL(8), SAVE :: x, y
 SAVE /z/

SAVEIMAGE, SAVEIMAGE_W

Graphics Function: Saves an image from a specified portion of the screen into a Windows bitmap
file.

Module: USE DFLIB

Syntax

SAVEIMAGE, SAVEIMAGE_W Page 3 of 96

result = SAVEIMAGE (filename, ulxcoord, ulycoord, lrxcoord, lrycoord)
result = SAVEIMAGE_W (filename, ulwxcoord, ulwycoord, lrwxcoord, lrwycoord)

filename
(Input) Character*(*). Path of the bitmap file.

ulxcoord, ulycoord
(Input) INTEGER(4). Viewport coordinates for upper-left corner of the screen image to be
captured.

lrxcoord, lrycoord
(Input) INTEGER(4). Viewport coordinates for lower-right corner of the screen image to be
captured.

ulwxcoord, ulwycoord
(Input) REAL(8). Window coordinates for upper-left corner of the screen image to be captured.

lrwxcoord, lrwycoord
(Input) REAL(8). Window coordinates for lower-right corner of the screen image to be
captured.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The SAVEIMAGE function captures the screen image within a rectangle defined by the upper-left
and lower-right screen coordinates and stores the image as a Windows bitmap file specified by
filename. The image is stored with a palette containing the colors displayed on the screen.

SAVEIMAGE defines the bounding rectangle in viewport coordinates. SAVEIMAGE_W defines
the bounding rectangle in window coordinates.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETIMAGE, GETIMAGE_W, IMAGESIZE, IMAGESIZE_W, LOADIMAGE,
LOADIMAGE_W, PUTIMAGE, PUTIMAGE_W

SCALE

Elemental Intrinsic Function (Generic): Returns the value of the exponent part (of the model
for the argument) changed by a specified value.

Syntax

result = SCALE (x, i)

SCALE Page 4 of 96

x
(Input) Must be of type real.

i
(Input) Must be of type integer.

Results:

The result type is the same as x. The result has the value x x bi. Parameter b is defined in Model for
Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LSHIFT, Data Representation Models

Examples

If 3.0 is a REAL(4) value, SCALE (3.0, 2) has the value 12.0 and SCALE (3.0, 3) has the value 24.0.

The following shows another example:

REAL r
r = SCALE(5.2, 2) !returns 20.8

SCAN

Elemental Intrinsic Function (Generic): Scans a string for any character in a set of characters.

Syntax

result = SCAN (string, set [, back])

string
(Input) Must be of type character.

set
(Input) Must be of type character with the same kind parameter as string.

back
(Input) Must be of type logical.

Results:

The result type is default integer.

If back is omitted (or is present with the value false) and string has at least one character that is in set,

SCAN Page 5 of 96

the value of the result is the position of the leftmost character of string that is in set.

If back is present with the value true and string has at least one character that is in set, the value of
the result is the position of the rightmost character of string that is in set.

If no character of string is in set or the length of string or set is zero, the value of the result is zero.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: VERIFY

Examples

SCAN (’ASTRING’, ’ST’) has the value 2.

SCAN (’ASTRING’, ’ST’, BACK=.TRUE.) has the value 3.

SCAN (’ASTRING’, ’CD’) has the value zero.

The following shows another example:

 INTEGER i
 INTEGER array(2)
 i = SCAN (’FORTRAN’, ’TR’) ! returns 3
 i = SCAN (’FORTRAN’, ’TR’, BACK = .TRUE.) ! returns 5
 i = SCAN (’FORTRAN’, ’GHA’) ! returns 6
 i = SCAN (’FORTRAN’, ’ora’) ! returns 0
 array = SCAN ((/’FORTRAN’,’VISUALC’/),(/’A’, ’A’/))
 ! returns (6, 5)
 ! Note that when using SCAN with arrays, the string
 ! elements must be the same length. When using string
 ! constants, blank pad to make strings the same length.
 ! For example:

 array = SCAN ((/’FORTRAN’,’MASM ’/),(/’A’, ’A’/))
 ! returns (6, 2)
 END

SCROLLTEXTWINDOW

Graphics Subroutine: Scrolls the contents of a text window.

Module: USE DFLIB

Syntax

CALL SCROLLTEXTWINDOW (rows)

rows
(Input) INTEGER(2). Number of rows to scroll.

SCROLLTEXTWINDOW Page 6 of 96

The SCROLLTEXTWINDOW subroutine scrolls the text in a text window (previously defined by
SETTEXTWINDOW). The default text window is the entire window.

The rows argument specifies the number of lines to scroll. A positive value for rows scrolls the
window up (the usual direction); a negative value scrolls the window down. Specifying a number
larger than the height of the current text window is equivalent to calling CLEARSCREEN
($GWINDOW). A value of 0 for rows has no effect.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: CLEARSCREEN, GETTEXTPOSITION, GETTEXTWINDOW, GRSTATUS,
OUTTEXT, SETTEXTPOSITION, SETTEXTWINDOW, WRAPON

Example

 ! Build as QuickWin or Standard Graphics app.
 USE DFLIB
 INTEGER(2) row
 CHARACTER(18) string
 TYPE (rccoord) oldpos

 CALL SETTEXTWINDOW (INT2(1), INT2(0), &
 INT2(25), INT2(80))
 CALL CLEARSCREEN ($GCLEARSCREEN)

 DO row = 1, 6
 string = ’Hello, World # ’
 CALL SETTEXTPOSITION(row, INT2(1), oldpos)
 WRITE(string(15:16), ’(I2)’) row
 CALL OUTTEXT(string)
 END DO
 WRITE(*,*) "Hit ENTER"
 READ (*,*) ! wait for ENTER
 ! Scroll window down 4 lines
 CALL SCROLLTEXTWINDOW(INT2(-4))
 WRITE(*,*) "Hit ENTER"
 READ(*,*) ! wait for ENTER
 ! Scroll window up 5 lines
 CALL SCROLLTEXTWINDOW(INT2(5))
 END

SCWRQQ (x86 only)

Run-Time Subroutine: Returns the floating-point processor control word. This routine is only
available on Intel® processors.

Module: USE DFLIB

Syntax

CALL SCWRQQ (control)

SCWRQQ (x86 only) Page 7 of 96

control
(Output) INTEGER(2). Floating-point processor control word.

SCRWQQ performs the same function as the run-time subroutine GETCONTROLFPQQ, and is
provided for compatibility.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LCWRQQ

Example

See the example in LCWRQQ.

SECNDS

SECNDS can be used as an intrinsic function or as a portability routine.

SECNDS Intrinsic Function

Elemental Intrinsic Function (Specific): Provides the system time of day, or elapsed time, as
a floating-point value in seconds. SECNDS is not a pure function, so it cannot be referenced inside
a FORALL construct.

result = SECNDS (x)

x
(Input) Must be of type REAL(4).

Results:

The result type is the same as x. The result value is the time in seconds since midnight - x. (The
function also produces correct results for time intervals that span midnight.)

The value of SECNDS is accurate to 0.01 second, which is the resolution of the system clock.

The 24 bits of precision provide accuracy to the resolution of the system clock for about one day.
However, loss of significance can occur if you attempt to compute very small elapsed times late in
the day.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

SECNDS Page 8 of 96

See Also: DATE_AND_TIME, RTC, SYSTEM_CLOCK, TIME

Example

The following shows how to use SECNDS to perform elapsed-time computations:

C START OF TIMED SEQUENCE
 T1 = SECNDS(0.0)

C CODE TO BE TIMED
 ...
 DELTA = SECNDS(T1) ! DELTA gives the elapsed time

SECNDS Portability Routine

Portability Function: Returns the number of seconds that have elapsed since midnight, less the
value of its argument.

Module: USE DFPORT

Syntax

result = SECNDS (r)

r
(Input) REAL(4). Number of seconds, precise to a hundredth of a second (0.01), to be
subtracted.

Results:

The result type is REAL(4). The result is the number of seconds that have elapsed since midnight,
minus r, with a precision of a hundredth of a second (0.01).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME, RTC, SYSTEM_CLOCK, TIME

Example

 USE DFPORT
 REAL(4) s
 INTEGER(4) i, j
 s = SECNDS(0.0)
 DO I = 1, 100000
 J = J + 1
 END DO
 s = SECNDS(s)

SECNDS Page 9 of 96

 PRINT *, ’It took ’,s, ’seconds to run.’

SEED

Run-Time Subroutine: Changes the starting point of the pseudorandom number generator.

Module: USE DFLIB

Syntax

CALL SEED (iseed)

iseed
(Input) INTEGER(4). Starting point for RANDOM.

SEED uses iseed to establish the starting point of the pseudorandom number generator. A given seed
always produces the same sequence of values from RANDOM.

If SEED is not called before the first call to RANDOM, RANDOM always begins with a seed value
of one. If a program must have a different pseudorandom sequence each time it runs, pass the
constant RND$TIMESEED (defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory) to the
SEED routine before the first call to RANDOM.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RANDOM, RANDOM_SEED, RANDOM_NUMBER

Example

 USE DFLIB
 REAL rand
 CALL SEED(7531)
 CALL RANDOM(rand)

SELECT CASE...END SELECT

Statement: Transfers program control to a selected block of statements according to the value of a
controlling expression. For more information, see CASE.

Example

 CHARACTER*1 cmdchar
 . . .
 Files: SELECT CASE (cmdchar)
 CASE (’0’)
 WRITE (*, *) "Must retrieve one to nine files"
 CASE (’1’:’9’)
 CALL RetrieveNumFiles (cmdchar)
 CASE (’A’, ’a’)

SELECT CASE...END SELECT Page 10 of 96

 CALL AddEntry
 CASE (’D’, ’d’)
 CALL DeleteEntry
 CASE (’H’, ’h’)
 CALL Help
 CASE DEFAULT
 WRITE (*, *) "Command not recognized; please re-enter"
 END SELECT Files

SELECTED_INT_KIND

Transformational Intrinsic Function (Generic): Returns the value of the kind parameter of an
integer data type.

Syntax

result = SELECTED_INT_KIND (r)

r
(Input) Must be scalar and of type integer.

Results:

The result is a scalar of type default integer. The result has a value equal to the value of the kind
parameter of the integer data type that represents all values n in the range of values n with -10r < n <
10r.

If no such kind type parameter is available on the processor, the result is -1. If more than one kind
type parameter meets the criteria, the value returned is the one with the smallest decimal exponent
range. For more information, see Model for Integer Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SELECTED_REAL_KIND

Example

SELECTED_INT_KIND (6) = 4

The following shows another example:

 i = SELECTED_INT_KIND(8) ! returns 4
 i = SELECTED_INT_KIND(3) ! returns 2
 i = SELECTED_INT_KIND(10) ! returns -1, precision
 ! not available for this type

SELECTED_REAL_KIND

SELECTED_REAL_KIND Page 11 of 96

Transformational Intrinsic Function (Generic): Returns the value of the kind parameter of a real data type.

Syntax

result = SELECTED_REAL_KIND([p] [, r])

p
(Optional; input) Must be scalar and of type integer.

r
(Optional; input) Must be scalar and of type integer.

At least one argument must be specified.

Results:

The result is a scalar of type default integer. The result has a value equal to a value of the kind
parameter of a real data type with decimal precision, as returned by the function PRECISION, of at
least p digits and a decimal exponent range, as returned by the function RANGE, of at least r.

If no such kind type parameter is available on the processor, the result is as follows:

 -1 if the precision is not available
 -2 if the exponent range is not available
 -3 if neither is available

If more than one kind type parameter value meets the criteria, the value returned is the one with the
smallest decimal precision. For more information, see Model for Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SELECTED_INT_KIND

Example

SELECTED_REAL_KIND (6, 70) = 8

The following shows another example:

 i = SELECTED_REAL_KIND(r=200) ! returns 8
 i = SELECTED_REAL_KIND(13) ! returns 8

SEQUENCE

Statement: Preserves the storage order of a derived-type definition.

SEQUENCE Page 12 of 96

Syntax

SEQUENCE

Rules and Behavior

The SEQUENCE statement allows derived types to be used in common blocks and to be
equivalenced.

The SEQUENCE statement appears only as part of derived-type definitions. It causes the
components of the derived type to be stored in the same sequence they are listed in the type
definition. If you do not specify SEQUENCE, the physical storage order is not necessarily the same
as the order of components in the type definition.

If a derived type is a sequence derived type, then any other derived type that includes it must also be a
sequence type.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Derived Type, Data Types, Constants, and Variables

Example

 !DEC$ PACK:1
 TYPE NUM1_SEQ
 SEQUENCE
 INTEGER(2)::int_val
 REAL(4)::real_val
 LOGICAL(2)::log_val
 END TYPE NUM1_SEQ
 TYPE num2_seq
 SEQUENCE
 logical(2)::log_val
 integer(2)::int_val
 real(4)::real_val
 end type num2_seq
 type (num1_seq) num1
 type (num2_seq) num2
 character*8 t, t1
 equivalence (num1,t)
 equivalence (num2,t1)
 num1%int_val=2
 num1%real_val=3.5
 num1%log_val=.TRUE.
 t1(1:2)=t(7:8)
 t1(3:4)=t(1:2)
 t1(5:8)=t(3:6)
 print *, num2%int_val, num2%real_val, num2%log_val
 end

SETACTIVEQQ

SETACTIVEQQ Page 13 of 96

QuickWin Function: Makes a child window active, but does not give it focus.

Module: USE DFLIB

Syntax

result = SETACTIVEQQ (unit)

unit
(Input) INTEGER(4). Unit number of the child window to be made active.

Results:

The result type is INTEGER(4). The result is 1 if successful; otherwise, 0.

When a window is made active, it receives graphics output (from ARC, LINETO and OUTGTEXT,
for example) but is not brought to the foreground and does not have the focus. If a window needs to
be brought to the foreground, it must be given the focus. A window is given focus with FOCUSQQ,
by clicking it with the mouse, or by performing I/O other than graphics on it, unless the window was
opened with IOFOCUS=’.FALSE.’. By default , IOFOCUS=’.TRUE.’, except for child windows
opened as unit ’*’.

The window that has the focus is always on top, and all other windows have their title bars grayed
out. A window can have the focus and yet not be active and not have graphics output directed to it.
Graphical output is independent of focus.

If IOFOCUS=’.TRUE.’, the child window receives focus prior to each READ, WRITE, PRINT, or
OUTTEXT. Calls to graphics functions (such as OUTGTEXT and ARC) do not cause the focus to
shift.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: GETACTIVEQQ, FOCUSQQ, INQFOCUSQQ, Using QuickWin

SETBKCOLOR

Graphics Function: Sets the current background color index for both text and graphics.

Module: USE DFLIB

Syntax

result = SETBKCOLOR (color)

color

SETBKCOLOR Page 14 of 96

(Input) INTEGER(4). Color index to set the background color to.

Results:

The result type is INTEGER(4). The result is the previous background color index.

SETBKCOLOR changes the background color index for both text and graphics. The color index of
text over the background color is set with SETTEXTCOLOR. The color index of graphics over the
background color (used by drawing functions such as FLOODFILL and ELLIPSE) is set with
SETCOLOR. These non-RGB color functions use color indexes, not true color values, and limit the
user to colors in the palette, at most 256. For access to all system colors, use SETBKCOLORRGB,
SETCOLORRGB, and SETTEXTCOLORRGB.

Changing the background color index does not change the screen immediately. The change becomes
effective when CLEARSCREEN is executed or when doing text input or output, such as with
READ, WRITE, or OUTTEXT. The graphics output function OUTGTEXT does not affect the
color of the background.

Generally, INTEGER(4) color arguments refer to color values and INTEGER(2) color arguments
refer to color indexes. The two exceptions are GETBKCOLOR and SETBKCOLOR. The default
background color index is 0, which is associated with black unless the user remaps the palette with
REMAPPALETTERGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETBKCOLORRGB, GETBKCOLOR, REMAPALLPALETTERGB,
REMAPPALETTERGB, SETCOLOR, SETTEXTCOLOR

Example

 USE DFLIB
 INTEGER(4) i
 i = SETBKCOLOR(14)

SETBKCOLORRGB

Graphics Function: Sets the current background color to the given Red-Green-Blue (RGB) value.

Module: USE DFLIB

Syntax

result = SETBKCOLORRGB (color)

color
(Input) INTEGER(4). RGB color value to set the background color to. Range and result depend
on the system’s display adapter.

SETBKCOLORRGB Page 15 of 96

Results:

The result type is INTEGER(4). The result is the previous background RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you specify with SETBKCOLORRGB, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

The default background color is value 0, which is black. Changing the background color value does
not change the screen immediately, but becomes effective when CLEARSCREEN is executed or
when doing text input or output such as READ, WRITE, or OUTTEXT. The graphics output
function OUTGTEXT does not affect the color of the background.

SETBKCOLORRGB sets the RGB color value of the current background for both text and graphics.
The RGB color value of text over the background color (used by text functions such as OUTTEXT,
WRITE, and PRINT) is set with SETTEXTCOLORRGB. The RGB color value of graphics over
the background color (used by graphics functions such as ARC, OUTGTEXT, and
FLOODFILLRGB) is set with SETCOLORRGB.

SETBKCOLORRGB (and the other RGB color selection functions SETCOLORRGB, and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The non-
RGB color functions (SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available in the
palette, at most 256. Some display adapters (SVGA and true color) are capable of creating 262,144
(256K) colors or more. To access any available color, you need to specify an explicit RGB value with
an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETBKCOLORRGB, SETCOLORRGB, SETTEXTCOLORRGB, SETPIXELRGB,
SETPIXELSRGB, SETBKCOLOR

Example

 ! Build as a QuickWin or Standard Graphics App.
 USE DFLIB
 INTEGER(4) oldcolor
 INTEGER(2) status, x1, y1, x2, y2
 x1 = 80; y1 = 50

SETBKCOLORRGB Page 16 of 96

 x2 = 240; y2 = 150
 oldcolor = SETBKCOLORRGB(#FF0000) !blue
 oldcolor = SETCOLORRGB(#FF) ! red
 CALL CLEARSCREEN ($GCLEARSCREEN)
 status = ELLIPSE($GBORDER, x1, y1, x2, y2)
 END

SETCLIPRGN

Graphics Subroutine: Limits graphics output to part of the screen.

Module: USE DFLIB

Syntax

CALL SETCLIPRGN (x1, y1, x2, x2)

x1, y1
(Input) INTEGER(2). Physical coordinates for upper-left corner of clipping region.

x2, y2
(Input) INTEGER(2). Physical coordinates for lower-right corner of clipping region.

The SETCLIPRGN function limits the display of subsequent graphics output and font text output to
that which fits within a designated area of the screen (the "clipping region"). The physical coordinates
(x1, y1) and (x2, y2) are the upper-left and lower-right corners of the rectangle that defines the
clipping region. The SETCLIPRGN function does not change the viewport-coordinate system; it
merely masks graphics output to the screen.

SETCLIPRGN affects graphics and font text output only, such as OUTGTEXT. To mask the screen
for text output using OUTTEXT, use SETTEXTWINDOW.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETPHYSCOORD, GRSTATUS, SETTEXTWINDOW, SETVIEWORG,
SETVIEWPORT, SETWINDOW

Example

This program draws an ellipse lying partly within a clipping region, as shown below.

 ! Build as QuickWin or Standard Graphics ap.
 USE DFLIB
 INTEGER(2) status, x1, y1, x2, y2
 INTEGER(4) oldcolor
 x1 = 10; y1 = 50
 x2 = 170; y2 = 150
 ! Draw full ellipse in white
 status = ELLIPSE($GBORDER, x1, y1, x2, y2)
 oldcolor = SETCOLORRGB(#FF0000) !blue

SETCLIPRGN Page 17 of 96

 WRITE(*,*) "Hit enter"
 READ(*,*)
 CALL CLEARSCREEN($GCLEARSCREEN) ! clear screen
 CALL SETCLIPRGN(INT2(0), INT2(0), &
 INT2(150), INT2(125))
 ! only part of ellipse inside clip region drawn now
 status = ELLIPSE($GBORDER, x1, y1, x2, y2)
 END

Figure: Output of Program SETCLIP.FOR

SETCOLOR

Graphics Function: Sets the current graphics color index.

Module: USE DFLIB

Syntax

result = SETCOLOR (color)

color
(Input) INTEGER(2). Color index to set the current graphics color to.

Results:

The result type is INTEGER(2). The result is the previous color index if successful; otherwise, -1.

The SETCOLOR function sets the current graphics color index, which is used by graphics functions
such as ELLIPSE. The background color index is set with SETBKCOLOR. The color index of text
over the background color is set with SETTEXTCOLOR. These non-RGB color functions use color
indexes, not true color values, and limit the user to colors in the palette, at most 256. For access to all
system colors, use SETCOLORRGB, SETBKCOLORRGB, and SETTEXTCOLORRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETCOLORRGB, GETCOLOR, REMAPPALETTERGB, SETBKCOLOR,
SETTEXTCOLOR, SETPIXEL, SETPIXELS

SETCOLOR Page 18 of 96

Example

 USE DFLIB
 INTEGER(2) color, oldcolor
 LOGICAL status
 TYPE (windowconfig) wc

 status = GETWINDOWCONFIG(wc)
 color = wc.numcolors - 1
 oldcolor = SETCOLOR(color)
 END

SETCOLORRGB

Graphics Function: Sets the current graphics color to the specified Red-Green-Blue (RGB) value.

Module: USE DFLIB

Syntax

result = SETCOLORRGB (color)

color
(Input) INTEGER(4). RGB color value to set the current graphics color to. Range and result
depend on the system’s display adapter.

Results:

The result type is INTEGER(4). The result is the previous RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you specify with SETCOLORRGB, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

SETCOLORRGB sets the RGB color value of graphics over the background color, used by the
following graphics functions: ARC, ELLIPSE, FLOODFILL, LINETO, OUTGTEXT, PIE,
POLYGON, RECTANGLE, and SETPIXEL. SETBKCOLORRGB sets the RGB color value of
the current background for both text and graphics. SETTEXTCOLORRGB sets the RGB color
value of text over the background color (used by text functions such as OUTTEXT, WRITE, and
PRINT).

SETCOLORRGB Page 19 of 96

SETCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB, and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The non-
RGB color functions (SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available in the
palette, at most 256. Some display adapters (SVGA and true color) are capable of creating 262,144
(256K) colors or more. To access any available color, you need to specify an explicit RGB value with
an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETBKCOLORRGB, SETTEXTCOLORRGB, GETCOLORRGB, ARC, ELLIPSE,
FLOODFILLRGB, SETCOLOR, LINETO, OUTGTEXT, PIE, POLYGON, RECTANGLE,
REMAPPALETTERGB, SETPIXELRGB, SETPIXELSRGB

Example

 ! Build as a QuickWin or Standard Graphics App.
 USE DFLIB
 INTEGER(2) numfonts
 INTEGER(4) oldcolor
 TYPE (xycoord) xy
 numfonts = INITIALIZEFONTS()
 oldcolor = SETCOLORRGB(#0000FF) ! red
 oldcolor = SETBKCOLORRGB(#00FF00) ! green
 CALL MOVETO(INT2(200), INT2(100), xy)
 CALL OUTGTEXT("hello, world")
 END

SETCONTROLFPQQ (x86 only)

Run-Time Subroutine: Sets the value of the floating-point processor control word. This routine is
only available on Intel® processors.

Module: USE DFLIB

Syntax

CALL SETCONTROLFPQQ (controlword)

controlword
(Input) INTEGER(2). Floating-point processor control word.

The floating-point control word specifies how various exception conditions are handled by the
floating-point math coprocessor, sets the floating-point precision, and specifies the floating-point
rounding mechanism used.

The DFLIB.F90 module file (in the \DF98\INCLUDE subdirectory) contains constants defined for the
control word as follows:

SETCONTROLFPQQ (x86 only) Page 20 of 96

Parameter name Hex value Description

FPCW$MCW_IC #1000 Infinity control mask

FPCW$AFFINE #1000 Affine infinity

FPCW$PROJECTIVE #0000 Projective infinity

FPCW$MCW_PC #0300 Precision control mask

FPCW$64 #0300 64-bit precision

FPCW$53 #0200 53-bit precision

FPCW$24 #0000 24-bit precision

FPCW$MCW_RC #0C00 Rounding control mask

FPCW$CHOP #0C00 Truncate

FPCW$UP #0800 Round up

FPCW$DOWN #0400 Round down

FPCW$NEAR #0000 Round to nearest

FPCW$MSW_EM #003F Exception mask

FPCW$INVALID #0001 Allow invalid numbers

FPCW$DENORMAL #0002 Allow denormals (very small numbers)

FPCW$ZERODIVIDE #0004 Allow divide by zero

FPCW$OVERFLOW #0008 Allow overflow

FPCW$UNDERFLOW #0010 Allow underflow

FPCW$INEXACT #0020 Allow inexact precision

The defaults for the floating-point control word are 53-bit precision, round to nearest, and the
denormal, underflow and inexact precision exceptions disabled. An exception is disabled if its flag is
set to 1 and enabled if its flag is cleared to 0.

Setting the floating-point precision and rounding mechanism can be useful if you are reusing old code
that is sensitive to the floating-point precision standard used and you want to get the same results as
on the old machine.

You can use GETCONTROLFPQQ to retrieve the current control word and
SETCONTROLFPQQ to change the control word. Most users do not need to change the default
settings. If you need to change the control word, always use SETCONTROLFPQQ to make sure

SETCONTROLFPQQ (x86 only) Page 21 of 96

that special routines handling floating-point stack exceptions and abnormal propagation work
correctly.

For a full discussion of the floating-point control word, exceptions, and error handling, see The
Floating-Point Environment in the Programmer’s Guide.

The Visual Fortran exception handler allows for software masking of invalid operations, but does not
allow the math chip to mask them. If you choose to use the software masking, be aware that this can
affect program performance if you compile code written for Visual Fortran with another compiler.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETCONTROLFPQQ, GETSTATUSFPQQ, LCWRQQ, SCWRQQ

Example

 USE DFLIB
 INTEGER(2) status, control, controlo

 CALL GETCONTROLFPQQ(control)
 WRITE (*, 9000) ’Control word: ’, control
 ! Save old control word
 controlo = control
 ! Clear all flags
 control = control .AND. #0000
 ! Set new control to round up
 control = control .OR. FPCW$UP
 CALL SETCONTROLFPQQ(control)
 CALL GETCONTROLFPQQ(control)
 WRITE (*, 9000) ’Control word: ’, control
 9000 FORMAT (1X, A, Z4)
 END

SETDAT

Run-Time Function: Sets the system date.

Module: USE DFLIB

Syntax

result = SETDAT (iyr, imon, iday)

iyr
(Input) INTEGER(2). Year (xxxx AD).

imon
(Input) INTEGER(2). Month (1-12).

iday

SETDAT Page 22 of 96

(Input) INTEGER(2). Day of the month (1-31).

Results:

The result type is LOGICAL(4). The result is .TRUE. if the system date is changed; .FALSE. if no
change is made.

Actual arguments of the function SETDAT can be any legal INTEGER(2) expression.

Refer to your operating system documentation for the range of permitted dates.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETDAT, GETTIM, SETTIM

Example

 USE DFLIB
 LOGICAL(4) success
 success = SETDAT(INT2(1997+1), INT2(2*3), INT2(30))
 END

SETENVQQ

Run-Time Function: Sets the value of an existing environment variable, or adds and sets a new
environment variable.

Module: USE DFLIB

Syntax

result = SETENVQQ (varname=value)

varname = value
(Input) Character*(*). String containing both the name and the value of the variable to be
added or modified. Must be in the form: varname = value, where varname is the name of an
environment variable and value is the value being assigned to it.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Environment variables define the environment in which a program executes. For example, the LIB
environment variable defines the default search path for libraries to be linked with a program.

SETENVQQ deletes any terminating blanks in the string. Although the equal sign (=) is an illegal
character within an environment value, you can use it to terminate value so that trailing blanks are

SETENVQQ Page 23 of 96

preserved. For example, the string PATH= =value’.

You can use SETENVQQ to remove an existing variable by giving a variable name followed by an
equal sign with no value. For example, LIB= removes the variable LIB from the list of environment
variables. If you specify a value for a variable that already exists, its value is changed. If the variable
does not exist, it is created.

SETENVQQ affects only the environment that is local to the current process. You cannot use it to
modify the command-level environment. When the current process terminates, the environment
reverts to the level of the parent process. In most cases, this is the operating system level. However,
you can pass the environment modified by SETENVQQ to any child process created by RUNQQ.
These child processes get new variables and/or values added by SETENVQQ.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETENVQQ

Example

 USE DFLIB
 LOGICAL(4) success
 success = SETENVQQ("PATH=c:\mydir\tmp")
 success = &
 SETENVQQ("LIB=c:\mylib\bessel.lib;c:\math\difq.lib")
 END

SETERRORMODEQQ

Run-Time Subroutine: Sets the prompt mode for critical errors that by default generate system
prompts.

Module: USE DFLIB

Syntax

CALL SETERRORMODEQQ (pmode)

pmode
(Input) LOGICAL(4). Flag that determines whether a prompt is displayed when a critical error
occurs.

Certain I/O errors cause the system to display an error prompt. For example, attempting to write to a
disk drive with the drive door open generates an "Abort, Retry, Ignore" message. When the system
starts up, system error prompting is enabled by default (pmode = .TRUE.). You can also enable
system error prompts by calling SETERRORMODEQQ with pmode set to ERR$HARDPROMPT
(defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory).

If prompt mode is turned off, a critical error that by default causes a system prompt will not cause a

SETERRORMODEQQ Page 24 of 96

system prompt. Erroneous I/O statements such as OPEN, READ, and WRITE fail immediately
instead of being interrupted with prompts. This allows you to intercept failures in the I/O statement
(by setting ERR=errlabel, for example, where errlabel designates an executable statement) and to
take a different action than that requested by the system prompt, such as opening a temporary file,
giving a more informative error message, or exiting. You can turn off prompt mode by setting pmode
to .FALSE. or to the constant ERR$HARDFAIL (defined in DFLIB.F90 in the \DF98\INCLUDE
subdirectory).

Note that SETERRORMODEQQ affects only errors that generate a system prompt. It does not
affect other I/O errors, such as writing to a nonexistent file or attempting to open a nonexistent file
with STATUS=’OLD’.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

 !PROGRAM 1
 ! DRIVE B door open
 OPEN (10, FILE = ’B:\NOFILE.DAT’, ERR = 100)
 ! Generates a system prompt error here and waits for the user
 ! to respond to the prompt before continuing
 100 WRITE(*,*) ’ Continuing’
 END

 ! PROGRAM 2
 ! DRIVE B door open
 USE DFLIB
 CALL SETERRORMODEQQ(.FALSE.)
 OPEN (10, FILE = ’B:\NOFILE.DAT’, ERR = 100)
 ! Causes the statement at label 100 to execute
 ! without system prompt
 100 WRITE(*,*) ’ Drive B: not available, opening &
 &alternative drive.’
 OPEN (10, FILE = ’C:\NOFILE.DAT’)
 END

SETEXITQQ

QuickWin Function: Sets a QuickWin application’s exit behavior.

Module: USE DFLIB

Syntax

result = SETEXITQQ (exitmode)

exitmode
(Input) INTEGER(4). Determines the program exit behavior. The following exit parameters are
defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory):

n QWIN$EXITPROMPT: Displays the following message box:

SETEXITQQ Page 25 of 96

"Program exited with exit status X. Exit Window?"

where X is the exit status from the program. If Yes is entered, the application closes the
window and terminates. If No is entered, the dialog box disappears and you can
manipulate the windows as usual. You must then close the window manually.

n QWIN$EXITNOPERSIST: Terminates the application without displaying a message
box.

n QWIN$EXITPERSIST: Leaves the application open without displaying a message box.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The default for both QuickWin and Standard Graphics applications is QWIN$EXITPROMPT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETEXITQQ, Using QuickWin

Example

 ! Build as QuickWin Ap
 USE DFLIB
 INTEGER(4) exmode, result

 WRITE(*,’(1X,A,/)’) ’Please enter the exit mode 1, 2 &
 or 3 ’
 READ(*,*) exmode
 SELECT CASE (exmode)
 CASE (1)
 result = SETEXITQQ(QWIN$EXITPROMPT)
 CASE (2)
 result = SETEXITQQ(QWIN$EXITNOPERSIST)
 CASE (3)
 result = SETEXITQQ(QWIN$EXITPERSIST)
 CASE DEFAULT
 WRITE(*,*) ’Invalid option - checking for bad &
 return’
 IF(SETEXITQQ(exmode) .NE. -1) THEN
 WRITE(*,*) ’Error not returned’
 ELSE
 WRITE(*,*) ’Error code returned’
 ENDIF
 END SELECT
 END

SET_EXPONENT

Elemental Intrinsic Function (Generic): Returns the value of the exponent part (of the model for the
argument) set to a specified value.

Syntax

SET_EXPONENT Page 26 of 96

result = SET_EXPONENT (x, i)

x
(Input) Must be of type real.

i
(Input) Must be of type integer.

Results:

The result type is the same as x. The result has the value x x bi-e. Parameters b and e are defined in
Model for Real Data. If x has the value zero, the result is zero.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EXPONENT, Data Representation Models

Example

If 3.0 is a REAL(4) value, SET_EXPONENT (3.0, 1) has the value 1.5.

SETFILEACCESSQQ

Run-Time Function: Sets the file access mode for a specified file.

Module: USE DFLIB

Syntax

result = SETFILEACCESSQQ (filename, access)

filename
(Input) Character*(*). Name of a file to set access for.

access
(Input) INTEGER(4). Constant that sets the access. Can be any combination of the following
flags, combined by an inclusive OR (such as IOR or OR):

n FILE$ARCHIVE: Marked as having been copied to a backup device.
n FILE$HIDDEN: Hidden. The file does not appear in the directory list that you can

request from the command console.
n FILE$NORMAL: No special attributes (default).
n FILE$READONLY: Write-protected. You can read the file, but you cannot make

changes to it.
n FILE$SYSTEM: Used by the operating system.

SETFILEACCESSQQ Page 27 of 96

The flags are defined in module DFLIB.F90 in the \DF98\INCLUDE subdirectory.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

To set the access value for a file, add the constants representing the appropriate access.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETFILEINFOQQ

Example

 USE DFLIB
 INTEGER(4) permit
 LOGICAL(4) result

 permit = 0 ! clear permit
 permit = FILE$READONLY + FILE$HIDDEN
 result = SETFILEACCESSQQ (’formula.f90’, permit)
 END

SETFILETIMEQQ

Run-Time Function: Sets the modification time for a specified file.

Module: USE DFLIB

Syntax

result = SETFILETIMEQQ (filename, timedate)

filename
(Input) Character*(*). Name of a file.

timedate
(Input) INTEGER(4). Time and date information, as packed by PACKTIMEQQ.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The modification time is the time the file was last modified and is useful for keeping track of
different versions of the file. The process that calls SETFILETIMEQQ must have write access to
the file; otherwise, the time cannot be changed. If you set timedate to FILE$CURTIME (defined in
DFLIB.F90 in the \DF98\INCLUDE subdirectory), SETFILETIMEQQ sets the modification time to

SETFILETIMEQQ Page 28 of 96

the current system time.

If the function fails, call GETLASTERRORQQ to determine the reason, which can be one of the
following:

Error Meaning

ERR$ACCESS The path specifies a directory or a read-only file.

ERR$INVAL Invalid argument; the timedate argument is invalid.

ERR$MFILE Too many open files (the file must be opened to change its modification time).

ERR$NOENT File or path not found.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PACKTIMEQQ, UNPACKTIMEQQ, GETLASTERRORQQ

Example

 USE DFLIB
 INTEGER(2) day, month, year
 INTEGER(2) hour, minute, second, hund
 INTEGER(4) timedate
 LOGICAL(4) result

 CALL GETDAT(year, month, day)
 CALL GETTIM(hour, minute, second, hund)
 CALL PACKTIMEQQ (timedate, year, month, day, &
 hour, minute, second)
 result = SETFILETIMEQQ(’myfile.dat’, timedate)
 END

SETFILLMASK

Graphics Subroutine: Sets the current fill mask to a new pattern.

Module: USE DFLIB

Syntax

CALL SETFILLMASK (mask)

mask
(Input) INTEGER(1). One-dimensional array of length 8.

There are 8 bytes in mask, and each of the 8 bits in each byte represents a pixel, creating an 8x8
pattern. The first element (byte) of mask becomes the top 8 bits of the pattern, and the eighth element

SETFILLMASK Page 29 of 96

(byte) of mask becomes the bottom 8 bits.

During a fill operation, pixels with a bit value of 1 are set to the current graphics color, while pixels
with a bit value of zero are set to the current background color. The current graphics color is set with
SETCOLORRGB or SETCOLOR. The 8-byte mask is replicated over the entire fill area. If no fill
mask is set (with SETFILLMASK), or if the mask is all ones, solid current color is used in fill
operations.

The fill mask controls the fill pattern for graphics routines (FLOODFILLRGB, PIE, ELLIPSE,
POLYGON, and RECTANGLE).

To change the current fill mask, determine the array of bytes that corresponds to the desired bit
pattern and set the pattern with SETFILLMASK, as in the following example.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: ELLIPSE, FLOODFILLRGB, GETFILLMASK, PIE, POLYGON, RECTANGLE

Example

This program draws six rectangles, each with a different fill mask, as shown below.

 ! Build as QuickWin or Standard Graphics Ap.
 USE DFLIB

 INTEGER(1), TARGET :: style1(8) &
 /#18,#18,#18,#18,#18,#18,#18,#18/
 INTEGER(1), TARGET :: style2(8) &
 /#08,#08,#08,#08,#08,#08,#08,#08/
 INTEGER(1), TARGET :: style3(8) &
 /#18,#00,#18,#18,#18,#00,#18,#18/
 INTEGER(1), TARGET :: style4(8) &
 /#00,#08,#00,#08,#08,#08,#08,#08/
 INTEGER(1), TARGET :: style5(8) &
 /#18,#18,#00,#18,#18,#00,#18,#18/
 INTEGER(1), TARGET :: style6(8) &
 /#08,#00,#08,#00,#08,#00,#08,#00/
 INTEGER(1) oldstyle(8) ! Placeholder for old style
 INTEGER loop
 INTEGER(1), POINTER :: ptr(:)

SETFILLMASK Page 30 of 96

 CALL GETFILLMASK(oldstyle)
 ! Make 6 rectangles, each with a different fill
 DO loop = 1, 6
 SELECT CASE (loop)
 CASE (1)
 ptr => style1
 CASE (2)
 ptr => style2
 CASE (3)
 ptr => style3
 CASE (4)
 ptr => style4
 CASE (5)
 ptr => style5
 CASE (6)
 ptr => style6
 END SELECT
 CALL SETFILLMASK(ptr)
 status = RECTANGLE($GFILLINTERIOR,INT2(loop*40+5), &
 INT2(90),INT2((loop+1)*40), INT2(110))
 END DO

 CALL SETFILLMASK(oldstyle) ! Restore old style
 READ (*,*) ! Wait for ENTER to be
 ! pressed
 END

Figure: Output of Program SETFILL.FOR

SETFONT

Graphics Function: Finds a single font that matches a specified set of characteristics and makes it
the current font used by the OUTGTEXT function.

Module: USE DFLIB

Syntax

result = SETFONT (options)

options
(Input) Character*(*). String describing font characteristics (see below for details).

Results:

The result type is INTEGER(2). The result is the index number (x as used in the nx option) of the font
if successful; otherwise, -1.

The SETFONT function searches the list of available fonts for a font matching the characteristics

SETFONT Page 31 of 96

specified in options. If a font matching the characteristics is found, it becomes the current font. The
current font is used in all subsequent calls to the OUTGTEXT function. There can be only one
current font.

The options argument consists of letter codes, as follows, that describe the desired font. The options
parameter is not case sensitive or position sensitive.

t’fontname’ Name of the desired typeface. It can be any installed font.

hy Character height, where y is the number of pixels.

wx Select character width, where x is the number of pixels.

f Select only a fixed-space font (do not use with the p characteristic).

p Select only a proportional-space font (do not use with the f characteristic).

v Select only a vector-mapped font (do not use with the r characteristic). In Windows
NT, Roman, Modern, and Script are examples of vector-mapped fonts, also called
plotter fonts. True Type fonts (for example, Arial, Symbol, and Times New Roman)
are not vector-mapped.

r Select only a raster-mapped (bitmapped) font (do not use with the v characteristic). In
Windows NT, Courier, Helvetica, and Palatino are examples of raster-mapped fonts,
also called screen fonts. True Type fonts are not raster-mapped.

e Select the bold text format. This parameter is ignored if the font does not allow the
bold format.

u Select the underline text format. This parameter is ignored if the font does not allow
underlining.

i Select the italic text format. This parameter is ignored if the font does not allow
italics.

b Select the font that best fits the other parameters specified.

nx Select font number x, where x is less than or equal to the value returned by the
INTIALIZEFONTS function.

You can specify as many options as you want, except with nx, which should be used alone. If you
specify options that are mutually exclusive (such as the pairs f/p or r/v), the SETFONT function
ignores them. There is no error detection for incompatible parameters used with nx.

If the b option is specified and at least one font is initialized, SETFONT sets a font and returns 0 to
indicate success.

In selecting a font, the SETFONT routine uses the following criteria, rated from highest precedence
to lowest:

SETFONT Page 32 of 96

1. Pixel height
2. Typeface
3. Pixel width
4. Fixed or proportional font

You can also specify a pixel width and height for fonts. If you choose a nonexistent value for either
and specify the b option, SETFONT chooses the closest match.

A smaller font size has precedence over a larger size. If you request Arial 12 with best fit, and only
Arial 10 and Arial 14 are available, SETFONT selects Arial 10.

If you choose a nonexistent value for pixel height and width, the SETFONT function applies a
magnification factor to a vector-mapped font to obtain a suitable font size. This automatic
magnification does not apply if you specify the r option (raster-mapped font), or if you request a
specific typeface and do not specify the b option (best-fit).

If you specify the nx parameter, SETFONT ignores any other specified options and supplies only the
font number corresponding to x.

If a height is given, but not a width, or vice versa, SETFONT computes the missing value to preserve
the correct font proportions.

The font functions affect only OUTGTEXT and the current graphics position; no other Fortran
Graphics Library output functions are affected by font usage.

For each window you open, you must call INITIALIZEFONTS before calling SETFONT.
INITIALIZEFONTS needs to be executed after each new child window is opened in order for a
subsequent SETFONT call to be successful.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETFONTINFO, GETGTEXTEXTENT, GRSTATUS, OUTGTEXT,
INITIALIZEFONTS, SETGTEXTROTATION

Example

 ! Build as a Graphics ap.
 USE DFLIB
 INTEGER(2) fontnum, numfonts
 TYPE (xycoord) pos
 numfonts = INITIALIZEFONTS ()
 ! Set typeface to Arial, character height to 18,
 ! character width to 10, and italic
 fontnum = SETFONT (’t’’Arial’’h18w10i’)
 CALL MOVETO (INT2(10), INT2(30), pos)
 CALL OUTGTEXT(’Demo text’)
 END

SETGTEXTROTATION Page 33 of 96

SETGTEXTROTATION

Graphics Subroutine: Sets the orientation angle of the font text output in degrees. The current
orientation is used in calls to OUTGTEXT.

Module: USE DFLIB

Syntax

CALL SETGTEXTROTATION (degrees)

degrees
(Input) INTEGER(4). Angle of orientation, in tenths of degrees, of the font text output.

The orientation of the font text output is set in tenths of degrees. Horizontal is 0°, and angles increase
counterclockwise so that 900 (90°) is straight up, 1800 (180°) is upside down and left, 2700 (270°) is
straight down, and so forth. If the user specifies a value greater than 3600 (360°), the subroutine takes
a value equal to:

MODULO (user-specified tenths of degrees, 3600)

Although SETGTEXTROTATION accepts arguments in tenths of degrees, only increments of one
full degree differ visually from each other on the screen.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETGTEXTROTATION

Example

 ! Build as a Graphics ap.
 USE DFLIB
 INTEGER(2) fontnum, numfonts
 INTEGER(4) oldcolor, deg
 TYPE (xycoord) pos
 numfonts = INITIALIZEFONTS ()
 fontnum = SETFONT (’t’’Arial’’h18w10i’)
 CALL MOVETO (INT2(10), INT2(30), pos)
 CALL OUTGTEXT(’Straight text’)
 deg = -1370
 CALL SETGTEXTROTATION(deg)
 oldcolor = SETCOLORRGB(#008080)
 CALL OUTGTEXT(’Slanted text’)
 END

SETLINESTYLE

Graphics Subroutine: Sets the current line style to a new line style.

SETLINESTYLE Page 34 of 96

Module: USE DFLIB

Syntax

CALL SETLINESTYLE (mask)

mask
(Input) INTEGER(2). Desired Quickwin line-style mask. (See the table below.)

The mask is mapped to the style that most closly equivalences the the percentage of the bits in
the mask that are set. The style produces lines that cover a certain percentage of the pixels in
that line.

SETLINESTYLE sets the style used in drawing a line. You can choose from the following styles:

QuickWin Mask Internal Windows Style Selection Criteria Appearance

0xFFFF PS_SOLID 16 bits on ____________

0xEEEE PS_DASH 11 to 15 bits on ----------------

0xECEC PS_DASHDOT 10 bits on -.-.-.-.-.-.-.-.-.-.

0xECCC PS_DASHDOTDOT 9 bits on -..-..-..-..-..-..-..

0xAAAA PS_DOT 1 to 8 bits on

0x0000 PS_NULL 0 bits on

SETLINESTYLE affects the drawing of straight lines as in LINETO, POLYGON, and
RECTANGLE, but not the drawing of curved lines as in ARC, ELLIPSE, or PIE.

The current graphics color is set with SETCOLORRGB or SETCOLOR. SETWRITEMODE
affects how the line is displayed.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETLINESTYLE, GRSTATUS, LINETO, POLYGON, RECTANGLE, SETCOLOR,
SETWRITEMODE

Example

! Build as a Graphics ap.
 USE DFLIB
 INTEGER(2) status, style
 TYPE (xycoord) xy

SETLINESTYLE Page 35 of 96

 style = #FFFF
 CALL SETLINESTYLE(style)
 CALL MOVETO(INT2(50), INT2(50), xy)
 status = LINETO(INT2(300), INT2(300))
 END

SETMESSAGEQQ

QuickWin Subroutine: Changes QuickWin status messages, state messages, and dialog box
messages.

Module: USE DFLIB

Syntax

CALL SETMESSAGEQQ (msg, id)

msg
(Input) Character*(*). Message to be displayed. Must be a regular Fortran string, not a C string.
Can include multibyte characters.

id
(Input) INTEGER(4). Identifier of the message to be changed. The following table shows the
messages that can be changed and their identifiers:

Id Message

QWIN$MSG_TERM "Program terminated with exit code"

QWIN$MSG_EXITQ "\nExit Window?"

QWIN$MSG_FINISHED "Finished"

QWIN$MSG_PAUSED "Paused"

QWIN$MSG_RUNNING "Running"

QWIN$MSG_FILEOPENDLG "Text Files(*.txt), *.txt; Data Files(*.dat), *.dat;
All Files(*.*), *.*;"

QWIN$MSG_BMPSAVEDLG "Bitmap Files(*.bmp), *.bmp; All Files(*.*), *.*;"

QWIN$MSG_INPUTPEND "Input pending in"

QWIN$MSG_PASTEINPUTPEND "Paste input pending"

QWIN$MSG_MOUSEINPUTPEND "Mouse input pending in"

QWIN$MSG_SELECTTEXT "Select Text in"

QWIN$MSG_SELECTGRAPHICS "Select Graphics in"

SETMESSAGEQQ Page 36 of 96

QWIN$MSG_PRINTABORT "Error! Printing Aborted."

QWIN$MSG_PRINTLOAD "Error loading printer driver"

QWIN$MSG_PRINTNODEFAULT "No Default Printer."

QWIN$MSG_PRINTDRIVER "No Printer Driver."

QWIN$MSG_PRINTINGERROR "Print: Printing Error."

QWIN$MSG_PRINTING "Printing"

QWIN$MSG_PRINTCANCEL "Cancel"

QWIN$MSG_PRINTINPROGRESS "Printing in progress..."

QWIN$MSG_HELPNOTAVAIL "Help Not Available for Menu Item"

QWIN$MSG_TITLETEXT "Graphic"

Note that QWIN$MSG_FILEOPENDLG and QWIN$MSG_BMPSAVEDLG control the
text in file choosing dialog boxes and have the following syntax:

"file description, file designation"

You can change any string produced by QuickWin by calling SETMESSAGEQQ with the
appropriate id. This includes status messages displayed at the bottom of a QuickWin application,
state messages (such as "Paused"), and dialog box messages. These messages can include multibyte
characters. (For more information on multibyte characters, see Using National Language Support
Routines in the Programmer’s Guide.) To change menu messages, use
MODIFYMENUSTRINGQQ.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: MODIFYMENUSTRINGQQ

Example

 USE DFLIB
 print*, "Hello"
 CALL SETMESSAGEQQ(’Changed exit text’, QWIN$MSG_EXITQ)

SETPIXEL, SETPIXEL_W

Graphics Function: Sets a pixel at a specified location to the current graphics color index.

Module: USE DFLIB

SETPIXEL, SETPIXEL_W Page 37 of 96

Syntax

result = SETPIXEL (x, y)
result = SETPIXEL_W (wx, wy)

x, y
(Input) INTEGER(2). Viewport coordinates for target pixel.

wx, wy
(Input) REAL(8). Window coordinates for target pixel.

Results:

The result type is INTEGER(2). The result is the previous color index of the target pixel if successful;
otherwise, -1 (for example, if the pixel lies outside the clipping region).

SETPIXEL sets the specified pixel to the current graphics color index. The current graphics color
index is set with SETCOLOR and retrieved with GETCOLOR. The non-RGB color functions
(such as SETCOLOR and SETPIXELS) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some
display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To
access any available color, you need to specify an explicit Red-Green-Blue(RGB) value with an RGB
color function, rather than a palette index with a non-RGB color function. SETPIXELRGB and
SETPIXELRGB_W give access to the full color capacity of the system by using direct color values
rather than indexes to a palette.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETPIXELRGB, GETPIXEL, SETPIXELS, GETPIXELS, GETCOLOR, SETCOLOR

Example

 ! Build as a Graphics ap.
 USE DFLIB
 INTEGER(2) status, x, y
 status = SETCOLOR(INT2(2))
 x = 10
 ! Draw pixels.
 DO y = 50, 389, 3
 status = SETPIXEL(x, y)
 x = x + 2
 END DO
 READ (*,*) ! Wait for ENTER to be pressed
 END

SETPIXELRGB, SETPIXELRGB_W

SETPIXELRGB, SETPIXELRGB_W Page 38 of 96

Graphics Function: Sets a pixel at a specified location to the specified Red-Green-Blue (RGB) color
value.

Module: USE DFLIB

Syntax

result = SETPIXELRGB (x, y, color)
result = SETPIXELRGB_W (wx, wy, color)

x, y
(Input) INTEGER(2). Viewport coordinates for target pixel.

wx, wy
(Input) REAL(8). Window coordinates for target pixel.

color
(Input) INTEGER(4). RGB color value to set the pixel to. Range and result depend on the
system’s display adapter.

Results:

The result type is INTEGER(4). The result is the previous RGB color value of the pixel.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you specify with SETPIXELRGB or SETPIXELRGB_W, red is
the rightmost byte, followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

If any of the pixels are outside the clipping region, those pixels are ignored.

SETPIXELRGB (and the other RGB color selection functions such as SETPIXELSRGB,
SETCOLORRGB) sets the color to a value chosen from the entire available range. The non-RGB
color functions (such as SETPIXELS and SETCOLOR) use color indexes rather than true color
values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some
display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To
access any available color, you need to specify an explicit RGB value with an RGB color function,
rather than a palette index with a non-RGB color function.

SETPIXELRGB, SETPIXELRGB_W Page 39 of 96

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETPIXELRGB, GETPIXELSRGB, SETCOLORRGB, SETPIXELSRGB

Example

 ! Build as a Graphics ap.
 USE DFLIB
 INTEGER(2) x, y
 INTEGER(4) color
 DO i = 10, 30, 10
 SELECT CASE (i)
 CASE(10)
 color = #0000FF
 CASE(20)
 color = #00FF00
 CASE (30)
 color = #FF0000
 END SELECT
 ! Draw pixels.
 DO y = 50, 180, 2
 status = SETPIXELRGB(x, y, color)
 x = x + 2
 END DO
 END DO
 READ (*,*) ! Wait for ENTER to be pressed
 END

SETPIXELS

Graphics Subroutine: Sets the color indexes of multiple pixels.

Module: USE DFLIB

Syntax

CALL SETPIXELS (n, x, y, color)

n
(Input) INTEGER(4). Number of pixels to set. Sets the number of elements in the other
arguments.

x, y
(Input) INTEGER(2). Parallel arrays containing viewport coordinates of pixels to set.

color
(Input) INTEGER(2). Array containing color indexes to set the pixels to.

SETPIXELS sets the pixels specified in the arrays x and y to the color indexes in color. These arrays
are parallel: the first element in each of the three arrays refers to a single pixel, the second element

SETPIXELS Page 40 of 96

refers to the next pixel, and so on.

If any of the pixels are outside the clipping region, those pixels are ignored. Calls to SETPIXELS
with n less than 1 are also ignored. SETPIXELS is a much faster way to set multiple pixel color
indexes than individual calls to SETPIXEL.

Unlike SETPIXELS, SETPIXELSRGB gives access to the full color capacity of the system by
using direct color values rather than indexes to a palette. The non-RGB color functions (such as
SETPIXELS and SETCOLOR) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some
display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To
access any available color, you need to specify an explicit RGB value with an RGB color function,
rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETPIXELS, SETPIXEL, SETPIXELSRGB

Example

 ! Build as a Graphics ap.
 USE DFLIB
 INTEGER(2) color(9)
 INTEGER(2) x(9), y(9), i
 DO i = 1, 9
 x(i) = 20 * i
 y(i) = 10 * i
 color(i) = INT2(i)
 END DO
 CALL SETPIXELS(9, x, y, color)
 END

SETPIXELSRGB

Graphics Subroutine: Sets multiple pixels to the given Red-Green-Blue (RGB) color.

Module: USE DFLIB

Syntax

CALL SETPIXELSRGB (n, x, y, color)

n
(Input) INTEGER(4). Number of pixels to be changed. Determines the number of elements in
arrays x and y.

x, y
(Input) INTEGER(2). Parallel arrays containing viewport coordinates of the pixels to set.

SETPIXELSRGB Page 41 of 96

color
(Input) INTEGER(4). Array containing the RGB color values to set the pixels to. Range and
result depend on the system’s display adapter.

SETPIXELSRGB sets the pixels specified in the arrays x and y to the RGB color values in color.
These arrays are parallel: the first element in each of the three arrays refers to a single pixel, the
second element refers to the next pixel, and so on.

In each RGB color value, each of the three color values, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you set with SETPIXELSRGB, red is the rightmost byte,
followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

A good use for SETPIXELSRGB is as a buffering form of SETPIXELRGB, which can improve
performance substantially. The example code shows how to do this.

If any of the pixels are outside the clipping region, those pixels are ignored. Calls to
SETPIXELSRGB with n less than 1 are also ignored.

SETPIXELSRGB (and the other RGB color selection functions such as SETPIXELRGB and
SETCOLORRGB) sets colors to values chosen from the entire available range. The non-RGB color
functions (such as SETPIXELS and SETCOLOR) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some
display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To
access any available color, you need to specify an explicit RGB value with an RGB color function,
rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETPIXELSRGB, SETPIXELRGB, GETPIXELRGB, SETPIXELS

Example

 ! Buffering replacement for SetPixelRGB and
 ! SetPixelRGB_W. This can improve performance by
 ! doing batches of pixels together.

 USE DFLIB
 PARAMETER (I$SIZE = 200)

SETPIXELSRGB Page 42 of 96

 INTEGER(4) bn, bc(I$SIZE), status
 INTEGER(2) bx(I$SIZE),by(I$SIZE)

 bn = 0
 DO i = 1, I$SIZE
 bn = bn + 1
 bx(bn) = i
 by(bn) = i
 bc(bn) = GETCOLORRGB()
 status = SETCOLORRGB(bc(bn)+1)
 END DO
 CALL SETPIXELSRGB(bn,bx,by,bc)
 END

SETTEXTCOLOR

Graphics Function: Sets the current text color index.

Module: USE DFLIB

Syntax

result = SETTEXTCOLOR (index)

index
(Input) INTEGER(2). Color index to set the text color to.

Results:

The result type is INTEGER(2). The result is the previous text color index.

SETTEXTCOLOR sets the current text color index. The default value is 15, which is associated
with white unless the user remaps the palette. GETTEXTCOLOR returns the text color index set by
SETTEXTCOLOR. SETTEXTCOLOR affects text output with OUTTEXT, WRITE, and
PRINT.

The background color index is set with SETBKCOLOR and returned with GETBKCOLOR. The
color index of graphics over the background color is set with SETCOLOR and returned with
GETCOLOR. These non-RGB color functions use color indexes, not true color values, and limit the
user to colors in the palette, at most 256. To access all system colors, use SETTEXTCOLORRGB,
SETBKCOLORRGB, and SETCOLORRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETTEXTCOLOR, REMAPPALETTERGB, SETCOLOR, SETTEXTCOLORRGB

Example

 ! Build as a Graphics ap.
 USE DFLIB

SETTEXTCOLOR Page 43 of 96

 INTEGER(2) oldtc
 oldtc = SETTEXTCOLOR(INT2(2)) ! green
 WRITE(*,*) "hello, world"
 END

SETTEXTCOLORRGB

Graphics Function: Sets the current text color to the specified Red-Green-Blue (RGB) value.

Module: USE DFLIB

Syntax

result = SETTEXTCOLORRGB (color)

color
(Input) INTEGER(4). RGB color value to set the text color to. Range and result depend on the
system’s display adapter.

Results:

The result type is INTEGER(4). The result is the previous text RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you specify with SETTEXTCOLORRGB, red is the rightmost
byte, followed by green and blue. The RGB value’s internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum
for each of the three components. For example, #0000FF yields full-intensity red, #00FF00 full-
intensity green, #FF0000 full-intensity blue, and #FFFFFF full-intensity for all three, resulting in
bright white.

SETTEXTCOLORRGB sets the current text RGB color. The default value is #00FFFFFF, which is
full-intensity white. SETTEXTCOLORRGB sets the color used by OUTTEXT, WRITE, and
PRINT. It does not affect the color of text output with the OUTGTEXT font routine. Use
SETCOLORRGB to change the color of font output.

SETBKCOLORRGB sets the RGB color value of the current background for both text and graphics.
SETCOLORRGB sets the RGB color value of graphics over the background color, used by the
graphics functions such as ARC, FLOODFILLRGB, and OUTGTEXT.

SETTEXTCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB and
SETCOLORRGB) sets the color to a value chosen from the entire available range. The non-RGB
color functions (SETTEXTCOLOR, SETBKCOLOR, and SETCOLOR) use color indexes rather
than true color values.

SETTEXTCOLORRGB Page 44 of 96

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some
display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To
access any available color, you need to specify an explicit RGB value with an RGB color function,
rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: SETBKCOLORRGB, SETCOLORRGB, GETTEXTCOLORRGB,
GETWINDOWCONFIG, OUTTEXT

Example

 ! Build as a Graphics ap.
 USE DFLIB
 INTEGER(4) oldtc

 oldtc = SETTEXTCOLORRGB(#000000FF)
 WRITE(*,*) ’I am red’
 oldtc = SETTEXTCOLORRGB(#0000FF00)
 CALL OUTTEXT (’I am green’//CHAR(13)//CHAR(10))
 oldtc = SETTEXTCOLORRGB(#00FF0000)
 PRINT *, ’I am blue’
 END

SETTEXTPOSITION

Graphics Subroutine: Sets the current text position to a specified position relative to the current text
window.

Module: USE DFLIB

Syntax

CALL SETTEXTPOSITION (row, column, t)

row
(Input) INTEGER(2). New text row position.

column
(Input) INTEGER(2). New text column position.

t
(Output) Derived type rccoord. Previous text position. The derived type rccoord is defined in
DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

 TYPE rccoord
 INTEGER(2) row ! Row coordinate
 INTEGER(2) col ! Column coordinate
 END TYPE rccoord

SETTEXTPOSITION Page 45 of 96

Subsequent text output with the OUTTEXT function (as well as standard console I/O statements,
such as PRINT and WRITE) begins at the point (row, column).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: CLEARSCREEN, GETTEXTPOSITION, OUTTEXT, SCROLLTEXTWINDOW,
SETTEXTWINDOW, WRAPON

Example

 USE DFLIB
 TYPE (rccoord) curpos

 WRITE(*,*) "Original text position"
 CALL SETTEXTPOSITION (INT2(6), INT2(5), curpos)
 WRITE (*,*) ’New text position’
 END

SETTEXTWINDOW

Graphics Subroutine: Sets the current text window.

Module: USE DFLIB

Syntax

CALL SETTEXTWINDOW (r1, c1, r2, c2)

r1, c1
(Input) INTEGER(2). Row and column coordinates for upper-left corner of the text window.

r2, c2
(Input) INTEGER(2). Row and column coordinates for lower-right corner of the text window.

SETTEXTWINDOW specifies a window in row and column coordinates where text output to the
screen using OUTTEXT, WRITE, or PRINT will be displayed. You set the text location within this
window with SETTEXTPOSITION.

Text is output from the top of the window down. When the window is full, successive lines overwrite
the last line.

SETTEXTWINDOW does not affect the output of the graphics text routine OUTGTEXT. Use the
SETVIEWPORT function to control the display area for graphics output.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

SETTEXTWINDOW Page 46 of 96

See Also: GETTEXTPOSITION, GETTEXTWINDOW, GRSTATUS, OUTTEXT,
SCROLLTEXTWINDOW, SETTEXTPOSITION, SETVIEWPORT, WRAPON

Example

 USE DFLIB
 TYPE (rccoord) curpos

 CALL SETTEXTWINDOW(INT2(5), INT2(1), INT2(7), &
 INT2(40))
 CALL SETTEXTPOSITION (INT2(5), INT2(5), curpos)
 WRITE(*,*) "Only two lines in this text window"
 WRITE(*,*) "so this line will be overwritten"
 WRITE(*,*) "by this line"
 END

SETTIM

Run-Time Function: Sets the system time in your programs.

Module: USE DFLIB

Syntax

result = SETTIM (ihr, imin, isec, i100th)

ihr
(Input) INTEGER(2). Hour (0 - 23).

imin
(Input) INTEGER(2). Minute (0 - 59).

isec
(Input) INTEGER(2). Second (0 - 59).

i100th
(Input) INTEGER(2). Hundredth of a second (0 - 99).

Results:

The result type is LOGICAL(4). The result is .TRUE. if the system time is changed; .FALSE. if no
change is made.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: GETDAT, GETTIM, SETDAT

Example

SETTIM Page 47 of 96

 USE DFLIB
 LOGICAL(4) success
 success = SETTIM(INT2(21),INT2(53+3),&
 INT2(14*2),INT2(88))
 END

SETVIEWORG

Graphics Subroutine: Moves the viewport-coordinate origin (0, 0) to the specified physical point.

Module: USE DFLIB

Syntax

CALL SETVIEWORG (x, y, t)

x, y
(Input) INTEGER(2). Physical coordinates of new viewport origin.

t
(Output) Derived type xycoord. Physical coordinates of the previous viewport origin. The
derived type xycoord is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as
follows:

 TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
 END TYPE xycoord

The xycoord type variable t, defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory), returns
the physical coordinates of the previous viewport origin.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETCURRENTPOSITION, GETPHYSCOORD, GETVIEWCOORD,
GETWINDOWCOORD, GRSTATUS, SETCLIPRGN, SETVIEWPORT

Example

 USE DFLIB
 TYPE (xycoord) xy

 CALL SETVIEWORG(INT2(30), INT2(30), xy)

SETVIEWPORT

Graphics Subroutine: Redefines the graphics viewport by defining a clipping region in the same
manner as SETCLIPRGN and then setting the viewport-coordinate origin to the upper-left corner of

SETVIEWPORT Page 48 of 96

the region.

Module: USE DFLIB

Syntax

CALL SETVIEWPORT (x1, y1, x2, y2)

x1, y1
(Input) INTEGER(2). Physical coordinates for upper-left corner of viewport.

x2, y2
(Input) INTEGER(2). Physical coordinates for lower-right corner of viewport.

The physical coordinates (x1, y1) and (x2, y2) are the upper-left and lower-right corners of the
rectangular clipping region. Any window transformation done with the SETWINDOW function is
relative to the viewport, not the entire screen.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETVIEWCOORD, GETPHYSCOORD, GRSTATUS, SETCLIPRGN, SETVIEWORG,
SETWINDOW

Example

 USE DFLIB
 INTEGER(2) upx, upy
 INTEGER(2) downx, downy

 upx = 0
 upy = 30
 downx= 250
 downy = 100
 CALL SETVIEWPORT(upx, upy, downx, downy)

SETWINDOW

Graphics Function: Defines a window bound by the specified coordinates.

Module: USE DFLIB

Syntax

result = SETWINDOW (finvert, wx1, wy1, wx2, wy2)

finvert
(Input) LOGICAL(2). Direction of increase of the y-axis. If finvert is .TRUE., the y-axis
increases from the window bottom to the window top (as Cartesian coordinates). If finvert is

SETWINDOW Page 49 of 96

.FALSE., the y-axis increases from the window top to the window bottom (as pixel
coordinates).

wx1, wy1
(Input) REAL(8). Window coordinates for upper-left corner of window.

wx2, wy2
(Input) REAL(8). Window coordinates for lower-right corner of window.

Results:

The result type is INTEGER(2). The result is The result is nonzero if successful; otherwise, 0 (for
example, if the program that calls SETWINDOW is not in a graphics mode).

The SETWINDOW function determines the coordinate system used by all window-relative graphics
routines. Any graphics routines that end in _W (such as ARC_W, RECTANGLE_W, and
LINETO_W) use the coordinate sytem set by SETWINDOW.

Any window transformation done with the SETWINDOW function is relative to the viewport, not
the entire screen.

An arc drawn using inverted window coordinates is not an upside-down version of an arc drawn with
the same parameters in a noninverted window. The arc is still drawn counterclockwise, but the points
that define where the arc begins and ends are inverted.

If wx1 equals wx2 or wy1 equals wy2, SETWINDOW fails.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETWINDOWCOORD, SETCLIPRGN, SETVIEWORG, SETVIEWPORT,
GRSTATUS, ARC_W, LINETO_W, MOVETO_W, PIE_W, POLYGON_W, RECTANGLE_W

Example

 USE DFLIB
 INTEGER(2) status
 LOGICAL(2) invert /.TRUE./
 REAL(8) upx /0.0/, upy /0.0/
 REAL(8) downx /1000.0/, downy /1000.0/
 status = SETWINDOW(invert, upx, upy, downx, downy)

SETWINDOWCONFIG

QuickWin Function: Sets the properties of a child window.

Module: USE DFLIB

Syntax

SETWINDOWCONFIG Page 50 of 96

result = SETWINDOWCONFIG (wc)

wc
(Input) Derived type windowconfig. Contains window properties. The windowconfig derived
type is defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory) as follows:

 TYPE windowconfig
 INTEGER(2) numxpixels ! Number of pixels on x-axis
 INTEGER(2) numypixels ! Number of pixels on y-axis
 INTEGER(2) numtextcols ! Number of text columns
 ! available
 INTEGER(2) numtextrows ! Number of text rows
 ! available
 INTEGER(2) numcolors ! Number of color indexes
 INTEGER(4) fontsize ! Size of default font. Set
 ! to QWIN$EXTENDFONT when using
 ! using multibyte characters, in
 ! which case extendfontsize sets
 ! the sets the font size.
 CHARACTER(80) title ! window title, a C string
 ! The next three parameters support multibyte character
 ! sets (such as Japanese)
 CHARACTER(32) extendfontname ! any non-proportionally
 ! spaced font available on the system
 INTEGER(4) extendfontsize ! takes same values as
 ! fontsize, but used for multibyte
 ! character sets when fontsize is set
 ! to QWIN$EXTENDFONT
 INTEGER(4) extendfontattributes ! font attributes
 ! such as bold and italic for
 ! multibyte character sets
 END TYPE windowconfig

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

If you use SETWINDOWCONFIG to set the variables in windowconfig to - 1, the function sets the
highest resolution possible for your system, given the other fields you specify, if any. You can set the
actual size of the window by specifying parameters that influence the window size: the number of x
and y pixels, the number of rows and columns, and the font size. If you do not call
SETWINDOWCONFIG, the window defaults to the best possible resolution and a font size of
8x16. The number of colors available depends on the video driver used.

If you use SETWINDOWCONFIG, you should specify a value for each field (-1 or your own value
for the numeric fields and a C string for the title, for example, "words of text"C). Using
SETWINDOWCONFIG with only some fields specified can result in useless values for the
unspecified fields.

If you request a configuration that cannot be set, SETWINDOWCONFIG returns .FALSE. and
calculates parameter values that will work and are as close as possible to the requested configuration.
A second call to SETWINDOWCONFIG establishes the adjusted values; for example:

SETWINDOWCONFIG Page 51 of 96

status = SETWINDOWCONFIG(wc)
if (.NOT.status) status = SETWINDOWCONFIG(wc)

If you specify values for all four of the size parameters, numxpixels, numypixel, numtextcols, and
numtextrows, the font size is calculated by dividing these values.The default font is Courier New and
the default font size is 8x16. There is no restriction on font size, except that the window must be large
enough to hold it.

Under Standard Graphics, if the resolution specified matches the resolution of the graphics driver (or
if -1 is specified for the four size variables), the application starts in Full Screen mode with no
window decoration (window decoration includes scroll bars, menu bar, title bar, and message bar) so
that the maximum resolution can be fully used. Otherwise, the application starts in a window. You
can use ALT+ENTER at any time to toggle between the two modes.

Note that if you are in Full Screen mode and the resolution of the window does not match the
resolution of the video driver, graphics output will be slow compared to drawing in a window.

You must call DISPLAYCURSOR($GCURSORON) to make the cursor visible after calling
SETWINDOWCONFIG.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, GETWINDOWCONFIG.

Example

 USE DFLIB
 TYPE (windowconfig) wc
 LOGICAL status /.FALSE./
 ! Set the x & y pixels to 800X600 and font size to 8x12
 wc.numxpixels = 800
 wc.numypixels = 600
 wc.numtextcols = -1
 wc.numtextrows = -1
 wc.numcolors = -1
 wc.title= "This is a test"C
 wc.fontsize = #0008000C
 status = SETWINDOWCONFIG(wc) ! attempt to set configuration with above values
 ! if attempt fails, set with system estimated values
 if (.NOT.status) status = SETWINDOWCONFIG(wc)

SETWINDOWMENUQQ

QuickWin Function: Sets a top-level menu as the menu to which a list of current child window
names is appended.

Module: USE DFLIB

Syntax

SETWINDOWMENUQQ Page 52 of 96

result = SETWINDOWMENUQQ (menuID)

menuID
(Input) INTEGER(4). Identifies the menu to hold the child window names, starting with 1 as
the leftmost menu.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The list of current child window names can appear in only one menu at a time. If the list of windows
is currently in a menu, it is removed from that menu. By default, the list of child windows appears at
the end of the Window menu.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: APPENDMENUQQ, Using QuickWin, Customizing QuickWin Applications

Example

 USE DFLIB
 TYPE (windowconfig) wc
 LOGICAL(4) result, status /.FALSE./
 ! Set title for child window
 wc.numxpixels = -1
 wc.numypixels = -1
 wc.numtextcols = -1
 wc.numtextrows = -1
 wc.numcolors = -1
 wc.fontsize = -1
 wc.title= "I am child window name"C
 if (.NOT.status) status = SETWINDOWCONFIG(wc)

 ! put child window list under menu 3 (View)
 result = SETWINDOWMENUQQ(3)
 END

SETWRITEMODE

Graphics Function: Sets the current logical write mode, which is used when drawing lines with the
LINETO, POLYGON, and RECTANGLE functions.

Module: USE DFLIB

Syntax

result = SETWRITEMODE (wmode)

wmode

SETWRITEMODE Page 53 of 96

(Input) INTEGER(2). Write mode to be set. One of the following symbolic constants (defined
in DFLIB.F90 in the \DF98\INCLUDE subdirectory):

n $GPSET: Causes lines to be drawn in the current graphics color. (Default)
n $GAND: Causes lines to be drawn in the color that is the logical AND of the current

graphics color and the current background color.
n $GOR: Causes lines to be drawn in the color that is the logical OR of the current

graphics color and the current background color.
n $GPRESET: Causes lines to be drawn in the color that is the logical NOT of the current

graphics color.
n $GXOR : Causes lines to be drawn in the color that is the logical exclusive OR (XOR)

of the current graphics color and the current background color.
n In addition, one of the following binary raster operation constants can be used (described in

the online documentation for the WIN32 API SetROP2):
n $GR2_BLACK
n $GR2_NOTMERGEPEN
n $GR2_MASKNOTPEN
n $GR2_NOTCOPYPEN (same as $GPRESET)
n $GR2_MASKPENNOT
n $GR2_NOT
n $GR2_XORPEN (same as $GXOR)
n $GR2_NOTMASKPEN
n $GR2_MASKPEN (same as $GAND)
n $GR2_NOTXORPEN
n $GR2_NOP
n $GR2_MERGENOTPEN
n $GR2_COPYPEN (same as $GPSET)
n $GR2_MERGEPENNOT
n $GR2_MERGEPEN (same as $GOR)
n $GR2_WHITE

Results:

The result type is INTEGER(2). The result is the previous write mode if successful; otherwise, -1.

The current graphics color is set with SETCOLORRGB (or SETCOLOR) and the current
background color is set with SETBKCOLORRGB (or SETBKCOLOR). As an example, suppose
you set the background color to yellow (#00FFFF) and the graphics color to purple (#FF00FF) with
the following commands:

 oldcolor = SETBKCOLORRGB(#00FFFF)
 CALL CLEARSCREEN($GCLEARSCREEN)
 oldcolor = SETCOLORRGB(#FF00FF)

If you then set the write mode with the $GAND option, lines are drawn in red (#0000FF); with the
$GOR option, lines are drawn in white (#FFFFFF); with the $GXOR option, lines are drawn in
turquoise (#FFFF00); and with the $GPRESET option, lines are drawn in green (#00FF00). Setting
the write mode to $GPSET causes lines to be drawn in the graphics color.

SETWRITEMODE Page 54 of 96

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: GETWRITEMODE, GRSTATUS, LINETO, POLYGON, PUTIMAGE, RECTANGLE,
SETCOLOR, SETLINESTYLE

Example

 ! Build as a Graphics ap.
 USE DFLIB
 INTEGER(2) result, oldmode
 INTEGER(4) oldcolor
 TYPE (xycoord) xy

 oldcolor = SETBKCOLORRGB(#00FFFF)
 CALL CLEARSCREEN ($GCLEARSCREEN)
 oldcolor = SETCOLORRGB(#FF00FF)
 CALL MOVETO(INT2(0), INT2(0), xy)
 result = LINETO(INT2(200), INT2(200)) ! purple

 oldmode = SETWRITEMODE($GAND)
 CALL MOVETO(INT2(50), INT2(0), xy)
 result = LINETO(INT2(250), INT2(200)) ! red
 END

SETWSIZEQQ

QuickWin Function: Sets the size and position of a window.

Module: USE DFLIB

Syntax

result = SETWSIZEQQ (unit, winfo)

unit
(Input) INTEGER(4). Specifies the window unit. Unit numbers 0, 5, and 6 refer to the default
startup window only if the program does not explicitly open them with the OPEN statement.
To set the size of the frame window (as opposed to a child window), set unit to the symbolic
constant QWIN$FRAMEWINDOW (defined in DFLIB.F90 in the \DF98\INCLUDE
subdirectory).

winfo
(Input) Derived type qwinfo. Physical coordinates of the window’s upper-left corner, and the
current or maximum height and width of the window’s client area (the area within the frame).
The derived type qwinfo is defined in DFLIB.F90 as follows:

 TYPE QWINFO
 INTEGER(2) TYPE ! request type
 INTEGER(2) X ! x coordinate for upper left
 INTEGER(2) Y ! y coordinate for upper left

SETWSIZEQQ Page 55 of 96

 INTEGER(2) H ! window height
 INTEGER(2) W ! window width
 END TYPE QWINFO

This function’s behavior depends on the value of qwinfo.type, which can be any of the
following:

n QWIN$MIN: Minimizes the window.
n QWIN$MAX: Maximizes the window.
n QWIN$RESTORE: Restores the minimized window to its previous size.
n QWIN$SET: Sets the window’s position and size according to the other values in

qwinfo.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

The position and dimensions of child windows are expressed in units of character height and width.
The position and dimensions of the frame window are expressed in screen pixels.

The height and width specified for a frame window reflects the actual size in pixels of the frame
window including any borders, menus, and status bar at the bottom.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, GETWSIZEQQ.

Example

 USE DFLIB
 LOGICAL(4) result
 INTEGER(2) numfonts, fontnum
 TYPE (qwinfo) winfo
 TYPE (xycoord) pos
 ! Maximize frame window
 winfo.TYPE = QWIN$MAX
 result = SETWSIZEQQ(QWIN$FRAMEWINDOW, winfo)
 ! Maximize child window
 result=SETWSIZEQQ(0, winfo)
 numfonts = INITIALIZEFONTS()
 fontnum = SETFONT (’t’’Arial’’h50w34i’)
 CALL MOVETO (INT2(10), INT2(30), pos)
 CALL OUTGTEXT("BIG Window")
 END

SHAPE

Inquiry Intrinsic Function (Generic): Returns the shape of an array or scalar argument.

Syntax

SHAPE Page 56 of 96

result = SHAPE (source)

source
(Input) Is a scalar or array (of any data type). It must not be an assumed-size array, a
disassociated pointer, or an allocatable array that is not allocated.

Results:

The result is a rank-one default integer array whose size is equal to the rank of source. The value of
the result is the shape of source.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SIZE

Examples

SHAPE (2) has the value of a rank-one array of size zero.

If B is declared as B(2:4, -3:1), then SHAPE (B) has the value (3, 5).

The following shows another example:

 INTEGER VEC(2)
 REAL array(3:10, -1:3)
 VEC = SHAPE(array)
 WRITE(*,*) VEC ! prints 8 5
 END
 !
 ! Check if a mask is conformal with an array
 REAL, ALLOCATABLE :: A(:,:,:)
 LOGICAL, ALLOCATABLE :: MASK(:,:,:)
 INTEGER B(3), C(3)
 LOGICAL conform
 ALLOCATE (A(5, 4, 3))
 ALLOCATE (MASK(3, 4, 5))
 ! Check if MASK and A allocated. If they are, check
 ! that they have the same shape (conform).
 IF(ALLOCATED(A) .AND. ALLOCATED(MASK)) THEN
 B = SHAPE(A); C = SHAPE(MASK)
 IF ((B(1) .EQ. C(1)) .AND. (B(2) .EQ. C(2)) &
 .AND. (B(3) .EQ. C(3))) THEN
 conform = .TRUE.
 ELSE
 conform = .FALSE.
 END IF
 END IF
 WRITE(*,*) conform ! prints F
 END

SHORT

SHORT Page 57 of 96

Portability Function: Converts an INTEGER(4) value into an equivalent INTEGER(2) type.

Module:USE DFPORT

Syntax

result = SHORT (int4)

int4
(Input) INTEGER(4). Value to be converted.

Results:

The result type is INTEGER(2). The result is equal to the lower 16 bits of int4. If the int4 value is
greater than 32,767, the converted INTEGER(2) value is not equal to the original.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INT, TYPE, Portability Library

Example

 USE DFPORT
 INTEGER(4) this_one
 INTEGER(2) that_one
 READ(*,*) this_one
 THAT_ONE = SHORT(THIS_ONE)
 WRITE(*,10) THIS_ONE, THAT_ONE
 10 FORMAT (X," Long integer: ", I16, " Short integer: ", I16)
 END

SIGN

Elemental Intrinsic Function (Generic): Returns the absolute value of the first argument times the
sign of the second argument.

Syntax

result = SIGN (a, b)

a
(Input) Must be of type integer or real.

b
Must have the same type and kind parameters as a.

Results:

SIGN Page 58 of 96

The result type is the same as a. The value of the result is | a | if b >= zero and -| a | if b < zero.

If b is of type real and zero, the value of the result is | a |. However, if the /assume:minus0 compiler
option is specified and the processor can distinguish between positive and negative real zero, the
following occurs:

� If b is positive real zero, the value of the result is |a|.
� If b is negative real zero, the value of the result is -|a|.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IISIGN INTEGER(2) INTEGER(2)

ISIGN 1 INTEGER(4) INTEGER(4)

KISIGN 2 INTEGER(8) INTEGER(8)

SIGN REAL(4) REAL(4)

DSIGN REAL(8) REAL(8)

QSIGN 3 REAL(16) REAL(16)

1 Or JISIGN. For compatibility with older versions of Fortran, ISIGN can also be specified as a generic function.
2 Alpha only
3 VMS and U*X

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ABS

Examples

SIGN (4.0, -6.0) has the value -4.0.

SIGN (-5.0, 2.0) has the value 5.0.

The following shows another example:

 c = SIGN (5.2, -3.1) ! returns -5.2
 c = SIGN (-5.2, -3.1) ! returns -5.2
 c = SIGN (-5.2, 3.1) ! returns 5.2

SIN

SIN Page 59 of 96

Elemental Intrinsic Function (Generic): Produces a sine (with the result in radians).

Syntax

result = SIN (x)

x
(Input) Must be of type real or complex. It must be in radians and is treated as modulo 2*pi. (If
x is of type complex, its real part is regarded as a value in radians.)

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

SIN REAL(4) REAL(4)

DSIN REAL(8) REAL(8)

QSIN 1 REAL(16) REAL(16)

CSIN 2 COMPLEX(4) COMPLEX(4)

CDSIN 3 COMPLEX(8) COMPLEX(8)

1 VMS and U*X
2 The setting of compiler option /real_size can affect CSIN.
3 This function can also be specified as ZSIN.

Examples

SIN (2.0) has the value 0.9092974.

SIN (0.8) has the value 0.7173561.

SIND

Elemental Intrinsic Function (Generic): Produces a sine (with the result in degrees).

Syntax

result = SIND (x)

x
(Input) Must be of type real. It must be in degrees and is treated as modulo 360.

SIND Page 60 of 96

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

SIND REAL(4) REAL(4)

DSIND REAL(8) REAL(8)

QSIND 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

SIND (2.0) has the value 3.4899496E-02.

SIND (0.8) has the value 1.3962180E-02.

SINH

Elemental Intrinsic Function (Generic): Produces a hyperbolic sine.

Syntax

result = SINH (x)

x
(Input) Must be of type real.

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

SINH REAL(4) REAL(4)

DSINH REAL(8) REAL(8)

QSINH 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

SINH Page 61 of 96

SINH (2.0) has the value 3.626860.

SINH (0.8) has the value 0.8881060.

SIGNAL

Portability Function: Controls interrupt signal handling. Changes the action for a specified signal.

Module: USE DFPORT

Syntax

result = SIGNAL (signum, proc, flag)

signum
(Input) INTEGER(4). Number of the signal to change. The numbers and symbolic names are
listed in a table below.

proc
(Input) Name of an external signal-processing routine. This routine is called only if flag is
negative.

flag
(Input) INTEGER(4). If negative, the user’s proc routine is called. If 0, the signal retains its
default action; if 1, the signal should be ignored.

Results:

The result type is INTEGER(4). The result is the previous value of proc associated with the specified
signal. For example, if the previous value of proc was SIG_IGN, the return value is also SIG_IGN.
You can use this return value in subsequent calls to SIGNAL if the signal number supplied is invalid,
if the flag value is greater than 1, or to restore a previous action definition.

A return value of SIG_ERR indicates an error, in which case a call to IERRNO returns EINVAL. If
the signal number supplied is invalid, or if the flag value is greater than 1, SIGNAL returns
-(EINVAL) and a call to IERRNO returns EINVAL.

An initial signal handler is in place at startup for SIGFPE (signal 8); its address is returned the first
time SIGNAL is called for SIGFPE. No other signals have initial signal handlers.

Be careful when you use SIGNALQQ or the C signal function to set a handler, and then use the
Portability SIGNAL function to retrieve its value. If SIGNAL returns an address that was not
previously set by a call to SIGNAL, you cannot use that address with either SIGNALQQ or C’s
signal function, nor can you call it directly. You can, however, use the return value from SIGNAL in
a subsequent call to SIGNAL. This allows you to restore a signal handler, no matter how the original
signal handler was set.

SIGNAL Page 62 of 96

All signal handlers are called with a single integer argument, that of the signal number actually
received. Usually, when a process receives a signal, it terminates. With the SIGNAL function, a user
procedure is called instead. The signal handler routine must accept the signal number integer
argument, even if it does not use it. If the routine does not accept the signal number argument, the
stack will not be properly restored after the signal handler has executed.

Because signal-handler routines are usually called asynchronously when an interrupt occurs, it is
possible that your signal-handler function will get control when a run-time operation is incomplete
and in an unknown state. There are certain restrictions as to which functions you can use in your
signal-handler routine:

� Do not do either low-level (such as FGETC) or high-level (such as READ) I/O.
� Do not call heap routines or any routine that uses the heap routines (such as MALLOC,

ALLOCATE).
� Do not use any function that generates a system call (such as TIME).

SIGKILL can be neither caught nor ignored.

The following table lists signals, their names and values:

Symbolic name Number Description

SIGABRT 6 Abnormal termination

SIGFPE 8 Floating-point error

SIGKILL 9 Kill process

SIGILL 4 Illegal instruction

SIGINT 2 CTRL+C signal

SIGSEGV 11 Illegal storage access

SIGTERM 15 Termination request

The default action for all signals is to terminate the program with exit code

ABORT does not assert the SIGABRT signal. The only way to assert SIGABRT or SIGTERM is to
use KILL.

SIGNAL can be used to catch SIGFPE exceptions, but it cannot be used to access the error code that
caused the SIGFPE. To do this, use SIGNALQQ instead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

SIGNAL Page 63 of 96

See Also: SIGNALQQ

Example

 USE dfport
 EXTERNAL h_abort
 INTEGER(4) iret1, iret2, procnum
 iret1 = SIGNAL(SIGABRT, h_abort, -1)
 WRITE(*,*) ’Set signal handler. Return = ’, iret1

 iret2 = KILL(procnum, SIGABRT)
 WRITE(*,*) ’Raised signal. Return = ’, iret2
 END
 !
 ! Signal handler routine
 !
 INTEGER(4) FUNCTION h_abort (sig_num)
 INTEGER(4) sig_num

 WRITE(*,*) ’In signal handler for SIG$ABORT’
 WRITE(*,*) ’signum = ’, sig_num
 h_abort = 1
 END

SIGNALQQ

Run-Time Function: Registers the function to be called if an interrupt signal occurs.

Module: USE DFLIB

Syntax

result = SIGNALQQ (sig, func)

sig
(Input) INTEGER(2). Interrupt type. One of the following constants, defined in DFLIB.F90 (in
the \DF98\INCLUDE subdirectory):

n SIG$ABORT: Abnormal termination
n SIG$FPE: Floating-point error
n SIG$ILL: Illegal instruction
n SIG$INT: CTRL+C SIGNAL
n SIG$SEGV: Illegal storage access
n SIG$TERM: Termination request

func
(Input) Character*(*). Name of function to be executed on interrupt.

Results:

The result type is INTEGER(4). The result is a positive integer if successful; otherwise, -1
(SIG$ERR).

SIGNALQQ Page 64 of 96

SIGNALQQ installs the function func as the handler for a signal of the type specified by sig. If you
do not install a handler, the system by default terminates the program with exit code 3 when an
interrupt signal occurs.

The argument func is the name of a function and must be declared with either the EXTERNAL or
IMPLICIT statements, or have an explicit interface. A function described in an INTERFACE block
is EXTERNAL by default, and does not need to be declared EXTERNAL.

Note: All signal-handler functions must be declared with the cDEC$ ATTRIBUTES C option.

When an interrupt occurs, except a SIG$FPE interrupt, the sig argument SIG$INT is passed to func,
and then func is executed.

When a SIG$FPE interrupt occurs, the function func is passed two arguments: SIG$FPE and the
floating-point error code (for example, FPE$ZERODIVIDE or FPE$OVERFLOW) which
identifies the type of floating-point exception that occurred. The floating-point error codes begin with
the prefix FPE$ and are defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory. Floating-point
exceptions are described and discussed in The Floating-Point Environment in the Programmer’s
Guide.

If func returns, the calling process resumes execution immediately after the point at which it received
the interrupt signal. This is true regardless of the type of interrupt or operating mode.

Because signal-handler routines are normally called asynchronously when an interrupt occurs, it is
possible that your signal-handler function will get control when a run-time operation is incomplete
and in an unknown state. Therefore, do not call heap routines or any routine that uses the heap
routines (for example, I/O routines, ALLOCATE, and DEALLOCATE).

To test your signal handler routine you can generate interrupt signals by calling RAISEQQ, which
causes your program either to branch to the signal handlers set with SIGNALQQ, or to perform the
system default behavior if SIGNALQQ has set no signal handler.

The example below demonstrates a signal handler for SIG$ABORT. A sample signal handler for
SIG$FPE is given in Handling Floating-Point Exceptions in the Programmer’s Guide.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RAISEQQ, SIGNAL, KILL

Example

 ! This program shows a signal handler for
 ! SIG$ABORT
 USE DFLIB

SIGNALQQ Page 65 of 96

 INTERFACE
 FUNCTION h_abort (signum)
 !DEC$ATTRIBUTES C :: h_abort
 INTEGER(4) h_abort
 INTEGER(2) signum
 END FUNCTION
 END INTERFACE

 INTEGER(2) i2ret
 INTEGER(4) i4ret

 i4ret = SIGNALQQ(SIG$ABORT, h_abort)
 WRITE(*,*) ’Set signal handler. Return = ’, i4ret

 i2ret = RAISEQQ(SIG$ABORT)
 WRITE(*,*) ’Raised signal. Return = ’, i2ret
 END
 !
 ! Signal handler routine
 !
 INTEGER(4) FUNCTION h_abort (signum)
 !DEC$ATTRIBUTES C :: h_abort
 INTEGER(2) signum
 WRITE(*,*) ’In signal handler for SIG$ABORT’
 WRITE(*,*) ’signum = ’, signum
 h_abort = 1
 END

SIZE

Inquiry Intrinsic Function (Generic): Returns the total number of elements in an array, or the extent of an
array along a specified dimension.

Syntax

result = SIZE (array [, dim])

array
(Input) Must be an array (of any data type). It must not be a disassociated pointer or an
allocatable array that is not allocated. It can be an assumed-size array if dim is present with a
value less than the rank of array.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array.

Results:

The result is a scalar of type integer. If dim is present, the result is the extent of dimension dim in
array; otherwise, the result is the total number of elements in array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

SIZE Page 66 of 96

See Also: SHAPE

Examples

If B is declared as B(2:4, -3:1), then SIZE (B, DIM=2) has the value 5 and SIZE (B) has the value 15.

The following shows another example:

 REAL(8) array (3:10, -1:3)
 INTEGER i
 i = SIZE(array, DIM = 2) ! returns 5
 i = SIZE(array) ! returns 40

SIZEOF

Inquiry Intrinsic Function (Specific): Returns the number of bytes of storage used by the argument.
This is a specific function with no generic name.

Syntax

result = SIZEOF (x)

x
Can be a scalar or array (of any data type). It must not be an assumed-size array.

Results:

The result type is INTEGER(4) on Intel processors; INTEGER(8) on Alpha processors. The result
value is the number of bytes of storage used by x.

Examples

SIZEOF (3.44) ! has the value 4
SIZEOF (’SIZE’) ! has the value 4

SLEEP

Portability Subroutine: Suspends the execution of a process for a specified interval.

Module: USE DFPORT

Syntax

CALL SLEEP (time)

time
(Input) INTEGER(4). Length of time, in seconds, to suspend the calling process.

SLEEP Page 67 of 96

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SLEEPQQ

Example

 USE DFPORT
 integer(4) hold_time
 hold_time = 1 !lets the loop execute
 DO WHILE (hold_time .NE. 0)
 write(*,’(A)’) "Enter the number of seconds to suspend"
 read(*,*) hold_time
 CALL SLEEP (hold_time)
 END DO
 END

SLEEPQQ

Run-Time Subroutine: Delays execution of the program for a specified duration.

Module: USE DFLIB

Syntax

CALL SLEEPQQ (duration)

duration
(Input) INTEGER(4). Number of milliseconds the program is to sleep (delay program
execution).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

 USE DFLIB
 INTEGER(4) delay, freq, duration
 delay = 2000
 freq = 4000
 duration = 1000
 CALL SLEEPQQ(delay)
 CALL BEEPQQ(freq, duration)
 END

SNGL

See REAL.

SORTQQ Page 68 of 96

SORTQQ

Run-Time Subroutine: Sorts a one-dimensional array. The array elements cannot be derived types
or record structures.

Module: USE DFLIB

Syntax

CALL SORTQQ (adrarray, count, size)

adrarray
(Input) INTEGER(4). Address of the array (returned by LOC).

count
(Input; output) INTEGER(4). On input, number of elements in the array to be sorted. On
output, number of elements actually sorted.

size
(Input) INTEGER(4). Positive constant less than 32,767 that specifies the kind of array to be
sorted. The following constants, defined in DFLIB.F90 (in the \DF98\INCLUDE subdirectory),
specify type and kind for numeric arrays:

Constant Type of array

SRT$INTEGER1 INTEGER(1)

SRT$INTEGER2 INTEGER(2) or equivalent

SRT$INTEGER4 INTEGER(4) or equivalent

SRT$REAL4 REAL(4) or equivalent

SRT$REAL8 REAL(8) or equivalent

If the value provided in size is not a symbolic constant and is less than 32,767, the array is assumed to
be a character array with size characters per element.

To be certain that SORTQQ is successful, compare the value returned in count to the value you
provided. If they are the same, then SORTQQ sorted the correct number of elements.

Caution: The location of the array must be passed by address using the LOC function. This
defeats Fortran type-checking, so you must make certain that the count and size arguments are
correct.

If you pass invalid arguments, SORTQQ attempts to sort random parts of memory. If the

SORTQQ Page 69 of 96

memory it attempts to sort is allocated to the current process, that memory is sorted; otherwise,
the operating system intervenes, the program is halted, and you get a General Protection
Violation message.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: BSEARCHQQ, LOC

Example

 ! Sort a 1-D array
 !
 USE DFLIB
 INTEGER(2) array(10)
 INTEGER(2) i
 DATA ARRAY /143, 99, 612, 61, 712, 9112, 6, 555, 2223, 67/
 ! Sort the array
 Call SORTQQ (LOC(array), 10, SRT$INTEGER2)
 ! Display the sorted array
 DO i = 1, 10
 WRITE (*, 9000) i, array (i)
 9000 FORMAT(1X, ’ Array(’,I2, ’): ’, I5)
 END DO
 END

SPACING

Elemental Intrinsic Function (Generic): Returns the absolute spacing of model numbers near
the argument value.

Syntax

result = SPACING (x)

x
(Input) Must be of type real.

Results:

The result type is the same as x. The result has the value be-p. Parameters b, e, and p are defined in
Model for Real Data. If the result value is outside of the real model range, the result is TINY(x).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: TINY, RRSPACING, Data Representation Models

SPACING Page 70 of 96

Examples

If 3.0 is a REAL(4) value, SPACING (3.0) has the value 2-22.

The following shows another example:

 REAL(4) res4
 REAL(8) res8, r2
 res4 = SPACING(3.0) ! returns 2.384186E-07
 res4 = SPACING(-3.0) ! returns 2.384186E-07
 r2 = 487923.3
 res8 = SPACING(r2) ! returns 5.820766091346741E-011

SPLITPATHQQ

Run-Time Function: Breaks a file path or directory path into its components.

Module: USE DFLIB

Syntax

result = SPLITPATHQQ (path, drive, dir, name, ext)

path
(Input) Character*(*). Path to be broken into components. Forward slashes (/), backslashes (\),
or both can be present in path.

drive
(Output) Character*(*). Drive letter followed by a colon.

dir
(Output) Character*(*). Path of directories, including the trailing slash.

name
(Output) Character*(*). Name of file or, if no file is specified in path, name of the lowest
directory. If a filename, does not include an extension.

ext
(Output) Character*(*). Filename extension, if any, including the leading period (.).

Results:

The result type is INTEGER(4). The result is the length of dir.

The path parameter can be a complete or partial file specification.

$MAXPATH is a symbolic constant defined in module DFLIB.F90 (in the \DF98\INCLUDE
subdirectory) as 260.

SPLITPATHQQ Page 71 of 96

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FULLPATHQQ

Example

 USE DFLIB
 CHARACTER($MAXPATH) buf
 CHARACTER(3) drive
 CHARACTER(256) dir
 CHARACTER(256) name
 CHARACTER(256) ext
 CHARACTER(256) file

 INTEGER(4) length

 buf = ’b:\fortran\test\runtime\tsplit.for’
 length = SPLITPATHQQ(buf, drive, dir, name, ext)
 WRITE(*,*) drive, dir, name, ext
 file = ’partial.f90’
 length = SPLITPATHQQ(file, drive, dir, name, ext)
 WRITE(*,*) drive, dir, name, ext

 END

SPREAD

Transformational Intrinsic Function (Generic): Creates a replicated array with an added dimension by
making copies of existing elements along a specified dimension.

Syntax

result = SPREAD (source, dim, ncopies)

source
(Input) Must be a scalar or array (of any data type). The rank must be less than 7.

dim
(Input) Must be scalar and of type integer. It must have a value in the range 1 to n + 1
(inclusive), where n is the rank of source.

ncopies
Must be scalar and of type integer. It becomes the extent of the additional dimension in the
result.

Results:

The result is an array of the same type as source and of rank that is one greater than source.

If source is an array, each array element in dimension dim of the result is equal to the corresponding

SPREAD Page 72 of 96

array element in source.

If source is a scalar, the result is a rank-one array with ncopies elements, each with the value source.

If ncopies <= zero, the result is an array of size zero.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PACK, RESHAPE

Examples

SPREAD ("B", 1, 4) is the character array (/"B", "B", "B", "B"/).

B is the array (3, 4, 5) and NC has the value 4.

SPREAD (B, DIM=1, NCOPIES=NC) produces the array

 [3 4 5]
 [3 4 5]
 [3 4 5]
 [3 4 5].

SPREAD (B, DIM=2, NCOPIES=NC) produces the array

[3 3 3 3]
[4 4 4 4]
[5 5 5 5].

The following shows another example:

 INTEGER AR1(2, 3), AR2(3, 2)
 AR1 = SPREAD((/1,2,3/),DIM= 1,NCOPIES= 2) ! returns
 ! 1 2 3
 ! 1 2 3
 AR2 = SPREAD((/1,2,3/), 2, 2) ! returns 1 1
 ! 2 2
 ! 3 3

SQRT

Elemental Intrinsic Function (Generic): Derives the square root of its argument.

Syntax

result = SQRT (x)

x

SQRT Page 73 of 96

(Input) must be of type real or complex. If x is type real, its value must be greater than or equal
to zero.

Results:

The result type is the same as x. The result has a value equal to the square root of x. A result of type
complex is the principal value, with the real part greater than or equal to zero. When the real part of
the result is zero, the imaginary part is greater than or equal to zero.

Specific Name Argument Type Result Type

SQRT REAL(4) REAL(4)

DSQRT REAL(8) REAL(8)

QSQRT 1 REAL(16) REAL(16)

CSQRT 2 COMPLEX(4) COMPLEX(4)

CDSQRT 3 COMPLEX(8) COMPLEX(8)

1 VMS and U*X
2 The setting of compiler option /real_size can affect CSQRT.
3 This function can also be specified as ZSQRT.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Examples

SQRT (16.0) has the value 4.0.

SQRT (3.0) has the value 1.732051.

The following shows another example:

 ! Calculate the hypotenuse of a right triangle
 ! from the lengths of the other two sides.
 REAL sidea, sideb, hyp
 sidea = 3.0
 sideb = 4.0
 hyp = SQRT (sidea**2 + sideb**2)
 WRITE (*, 100) hyp
 100 FORMAT (/ ’ The hypotenuse is ’, F10.3)
 END

SRAND

Portability Subroutine: Seeds the random number generator used with IRAND and RAND.

SRAND Page 74 of 96

Module: USE DFPORT

Syntax

CALL SRAND (iseed)
CALL SRAND (rseed)

iseed
(Input) INTEGER(4). Any value.

rseed
Input) REAL(4). Any value.

SRAND seeds the random number generator used with IRAND and RAND. Calling SRAND is
equivalent to calling IRAND or RAND with a new seed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RAND, IRAND, RANDOM_NUMBER, RANDOM_SEED

Example

 ! How many random numbers out of 100 will be between .5 and .6?
 USE DFPORT
 ICOUNT = 0
 CALL SRAND(123.4567)
 DO I = 1, 100
 X = RAND(0.0)
 IF ((X>.5).AND.(x<.6)) ICOUNT = ICOUNT + 1
 END DO
 WRITE(*,*) ICOUNT, "numbers between .5 and .6!"

SSWRQQ (x86 only)

Run-Time Subroutine: Returns the floating-point processor status word. This routine is only
available on Intel® processors.

Module: USE DFLIB

Syntax

CALL SSWRQQ (status)

status
(Output) INTEGER(2). Floating-point processor status word.

SSWRQQ performs the same function as the run-time subroutine GETSTATUSFPQQ and is

SSWRQQ (x86 only) Page 75 of 96

provided for compatibility.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LCWRQQ, GETSTATUSFPQQ

Example

 USE DFLIB
 INTEGER(2) status
 CALL SSWRQQ (status)

STAT

Portability Function: Returns detailed information about a file.

Module: USE DFPORT

Syntax

result = STAT (name, statb)

name
(Input) Character*(*). Name of the file to examine.

statb
(Output) INTEGER(4). One-dimensional array with a size of 12.

Results:

The result type is INTEGER(4). The result is zero if the inquiry was successful; otherwise, the error
code ENOENT (the specified file could not be found). For a list of other error codes, see IERRNO.

The elements of statb contain the following values:

Element Description Notes

statb(1) Device file resides on Always 0

statb(2) File Inode number Always 0

statb(3) Access mode of the file (See following table)

statb(4) Number of hard links Always 1

statb(5) User ID of owner Always 1

statb(6) Group ID of owner Always 1

STAT Page 76 of 96

statb(7) Raw device file resides on Always 0

statb(8) Size of the file in bytes

statb(9) Time when the file was last
accessed

(Only available on non-FAT file systems; undefined
on FAT systems)

statb(10) Time when the file was last
modified

statb(11) Time of last file status change Same as stat(10)

statb(12) Blocksize Always 1

Times are in the same format returned by the TIME function (number of seconds since 00:00:00
Greenwich mean time, January 1, 1970).

Access mode (the third element of statb) is a bitmap consisting of an IOR of the following constants:

Symbolic
name Constant Description Notes

S_IFMT O’0170000’ Type of File

S_IFDIR O’0040000’ Directory

S_IFCHR O’0020000’ Character Special Never set

S_IFBLK O’0060000’ Block Special Never set

S_IFREG O’0100000’ Regular

S_IFLNK O’0120000’ Symbolic Link Never set

S_IFSOCK O’0140000’ Socket Never set

S_ISUID O’0004000’ Set User ID on
Execution

Never set

S_ISGID O’0002000’ Set Group ID on
Execution

Never set

S_ISVTX O’0001000’ Save Swapped Text Never set

S_IRWXU O’0000700’ Owner’s File
Permissions

S_IRUSR, O’0000400’ Owner Read Always true

STAT Page 77 of 96

S_IREAD Permission

S_IWUSR,
S_IWRITE

O’0000200’ Owner Write
Permission

S_IXUSR,
S_IEXEC

O’0000100’ Owner Execute
Permission

Based on file extension (.EXE, .COM,
.CMD, or .BAT)

S_IRWXG O’0000070’ Group’s File
Permissions

Same as S_IRWXU

S_IRGRP O’0000040’ Group Read
Permission

Same as S_IRUSR

S_IWGRP O’0000020’ Group Write
Permission

Same as S_IWUSR

S_IXGRP O’0000010’ Group Execute
Permission

Same as S_IXUSR

S_IRWXO O’0000007’ Other’s File
Permissions

Same as S_IRWXU

S_IROTH O’0000004’ Other Read
Permission

Same as S_IRUSR

S_IWOTH O’0000002’ Other Write
Permission

Same as S_IWUSR

S_IXOTH O’0000001’ Other Execute
Permission

Same as S_IXUSR

STAT returns the same information as FSTAT, but accesses files by name instead of external unit
number.

Note: The INQUIRE statement also provides information about file properties.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: INQUIRE, GETFILEINFOQQ

Example

 USE DFPORT
 CHARACTER*12 file_name
 INTEGER(4) info_array(12)
 print *, ’Enter file to examine: ’
 read *, file_name
 ISTATUS = STAT (file_name, info_array)
 if (.not. istatus) then
 print *, info_array

STAT Page 78 of 96

 else
 print *, ’Error = ’,istatus
 end if
 end

Statement Function

Statement: Defines a function in a single statement in the same program unit in which the procedure
is referenced.

Syntax

fun ([d-arg [, d-arg]...]) = expr

fun
Is the name of the statement function.

d-arg
Is a dummy argument. A dummy argument can appear only once in any list of dummy
arguments, and its scope is local to the statement function.

expr
Is a scalar expression defining the computation to be performed.

Named constants and variables used in the expression must have been declared previously in
the specification part of the scoping unit or made accessible by use or host association.

If the expression contains a function reference, the function must have been defined previously
in the same program unit.

A statement function reference takes the following form:

fun ([a-arg [, a-arg]...])

fun
Is the name of the statement function.

a-arg
Is an actual argument.

Rules and Behavior

When a statement function reference appears in an expression, the values of the actual arguments are
associated with the dummy arguments in the statement function definition. The expression in the
definition is then evaluated. The resulting value is used to complete the evaluation of the expression
containing the function reference.

The data type of a statement function can be explicitly defined in a type declaration statement. If no
type is specified, the type is determined by implicit typing rules in effect for the program unit.

Statement Function Page 79 of 96

Actual arguments must agree in number, order, and data type with their corresponding dummy
arguments.

Except for the data type, declarative information associated with an entity is not associated with
dummy arguments in the statement function; for example, declaring an entity to be an array or to be
in a common block does not affect a dummy argument with the same name.

The name of the statement function cannot be the same as the name of any other entity within the
same program unit.

Any reference to a statement function must appear in the same program unit as the definition of that
function.

A statement function reference must appear as (or be part of) an expression. The reference cannot
appear on the left side of an assignment statement.

A statement function must not be provided as a procedure argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FUNCTION, Argument Association, Use and Host Association

Examples

The following are examples of statement functions:

 REAL VOLUME, RADIUS
 VOLUME(RADIUS) = 4.189*RADIUS**3

 CHARACTER*10 CSF,A,B
 CSF(A,B) = A(6:10)//B(1:5)

The following example shows a statement function and some references to it:

 AVG(A,B,C) = (A+B+C)/3.
 ...
 GRADE = AVG(TEST1,TEST2,XLAB)
 IF (AVG(P,D,Q) .LT. AVG(X,Y,Z)) STOP
 FINAL = AVG(TEST3,TEST4,LAB2) ! Invalid reference; implicit
 ... ! type of third argument does not
 ... ! match implicit type of dummy argument

Implicit typing problems can be avoided if all arguments are explicitly typed.

The following statement function definition is invalid because it contains a constant, which cannot be
used as a dummy argument:

Statement Function Page 80 of 96

 REAL COMP, C, D, E
 COMP(C,D,E,3.) = (C + D - E)/3.

The following shows another example:

 Add (a, b) = a + b
 REAL(4) y, x(6)
 . . .
 DO n = 2, 6
 x(n) = Add (y, x(n-1))
 END DO

STATIC

Statement and Attribute: Controls the storage allocation of variables in subprograms (as does
AUTOMATIC). Variables declared as STATIC and allocated in memory reside in the static storage
area, rather than in the stack storage area. Equivalent to the Fortran 90 SAVE attribute and the C
static attribute.

The STATIC attribute can be specified in a type declaration statement or a STATIC statement, and
takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] STATIC [att-ls,] :: v [, v]...

Statement:

STATIC [::] v [, v]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

v
Is the name of a variable or an array specification. It can be of any type.

Rules and Behavior

STATIC declarations only affect how data is allocated in storage.

If you want to retain definitions of variables upon reentry to subprograms, you must use the SAVE
attribute.

STATIC Page 81 of 96

By default, the compiler allocates local variables of non-recursive subprograms, except for
allocatable arrays, in the static storage area. The compiler may choose to allocate a variable in
temporary (stack or register) storage if it notices that the variable is always defined before use.
Appropriate use of the SAVE attribute can prevent compiler warnings if a variable is used before it is
defined.

To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE in one of
the following ways:

� As a keyword in a FUNCTION or SUBROUTINE statement

� As a compiler option

� As an option in an OPTIONS statement

To override any compiler option that may affect variables, explicitly specify the variables as STATIC.

Note: Variables that are data- initialized, and variables in COMMON and SAVE statements
are always static. This is regardless of whether a compiler option specifies recursion.

A variable cannot be specified as STATIC more than once in the same scoping unit.

If the variable is a pointer, STATIC applies only to the pointer itself, not to any associated target.

Some variables cannot be specified as STATIC. The following table shows these restrictions:

Variable STATIC

Dummy argument No

Automatic object No

Common block item Yes

Use-associated item No

Function result No

Component of a derived type No

A variable can be specified with both the STATIC and SAVE attributes.

If a variable is in a module’s outer scope, it can be specified as STATIC.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

STATIC Page 82 of 96

See Also: AUTOMATIC, SAVE, Type declaration statements, Compatible attributes, RECURSIVE,
/recursive, OPTIONS, POINTER, Modules and Module Procedures

Examples

The following example shows a type declaration statement specifying the STATIC attribute:

INTEGER, STATIC :: ARRAY_A

The following example uses a STATIC statement:

...
CONTAINS
 INTEGER FUNCTION REDO_FUNC
 INTEGER I, J(10), K
 REAL C, D, E(30)
 AUTOMATIC I, J, K(20)
 STATIC C, D, E
 ...
 END FUNCTION
...

 INTEGER N1, N2
 N1 = -1
 DO WHILE (N1)
 N2 = N1*2
 call sub1(N1, N2)
 read *, N1
 END DO
 CONTAINS
 SUBROUTINE sub1 (iold, inew)
 INTEGER, intent(INOUT):: iold
 integer, STATIC ::N3
 integer, intent(IN) :: inew
 if (iold .eq. -1) then
 N3 = iold
 end if
 print *, ’New: ’, inew, ’N3: ’,N3
 END subroutine
 !
 END

STOP

Statement: Terminates program execution before the end of the program unit.

Syntax

STOP [stop-code]

stop-code
(Optional) A message. It can be either of the following:

STOP Page 83 of 96

n A scalar character constant of type default character.
n A string of up to six digits; leading zeros are ignored. (Fortran 90 and FORTRAN 77

limit digits to five.)

Effect on Windows NT and Windows 95 Systems

If you specify stop-code, the effect differs depending on its form, as follows:

� If stop-code is specified as a character constant, the STOP statement writes the specified
message to the standard error device and terminates program execution. The program returns a
status of zero to the operating system.

� If stop-code is specified as a string of digits, the STOP statement writes the following to the
standard error device and terminates program execution:

 Return code stop-code

In QuickWin programs, the following is displayed in a message box:

 Program terminated with Exit Code stop-code

In both cases, the program returns a status of stop-code to the operating system as an integer.

If you do not specify stop-code, the STOP statement writes the following default message to the
standard error device and terminates program execution:

 Stop - Program terminated.

The program returns a status of zero to the operating system.

Effect on OpenVMS Systems

If you specify stop-code, the STOP statement displays the specified message at your terminal,
terminates program execution, and returns control to the operating system.

If you do not specify stop-code, no message is displayed.

Effect on DIGITAL UNIX Systems

If you specify stop-code, the STOP statement writes the specified message to the standard error
device and terminates program execution. The program returns a status of zero to the operating
system.

If you do not specify stop-code, no message is output.

Compatibility

STOP Page 84 of 96

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: EXIT

Examples

The following examples show valid STOP statements:

STOP 98
STOP ’END OF RUN’

DO
 READ *, X, Y
 IF (X > Y) STOP 5555
END DO

The following shows another example:

 OPEN(1,FILE=’file1.dat’, status=’OLD’, ERR=100)
 . . .
 100 STOP ’ERROR DETECTED!’
 END

STRICT and NOSTRICT

Compiler Directive: STRICT disables language features not found in the Fortran 90 language
standard. NOSTRICT (the default) enables these features.

Syntax

cDEC$ STRICT
cDEC$ NOSTRICT

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

The STRICT and NOSTRICT directives can appear only appear at the top of a program unit. A
program unit is a main program, an external subroutine or function, a module or a block data program
unit. STRICT and NOSTRICT cannot appear between program units, or at the beginning of internal
subprograms. They do not affect any modules invoked with the USE statement in the program unit
that contains them.

The following forms are also allowed: !MS$STRICT and !MS$NOSTRICT

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: General Compiler Directives

STRICT and NOSTRICT Page 85 of 96

Example

 ! NOSTRICT by default
 TYPE stuff
 INTEGER(4) k
 INTEGER(4) m
 CHARACTER(4) name
 END TYPE stuff
 TYPE (stuff) examp
 DOUBLE COMPLEX cd ! non-standard data type, no error
 cd =(3.0D0, 4.0D0)
 examp.k = 4 ! non-standard component designation,
 ! no error
 END
 SUBROUTINE STRICTDEMO()
 !DEC$ STRICT
 TYPE stuff
 INTEGER(4) k
 INTEGER(4) m
 CHARACTER(4) name
 END TYPE stuff
 TYPE (stuff) samp
 DOUBLE COMPLEX cd ! ERROR
 cd =(3.0D0, 4.0D0)
 samp.k = 4 ! ERROR
 END SUBROUTINE

STRUCTURE...END STRUCTURE

Statement: Defines the field names, types of data within fields, and order and alignment of fields
within a record structure. Fields and structures can be initialized, but records cannot be initialized.

Syntax

STRUCTURE [/structure-name/] [field-namelist]
field-declaration
[field-declaration]
. . .
[field-declaration]

END STRUCTURE

structure-name
Is the name used to identify a structure, enclosed by slashes.

Subsequent RECORD statements use the structure name to refer to the structure. A structure
name must be unique among structure names, but structures can share names with variables
(scalar or array), record fields, PARAMETER constants, and common blocks.

Structure declarations can be nested (contain one or more other structure declarations). A
structure name is required for the structured declaration at the outermost level of nesting, and is
optional for the other declarations nested in it. However, if you wish to reference a nested
structure in a RECORD statement in your program, it must have a name.

STRUCTURE...END STRUCTURE Page 86 of 96

Structure, field, and record names are all local to the defining program unit. When records are
passed as arguments, the fields in the defining structures within the calling and called
subprograms must match in type, order, and dimension.

field-namelist
Is a list of fields having the structure of the associated structure declaration. A field namelist is
allowed only in nested structure declarations.

field-declaration
Also called the declaration body. A field-declaration consists of any combination of the
following:

n Type declarations

These are ordinary Fortran data type declarations.

n Substructure declarations

A field within a structure can be a substructure composed of atomic fields, other
substructures, or a combination of both.

n Union declarations

A union declaration is composed of one or more mapped field declarations.

n PARAMETER statements

PARAMETER statements can appear in a structure declaration, but cannot be given a
data type within the declaration block.

Type declarations for PARAMETER names must precede the PARAMETER
statement and be outside of a STRUCTURE declaration, as follows:

 INTEGER*4 P
 STRUCTURE /ABC/
 PARAMETER (P=4)
 REAL*4 F
 END STRUCTURE
 REAL*4 A(P)

Rules and Behavior

The Fortran 90 derived type replaces STRUCTURE and RECORD constructs, and should be used
in writing new code. See Derived type and TYPE.

Unlike type declaration statements, structure declarations do not create variables. Structured variables
(records) are created when you use a RECORD statement containing the name of a previously
declared structure. The RECORD statement can be considered as a kind of type declaration

STRUCTURE...END STRUCTURE Page 87 of 96

statement. The difference is that aggregate items, not single items, are being defined.

Within a structure declaration, the ordering of both the statements and the field names within the
statements is important, because this ordering determines the order of the fields in records.

In a structure declaration, each field offset is the sum of the lengths of the previous fields, so the
length of the structure is the sum of the lengths of its fields. The structure is packed; you must
explicitly provide any alignment that is needed by including, for example, unnamed fields of the
appropriate length.

By default, fields are aligned on natural boundaries; misaligned fields are padded as necessary. To
avoid padding of records, you should lay out structures so that all fields are naturally aligned.

To pack fields on arbitrary byte boundaries, you must specify a compiler option. You can also specify
alignment for fields by using the OPTIONS or PACK general directive.

A field name must not be the same as any intrinsic or user-defined operator (for example, EQ cannot
be used as a field name).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Derived type, TYPE, MAP...END MAP, RECORD, UNION...END UNION, PACK
Directive, OPTIONS Directive, Data Types, Constants, and Variables, Record Structures

Examples

An item can be a RECORD statement that references a previously defined structure type:

 STRUCTURE /full_address/
 RECORD /full_name/ personsname
 RECORD /address/ ship_to
 INTEGER*1 age
 INTEGER*4 phone
 END STRUCTURE

You can specify a particular item by listing the sequence of items required to reach it, separated by a
period (.). Suppose you declare a structure variable, shippingaddress, using the full_address
structure defined in the previous example:

RECORD /full_address/ shippingaddress

In this case, the age item would then be specified by shippingaddress.age, the first name of the
receiver by shippingaddress.personsname.first_name , and so on.

In the following example, the declaration defines a structure named APPOINTMENT. APPOINTMENT
contains the structure DATE (field APP_DATE) as a substructure. It also contains a substructure named
TIME (field APP_TIME, an array), a CHARACTER*20 array named APP_MEMO, and a LOGICAL*1
field named APP_FLAG.

STRUCTURE...END STRUCTURE Page 88 of 96

 STRUCTURE /DATE/
 INTEGER*1 DAY, MONTH
 INTEGER*2 YEAR
 END STRUCTURE

 STRUCTURE /APPOINTMENT/
 RECORD /DATE/ APP_DATE
 STRUCTURE /TIME/ APP_TIME (2)
 INTEGER*1 HOUR, MINUTE
 END STRUCTURE
 CHARACTER*20 APP_MEMO (4)
 LOGICAL*1 APP_FLAG
 END STRUCTURE

The length of any instance of structure APPOINTMENT is 89 bytes.

The following figure shows the memory mapping of any record or record array element with the
structure APPOINTMENT.

Memory Map of Structure APPOINTMENT

SUBROUTINE

SUBROUTINE Page 89 of 96

Statement: The initial statement of a subroutine subprogram. A subroutine subprogram is invoked in
a CALL statement or by a defined assignment statement, and does not return a particular value.

Syntax

[prefix] SUBROUTINE name [([d-arg-list])]

prefix
(Optional) Is one of the following:

type [keyword]
keyword [type]

type
Is a data type specifier.

keyword
Is RECURSIVE, PURE, or ELEMENTAL.

The keyword RECURSIVE indicates a recursive subroutine, which can reference itself
directly or indirectly.

The keyword PURE asserts that the procedure has no side effects. The keyword
ELEMENTAL indicates a restricted form of pure procedure.

name
Is the name of the subroutine.

d-arg-list
Is a list of one or more dummy arguments or alternate return specifiers (*).

Rules and Behavior

A subroutine is invoked by a CALL statement or defined assignment. When a subroutine is invoked,
dummy arguments (if present) become associated with the corresponding actual arguments specified
in the call.

Execution begins with the first executable construct or statement following the SUBROUTINE
statement. Control returns to the calling program unit once the END statement (or a RETURN
statement) is executed.

A subroutine subprogram cannot contain a FUNCTION statement, a BLOCK DATA statement, a
PROGRAM statement, or another SUBROUTINE statement. ENTRY statements can be included
to provide multiple entry points to the subprogram.

You need an interface block for a subroutine when:

� Calling arguments use argument keywords.

SUBROUTINE Page 90 of 96

� Some arguments are optional.
� A dummy argument is an assumed-shape array, a pointer, or a target.
� The subroutine extends intrinsic assignment.
� The subroutine can be referenced by a generic name.
� The subroutine is in a dynamic-link library.

If the subroutine is in a DLL and is called from your program, use the option DLLEXPORT or
DLLIMPORT, which you can specify with the ATTRIBUTES directive.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FUNCTION, INTERFACE, PURE, ELEMENTAL, CALL, RETURN, ENTRY, Argument
Association, Program Units and Procedures, General Rules for Function and Subroutine
Subprograms, Obsolescent and Deleted Language Features

Examples

The following example shows a subroutine:

Main Program Subroutine
CALL HELLO_WORLD SUBROUTINE HELLO_WORLD
... PRINT *, "Hello World"
END END SUBROUTINE

The following example uses alternate return specifiers to determine where control transfers on
completion of the subroutine:

Main Program Subroutine
 CALL CHECK(A,B,*10,*20,C) SUBROUTINE CHECK(X,Y,*,*,Q)
 TYPE *, ’VALUE LESS THAN ZERO’ ...
 GO TO 30 50 IF (Z) 60,70,80
10 TYPE*, ’VALUE EQUALS ZERO’ 60 RETURN
 GO TO 30 70 RETURN 1
20 TYPE*, ’VALUE MORE THAN ZERO’ 80 RETURN 2
30 CONTINUE END
 ...

The SUBROUTINE statement argument list contains two dummy alternate return arguments
corresponding to the actual arguments *10 and *20 in the CALL statement argument list.

The value of Z determines the return, as follows:

� If Z < zero, a normal return occurs and control is transferred to the first executable statement
following CALL CHECK in the main program.

� If Z = = zero, the return is to statement label 10 in the main program.

� If Z > zero, the return is to statement label 20 in the main program.

SUBROUTINE Page 91 of 96

(An alternate return is an obsolescent feature in Fortran 90 and Fortran 95.)

The following shows another example:

 SUBROUTINE GetNum (num, unit)
 INTEGER num, unit
 10 READ (unit, ’(I10)’, ERR = 10) num
 END

SUBTITLE

Compiler Directive: Specifies a string for the subtitle field of a listing header.

Syntax

cDEC$ SUBTITLE string

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

string
Is a character constant containing up to 31 printable characters.

Rules and Behavior

To enable the SUBTITLE directive, you must specify the compiler option that produces a source
listing file.

When SUBTITLE appears on a page of a listing file, the specified string appears in the listing header
of the following page.

If the directive appears more than once on a page, the last directive is the one in effect for the
following page.

If the directive does not specify a string, no change occurs in the listing file header.

The following form is also allowed: !MS$SUBTITLE:string

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: TITLE, MESSAGE, General Compiler Directives

Example

 !DEC$ TITLE:’Program MATHSTAT’
 REAL epsilon, delta
 INTEGER i1, i2, i3

SUBTITLE Page 92 of 96

 CALL STAT(epsilon, delta)
 CALL MATH (i1, i2, i3)
 END
 SUBROUTINE STAT(a, b)
 !DEC$ SUBTITLE:’Subroutine STAT’
 REAL a, b
 CALL statpack(a, b)
 !DEC$ SUBTITLE:’’
 END SUBROUTINE STAT

 SUBROUTINE MATH(a, b, c)
 !DEC$ SUBTITLE:’Subroutine MATH’
 INTEGER a, b, c
 a = b * c
 !DEC$ SUBTITLE:’’
 END SUBROUTINE MATH

SUM

Transformational Intrinsic Function (Generic): Returns the sum of all the elements in an entire array or in
a specified dimension of an array.

Syntax

result = SUM (array [, dim] [, mask])

array
(Input) Must be an array of type integer, real, or complex.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array.

mask
(Optional; input) Must be of type logical and conformable with array.

Results:

The result is an array or a scalar of the same data type as array.

The result is scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

� If SUM(array) is specified, the result is the sum of all elements of array. If array has size zero,
the result is zero.

� If SUM(array, MASK=mask) is specified, the result is the sum of all elements of array
corresponding to true elements of mask. If there are no true elements, the result is zero.

The following rules apply if dim is specified:

SUM Page 93 of 96

� If array has rank one, the value is the same as SUM(array [,MASK=mask]).

� An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ...,

dn), where (d1, d2, ..., dn) is the shape of array.

� The value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of SUM(array, dim [,mask]) is equal to

SUM(array (s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK = mask (s1, s2, ..., sdim-1, :, sdim+1, ...,

sn)].

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PRODUCT

Examples

SUM ((/2, 3, 4/)) returns the value 9 (sum of 2 + 3 + 4). SUM ((/2, 3, 4/), DIM=1) returns the same
result.

SUM (B, MASK=B .LT. 0.0) returns the arithmetic sum of the negative elements of B.

C is the array

 [1 2 3]
 [4 5 6].

SUM (C, DIM=1) returns the value (5, 7, 9), which is the sum of all elements in each column. 5 is the
sum of 1 + 4 in column 1. 7 is the sum of 2 + 5 in column 2, and so forth.

SUM (C, DIM=2) returns the value (6, 15), which is the sum of all elements in each row. 6 is the sum
of 1 + 2 + 3 in row 1. 15 is the sum of 4 + 5 + 6 in row 2.

The following shows another example:

 INTEGER array (2, 3), i, j(3)
 array = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))
 ! array is 1 3 5
 ! 2 4 6
 i = SUM((/ 1, 2, 3 /)) ! returns 6
 j = SUM(array, DIM = 1) ! returns [3 7 11]
 WRITE(*,*) i, j
 END

SYSTEM

Portability Function: Sends a command to the shell as if it had been typed at the command line.

SYSTEM Page 94 of 96

Module: USE DFPORT

Syntax

result = SYSTEM (string)

string
(Input) Character*(*). Operating system command.

Results:

The result type is INTEGER(4). The result is the exit status of the shell command. If -1, use
IERRNO to retrieve the error. Errors can be one of the following:

� E2BIG: The argument list is too long.
� ENOENT: The command interpreter cannot be found.
� ENOEXEC: The command interpreter file has an invalid format and is not executable.
� ENOMEM: Not enough system resources are available to execute the command.

The calling process waits until the command terminates.

Commands run with the SYSTEM routine are run in a separate shell. Defaults set with the SYSTEM
function, such as current working directory or environment variables, do not affect the environment
the calling program runs in.

The command line character limit for the SYSTEM function is the same limit that your operating
system command interpreter accepts.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SYSTEMQQ

Example

 USE DFPORT
 INTEGER(4) I, errnum
 I = SYSTEM("dir > file.lst")
 If (I .eq. -1) then
 errnum = ierrno()
 print *, ’Error ’, errnum
 end if
 END

SYSTEM_CLOCK

Intrinsic Subroutine: Returns integer data from a real-time clock.

SYSTEM_CLOCK Page 95 of 96

Syntax

CALL SYSTEM_CLOCK ([count] [, count_rate] [, count_max])

count
(Optional; output) Must be scalar and of type default integer. It is set to a value based on the
current value of the processor clock. The value is increased by one for each clock count until
the value count_max is reached, and is reset to zero at the next count. (count lies in the range 0
to count_max.)

count_rate
(Optional; output) Must be scalar and of type default integer. It is set to the number of
processor clock counts per second.

If default integer is INTEGER(2), count_rate is 1000. If default integer is INTEGER(4),
count_rate is 10000. If default integer is INTEGER(8), count_rate is 1000000.

count_max
(Optional; output) Must be scalar and of type default integer. It is set to the maximum value
that count can have, HUGE(0).

SYSTEM_CLOCK returns the number of seconds from 00:00 Coordinated Universal Time (CUT)
on 1 JAN 1970. The number is returned with no bias. To get the elapsed time, you must call
SYSTEM_CLOCK twice, and subtract the starting time value from the ending time value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME, HUGE, GETTIM

Examples

Consider the following:

 integer(2) :: ic2, crate2, cmax2
 integer(4) :: ic4, crate4, cmax4
 call system_clock(count=ic2, count_rate=crate2, count_max=cmax2)
 call system_clock(count=ic4, count_rate=crate4, count_max=cmax4)
 print *, ic2, crate2, cmax2
 print *, ic4, crate4, cmax4
 end

This program was run on Thursday Dec 11, 1997 at 14:23:55 EST and produced the following
output:

 13880 1000 32767
 1129498807 10000 2147483647

SYSTEMQQ Page 96 of 96

SYSTEMQQ

Run-Time Function: Executes a system command by passing a command string to the operating
system’s command interpreter.

Module: USE DFLIB

Syntax

result = SYSTEMQQ (commandline)

commandline
(Input) Character*(*). Command to be passed to the operating system.

Results:

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The SYSTEMQQ function allows you to pass operating-system commands as well as programs.
SYSTEMQQ refers to the COMSPEC and PATH environment variables that locate the command
interpreter file (usually named COMMAND.COM).

If the function fails, call GETLASTERRORQQ to determine the reason. One of the following errors
can be returned:

� ERR$2BIG: The argument list exceeds 128 bytes, or the space required for the environment
formation exceeds 32K.

� ERR$NOINT: The command interpreter cannot be found.
� ERR$NOEXEC: The command interpreter file has an invalid format and is not executable.
� ERR$NOMEM: Not enough memory is available to execute the command; or the available

memory has been corrupted; or an invalid block exists, indicating that the process making the
call was not allocated properly.

The command line character limit for the SYSTEMQQ function is the same limit that your operating
system command interpreter accepts.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SYSTEM

Example

 USE DFLIB
 LOGICAL(4) result
 result = SYSTEMQQ(’copy c:\bin\fmath.dat &
 c:\dat\fmath2.dat’)

TAN Page 1 of 42

TAN

Elemental Intrinsic Function (Generic): Produces a tangent (with the result in radians).

Syntax

result = TAN (x)

x
(Input) Must be of type real. It must be in radians and is treated as modulo 2 * pi.

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

TAN REAL(4) REAL(4)

DTAN REAL(8) REAL(8)

QTAN 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

TAN (2.0) has the value -2.185040.

TAN (0.8) has the value 1.029639.

TAND

Elemental Intrinsic Function (Generic): Produces a tangent (with the result in degrees).

Syntax

result = TAND (x)

x
(Input) Must be of type real. It must be in degrees and is treated as modulo 360.

Results:

The result type is the same as x.

TAND Page 2 of 42

Specific Name Argument Type Result Type

TAND REAL(4) REAL(4)

DTAND REAL(8) REAL(8)

QTAND 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

TAND (2.0) has the value 3.4920771E-02.

TAND (0.8) has the value 1.3963542E-02.

TANH

Elemental Intrinsic Function (Generic): Produces a hyperbolic tangent.

Syntax

result = TANH (x)

x
(Input) Must be of type real.

Results:

The result type is the same as x.

Specific Name Argument Type Result Type

TANH REAL(4) REAL(4)

DTANH REAL(8) REAL(8)

QTANH 1 REAL(16) REAL(16)

1 VMS and U*X

Examples

TANH (2.0) has the value 0.9640276.

TANH (0.8) has the value 0.6640368.

TARGET Page 3 of 42

TARGET

Statement and Attribute: Specifies that an object can become the target of a pointer (it can be
pointed to).

The TARGET attribute can be specified in a type declaration statement or a TARGET statement, and
takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] TARGET [, att-ls] :: object [(a-spec)] [, object [(a-spec)]]...

Statement:

TARGET [::] object [(a-spec)] [, object [(a-spec)]]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

object
Is the name of the object. The object must not be declared with the PARAMETER attribute.

a-spec
(Optional) Is an array specification.

Rules and Behavior

A pointer is associated with a target by pointer assignment or by an ALLOCATE statement.

If an object does not have the TARGET attribute or has not been allocated (using an ALLOCATE
statement), no part of it can be accessed by a pointer.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: ALLOCATE, ASSOCIATED, POINTER, Pointer Assignments, Pointer Association, Type
Declarations, Compatible attributes.

Examples

The following example shows type declaration statements specifying the TARGET attribute:

TARGET Page 4 of 42

TYPE(SYSTEM), TARGET :: FIRST
REAL, DIMENSION(20, 20), TARGET :: C, D

The following is an example of a TARGET statement:

TARGET :: C(50, 50), D

The following fragment is from the program POINTER2.F90 in the \DF\SAMPLES\TUTORIAL
subdirectory.

 ! An example of pointer assignment.
 REAL, POINTER :: arrow1 (:)
 REAL, POINTER :: arrow2 (:)
 REAL, ALLOCATABLE, TARGET :: bullseye (:)

 ALLOCATE (bullseye (7))
 bullseye = 1.
 bullseye (1:7:2) = 10.
 WRITE (*,’(/1x,a,7f8.0)’) ’target ’,bullseye

 arrow1 => bullseye
 WRITE (*,’(/1x,a,7f8.0)’) ’pointer’,arrow1
 . . .

TIME

TIME can be used as an intrinsic subroutine or as a portability routine.

TIME Intrinsic Subroutine

Intrinsic Subroutine: Returns the current time as set within the system.

Syntax

CALL TIME (buf)

buf
Is a 8-byte variable, array, array element, or character substring.

The date is returned as a 8-byte ASCII character string taking the form hh:mm:ss, where:

hh is the 2-digit hour
mm is the 2-digit minute
ss is the 2-digit second

If buf is of numeric type and smaller than 8 bytes, data corruption can occur.

If buf is of character type, its associated length is passed to the subroutine. If buf is smaller than 8
bytes, the subroutine truncates the date to fit in the specified length. If an array of type character is

TIME Page 5 of 42

passed, the subroutine stores the date in the first array element, using the element length, not the
length of the entire array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

CHARACTER*1 HOUR(8)
...
CALL TIME (HOUR)

The length of the first array element in CHARACTER array HOUR is passed to the TIME
subroutine. The subroutine then truncates the time to fit into the 1-character element, producing an
incorrect result.

TIME Portability Routine

Portability Function and Subroutine: The function returns the system time, in seconds, since
00:00:00 Greenwich mean time, January 1, 1970. The subroutine fills a parameter with the current
time as a string in the format hh:mm:ss.

Module: USE DFPORT

Function Syntax

result = TIME ()

Subroutine Syntax

CALL TIME (string)

string
(Output) Character*(*). Current time, based on a 24-hour clock, in the form hh:mm:ss, where
hh, mm, and ss are two-digit representations of the current hour, minutes past the hour, and
seconds past the minute, respectively.

Results:

The result type is INTEGER(4). The result is the number of seconds that have elapsed since 00:00:00
Greenwich mean time, January 1, 1970.

The value returned by this function is used as input to other Portability date and time functions.

You can use both the function and subroutine versions of TIME only if your program includes the

TIME Page 6 of 42

USE DFPORT statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: DATE_AND_TIME

Example

 USE DFPORT
 INTEGER(4) int_time
 character*8 char_time
 int_time = TIME()
 call TIME(char_time)
 print *, ’Integer: ’, int_time, ’time: ’, char_time
 END

TIMEF

Portability Function: Returns the number of seconds since the first time it is called, or zero.

Module: USE DFPORT

Syntax

result = TIMEF ()

Results:

The result type is REAL(8). The result is the number of seconds that have elapsed since the first time
TIMEF was called. The first time called, TIMEF returns 0.0D0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Date and Time Procedures

Example

 USE DFPORT
 INTEGER i, j
 REAL(8) elapsed_time
 elapsed_time = TIMEF()
 DO i = 1, 100000
 j = j + 1
 END DO
 elapsed_time = TIMEF()
 PRINT *, elapsed_time
 END

TINY Page 7 of 42

TINY

Inquiry Intrinsic Function (Generic): Returns the smallest number in the model representing the same type
and kind parameters as the argument.

Syntax

result = TINY (x)

x
(Input) Must be of type real; it can be scalar or array valued.

Results:

The result type is scalar with the same type and kind parameters as x. The result has the value be
min-1.

Parameters b and emin are defined in Model for Real Data.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: HUGE, Data Representation Models

Examples

If X is of type REAL(4), TINY (X) has the value 2-126.

The following shows another example:

 REAL(8) r, result
 r = 487923.3D0
 result = TINY(r) ! returns 2.225073858507201E-308

TITLE

Compiler Directive: Specifies a string for the title field of a listing header.

Syntax

cDEC$ TITLE string

c
Is one of the following: C (or c), !, or *. (See Syntax Rules for General Directives.)

string
Is a character constant containing up to 31 printable characters.

TITLE Page 8 of 42

Rules and Behavior

To enable the TITLE directive, you must specify the compiler option that produces a source listing
file.

When TITLE appears on a page of a listing file, the specified string appears in the listing header of
the following page.

If the directive appears more than once on a page, the last directive is the one in effect for the
following page.

If the directive does not specify a string, no change occurs in the listing file header.

The following form is also allowed: !MS$TITLE:string

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SUBTITLE, General Compiler Directives.

Example

 !DEC$ TITLE:’Program MATHSTAT Version 3.0 9/02/96’
 INTEGER i, j, k
 REAL a, b, c
 CALL hilbert(i, j, k)
 CALL erf(a, b, c)
 END

TRAILZ

Elemental Intrinsic Function: Returns the number of trailing zero bits in an integer.

Syntax

result = TRAILZ (i)

i
Integer.

Results:

The result type is the same as i. The result value is the number of trailing zeros in the binary
representation of the integer i.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit
Data.

TRAILZ Page 9 of 42

Example

Consider the following:

 INTEGER*8 J, TWO
 PARAMETER (TWO=2)
 DO J= -1, 40
 TYPE *, TRAILZ(TWO**J) ! Prints 64, then 0 up to
 ENDDO ! 40 (trailing zeros)
 END

TRANSFER

Transformational Intrinsic Function (Generic): Converts the bit pattern of the first argument
according to the type and kind parameters of the second argument.

Syntax

result = TRANSFER (source, mold [, size])

source
(Input) Must be a scalar or array (of any data type).

mold
(Input) Must be a scalar or array (of any data type). It provides the type characteristics (not a
value) for the result.

size
(Optional; input) Must be scalar and of type integer. It provides the number of elements for the
output result.

Results:

The result has the same type and type parameters as mold.

If mold is a scalar and size is omitted, the result is a scalar.

If mold is an array and size is omitted, the result is a rank-one array. Its size is the smallest that is
possible to hold all of source.

If size is present, the result is a rank-one array of size size.

If the physical representation of the result is larger than source, the result contains source’s bit pattern
in its right-most bits; the left-most bits of the result are undefined.

If the physical representation of the result is smaller than source, the result contains the right-most
bits of source’s bit pattern.

TRANSFER Page 10 of 42

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Examples

TRANSFER (1082130432, 0.0) has the value 4.0 (on processors that represent the values 4.0 and
1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000).

TRANSFER ((/2.2, 3.3, 4.4/), ((0.0, 0.0))) results in a scalar whose value is (2.2, 3.3).

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/)) results in a complex rank-one array of length 2. Its first
element is (2.2,3.3) and its second element has a real part with the value 4.4 and an undefined
imaginary part.

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/), 1) results in a complex rank-one array having one
element with the value (2.2, 3.3).

The following shows another example:

 COMPLEX CVECTOR(2), CX(1)
 ! The next statement sets CVECTOR to
 ! [1.1 + 2.2i, 3.3 + 0.0i]
 CVECTOR = TRANSFER((/1.1, 2.2, 3.3, 0.0/), &
 (/(0.0, 0.0)/))
 ! The next statement sets CX to [1.1 + 2.2i]
 CX = TRANSFER((/1.1, 2.2, 3.3/) , (/(0.0, 0.0)/), &
 SIZE= 1)
 WRITE(*,*) CVECTOR
 WRITE(*,*) CX
 END

TRANSPOSE

Transformational Intrinsic Function (Generic): Transposes an array of rank two.

Syntax

result = TRANSPOSE (matrix)

matrix
(Input) Must be a rank-two array (of any data type).

Results:

The result is a rank-two array with the same type and kind parameters as matrix. Its shape is (n, m),
where (m, n) is the shape of matrix. For example, if the shape of matrix is (4,6), the shape of the
result is (6,4).

Element (i, j) of the result has the value matrix (j, i), where i is in the range 1 to n, and j is in the

TRANSPOSE Page 11 of 42

range 1 to m.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: RESHAPE, PRODUCT

Examples

B is the array

 [2 3 4]
 [5 6 7]
 [8 9 1].

TRANSPOSE (B) has the value

 [2 5 8]
 [3 6 9]
 [4 7 1].

The following shows another example:

 INTEGER array(2, 3), result(3, 2)
 array = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))
 ! array is 1 3 5
 ! 2 4 6
 result = TRANSPOSE(array)
 ! result is 1 2
 ! 3 4
 ! 5 6
 END

TRIM

Transformational Intrinsic Function (Generic): Returns the argument with trailing blanks removed.

Syntax

result = TRIM (string)

string
(Input) Must be a scalar of type character.

Results:

The result type is character with the same kind parameter as string. Its length is the length of string
minus the number of trailing blanks in string.

TRIM Page 12 of 42

The value of the result is the same as string, except any trailing blanks are removed. If string contains
only blank characters, the result has zero length.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LEN_TRIM

Examples

In these examples, the symbol - represents a blank.

TRIM (’--NAME----’) has the value ’--NAME’.

TRIM (’--C--D-----’) has the value ’--C--D’.

The following shows another example:

 ! next line prints 28
 WRITE(*, *) LEN("I have blanks behind me ")
 ! the next line prints 23
 WRITE(*,*) LEN(TRIM("I have blanks behind me "))
 END

TYPE

Statement: Declares a variable to be a derived type. For more information, see Derived Type.

Example

 ! DERIVED.F90
 ! Define a derived-type structure,
 ! type variables, and assign values

 TYPE member
 INTEGER age
 CHARACTER (LEN = 20) name
 END TYPE member

 TYPE (member) :: george
 TYPE (member) :: ernie

 george = member(33, ’George Brown’)
 ernie%age = 56
 ernie%name = ’Ernie Brown’

 WRITE (*,*) george
 WRITE (*,*) ernie
 END

Type Declarations

Type Declarations Page 13 of 42

Statement: Explicitly specifies the properties of data objects or functions.

Syntax

A type declaration statement has the general form:

type [[, att] ... ::] v [/c-list/] [, v [/c-list/]]...

type
Is one of the following data type specifiers:

BYTE
INTEGER [kind-selector]
REAL [kind-selector]
DOUBLE PRECISION
COMPLEX [kind-selector]
DOUBLE COMPLEX
CHARACTER [char-selector]
LOGICAL [kind-selector]
TYPE (derived-type-name)

In the optional kind selector "([KIND=]k)", k is the kind parameter. It must be an acceptable
kind parameter for that data type. If the kind selector is not present, entities declared are of
default type.

Kind parameters for intrinsic numeric and logical data types can also be specified using the *n
format, where n is the length (in bytes) of the entity; for example, INTEGER*4.

See each data type for further information on that type.

att
Is one of the following attribute specifiers:

ALLOCATABLE INTRINSIC PUBLIC 1

AUTOMATIC OPTIONAL SAVE

DIMENSION PARAMETER STATIC

EXTERNAL POINTER TARGET

INTENT PRIVATE [1] VOLATILE

1 These are access specifiers.

You can also declare any attribute separately as a statement.

v

Type Declarations Page 14 of 42

Is the name of a data object or function. It can optionally be followed by:

n An array specification, if the object is an array.

In a function declaration, an array must be a deferred-shape array if it has the POINTER
attribute; otherwise, it must be an explicit-shape array.

n A character length, if the object is of type character.

n An initialization expression or, for pointer objects, =>NULL().

A function name must be the name of an intrinsic function, external function, function dummy
procedure, or statement function.

c-list
Is a list of constants, as in a DATA statement. If v is the name of a constant or an initialization
expression, the c-list cannot be present.

The c-list cannot specify more than one value unless it initializes an array. When initializing an
array, the c-list must contain a value for every element in the array.

Rules and Behavior

Type declaration statements must precede all executable statements.

In most cases, a type declaration statement overrides (or confirms) the implicit type of an entity.
However, a variable that appears in a DATA statement and is typed implicitly can appear in a
subsequent type declaration only if that declaration confirms the implicit typing.

The double colon separator (::) is required only if the declaration contains an attribute specifier or
initialization; otherwise it is optional.

If att appears, c-list cannot be specified; for example:

 INTEGER I /2/ ! Valid
 INTEGER, SAVE :: I /2/ ! Invalid

The same attribute must not appear more than once in a given type declaration statement, and an
entity cannot be given the same attribute more than once in a scoping unit.

If the PARAMETER attribute is specified, the declaration must contain an initialization expression.

If =>NULL() is specified for a pointer, its initial association status is disassociated.

A variable (or variable subobject) can only be initialized once in an executable program.

If a declaration contains an initialization expression, but no PARAMETER attribute is specified, the
object is a variable whose value is initially defined. The object becomes defined with the value

Type Declarations Page 15 of 42

determined from the initialization expression according to the rules of intrinsic assignment.

The presence of initialization implies that the name of the object is saved, except for objects in named
common blocks or objects with the PARAMETER attribute.

The following objects cannot be initialized in a type declaration statement:

� A dummy argument
� A function result
� An object in a named common block (unless the type declaration is in a block data program

unit)
� An object in blank common
� An allocatable array
� An external name
� An intrinsic name
� An automatic object
� An object that has the AUTOMATIC attribute

An object can have more than one attribute. The following table lists the compatible attributes:

Compatible Attributes

Attribute Compatible with:

ALLOCATABLE AUTOMATIC, DIMENSION[1], PRIVATE, PUBLIC, SAVE, STATIC,
TARGET, VOLATILE

AUTOMATIC ALLOCATABLE, DIMENSION, POINTER, TARGET, VOLATILE

DIMENSION ALLOCATABLE , AUTOMATIC, INTENT, OPTIONAL, PARAMETER,
POINTER, PRIVATE, PUBLIC, SAVE, STATIC, TARGET, VOLATILE

EXTERNAL OPTIONAL, PRIVATE, PUBLIC

INTENT DIMENSION, OPTIONAL, TARGET, VOLATILE

INTRINSIC PRIVATE, PUBLIC

OPTIONAL DIMENSION, EXTERNAL, INTENT, POINTER, TARGET, VOLATILE

PARAMETER DIMENSION, PRIVATE, PUBLIC

POINTER AUTOMATIC, DIMENSION[1], OPTIONAL, PRIVATE, PUBLIC, SAVE,
STATIC, VOLATILE

PRIVATE ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC, PARAMETER,
POINTER, SAVE, STATIC, TARGET, VOLATILE

PUBLIC ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC, PARAMETER,
POINTER, SAVE, STATIC, TARGET, VOLATILE

Type Declarations Page 16 of 42

SAVE ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC, STATIC,
TARGET, VOLATILE

STATIC ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC, SAVE,
TARGET, VOLATILE

TARGET ALLOCATABLE , AUTOMATIC, DIMENSION, INTENT, OPTIONAL,
PRIVATE, PUBLIC, SAVE, STATIC, VOLATILE

VOLATILE ALLOCATABLE , AUTOMATIC, DIMENSION, INTENT, OPTIONAL,
POINTER, PRIVATE, PUBLIC, SAVE, STATIC, TARGET

[1] With deferred shape

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: CHARACTER, COMPLEX, Derived Type, DOUBLE COMPLEX, DOUBLE
PRECISION, INTEGER, LOGICAL, REAL, IMPLICIT, RECORD, STRUCTURE...END
STRUCTURE, TYPE, Type Declaration Statements

Examples

The following show valid type declaration statements:

DOUBLE PRECISION B(6)
INTEGER(KIND=2) I
REAL(KIND=4) X, Y
REAL(4) X, Y
LOGICAL, DIMENSION(10,10) :: ARRAY_A, ARRAY_B
INTEGER, PARAMETER :: SMALLEST = SELECTED_REAL_KIND(6, 70)
REAL(KIND (0.0)) M
COMPLEX(KIND=8) :: D
TYPE(EMPLOYEE) :: MANAGER
REAL, INTRINSIC :: COS
CHARACTER(15) PROMPT
CHARACTER*12, SAVE :: HELLO_MSG
INTEGER COUNT, MATRIX(4,4), SUM
LOGICAL*2 SWITCH
REAL :: X = 2.0

TYPE (NUM), POINTER :: FIRST => NULL()

The following shows more examples:

 REAL a (10)
 LOGICAL, DIMENSION (5, 5) :: mask1, mask2
 COMPLEX :: cube_root = (-0.5, 0.867)
 INTEGER, PARAMETER :: short = SELECTED_INT_KIND (4)
 REAL (KIND (0.0D0)) a1
 REAL (KIND = 2) b
 COMPLEX (KIND = KIND (0.0D0)) :: c
 INTEGER (short) k ! Range at least -9999 to 9999
 TYPE (member) :: george

UBOUND Page 17 of 42

UBOUND

Inquiry Intrinsic Function (Generic): Returns the upper bounds for all dimensions of an array, or
the upper bound for a specified dimension.

Syntax

result = UBOUND (array [, dim])

array
(Input) Must be an array (of any data type). It must not be an allocatable array that is not
allocated, or a disassociated pointer. It can be an assumed-size array if dim is present with a
value less than the rank of array.

dim
(Optional; input) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array.

Results:

The result type is default integer. If dim is present, the result is a scalar. Otherwise, the result is a
rank- one array with one element for each dimension of array. Each element in the result corresponds
to a dimension of array.

If array is an array section or an array expression that is not a whole array or array structure
component, UBOUND(array, dim) has a value equal to the number of elements in the given
dimension.

If array is a whole array or array structure component, UBOUND(array, dim) has a value equal to the
upper bound for subscript dim of array (if dim is nonzero). If dim has size zero, the corresponding
element of the result has the value zero.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: LBOUND

Examples

Consider the following:

REAL ARRAY_A (1:3, 5:8)
REAL ARRAY_B (2:8, -3:20)

UBOUND (ARRAY_A) is (3, 8). UBOUND (ARRAY_A, DIM=2) is 8.

UBOUND Page 18 of 42

UBOUND (ARRAY_B) is (8, 20). UBOUND (ARRAY_B (5:8, :)) is (4,24) because the number of
elements is significant for array section arguments.

The following shows another example:

 REAL ar1(2:3, 4:5, -1:14), vec1(35)
 INTEGER res1(3), res2, res3(1)
 res1 = UBOUND (ar1) ! returns [3, 5, 14]
 res2 = UBOUND (ar1, DIM= 3) ! returns 14
 res3 = UBOUND (vec1) ! returns 35
 END

UNION...END UNION

Statements: Define a data area that can be shared intermittently during program execution by one or
more fields or groups of fields. A union declaration must be within a structure declaration.

Each unique field or group of fields is defined by a separate map declaration.

Syntax

UNION
map-declaration
map-declaration
[map-declaration]
. . .
[map-declaration]

END UNION

map-declaration
Takes the following form:

MAP
field-declaration
[field-declaration]
. . .
[field-declaration]

END MAP

field-declaration
Is a structure declaration or RECORD statement contained within a union declaration, a
union declaration contained within a union declaration, or the declaration of a data field
(having a data type) within a union. It can be of any intrinsic or derived type.

Rules and Behavior

As with normal Fortran type declarations, data can be initialized in field declaration statements in
union declarations. However, if fields within multiple map declarations in a single union are
initialized, the data declarations are initialized in the order in which the statements appear. As a

UNION...END UNION Page 19 of 42

result, only the final initialization takes effect and all of the preceding initializations are overwritten.

The size of the shared area established for a union declaration is the size of the largest map defined
for that union. The size of a map is the sum of the sizes of the fields declared within it.

Manipulating data by using union declarations is similar to using EQUIVALENCE statements. The
difference is that data entities specified within EQUIVALENCE statements are concurrently
associated with a common storage location and the data residing there; with union declarations you
can use one discrete storage location to alternately contain a variety of fields (arrays or variables).

With union declarations, only one map declaration within a union declaration can be associated at any
point in time with the storage location that they share. Whenever a field within another map
declaration in the same union declaration is referenced in your program, the fields in the prior map
declaration become undefined and are succeeded by the fields in the map declaration containing the
newly referenced field.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: STRUCTURE...END STRUCTURE, Record Structures

Examples

In the following example, the structure WORDS_LONG is defined. This structure contains a union
declaration defining two map fields. The first map field consists of three INTEGER*2 variables
(WORD_0, WORD_1, and WORD_2), and the second, an INTEGER*4 variable, LONG:

 STRUCTURE /WORDS_LONG/
 UNION
 MAP
 INTEGER*2 WORD_0, WORD_1, WORD_2
 END MAP
 MAP
 INTEGER*4 LONG
 END MAP
 END UNION
 END STRUCTURE

The length of any record with the structure WORDS_LONG is 6 bytes. The following figure shows
the memory mapping of any record with the structure WORDS_LONG:

Memory Map of Structure WORDS_LONG

UNION...END UNION Page 20 of 42

In the following example, note how the first 40 characters in the string2 array are overlayed on 4-byte
integers, while the remaining 20 are overlayed on 2-byte integers:

 UNION
 MAP
 CHARACTER*20 string1, CHARACTER*10 string2(6)
 END MAP
 MAP
 INTEGER*2 number(10), INTEGER*4 var(10), INTEGER*2
 + datum(10)
 END MAP
 END UNION

UNLINK

Portability Function: Deletes the file given by path.

Module: USE DFPORT

Syntax

result = UNLINK (name)

name
(Input) Character*(*). Path of the file to delete. The path can use forward (/) or backward (\)
slashes as path separators and can contain drive letters.

Results:

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code. Errors can
be one of the following:

ENOENT: The specified file could not be found.

EACCES: The specified file is read-only.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

UNLINK Page 21 of 42

See Also: SYSTEM, DELDIRQQ

Example

 USE DFPORT
 INTEGER(4) ISTATUS
 CHARACTER*20 dirname
 READ *, dirname
 ISTATUS = UNLINK (dirname)
 IF (ISTATUS) then
 print *, ’Error ’, ISTATUS
 END IF
 END

UNLOCK

Statement: Frees a record in a relative or sequential file that was locked by a previous READ
statement.

Syntax

UNLOCK ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])
UNLOCK io-unit

io-unit
Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no
error occurs.

If no record is locked, the UNLOCK statement has no effect.

See Also: Data Transfer I/O Statements, Branch Specifiers

Examples

The following statement frees any record previously read and locked in the file connected to I/O unit
4:

 UNLOCK 4

Consider the following statement:

 UNLOCK (UNIT=9, IOSTAT=IOS, ERR=10)

UNLOCK Page 22 of 42

This statement frees any record previously read and locked in the file connected to unit 9. If an error
occurs, control is transferred to the statement labeled 10, and a positive integer is stored in variable
IOS.

UNPACK

Transformational Intrinsic Function (Generic): Takes elements from a rank-one array and unpacks
them into another (possibly larger) array under the control of a mask.

Syntax

result = UNPACK (vector, mask, field)

vector
(Input) Must be a rank-one array (of any data type). Its size must be at least t, where t is the
number of true elements in mask.

mask
(Input) Must be a logical array. It determines where elements of vector are placed when they
are unpacked.

field
(Input) Must be of the same type and type parameters as vector and conformable with mask.
Elements in field are inserted into the result array when the corresponding mask element has
the value false.

Results:

The result is an array with the same shape as mask, and the same type and type parameters as vector.

Elements in the result array are filled in array element order. If element i of mask is true, the
corresponding element of the result is filled by the next element in vector. Otherwise, it is filled by
field (if field is scalar) or the ith element of field (if field is an array).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PACK, RESHAPE, SHAPE

Examples

N is the array

 [0 0 1]
 [1 0 1]
 [1 0 0],

UNPACK Page 23 of 42

P is the array (2, 3, 4, 5), and Q is the array

 [T F F]
 [F T F]
 [T T F].

UNPACK (P, MASK=Q, FIELD=N) produces the result

 [2 0 1]
 [1 4 1]
 [3 5 0].

UNPACK (P, MASK=Q, FIELD=1) produces the result

 [2 1 1]
 [1 4 1]
 [3 5 1].

The following shows another example:

 LOGICAL mask (2, 3)
 INTEGER vector(3) /1, 2, 3/, AR1(2, 3)
 mask = RESHAPE((/.TRUE.,.FALSE.,.FALSE.,.TRUE.,&
 .TRUE.,.FALSE./), (/2, 3/))
 ! vector = [1 2 3] and mask = T F T
 ! F T F
 AR1 = UNPACK(vector, mask, 8) ! returns 1 8 3
 ! 8 2 8
 END

UNPACKTIMEQQ

Run-Time Subroutine: Unpacks a packed time and date value into its component parts.

Module: USE DFLIB

Syntax

CALL UNPACKTIMEQQ (timedate, iyr, imon, iday, ihr, imin, isec)

timedate
(Input) INTEGER(4). Packed time and date information.

iyr
(Output) INTEGER(2). Year (xxxx AD).

imon
(Output) INTEGER(2). Month (1 - 12).

UNPACKTIMEQQ Page 24 of 42

iday
(Output) INTEGER(2). Day (1 - 31).

ihr
(Output) INTEGER(2). Hour (0 - 23).

imin
(Output) INTEGER(2). Minute (0 - 59).

isec
(Output) INTEGER(2). Second (0 - 59).

GETFILEINFOQQ returns time and date in a packed format. You can use UNPACKTIMEQQ to
unpack these values. Use PACKTIMEQQ to repack times for passing to SETFILETIMEQQ.
Packed times can be compared using relational operators.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: PACKTIMEQQ, GETFILEINFOQQ

Example

 USE DFLIB
 CHARACTER(80) file
 TYPE (FILE$INFO) info
 INTEGER(4) handle, result
 INTEGER(2) iyr, imon, iday, ihr, imin, isec

 file = ’d:\f90ps\bin\t???.*’
 handle = FILE$FIRST
 result = GETFILEINFOQQ(file, info, handle)
 CALL UNPACKTIMEQQ(info.lastwrite, iyr, imon,&
 iday, ihr,imin, isec)
 WRITE(*,*) iyr, imon, iday
 WRITE(*,*) ihr, imin, isec
 END

UNREGISTERMOUSEEVENT

QuickWin Function: Removes the callback routine registered for a specified window by an earlier
call to REGISTERMOUSEEVENT.

Module: USE DFLIB

Syntax

result = UNREGISTERMOUSEEVENT (unit, mouseevents)

unit

UNREGISTERMOUSEEVENT Page 25 of 42

(Input) INTEGER(4). Unit number of the window whose callback routine on mouse events is
to be unregistered.

mouseevents
(Input) INTEGER(4). One or more mouse events handled by the callback routine to be
unregistered. Symbolic constants (defined in DFLIB.F90 in the \DF98\INCLUDE subdirectory)
for the possible mouse events are:

n MOUSE$LBUTTONDOWN: Left mouse button down
n MOUSE$LBUTTONUP: Left mouse button up
n MOUSE$LBUTTONDBLCLK: Left mouse button double-click
n MOUSE$RBUTTONDOWN: Right mouse button down
n MOUSE$RBUTTONUP: Right mouse button up
n MOUSE$RBUTTONDBLCLK: Right mouse button double-click
n MOUSE$MOVE: Mouse moved

Results:

The result type is INTEGER(4). The result is zero or a positive integer if successful; otherwise, a
negative integer which can be one of the following:

� MOUSE$BADUNIT: The unit specified is not open, or is not associated with a QuickWin
window.

� MOUSE$BADEVENT: The event specified is not supported.

Once you call UNREGISTERMOUSEEVENT, QuickWin no longer calls the callback routine
specified earlier for the window when mouse events occur. Calling UNREGISTERMOUSEEVENT
when no callback routine is registered for the window has no effect.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: Using QuickWin, REGISTERMOUSEEVENT, WAITONMOUSEEVENT

USE

Statement: Gives a program unit accessibility to public entities in a module.

Syntax

USE name [, rename-list]...
USE name, ONLY : [, only-list]

name
Is the name of the module.

rename-list

USE Page 26 of 42

Is one or more items having the following form:

local-name => mod-name

local-name
Is the name of the entity in the program unit using the module.

mod-name
Is the name of a public entity in the module.

only-list
Is the name of a public entity in the module or a generic identifier (a generic name, defined
operator, or defined assignment).
An entity in the only-list can also take the form:

[local-name =>] mod-name

Rules and Behavior

If the USE statement is specified without the ONLY option, the program unit has access to all public
entities in the named module.

If the USE statement is specified with the ONLY option, the program unit has access to only those
entities following the option.

If more than one USE statement for a given module appears in a scoping unit, the following rules
apply:

� If one USE statement does not have the ONLY option, all public entities in the module are
accessible, and any rename- lists and only-lists are interpreted as a single, concatenated
rename-list.

� If all the USE statements have ONLY options, all the only-lists are interpreted as a single,
concatenated only-list. Only those entities named in one or more of the only-lists are accessible.

If two or more generic interfaces that are accessible in a scoping unit have the same name, the same
operator, or are both assignments, they are interpreted as a single generic interface. Otherwise,
multiple accessible entities can have the same name only if no reference to the name is made in the
scoping unit.

The local names of entities made accessible by a USE statement must not be respecified with any
attribute other than PUBLIC or PRIVATE. The local names can appear in namelist group lists, but
not in a COMMON or EQUIVALENCE statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Program Units and Procedures, USE Statement (more examples)

USE Page 27 of 42

Examples

The following shows examples of the USE statement:

MODULE MOD_A
 INTEGER :: B, C
 REAL E(25,5), D(100)
END MODULE MOD_A
...
SUBROUTINE SUB_Y
 USE MOD_A, DX => D, EX => E ! Array D has been renamed DX and array E
 ... ! has been renamed EX. Scalar variables B
END SUBROUTINE SUB_Y ! and C are also available to this subrou-
... ! tine (using their module names).
SUBROUTINE SUB_Z
 USE MOD_A, ONLY: B, C ! Only scalar variables B and C are
 ... ! available to this subroutine
END SUBROUTINE SUB_Z
...

The following example shows a module containing common blocks:

MODULE COLORS
 COMMON /BLOCKA/ C, D(15)
 COMMON /BLOCKB/ E, F
 ...
END MODULE COLORS
...
FUNCTION HUE(A, B)
 USE COLORS
 ...
END FUNCTION HUE

The USE statement makes all of the variables in the common blocks in module COLORS available to
the function HUE.

To provide data abstraction, a user-defined data type and operations to be performed on values of this
type can be packaged together in a module. The following example shows such a module:

MODULE CALCULATION
 TYPE ITEM
 REAL :: X, Y
 END TYPE ITEM

 INTERFACE OPERATOR (+)
 MODULE PROCEDURE ITEM_CALC
 END INTERFACE

CONTAINS
 FUNCTION ITEM_CALC (A1, A2)
 TYPE(ITEM) A1, A2, ITEM_CALC
 ...
 END FUNCTION ITEM_CALC
 ...
END MODULE CALCULATION

USE Page 28 of 42

PROGRAM TOTALS
USE CALCULATION
TYPE(ITEM) X, Y, Z
 ...
 X = Y + Z
 ...
END

The USE statement allows program TOTALS access to both the type ITEM and the extended
intrinsic operator + to perform calculations.

The following shows another example:

 ! Module containing original type declarations
 MODULE geometry
 type square
 real side
 integer border
 end type
 type circle
 real radius
 integer border
 end type
 END MODULE

 ! Program renames module types for local use.
 PROGRAM test
 USE GEOMETRY,LSQUARE=>SQUARE,LCIRCLE=>CIRCLE
 ! Now use these types in declarations
 type (LSQUARE) s1,s2
 type (LCIRCLE) c1,c2,c3

%VAL

Built-in Function: Changes the form of an actual argument. Passes the argument as an immediate
value.

Syntax

result = %VAL (a)

a
(Input) An expression, record name, procedure name, array, character array section, or array
element.

The argument is passed as follows:

� On Intel processors, as a 32-bit immediate value. If the argument is integer (or logical) and
shorter that 32 bits, it is sign-extended to a 32-bit value. For complex data types, %VAL
passes two 32-bit arguments.

� On Alpha processors, as a 64-bit immediate value. If the argument is integer (or logical) and
shorter that 64 bits, it is sign-extended to a 64-bit value. For complex data types, %VAL
passes two 64-bit arguments.

%VAL Page 29 of 42

You must specify %VAL in the actual argument list of a CALL statement or function reference. You
cannot use it in any other context.

The following table lists the DIGITAL Fortran defaults for argument passing, and the allowed uses of
%VAL:

Actual Argument Data Type Default %VAL

Expressions:

Logical REF Yes1

Integer REF Yes1

REAL(4) REF Yes

REAL(8) REF Yes2

REAL(16) 3 REF No

COMPLEX(4) REF No

COMPLEX(8) REF No

Character See table note4 No

Hollerith REF No

Aggregate5 REF No

Derived REF No

Array Name:

Numeric REF No

Character See table note4 No

Aggregate5 REF No

Derived REF No

Procedure Name:

Numeric REF No

Character See table note4 No

1 If a logical or integer value occupies less than 64 (Alpha systems) or 32 (Intel systems) bits of

%VAL Page 30 of 42

storage, it is converted to the correct size by sign extension. Use the ZEXT intrinsic function if zero
extension is desired.
2 Alpha only
3 VMS, U*X
4 On DIGITAL UNIX, Windows NT and Windows 95 systems, a character argument is passed by
address and hidden length.
5 In DIGITAL Fortran record structures

See Also: CALL, %REF

Example

 CALL SUB(2, %VAL(2))

Constant 2 is passed by reference. The second constant 2 is passed by immediate value.

VERIFY

Elemental Intrinsic Function (Generic):Verifies that a set of characters contains all the characters
in a string by identifying the first character in the string that is not in the set.

Syntax

result = VERIFY (string, set [, back])

string
(Input) Must be of type character.

set
(Input) Must be of type character with the same kind parameter as string.

back
(Optional; input)Must be of type logical.

Results:

The result type is default integer.

If back is omitted (or is present with the value false) and string has at least one character that is not in
set, the value of the result is the position of the leftmost character of string that is not in set.

If back is present with the value true and string has at least one character that is not in set, the value
of the result is the position of the rightmost character of string that is not in set.

If each character of string is in set or the length of string is zero, the value of the result is zero.

Compatibility

VERIFY Page 31 of 42

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: SCAN

Examples

VERIFY (’CDDDC’, ’C’) has the value 2.

VERIFY (’CDDDC’, ’C’, BACK=.TRUE.) has the value 4.

VERIFY (’CDDDC’, ’CD’) has the value zero.

The following shows another example:

 INTEGER(4) position

 position = VERIFY (’banana’, ’nbc’) ! returns 2
 position = VERIFY (’banana’, ’nbc’, BACK=.TRUE.)
 ! returns 6
 position = VERIFY (’banana’, ’nbca’) ! returns 0

VIRTUAL

Statement: Has the same form and effect as the DIMENSION statement. It is included for
compatibility with PDP-11 FORTRAN.

VOLATILE

Statement and Attribute: Specifies that the value of an object is entirely unpredictable, based on
information local to the current program unit. It prevents objects from being optimized during
compilation.

The VOLATILE attribute can be specified in a type declaration statement or a VOLATILE
statement, and takes one of the following forms:

Syntax

Type Declaration Statement:

type, [att-ls,] VOLATILE [, att-ls] :: object [, object]...

Statement:

VOLATILE object [, object] ...

type
Is a data type specifier.

VOLATILE Page 32 of 42

att-ls
Is an optional list of attribute specifiers.

object
Is the name of an object, or the name of a common block enclosed in slashes.

Rules and Behavior

A variable or COMMON block must be declared VOLATILE if it can be read or written in a way
that is not visible to the compiler. For example:

� If an operating system feature is used to place a variable in shared memory (so that it can be
accessed by other programs), the variable must be declared VOLATILE.

� If a variable is accessed or modified by a routine called by the operating system when an
asynchronous event occurs, the variable must be declared VOLATILE.

Formal (dummy) arguments that can be omitted must be declared VOLATILE.

If an array is declared VOLATILE, each element in the array becomes volatile. If a common block is
declared VOLATILE, each variable in the common block becomes volatile.

If an object of derived type is declared VOLATILE, its components become volatile.

If a pointer is declared VOLATILE, the pointer itself becomes volatile.

A VOLATILE statement cannot specify the following:

� A procedure
� A function result
� A namelist group

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: Type Declarations, Compatible attributes.

Examples

The following example shows a type declaration statement specifying the VOLATILE attribute:

 INTEGER, VOLATILE :: D, E

The following example shows a VOLATILE statement:

 PROGRAM TEST
 LOGICAL(KIND=1) IPI(4)
 INTEGER(KIND=4) A, B, C, D, E, ILOOK

VOLATILE Page 33 of 42

 INTEGER(KIND=4) P1, P2, P3, P4
 COMMON /BLK1/A, B, C
 VOLATILE /BLK1/, D, E
 EQUIVALENCE(ILOOK, IPI)
 EQUIVALENCE(A, P1)
 EQUIVALENCE(P1, P4)

The named common block, BLK1, and the variables D and E are volatile. Variables P1 and P4
become volatile because of the direct equivalence of P1 and the indirect equivalence of P4.

WAITONMOUSEEVENT

QuickWin Function: Waits for the specified mouse input from the user.

Module: USE DFLIB

Syntax

result = WAITONMOUSEEVENT (mouseevents, keystate, x, y)

mouseevents
(Input) INTEGER(4). One or more mouse events that must occur before the function returns.
Symbolic constants for the possible mouse events are:

n MOUSE$LBUTTONDOWN: Left mouse button down
n MOUSE$LBUTTONUP: Left mouse button up
n MOUSE$LBUTTONDBLCLK: Left mouse button double-click
n MOUSE$RBUTTONDOWN: Right mouse button down
n MOUSE$RBUTTONUP: Right mouse button up
n MOUSE$RBUTTONDBLCLK: Right mouse button double-click
n MOUSE$MOVE: Mouse moved

keystate
(Output) INTEGER(4). Bitwise inclusive OR of the state of the mouse duing the event. The
value returned in keystate can be any or all of the following symbolic constants:

n MOUSE$KS_LBUTTON: Left mouse button down during event
n MOUSE$KS_RBUTTON: Right mouse button down during event
n MOUSE$KS_SHIFT: SHIFT key held down during event
n MOUSE$KS_CONTROL: CONTROL key held down during event

x
(Output) INTEGER(4). X position of the mouse when the event occurred.

y
(Output) INTEGER(4). Y position of the mouse when the event occurred.

Results:

The result type is INTEGER(4). The result is the symbolic constant associated with the mouse event

WAITONMOUSEEVENT Page 34 of 42

that occurred if successful. If the function fails, it returns the constant MOUSE$BADEVENT,
meaning the event specified is not supported.

WAITONMOUSEEVENT does not return until the specified mouse input is received from the user.
While waiting for a mouse event to occur, the status bar changes to read "Mouse input pending in
XXX" where XXX is the name of the window. When a mouse event occurs, the status bar returns to
its previous value.

A mouse event must happen in the window that had focus when WAITONMOUSEEVENT was
initially called. Mouse events in other windows will not end the wait. Mouse events in other windows
cause callbacks to be called for the other windows, if callbacks were previously registered for those
windows.

For every BUTTONDOWN or BUTTONDBLCLK event there is an associated BUTTONUP event.
When the user double clicks, four events happen: BUTTONDOWN and BUTTONUP for the first
click, and BUTTONDBLCLK and BUTTONUP for the second click. The difference between getting
BUTTONDBLCLK and BUTTONDOWN for the second click depends on whether the second click
occurs in the double click interval, set in the system’s CONTROL PANEL/MOUSE.

Compatibility

QUICKWIN GRAPHICS LIB

See Also: REGISTERMOUSEEVENT, UNREGISTERMOUSEEVENT, Using QuickWin

WHERE

Statement and Contruct: Lets you use masked array assignment, which performs an array operation
on selected elements. This kind of assignment applies a logical test to an array on an element-by-
element basis.

Syntax

Statement:

WHERE (mask-expr1) assign-stmt

Contruct:

[name:] WHERE (mask-expr1)
[where-body-stmt]...

[ELSEWHERE (mask-expr2) [name]
[where-body-stmt]...]

[ELSEWHERE [name]
[where-body-stmt]...]

END WHERE [name]

mask-expr1, mask-expr2

WHERE Page 35 of 42

Are logical array expressions (called mask expressions).

assign-stmt
Is an assignment statement of the form: array variable = array expression.

name
Is the name of the WHERE construct.

where-body-stmt
Is one of the following:

n An assign-stmt
n A WHERE statement or construct

Rules and Behavior

If a construct name is specified in a WHERE statement, the same name must appear in the
corresponding END WHERE statement. The same construct name can optionally appear in any
ELSEWHERE statement in the construct. (ELSEWHERE cannot specify a different name.)

In each assignment statement, the mask expression, the variable being assigned to, and the expression
on the right side, must all be conformable. Also, the assignment statement cannot be a defined
assignment.

Only the WHERE statement (or the first line of the WHERE construct) can be labeled as a branch
target statement.

The following shows an example using a WHERE statement:

 INTEGER A, B, C
 DIMENSION A(5), B(5), C(5)
 DATA A /0,1,1,1,0/
 DATA B /10,11,12,13,14/
 C = -1

 WHERE(A .NE. 0) C = B / A

The resulting array C contains: -1,11,12,13, and -1.

The assignment statement is only executed for those elements where the mask is true. Think of the
mask expression as being evaluated first into a logical array that has the value true for those elements
where A is positive. This array of trues and falses is applied to the arrays A, B and C in the
assignment statement. The right side is only evaluated for elements for which the mask is true;
assignment on the left side is only performed for those elements for which the mask is true. The
elements for which the mask is false do not get assigned a value.

In a WHERE construct, the mask expression is evaluated first and only once. Every assignment
statement following the WHERE is executed as if it were a WHERE statement with "mask-expr1"
and every assignment statement following the ELSEWHERE is executed as if it were a WHERE
statement with ".NOT. mask-expr1". If ELSEWHERE specifies "mask-expr2", it is executed as

WHERE Page 36 of 42

"(.NOT. mask-expr1) .AND. mask-expr2".

You should be careful if the statements have side effects, or modify each other or the mask
expression.

The following is an example of the WHERE construct:

 DIMENSION PRESSURE(1000), TEMP(1000), PRECIPITATION(1000)
 WHERE(PRESSURE .GE. 1.0)
 PRESSURE = PRESSURE + 1.0
 TEMP = TEMP - 10.0
 ELSEWHERE
 PRECIPITATION = .TRUE.
 ENDWHERE

The mask is applied to the arguments of functions on the right side of the assignment if they are
considered to be elemental functions. Only elemental intrinsics are considered elemental functions.
Transformational intrinsics, inquiry intrinsics, and functions or operations defined in the subprogram
are considered to be nonelemental functions.

Consider the following example using LOG, an elemental function:

 WHERE(A .GT. 0) B = LOG(A)

The mask is applied to A, and LOG is executed only for the positive values of A. The result of the
LOG is assigned to those elements of B where the mask is true.

Consider the following example using SUM, a nonelemental function:

 REAL A, B
 DIMENSION A(10,10), B(10)
 WHERE(B .GT. 0.0) B = SUM(A, DIM=1)

Since SUM is nonelemental, it is evaluated fully for all of A. Then, the assignment only happens for
those elements for which the mask evaluated to true.

Consider the following example:

 REAL A, B, C
 DIMENSION A(10,10), B(10), C(10)
 WHERE(C .GT. 0.0) B = SUM(LOG(A), DIM=1)/C

Because SUM is nonelemental, all of its arguments are evaluated fully regardless of whether they are
elemental or not. In this example, LOG(A) is fully evaluated for all elements in A even though LOG
is elemental. Notice that the mask is applied to the result of the SUM and to C to determine the right
side. One way of thinking about this is that everything inside the argument list of a nonelemental
function does not use the mask, everything outside does.

Compatibility

WHERE Page 37 of 42

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: FORALL, Arrays

Examples

 REAL(4) a(20)
 . . .
 WHERE (a > 0.0)
 a = LOG (a)
 !LOG is invoked only for positive elements
 END WHERE

WRAPON

Graphics Function: Controls whether text output with the OUTTEXT function wraps to a new line
or is truncated when the text output reaches the edge of the defined text window.

Module: USE DFLIB

Syntax

result = WRAPON (option)

option
(Input) INTEGER(2). Wrap mode. One of the following symbolic constants:

n $GWRAPOFF: Truncates lines at right edge of window border.
n $GWRAPON: Wraps lines at window border, scrolling if necessary.

Results:

The result type is INTEGER(2). The result is the previous value of option.

WRAPON does not affect font routines such as OUTGTEXT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also: OUTTEXT, SCROLLTEXTWINDOW, SETTEXTPOSITION, SETTEXTWINDOW

Example

 USE DFLIB
 INTEGER(2) row, status2
 INTEGER(4) status4
 TYPE (rccoord) curpos
 TYPE (windowconfig) wc

WRAPON Page 38 of 42

 LOGICAL status

 status = GETWINDOWCONFIG(wc)
 wc.numtextcols = 80
 wc.numxpixels = -1
 wc.numypixels = -1
 wc.numtextrows = -1
 wc.numcolors = -1
 wc.fontsize = -1
 wc.title = "This is a test"C
 wc.bitsperpixel = -1
 status = SETWINDOWCONFIG(wc)
 status4= SETBKCOLORRGB(#FF0000)
 CALL CLEARSCREEN($GCLEARSCREEN)

 ! Display wrapped and unwrapped text in text windows.
 CALL SETTEXTWINDOW(INT2(1),INT2(1),INT2(5),INT2(25))
 CALL SETTEXTPOSITION(INT2(1),INT2(1), curpos)
 status2 = WRAPON($GWRAPON)
 status4 = SETTEXTCOLORRGB(#00FF00)
 DO i = 1, 5
 CALL OUTTEXT(’Here text does wrap. ’)
 END DO
 CALL SETTEXTWINDOW(INT2(7),INT2(10),INT2(11),INT2(40))
 CALL SETTEXTPOSITION(INT2(1),INT2(1),curpos)
 status2 = WRAPON($GWRAPOFF)
 status4 = SETTEXTCOLORRGB(#008080)
 DO row = 1, 5
 CALL SETTEXTPOSITION(INT2(row), INT2(1), curpos)
 CALL OUTTEXT(’Here text does not wrap. ’)
 CALL OUTTEXT(’Here text does not wrap.’)
 END DO
 READ (*,*) ! Wait for ENTER to be pressed
 END

WRITE

Statement: Transfers output data to external sequential, direct-access, or internal records.

Syntax

Sequential

Formatted

WRITE (eunit, format [, advance] [, iostat] [, err]) [io-list]

Formatted: List-Directed

WRITE (eunit, * [, iostat] [, err]) [io-list]

Formatted: Namelist

WRITE (eunit, nml-group [, iostat] [, err])

Unformatted

WRITE Page 39 of 42

WRITE (eunit [, iostat] [, err]) [io-list]

Direct-Access

Formatted

WRITE (eunit, format, rec [, iostat] [, err]) [io-list]

Unformatted

WRITE (eunit, rec [, iostat] [, err]) [io-list]

Indexed (VMS only)

Formatted

READ (eunit, format, [,iostat] [,err]) [io-list]

Unformatted

READ (eunit, [,iostat] [,err]) [io-list]

Internal

WRITE (iunit, format [, iostat] [, err]) [io-list]

eunit
Is an external unit specifier, optionally prefaced by UNIT=. UNIT= is required if eunit is not
the first specifier in the list.

format
Is a format specifier. It is optionally prefaced by FMT= if format is the second specifier in the
list and the first specifier indicates a logical or internal unit specifier without the optional
keyword UNIT=.

For internal WRITEs, an asterisk (*) indicates list-directed formatting. For direct-access
WRITEs, an asterisk is not permitted.

advance
Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is ’YES’, the statement uses
advancing input; if the value is ’NO’, the statement uses nonadvancing input. The default value
is ’YES’.

iostat
Is the name of a variable to contain the completion status of the I/O operation. Optionally
prefaced by IOSTAT=.

WRITE Page 40 of 42

err
Are branch specifiers if an error (ERR=label) condition occurs.

io-list
Is an I/O list: the names of the variables, arrays, array elements, or character substrings from
which or to which data will be transferred. Optionally an implied-DO list.

form
Is the nonkeyword form of a format specifier (no FMT=).

*
Is the format specifier indicating list-directed formatting. (It can also be specified as FMT=*.)

nml-group
Is the namelist group specification for namelist I/O. Optionally prefaced by NML=. NML= is
required if nml-group is not the second I/O specifier.

rec
Is the cell number of a record to be accessed directly. Optionally prefaced by REC=.

iunit
Is an internal unit specifier, optionally prefaced by UNIT=. UNIT= is required if iunit is not
the first specifier in the list.

It must be a character variable. It must not be an array section with a vector subscript.

If a parameter of the WRITE statement is an expression that calls a function, that function must not
execute an I/O statement or the EOF intrinsic function, because the results are unpredictable.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also: I/O Lists, I/O Control List, Forms for Sequential WRITE Statements, Forms for Direct-
Access WRITE Statements, Forms for Indexed WRITE Statements (VMS only), Forms and Rules for
Internal WRITE Statements, READ, PRINT, OPEN, I/O Formatting

Example

 ! write to file
 open(1,FILE=’test.dat’)
 write (1, ’(A20)’) namedef
 ! write with FORMAT statement
 WRITE (*, 10) (n, SQRT(FLOAT(n)), FLOAT(n)**(1.0/3.0), n = 1, 100)
 10 FORMAT (I5, F8.4, F8.5)
 !
 WRITE(6,’("Expected ",F12.6)’) 2.0

XOR

XOR Page 41 of 42

Elemental Intrinsic Function: See IEOR.

Example

 INTEGER i, j, k
 i = 3 ! 011
 j = 5 ! 101
 k = XOR(i, j) ! returns 6 = 110

ZEXT

Elemental Intrinsic Function (Generic): Extends the argument with zeros. This function is used
primarily for bit-oriented operations.

Syntax

result = ZEXT (x)

x
(Input) Must be of type logical or integer.

Results:

The result type is default integer. The result value is x extended with zeros and treated as an unsigned
value.

The storage requirements for integer constants are never less than two bytes. Integer constants within
the range of constants that can be represented by a single byte still require two bytes of storage.

The setting of compiler option /integer_size can affect ZEXT.

Specific Name Argument Type Result Type

IZEXT LOGICAL(1) INTEGER(2)

LOGICAL(2) INTEGER(2)

INTEGER(1) INTEGER(2)

INTEGER(2) INTEGER(2)

JZEXT LOGICAL(1) INTEGER(4)

LOGICAL(2) INTEGER(4)

LOGICAL(4) INTEGER(4)

INTEGER(1) INTEGER(4)

INTEGER(2) INTEGER(4)

ZEXT Page 42 of 42

INTEGER(4) INTEGER(4)

KZEXT 1 LOGICAL(1) INTEGER(8)

LOGICAL(2) INTEGER(8)

LOGICAL(4) INTEGER(8)

LOGICAL(8) INTEGER(8)

INTEGER(1) INTEGER(8)

INTEGER(2) INTEGER(8)

INTEGER(4) INTEGER(8)

INTEGER(8) INTEGER(8)

1 Alpha only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

Consider the following example:

 INTEGER(2) W_VAR /’FFFF’X/
 INTEGER(4) L_VAR
 L_VAR = ZEXT(W_VAR)

This example stores an INTEGER(2) quantity in the low-order 16 bits of an INTEGER(4) quantity,
with the resulting value of L_VAR being '0000FFFF'X. If the ZEXT function had not been used, the
resulting value would have been 'FFFFFFFF'X, because W_VAR would have been converted to the
left-hand operand's data type by sign extension.

Glossary Page 1 of 27

Glossary

A - B - C - D - E - F - G - H - I - K - L - M - N - O - P - Q - R - S - T - U - V - W

A

absolute pathname
On DIGITAL UNIX, Windows NT, and Windows 95 systems, a directory path specified in
fixed relationship to the root directory. On DIGITAL UNIX systems, the first character is a
slash (/). On Windows NT and Windows 95 systems, the first character is a backslash (\).

active screen buffer
The screen buffer that is currently displayed in a console’s window.

active window
A top-level window of the application with which the user is working. Windows identifies the
active window by highlighting its title bar and border.

actual argument
An expression, variable, procedure, or alternate return specifier which is specified in a
subroutine or function reference. The value is passed from the calling program unit to a
subprogram.

adjustable array
An explicit-shape array that is a dummy argument to a subprogram. The term is from
FORTRAN-77. See also explicit-shape array.

aggregate reference
A reference to a record structure field.

allocatable array
A named array that has the ALLOCATABLE attribute. Once space has been allocated for this
type of array, the array has a shape and can be defined (and redefined) or referenced. It is an
error to allocate an allocatable array that is currently allocated.

allocation status
Indicates whether an allocatable array or pointer is allocated. An allocation status is one of:
allocated, deallocated, or undefined. An undefined allocation status means an array can no
longer be referenced, defined, allocated, or deallocated. See also association status.

alphanumeric
Pertaining to letters and digits.

alternate key
On OpenVMS systems, an optional key within the data records in an indexed file, which can be
used to build an alternate index.

alternate return
A subroutine argument that permits control to branch immediately to some position other than
the statement following the call. The actual argument in an alternate return is the statement
label to which control should be transferred. (An alternate return is an obsolescent feature in
Fortran 90.)

ANSI
The American National Standards Institute. An organization through which accredited
organizations create and maintain voluntary industry standards.

argument
See actual argument and dummy argument.

argument association

Glossary Page 2 of 27

The relationship (or "matching up") between an actual argument and dummy argument during
the execution of a procedure reference.

argument keyword
The name of a dummy (formal) argument. It can be used in a procedure reference before the
equals sign [keyword = actual argument] provided the procedure has an explicit interface. This
association allows actual arguments to appear in any order.
Argument keywords are supplied for many of the intrinsic procedures.

array
A set of scalar data that all have the same type and kind type parameters. An array can be
referenced by element (using a subscript), by section (using a section subscript list), or as a
whole. An array has a rank (up to 7), bounds, size, and a shape.
An individual array element is a scalar object. An array section, which is itself an array, is a
subset of the entire array.
Contrast with scalar. See also bounds, conformable, shape, and size.

array constructor
A mechanism used to specify a sequence of scalar values that produce a rank-one array.
To construct an array of rank greater than one, you must apply the RESHAPE intrinsic function
to the array constructor.

array element
A scalar item in an array. An array element is identified by the array name followed by one or
more subscripts in parentheses, indicating the element’s position in the array. For example, B(3)
or A(2,5).

array pointer
A pointer to an array. See also array and pointer.

array section
A subobject (or portion) of an array. It consists of the set of array elements or substrings of this
set. The set (or section subscript list) is specified by subscripts, subscript triplets, and vector
subscripts. If the set does not contain at least one subscript triplet or vector subscript, the
reference indicates an array element, not an array.

array specification
A program statement specifying an array name and the number of dimensions the array
contains (its rank). An array specification can appear in a DIMENSION or COMMON
statement, or in a type declaration statement.

ASCII
The American Standard Code for Information Interchange. A 7-bit character encoding scheme
associating an integer from 0 through 127 with 128 characters.

assignment
A statement in the form variable = expression. The statement assigns (stores) the value of an
expression on the right of an equal sign to the storage location of the variable to the left of the
equal sign. In the case of Fortran 90 pointers, the storage location is assigned, not the pointer
itself.

association
An assignment of names, pointers, or storage locations which identifies one entity with several
names in the same or different scoping units. The principal kinds of association are argument
association, host association, pointer association, storage association, and use association.

association status
Indicates whether or not a pointer is associated with a target. An association status is one of:
undefined, associated, or disassociated. An undefined association status means a pointer can no
longer be referenced, defined, or deallocated. An undefined pointer can, however, be allocated,

Glossary Page 3 of 27

nullified, or pointer assigned to a new target. See also allocation status.
assumed-length character argument

A dummy argument that assumes the length attribute of the corresponding actual argument. An
asterisk (*) specifies the length of the dummy character argument.

assumed-shape array
A dummy argument array that assumes the shape of its associated actual argument array.

assumed-size array
A dummy array that takes the size of the actual argument passed to it. The rank, extents, and
bounds of the dummy array are specified in its declaration, except for the upper bound (which
is specified by a *) and the extent of the last dimension.

attribute
A property of a data object that can be specified in a type declaration statement. These
properties determine how the data object can be used in a program.

B

background process
On DIGITAL UNIX systems, a process for which the command interpreter is not waiting. Its
process group differs from that of its controlling terminal, so it is blocked from most terminal
access. Contrast with foreground process.

background window
Any window created by a thread other than the foreground thread.

batch process
On OpenVMS systems, a process that runs without user interaction. Contrast with interactive
process.

big endian
A method of data storage in which the least significant bit of a numeric value spanning
multiple bytes is in the highest addressed byte. Contrast with little endian.

binary constant
A constant that is a string of binary (base 2) digits (0 or 1) enclosed by apostrophes or
quotation marks and preceded by the letter B.

binary operator
An operator that acts on a pair of operands. The exponentiation, multiplication, division, and
concatenation operators are binary operators.

bit constant
A constant that is a binary, octal, or hexadecimal number.

bit field
A contiguous group of bits within a binary pattern; they are specified by a starting bit position
and length. Some intrinsic functions (for example, IBSET and BTEST) and the intrinsic
subroutine MVBITS operate on bit fields.

bitmap
An array of bits that contains data that describes the colors found in a rectangular region on the
screen (or the rectangular region found on a page of printer paper).

blank common
A common block (one or more contiguous areas of storage) without a name. Common blocks
are defined by a COMMON statement.

block
A group of statements or constructs that is treated as an integral unit. For example, a block can
be a group of constructs or statements that perform a task; the task can be executed once,

Glossary Page 4 of 27

repeatedly, or not at all.
block data program unit

A program unit, containing a BLOCK DATA statement and its associated specification
statements, that establishes common blocks and assigns initial values to the variables in named
common blocks. In FORTRAN 77, this was called a block data subprogram.

bounds
The range of subscript values for elements of an array. The lower bound is the smallest
subscript value in a dimension, and the upper bound is the largest subscript value in that
dimension. Array bounds can be positive, zero, or negative.
These bounds are specified in an array specification. See also array specification.

brush
A bitmap that is used to fill the interior of closed shapes, polygons, ellipses, and paths.

brush origin
A coordinate that specifies the location of one of the pixels in a brush’s bitmap. Windows maps
this pixel to the upper left corner of the window that contains the object to be painted. See also
bitmap.

byte-order mark
A special Unicode character (0xFEFF) that is placed at the beginning of Unicode text files to
indicate that the text is in Unicode format.

byte reversed
A Unicode file in which the most significant byte is first (as on Motorola architectures).

C

carriage-control character
A character in the first position of a printed record that determines the vertical spacing of the
output line.

character constant
A constant that is a string of printable ASCII characters enclosed by apostrophes (’) or
quotation marks (").

character expression
A character constant, variable, function value, or another constant expression, separated by a
concatenation operator (//); for example, DAY// ’ FIRST’.

character set
A mapping of characters to their identifying numeric values. See also multibyte character set.

character storage unit
The unit of storage for holding a scalar value of default character type (and character length
one) that is not a pointer. One character storage unit corresponds to one byte of memory.

character string
A sequence of contiguous characters; a character data value. See also character constant.

character substring
One or more contiguous characters in a character string.

child process
A process (child) initiated by another process (the parent). The child process can operate
independently from the parent process. Further, the parent process can suspend or terminate
without affecting the child process.

comment
Text that documents or explains a program. In free source form, a comment begins with an
exclamation point (!), unless it appears in a Hollerith or character constant.

Glossary Page 5 of 27

In fixed and tab source form, a comment begins with a letter C or an asterisk (*) in column 1.
A comment can also begin with an exclamation point anywhere in a source line (except in a
Hollerith or character constant) or in column 6 of a fixed-format line. The comment extends
from the exclamation point to the end of the line.
The compiler does not process comments, but shows them in program listings. See also
compiler directive.

common block
A physical storage area shared by one or more program units. This storage area is defined by a
COMMON statement. If the common block is given a name, it is a named common block; if it
is not given a name, it is a blank common.

compilation unit
The source file or files that are compiled together to form a single object file, possibly using
interprocedural optimization across source files. Only one f90 command is used for each
compilation, but one f90 command can specify that multiple compilation units be used.

compiler directive
A structured comment that tells the compiler to perform certain tasks when it compiles a source
program unit. Compiler directives are usually compiler-specific. (Some Fortran compilers call
these directives "metacommands".)

complex constant
A constant that is a pair of real or integer constants representing a complex number; the pair is
separated by a comma and enclosed in parentheses. The first constant represents the real part of
the number; the second constant represents the imaginary part. In DIGITAL Fortran, there are
two types of complex constants: COMPLEX (COMPLEX(KIND=4)) and DOUBLE
COMPLEX (COMPLEX(KIND=8)).

complex type
A data type that represents the values of complex numbers. The value is expressed as a
complex constant. See also data type.

component
A part of a derived-type definition. There must be at least one component (intrinsic or derived
type) in every derived-type definition.

concatenate
The combination of two items into one by placing one of the items after the other. In Fortran
90, the concatenation operator (//) is used to combine character items. See also character
expression.

conformable
Pertains to dimensionality. Two arrays are conformable if they have the same shape. A scalar is
conformable with any array.

console
An interface that provides input and output to character-mode applications.

constant
A data object whose value does not change during the execution of a program; the value is
defined at the time of compilation. A constant can be named (using the PARAMETER attribute
or statement) or unnamed. An unnamed constant is called a literal constant. The value of a
constant can be numeric or logical, or it can be a character string. Contrast with variable.

constant expression
An expression whose value does not change during program execution.

construct
A block of statements, beginning with CASE, DO, IF, FORALL, or WHERE statement, and
ending with the appropriate termination statement.

contiguous

Glossary Page 6 of 27

Pertaining to entities that are adjacent (next to one another) without intervening blanks
(spaces); for example, contiguous characters or contiguous areas of storage.

control character
A character string, usually with an ASCII value between 0 and 31, used to communicate with
devices such as printers, modems, and the like.

control edit descriptor
A format descriptor that directly displays text or affects the conversions performed by
subsequent data edit descriptors. Except for the slash descriptor, control edit descriptors are
nonrepeatable.

control statement
A statement that alters the normal order of execution by transferring control to another part of a
program unit or a subprogram. A control statement can be conditional (such as the IF construct
or computed GO TO statement) or unconditional (such as the STOP or GO TO statement).

critical section
An object used to synchronize the threads of a single process. Only one thread at a time can
own a critical-section object.

D

data abstraction
A style of programming in which you define types to represent objects in your program, define
a set of operations for objects of each type, and restrict the operations to only this set, making
the types abstract. The Fortran 90 modules, derived types, and defined operators, support this
programming paradigm.

data edit descriptor
A repeatable format descriptor that causes the transfer or conversion of data to or from its
internal representation. In FORTRAN-77, this term was called a field descriptor.

data entity
A data object that has a data type. It is the result of the evaluation of an expression, or the result
of the execution of a function reference (the function result).

data item
A unit of data (or value) to be processed. Includes constants, variables, arrays, character
substrings, or records.

data object
A constant, variable, or part (subobject) of a constant or variable. Its type may be specified
implicitly or explicitly.

data type
The properties and internal representation that characterize data and functions. Each intrinsic
and user-defined data type has a name, a set of operators, a set of values, and a way to show
these values in a program. The basic intrinsic data types are integer, real, complex, logical, and
character. The data value of an intrinsic data type depends on the value of the type parameter.
See also type parameter.

data type length specifier
The form *n appended to DIGITAL Fortran-specific data type names. For example, in
REAL*4, the *4 is the data type length specifier.

deadlock
A bug where the execution of thread A is blocked indefinitely waiting for thread B to perform
some action, while thread B is blocked waiting for thread A. For example, two threads on
opposite ends of a named pipe can become deadlocked if each thread waits to read data written

Glossary Page 7 of 27

by the other thread. A single thread can also deadlock itself. See also thread.
declaration

A statement or series of statements which specify attributes and properties of named entities,
such as specifying the data type of named data objects. Declaration is a synonym for
specification.

decorated name
An internal representation of a procedure name or variable name that contains information
about where it is declared; for procedures, the information includes how it is called. Decorated
names are mainly of interest in mixed-language programming, when calling Fortran routines
from other languages.

default character
The kind type for character constants if no kind type parameter is specified. Currently, the only
kind type parameter for character constants is CHARACTER(KIND=1), the default character
kind.

default complex
The kind type for complex constants if no kind type parameter is specified. The default
complex kind is affected by the compiler option specifying real size. If no compiler option is
specified, default complex is COMPLEX(KIND=8) (COMPLEX*8). See also default real.

default integer
The kind type for integer constants if no kind type parameter is specified. The default integer
kind is affected by compiler options specifying integer size. If no compiler option is specified,
default integer is INTEGER(KIND=4) (INTEGER*4).
If a command line option affecting integer size has been specified, the integer has the kind
specified, unless it is outside the range of the kind specified by the option. In this case, the kind
type of the integer is the smallest integer kind which can hold the integer.

default logical
The kind type for logical constants if no kind type parameter is specified. The default logical
kind is affected by compiler options specifying integer size. If no compiler option is specified,
default logical is LOGICAL(KIND=4) (LOGICAL*4). See also default integer.

default real
The kind type for real constants if no kind type parameter is specified. The default real kind is
affected by the compiler option specifying real size. If no compiler option is specified, default
real is REAL(KIND=4) (REAL*4).
If a real constant is encountered that is outside the range for the default, an error occurs.

deferred-shape array
An array pointer (an array with the POINTER attribute) or an allocatable array (an array with
the ALLOCATABLE attribute). The size in each dimension is determined by pointer
assignment or when the array is allocated.
The declared bounds are specified by a colon (:).

definable
A property of variables. A variable is definable if its value can be changed by the appearance of
its name or designator on the left of an assignment statement. An example of a variable that is
not definable is an allocatable array that has not been allocated.

define
(1) To give a value to a data object during program execution. (2) To declare derived types and
procedures.

defined assignment
An assignment statement that is not intrinsic, but is defined by a subroutine and an interface
block. See also derived type.

Glossary Page 8 of 27

defined operation
An operation that is not intrinsic, but is defined by a function subprogram containing a generic
interface block with the specifier OPERATOR. See also interface block.

denormalized number
A computational floating-point result smaller than the lowest value in the normal range of a
data type (the smallest representable normalized number). You cannot write a constant for a
denormalized number.

derived type
A data type that is user-defined and not intrinsic. It requires a type definition to name the type
and specify its components (which can be intrinsic or user-defined types). A structure
constructor can be used to specify a value of derived type. A component of a structure is
referenced using a percent sign (%).
Operations on objects of derived types (structures) must be defined by a function with an
OPERATOR interface. Assignment for derived types can be defined intrinsically, or be
redefined by a subroutine with an ASSIGNMENT interface. Structures can be used as
procedure arguments and function results, and can appear in input and output lists. Also called
a user-defined type. See also record , the first definition.

designator
A name that references a subobject (part of an object). A designator is the name of the object
followed by a selector that selects the subobject. For example, B(3) is a designator for an array
element. Also called a subobject designator. See also selector and subobject.

dimension
A range of values for one subscript or index of an array. An array can have from 1 to 7
dimensions. The number of dimensions is the rank of the array.

dimension bounds
See bounds.

direct access
A method for retrieving or storing data in which the data (record) is identified by the record
number, or the position of the record in the file. The record is accessed directly
(nonsequentially); therefore, all information is equally accessible. Also called random access.
Contrast with sequential access.

DLL
See Dynamic Link Library.

double-byte character set (DBCS)
A mapping of characters to their identifying numeric values, in which each value is 2 bytes
wide. Double-byte character sets are sometimes used for languages that have more than 256
characters. See also multibyte Character Set.

double-precision constant
A processor approximation to the value of a real number that occupies 8 bytes of memory and
can assume a positive, negative, or zero value. The precision is greater than a constant of real
(single-precision) type. For the precise ranges of the double-precision constants, see Data
Representation in the Programmer’s Guide. See also denormalized number.

driver program
On Windows NT, Windows 95, and DIGITAL UNIX systems, a program that is the user
interface to the language compiler. It accepts command line options and file names and causes
one or more language utilities or system programs to process each file.

dummy aliasing
The sharing of memory locations between dummy (formal) arguments and other dummy
arguments or COMMON variables that are assigned.

Glossary Page 9 of 27

dummy argument
A variable whose name appears in the parenthesized list following the procedure name in a
FUNCTION statement, a SUBROUTINE statement, an ENTRY statement, or a statement
function statement. A dummy argument takes the value of the corresponding actual argument
in the calling program unit (through argument association). Also called a formal argument.

dummy array
A dummy argument that is an array.

dummy pointer
A dummy argument that is a pointer.

dummy procedure
Is a dummy argument that is specified as a procedure or appears in a procedure reference. The
corresponding actual argument must be a procedure.

Dynamic Link Library (DLL)
A separate source module compiled and linked independently of the applications that use it.
Applications access the DLL through procedure calls. The code for a DLL is not included in
the user’s executable image, but the compiler automatically modifies the executable image to
point to DLL procedures at run time.

E

edit descriptor
A descriptor in a format specification. It can be a data edit descriptor, control edit descriptor, or
string edit descriptor. See also control edit descriptor, data edit descriptor, and string edit
descriptor.

element
See array element.

elemental
Pertains to an intrinsic operation, intrinsic procedure, or assignment statement that is
independently applied to either of the following:

l The elements of an array
l Corresponding elements of a set of conformable arrays and scalars

end-of-file
The condition that exists when all records in a file open for sequential access have been read.

entity
A general term referring to any Fortran 90 concept; for example, a constant, a variable, a
program unit, a statement label, a common block, a construct, an I/O unit and so forth.

environment variable
A symbolic variable that represents some element of the operating system, such as a path, a
filename, or other literal data.

error number
An integer value denoting an I/O error condition, obtained by using the IOSTAT keyword in an
I/O statement.

escape character
The character whose ascii value is 27, usually part of a string used to communicate commands
to devices such as printers. See also control character.

exceptional values
For floating-point numbers, values outside the range of normalized numbers, including
denormal (subnormal) numbers, infinity, Not-a-Number (NaN) values, zero, and other
architecture-defined numbers.

Glossary Page 10 of 27

executable construct
A CASE, DO, IF, WHERE, or FORALL construct.

executable program
A set of program units that include only one main program.

executable statement
A statement that specifies an action to be performed or controls one or more computational
instructions.

explicit interface
A procedure interface whose properties are known within the scope of the calling program, and
do not have to be assumed. These properties are the names of the procedure and its dummy
arguments, the attributes of a procedure (if it is a function), and the attributes and order of the
dummy arguments.
The following have explicit interfaces:

l Internal and module procedures (explicit by definition)
l Intrinsic procedures
l External procedures that have an interface block
l External procedures that are defined by the scoping unit and are recursive
l Dummy procedures that have an interface block

explicit-shape array
An array whose rank and bounds are specified when the array is declared.

expression
Is either a data reference or a computation, and is formed from operands, operands, and
parentheses. The result of an expression is either a scalar value or an array of scalar values.

extent
The size of (number of elements in) one dimension of an array.

external file
A sequence of records that exists in a medium external to the executing program.

external procedure
A procedure that is contained in an external subprogram. External procedures can be used to
share information (such as source files, common blocks, and public data in modules) and can
be used independently of other procedures and program units. Also called an external routine.

external subprogram
A subroutine or function that is not contained in a main program, module, or another
subprogram. A module is not a subprogram.

F

field
Can be either of the following:

l A set of contiguous characters, considered as a single item, in a record or line.
l A substructure of a STRUCTURE declaration.

field descriptor
See data edit descriptor.

field separator
The comma (,) or slash (/) that separates edit descriptors in a format specification.

field width
The total number of characters in the field. See also field, the first definition.

file
A collection of logically related records. If the file is in internal storage, it is an internal file; if

Glossary Page 11 of 27

the file is on an input/output device, it is an external file.
file access

The way records are accessed (and stored) in a file. The Fortran 90 file access modes are
sequential and direct. On OpenVMS systems, you can also use a keyed mode of access.

file organization
The way records in a file are physically arranged on a storage device. Fortran 90 files can have
sequential or relative organization. On OpenVMS systems, files can also have indexed
organization.

fixed-length record type
A file format in which all the records are the same length.

focus window
Window to which keyboard input is directed.

foreground process
On DIGITAL UNIX systems, a process for which the command interpreter is waiting. Its
process group is the same as that of its controlling terminal, so the process is allowed to read
from or write to the terminal. Contrast with background process.

foreground window
The window with which the user is currently working. The system assigns a slightly higher
priority to the thread that created the foreground window than it does to other threads.

foreign file
An unformatted file that contains data from a foreign platform, such as data from a CRAY,
IBM, or big endian IEEE machine.

format
A specific arrangement of data. A FORMAT statement specifies how data is to be read or
written.

format specification
The part of a FORMAT statement that specifies explicit data arrangement. It is a list within
parentheses that can include edit descriptors and field separators. A character expression can
also specify format; the expression must evaluate to a valid format specification.

formatted data
Data written to a file by using formatted I/O statements. Such data contains ASCII
representations of binary values.

formatted I/O statement
An I/O statement specifying a format for data transfer. The format specified can be explicit
(specified in a format specification) or implicit (specified using list-directed or namelist
formatting). Contrast with unformatted I/O statement. See also list-directed I/O statement and
namelist I/O statement.

function
A series of statements that perform some operation and return a single value (through the
function or result name) to the calling program unit. A function is invoked by a function
reference in a main program unit or a subprogram unit.
In Fortran 90, a function can be used to define a new operator or extend the meaning of an
intrinsic operator symbol. The function is invoked by the appearance of the new or extended
operator in the expression (along with the appropriate operands). For example, the symbol *
can be defined for logical operands, extending its intrinsic definition for numeric operands. See
also function subprogram, statement function, and subroutine.

function reference
Used in an expression to invoke a function, it consists of the function name and its actual
arguments. A function reference returns a value (through the function or result name) which is

Glossary Page 12 of 27

used to evaluate the calling expression.
function result

The result value associated with a particular execution or call to a function. This result can be
of any data type (including derived type) and can be array-valued. In a FUNCTION statement,
the RESULT option can be used to give the result a name different from the function name.
This option is required for a recursive function that directly calls itself.

function subprogram
A sequence of statements beginning with a FUNCTION (or optional OPTIONS) statement that
is not in an interface block and ending with the corresponding END statement. See also
function.

G

generic identifier
AA generic name, operator, or assignment specified in an INTERFACE statement that is
associated with all of the procedures within the interface block. Also called a generic
specification.

global entity
An entity (a program unit, common block, or external procedure) that can be used with the
same meaning throughout the executable program. A global entity has global scope; it is
accessible throughout an executable program. See also local entity.

global section
A data structure (for example, global COMMON) or shareable image section potentially
available to all processes in the system.

H

handle
A 32-bit quantity which is an index into a table specific to a process. Handles have associated
access control lists that the operating system uses to check against the security credentials of
the process.

hexadecimal constant
A constant that is a string of hexadecimal (base 16) digits (range 0 to 9, or an uppercase or
lowercase letter in the range A to F) enclosed by apostrophes or quotation marks and preceded
by the letter Z.

High Performance Fortran
An extended version of Fortran 90 with features supporting parallel processing. DIGITAL
Fortran 90 supports full High Performance Fortran (HPF), and compiles HPF programs for
parallel execution.

Hollerith constant
A constant that is a string of printable ASCII characters preceded by nH, where n is the number
of characters in the string (including blanks and tabs).

host
Either the main program or subprogram that contains an internal procedure, or the module that
contains a module procedure. The data environment of the host is available to the (internal or
module) procedure.

host association
The process by which a module procedure, internal procedure, or derived-type definition

Glossary Page 13 of 27

accesses the entities of its host.

I

implicit interface
A procedure interface whose properties (the collection of names, attributes, and arguments of
the procedure) are not known within the scope of the calling program, and have to be assumed.
The information is assumed by the calling program from the properties of the procedure name
and actual arguments in the procedure call.

implicit typing
The mechanism by which the data type for a variable is determined by the beginning letter of
the variable name.

import library
A .LIB file that contains information about one or more dynamic-link libraries (DLLs), but
does not contain the DLL’s executable code. The linker uses an import library when building an
executable module of a process, to provide the information needed to resolve the external
references to DLL functions.

index
Can be any of the following:

l The variable used as a loop counter in a DO statement.
l An intrinsic function specifying the starting position of a substring inside a string.
l On OpenVMS systems, an internal data structure that provides a guide, based on key

values, to file components in an indexed file.
indexed file organization

On OpenVMS systems, a file organization that allows random retrieval of records by key value
and sequential retrieval of records within the key of reference. Each file contains records and a
primary key index; it can also optionally have one or more alternate key indexes.

initialize
The assignment of an initial value to a variable.

initialization expression
A form of constant expression that is used to specify an initial value for an entity.

inlining
An optimization that replaces a subprogram reference (CALL statement or function invocation)
with the replicated code of the subprogram.

input/output (I/O)
The data that a program reads or writes. Also, devices to read and write data.

inquiry function
An intrinsic function whose result depends on properties of the principal argument, not the
value of the argument.

integer constant
constant that is a whole number with no decimal point. It can have a leading sign and is
interpreted as a decimal number.

intent
An attribute of a dummy argument that is not a procedure or a pointer. It indicates whether the
argument is used to transfer data into the procedure, out of the procedure, or both.

interactive process
A process that must periodically get user input to do its work. Contrast with background
process or batch process.

interface

Glossary Page 14 of 27

The properties of a procedure, consisting of: specifications of the attributes for a function
result, the specification of dummy argument attributes, and the information in the procedure
heading.

interface block
The sequence of statements starting with an INTERFACE statement and ending with the
corresponding END INTERFACE statement.

interface body
The sequence of statements in an interface block starting with a FUNCTION or
SUBROUTINE statement and ending with the corresponding END statement. Also called a
procedure interface body.

internal file
The designated internal storage space (or variable buffer) that is manipulated during input and
output. An internal file can be a character variable, character array, character array element, or
character substring. In general, an internal file contains one record. However, an internal file
that is a character array has one record for each array element.

internal procedure
A procedure (other than a statement function) that is contained within an internal subprogram.
The program unit containing an internal procedure is called the host of the internal procedure.
The internal procedure (which appears between a CONTAINS and END statement) is local to
its host and inherits the host’s environment through host association.

internal subprogram
A subprogram contained in a main program or another subprogram.

intrinsic
Describes entities defined by the Fortran 90 language (such as data types and procedures).
Intrinsic entities can be used freely in any scoping unit.

intrinsic procedure
A subprogram supplied as part of the Fortran 90 library that performs array, mathematical,
numeric, character, bit manipulation, and other miscellaneous functions. Intrinsic procedures
are automatically available to any Fortran 90 program unit (unless specifically overridden by an
EXTERNAL statement or a procedure interface block). Also called a built-in or library
procedure.

invoke
To call upon; used especially with reference to subprograms. For example, to invoke a function
is to execute the function.

iteration count
The number of executions of the DO range, which is determined as follows:

[(terminal value - initial value + increment value) / increment value]

K

key
On OpenVMS systems, a value in a file of indexed organization that the system uses to build
indexes into the file. Each key is identified by its location within the component, its length, and
its data type. Also called the key field. See also alternate key, index, and primary key.

keyed access
On OpenVMS systems, a method for retrieving or writing data in which the data (a record) is
identified by specifying the information in a key field of the record. See also key.

key of reference

Glossary Page 15 of 27

On OpenVMS systems, a key used to determine the index to use when sequentially accessing
components of an indexed file. See also key, indexed file organization, and sequential access.

keyword
(1) Part of the syntax of a statement (syntax keyword). These keywords are not reserved. (2) A
dummy argument name.

kind type parameter
Indicates the range of an intrinsic data type. For real and complex types, it also indicates
precision. If a specific kind type parameter is not specified (for example, INTEGER), the kind
type is the default for that type (for example, default integer). See also default character, default
complex, default integer, default logical, and default real.

L

label
An integer, from 1 to 5 digits long, that is used to identify a statement. For example, labels can
be used to refer to a FORMAT statement or branch target statement.

language extension
A DIGITAL Fortran language element or interpretation that is not part of the Fortran 90
standard.

lexical token
A sequence of one or more characters that have an indivisible interpretation. A lexical token is
the smallest meaningful unit (a basic language element) of a Fortran 90 statement; for example,
constants, and statement keywords.

line
A source form record consisting of 0 or more characters. A standard Fortran 90 line is limited
to a maximum of 132 characters.

linker
A system program that creates an executable program from one or more object files produced
by a language compiler or assembler. The linker resolves external references, acquires
referenced library routines, and performs other processing required to create OpenVMS
executable images or DIGITAL UNIX, Windows NT, and Windows 95 executable files.

list-directed I/O statement
An implicit, formatted I/O statement that uses an asterisk (*) specifier rather than an explicit
format specification. See also formatted I/O statement and namelist I/O statement.

listing
A printed copy of a program.

literal constant
A constant without a name. In Fortran 77, this was called simply a constant.

little endian
A method of data storage in which the least significant bit of a numeric value spanning
multiple bytes is in the lowest addressed byte. This is the method used on DIGITAL systems.
Contrast with big endian.

local entity
An entity that can be used only within the context of a subprogram (its scoping unit); for
example, a statement label. A local entity has local scope. See also global entity.

local optimization
Refers to enabling local optimizations within the source program unit, recognition of common
expressions, and integer multiplication and division expansion (using shifts). The order of
compilation of procedures is determined from the call graph. See also optimization.

Glossary Page 16 of 27

local symbol
A name defined in a program unit that is not accessible outside of that program unit.

logical constant
A constant that specifies the value .TRUE. or .FALSE..

logical expression
An integer or logical constant, variable, function value, or another constant expression, joined
by a relational or logical operator. The logical expression is evaluated to a value of either true
or false. For example, .NOT. 6.5 + (B .GT. D).

logical operator
A symbol that represents an operation on logical expressions. The logical operators are .AND.,
.OR., .NEQV., .XOR., .EQV., and .NOT..

logical unit
A channel in memory through which data transfer occurs between the program and the device
or file. See also unit identifier.

longword
Four contiguous bytes (32 bits) starting on any addressable byte boundary. Bits are numbered 0
to 31. The address of the longword is the address of the byte containing bit 0. When the
longword is interpreted as a signed integer, bit 31 is the sign bit. The value of signed integers is
in the range -2**31 to 2**31-1. The value of unsigned integers is in the range 0 to 2**32-1.

loop
A group of statements that are executed repeatedly until an ending condition is reached.

M

main program
A program unit containing a PROGRAM statement (or not containing a SUBROUTINE,
FUNCTION, or BLOCK DATA statement). The main program is the first program unit to
receive control when a program is run, and exercises control over subprograms. Contrast with
subprogram.

makefile
On DIGITAL UNIX systems, an argument to the make command containing a sequence of
entries that specify dependences. On Windows NT and Windows 95 systems, a file passed to
the NMAKE utility containing a sequence of entries that specify dependences. The contents of
a makefile override the system built-in rules for maintaining, updating, and regenerating groups
of programs. For more information, see Building Projects with NMAKE on Windows NT and
Windows 95 systems, or make(1) on DIGITAL UNIX systems.

many-one array section
An array section with a vector subscript having two or more elements with the same value.

metacommand
See compiler directive.

misaligned data
Data not aligned on a natural boundary. See also natural boundary.

module
A program unit that contains specifications and definitions that other program units can access
(unless the module entities are declared PRIVATE). Modules are referenced in USE
statements.

module procedure
A subroutine or function defined within a module subprogram (the module procedure’s host).
The module procedure appears between a CONTAINS and END statement in its host module,

Glossary Page 17 of 27

and inherits the host module’s environment through host association. A module procedure can
be declared PRIVATE to the module; it is public by default.

module subprogram
A subprogram that is contained in a module. (It cannot be an internal subprogram.)

multibyte character set
A character set in which each character is identified by using more than one byte. Although
Unicode characters are 2 bytes wide, the Unicode character set is not referred to by this term.

N

name
Identifies an entity within a Fortran program unit (such as a variable, function result, common
block, named constant, procedure, program unit, namelist group, or dummy argument). In
FORTRAN 77, this term was called a symbolic name.

name association
Pertains to argument, host, or use association.

named common block
A common block (one or more contiguous areas of storage) with a name. Common blocks are
defined by a COMMON statement.

named constant
A constant that has a name. In FORTRAN 77, this term was called a symbolic constant.

namelist I/O statement
An implicit, formatted I/O statement that uses a namelist group specifier rather than an explicit
format specifier. See also formatted I/O statement and list-directed I/O statement.

natural boundary
The virtual address of a data item that is the multiple of the size of its data type. For example, a
REAL(KIND=8) (REAL*8) data item aligned on natural boundaries has an address that is a
multiple of eight.

naturally aligned record
A record that is aligned on a hardware-specific natural boundary; each field is naturally aligned.
(For more information, see Data Alignment Considerations in the Programmer’s Guide.)
Contrast with packed record.

nesting
The placing of one entity (such as a construct, subprogram, format specification, or loop) inside
another entity of the same kind. For example, nesting a loop within another loop (a nested
loop), or nesting a subroutine within another subroutine (a nested subroutine).

nonexecutable statement
A Fortran 90 statement that describes program attributes, but does not cause any action to be
taken when the program is executed.

nonsignaled
The state of an object used for synchronization in one of the wait functions is either signaled or
nonsignaled. A nonsignaled state can prevent the wait function from returning. See also wait
function.

numeric expression
A numeric constant, variable, or function value, or combination of these, joined by numeric
operators and parentheses, so that the entire expression can be evaluated to produce a single
numeric value. For example, -L or X+(Y-4.5*Z).

numeric operator
A symbol designating an arithmetic operation. In Fortran 90, the symbols +, -, *, /, and ** are

Glossary Page 18 of 27

used to designate addition, subtraction, multiplication, division, and exponentiation,
respectively.

numeric storage unit
The unit of storage for holding a non-pointer scalar value of type default real, default integer, or
default logical. One numeric storage unit corresponds to 4 bytes of memory.

numeric type
Integer, real, or complex type.

O

object
(1) An internal structure that represents a system resource such as a file, a thread, or a graphic
image. (2) A data object.

object file
The binary output of a language processor (such as an assembler or compiler), which can either
be executed or used as input to the linker.

obsolescent feature
A feature of FORTRAN 77 that is considered to be redundant in Fortran 90. These features are
still in frequent use.

octal constant
A constant that is a string of octal (base 8) digits (range of 0 to 7) enclosed by apostrophes or
quotation marks and preceded by the letter O.

operand
The passive element in an expression on which an operation is performed. Every expression
must have at least one operand. For example, in I .NE. J, I and J are operands. Contrast with
operator.

operation
A computation involving one or two operands.

operator
The active element in an expression that performs an operation. An expression can have zero or
more operators. Intrinsic operators are arithmetic (+, -, *, /, and **) or logical (.AND., .NOT.,
and so on). For example, in I .NE. J, .NE. is the operator.
Executable programs can define operators which are not intrinsic.

optimization
The process of producing efficient object or executing code that takes advantage of the
hardware architecture to produce more efficient execution.

optional argument
A dummy argument that has the OPTIONAL attribute (or is included in an OPTIONAL
statement in the procedure definition). Such an argument does not have to be associated with
an actual argument.

order of subscript progression
A characteristic of a multidimensional array in which the leftmost subscripts vary most rapidly.

overflow
An error condition occurring when an arithmetic operation yields a result that is larger than the
maximum value in the range of a data type.

P

Glossary Page 19 of 27

packed record
A record that starts on an arbitrary byte boundary; each field starts in the next unused byte.
Contrast with naturally aligned record.

pad
The filling of unused positions in a field or character string with dummy data (such as zeros or
blanks).

parameter
Can be either of the following:

l In general, any quantity of interest in a given situation; often used in place of the term
"argument".

l A Fortran 90 named constant.
parent window

A window that has one or more child windows.
pathname

On Windows NT, Windows 95, and DIGITAL UNIX systems, the path from the root directory
to a subdirectory or file. See also root.

pipe
A connection that allows one program to get its input directly from the output of another
program

platform
A combination of operating system and hardware that provides a distinct environment in which
to use a software product (for example, Microsoft Windows 95 on Intel processors).

pointer
Is one of the following:

l A Fortran 90 pointer
A data object that has the POINTER attribute. To be referenced or defined, it must be
"pointer-associated" with a target (have storage space associated with it). If the pointer is
an array, it must be pointer-associated to have a shape. See also pointer association.

l A DIGITAL Fortran 77 pointer
A data object that contains the address of its paired variable. This is also called an integer
pointer or a Cray® pointer.

pointer assignment
The association of a pointer with a target by the execution of a pointer assignment statement or
the execution of an assignment statement for a data object of derived type having the pointer as
a subobject.

pointer association
The association of storage space to a Fortran 90 pointer by means of a target. A pointer is
associated with a target after pointer assignment or the valid execution of an ALLOCATE
statement.

precision
The number of significant digits in a real number. See also double-precision constant, kind type
parameter, and single-precision constant.

primary
The simplest form of an expression. A primary can be any of the following data objects:

l A constant
l A constant subobject (parent is a constant)
l A variable (scalar, structure, array, or pointer; an array cannot be assumed size)
l An array constructor

Glossary Page 20 of 27

l A structure constructor
l A function reference
l An expression in parentheses

primary key
On OpenVMS systems, the required key within the data records of an indexed file. This key is
used to determine the placement of records within the file and to build the primary index.

primary thread
The initial thread of a process. Also called the main thread or thread 1.

procedure
A computation that can be invoked during program execution. It can be a subroutine or
function, an internal, external, dummy or module procedure, or a statement function. A
subprogram can define more than one procedure if it contains an ENTRY statement. See also
subprogram.

procedure interface
The statements that specify the name and characteristics of a procedure, the name and attributes
of each dummy argument, and the generic identifier (if any) by which the procedure can be
referenced. If these properties are all known to the calling program, the procedure interface is
explicit; otherwise it is implicit.

process object
A virtual address space, security profile, a set of threads that execute in the address space of the
process, and a set of resources visible to all threads executing in the process. Several thread
objects can be associated with a single process.

program unit
The fundamental component of an executable program. A sequence of statements and comment
lines. It can be a main program, a module, an external subprogram, or a block data program
unit.

Q

quadword
Four contiguous words (64 bits) starting on any addressable byte boundary. Bits are numbered
0 to 63. (Bit 63 is used as the sign bit.) A quadword is identified by the address of the word
containing the low-order bit (bit 0). The value of a signed quadword integer is in the range
-2**63 to 2**63-1.

R

random access
See direct access.

rank
The number of dimensions of an array. A scalar has a rank of zero.

rank-one object
A data structure comprising scalar elements with the same data type and organized as a simple
linear sequence. See also scalar.

real constant
A constant that is a number written with a decimal point, exponent, or both. It can have single
precision (REAL(4)) or double precision (REAL(8)). On OpenVMS and DIGITAL UNIX
systems, it can also have quad precision (REAL(16)).

Glossary Page 21 of 27

record
Can be either of the following:

l A set of logically related data items (in a file) that is treated as a unit; such a record
contains one or more fields. This definition applies to I/O records and items that are
declared in a record structure.

l One or more data items that are grouped in a structure declaration and specified in a
RECORD statement.

record access
The method used to store and retrieve records in a file.

record structure declaration
A block of statements that define the fields in a record. The block begins with a STRUCTURE
statement and ends with END STRUCTURE. The name of the structure must be specified in a
RECORD statement.

record type
The property that determines whether records in a file are all the same length, of varying
length, or use other conventions to define where one record ends and another begins.

recursion
Pertains to a subroutine or function that directly or indirectly references itself.

reference
Can be any of the following:

l For a data object, the appearance of its name, designator, or associated pointer where the
value of the object is required. When an object is referenced, it must be defined.

l For a procedure, the appearance of its name, operator symbol, or assignment symbol that
causes the procedure to be executed. Procedure reference is also called "calling" or
"invoking" a procedure.

l For a module, the appearance of its name in a USE statement.
relational expression

An expression containing one relational operator and two operands of numeric or character
type. The result is a value that is true or false. For example, A-C .GE. B+2 or DAY .EQ.
’MONDAY’.

relational operator
The symbols used to express a relational condition or expression. The relational operators are
(.EQ., .NE., .LT., .LE., .GT., and .GE.).

relative file organization
A file organization that consists of a series of component positions, called cells, numbered
consecutively from 1 to n. DIGITAL Fortran 90 uses these numbered, fixed-length cells to
calculate the component’s physical position in the file.

relative pathname
A directory path expressed in relation to any directory other than the root directory. Contrast
with absolute pathname.

root
On Windows NT and Windows 95 systems, the top-level directory on a disk drive; it is
represented by a backslash (\). For example, C:\ is the root directory for drive C.
On DIGITAL UNIX systems, the top-level directory in the file system; it is represented by a
slash (/).

run time
The time during which a computer executes the statements of a program.

S

Glossary Page 22 of 27

saved object
A variable that retains its association status, allocation status, definition status, and value after
execution of a RETURN or END statement in the scoping unit containing the declaration.

scalar
Pertaining to data items with a rank of zero. A single data object of any intrinsic or derived data
type. Contrast with array. See also rank-one object.

scalar memory reference
A reference to a scalar variable, scalar record field, or array element that resolves into a single
data item (having a data type) and can be assigned a value with an assignment statement. It is
similar to a scalar reference, but it excludes constants, character substrings, and expressions.

scalar reference
A reference to a scalar variable, scalar record field, derived-type component, array element,
constant, character substring, or expression that resolves into a single data item having a data
type.

scalar variable
A variable name specifying one storage location.

scale factor
A number indicating the location of the decimal point in a real number and, if there is no
exponent, the size of the number on input.

scope
The portion of a program in which a declaration or a particular name has meaning. Scope can
be global (throughout an executable program), scoping unit (local to the scoping unit), or
statement (within a statement, or part of a statement).

scoping unit
The part of the program in which a name has meaning. It is one of the following:

l A program unit or subprogram
l A derived-type definition
l A procedure interface body

Scoping units can not overlap, though one scoping unit can contain another scoping unit. The
outer scoping unit is called the host scoping unit.

screen coordinates
Coordinates relative to the upper left corner of the screen.

section subscript
A subscript list (enclosed in parentheses and appended to the array name) indicating a portion
(section) of an array. At least one of the subscripts in the list must be a subscript triplet or
vector subscript. The number of section subscripts is the rank of the array. See also array
section, subscript, subscript triplet, and vector subscript.

seed
A value (which can be assigned to a variable) that is required in order to properly determine the
result of a calculation; for example, the argument i in the random number generator (RAN)
function syntax:

y = RAN (i).

selector
A mechanism for designating the following:

l Part of a data object (an array element or section, a substring, a derived type, or a
structure component)

l The set of values for which a CASE block is executed

Glossary Page 23 of 27

sequence
A set ordered by a one-to-one correspondence with the numbers 1 through n, where n is the
total number of elements in the sequence. A sequence can be empty (contain no elements).

sequential access
A method for retrieving or storing data in which the data (record) is read from, written to, or
removed from a file based on the logical order (sequence) of the record in the file. (The record
cannot be accessed directly.) Contrast with direct access.

sequential file organization
A file organization in which records are stored one after the other, in the order in which they
were written to the file.

shape
The rank and extents of an array. Shape can be represented by a rank-one array (vector) whose
elements are the extents in each dimension.

shape conformance
Pertains to the rule concerning operands of binary intrinsic operations in expressions: to be in
shape conformance, the two operands must both be arrays of the same shape, or one or both of
the operands must be scalars.

short field termination
The use of a comma (,) to terminate the field of a numeric data edit descriptor. This technique
overrides the field width (w) specification in the data edit descriptor and therefore avoids
padding of the input field. The comma can only terminate fields less than w characters long.
See also data edit descriptor.

signal
The software mechanism used to indicate that an exception condition (abnormal event) has
been detected. For example, a signal can be generated by a program or hardware error, or by
request of another program.

single-precision constant
A processor approximation of the value of a real number that occupies 4 bytes of memory and
can assume a positive, negative, or zero value. The precision is less than a constant of double-
precision type. For the precise ranges of the single-precision constants, see Data Representation
in the Programmer’s Guide. See also denormalized number.

size
The total number of elements in an array (the product of the extents).

source file
A program or portion of a program library, such as an object file, or image file.

specification expression
A restricted expression that is of type integer and has a scalar value. This type of expression
appears only in the declaration of array bounds and character lengths.

specification statement
A nonexecutable statement that provides information about the data used in the source
program. Such a statement can be used to allocate and initialize variables, arrays, records, and
structures, and define other characteristics of names used in a program.

statement
An instruction in a programming language that represents a step in a sequence of actions or a
set of declarations. In Fortran 90, an ampersand can be used to continue a statement from one
line to another, and a semicolon can be used to separate several statements on one line.
There are two main classes of statements: executable and nonexecutable.

statement entity
An entity identified by a lexical token whose scope is a single statement or part of a statement.

Glossary Page 24 of 27

statement function
A function whose definition is contained in a single statement.

statement function definition
A statement that defines a statement function. Its form is the statement function name
(followed by its optional dummy arguments in parentheses), followed by an equal sign (=),
followed by a numeric, logical, or character expression.
A statement function definition must precede all executable statements and follow all
specification statements.

statement keyword
A word that begins the syntax of a statement. All program statements (except assignment
statements and statement function definitions) begin with a statement keyword. Examples are
INTEGER, DO, IF, and WRITE.

statement label
See label.

static variable
A variable whose storage is allocated for the entire execution of a program.

storage association
The relationship between two storage sequences when the storage unit of one is the same as the
storage unit of the other. Storage association is provided by the COMMON and
EQUIVALENCE statements. For modules, pointers, allocatable arrays, and automatic data
objects, the SEQUENCE statement defines a storage order for structures.

storage location
An addressable unit of main memory.

storage sequence
A sequence of any number of consecutive storage units. The size of a storage sequence is the
number of storage units in the storage sequence. A sequence of storage sequences forms a
composite storage sequence. See also storage association and storage unit.

storage unit
In a storage sequence, the number of storage units needed to represent one real, integer, logical,
or character value. See also character storage unit, numeric storage unit, and storage sequence.

stride
The increment between subscript values, specified in a subscript triplet. If it is omitted, it is
assumed to be one.

string edit descriptor
A format descriptor that transfers characters to an output record.

structure
Can be either of the following:

l A scalar data object of derived (user-defined) type.
l An aggregate entity containing one or more fields or components.

structure component
Can be either of the following:

l One of the components of a structure.
l An array whose elements are components of the elements of an array of derived type.

structure constructor
A mechanism that is used to specify a scalar value of a derived type. A structure constructor is
the name of the type followed by a parenthesized list of values for the components of the type.

subobject
Part of a data object (parent object) that can be referenced and defined separately from other
parts of the data object. A subobject can be an array element, an array section, a substring, a

Glossary Page 25 of 27

derived type, or a structure component. Subobjects are referenced by designators and can be
considered to be data objects themselves. See also designator.

subobject designator
See designator.

subprogram
A user-written function or subroutine subprogram that can be invoked from another program
unit to perform a specific task. Note that in FORTRAN 77, a block data program unit was also
called a subprogram.

subroutine
procedure that can return many values, a single value, or no value to the calling program unit
(through arguments). A subroutine is invoked by a CALL statement in another program unit.
In Fortran 90, a subroutine can also be used to define a new form of assignment (defined
assignment), which is different from those intrinsic to Fortran 90. Such assignments are
invoked with assignment syntax (using the = symbol) rather than the CALL statement. See also
function, statement function, and subroutine subprogram.

subroutine subprogram
A sequence of statements starting with a SUBROUTINE (or optional OPTIONS) statement and
ending with the corresponding END statement. See also subroutine.

subscript
A scalar integer expression (enclosed in parentheses and appended to the array name)
indicating the position of an array element. The number of subscripts is the rank of the array.
See also array element.

subscript triplet
An item in a section subscript list specifying a range of values for the array section. A subscript
triplet contains at least one colon and has three optional parts: a lower bound, an upper bound,
and a stride. Contrast with vector subscript. See also array section and section subscript.

substring
A contiguous portion of a scalar character string. Do not confuse this with the substring
selector in an array section, where the result is another array section, not a substring.

symbolic name
See name.

syntax
The formal structure of a statement or command string.

T

target
The named data object associated with a pointer (in the form pointer-object => target). A target
is declared in a type declaration statement that contains the TARGET attribute. See also pointer
and pointer association.

thread
The smallest unit of execution for which the operating system allocates CPU time. A thread
consists of a stack, the state of the CPU registers, and an entry in the execution list of the
system scheduler. Each process has at least one thread of execution.

transformational function
An intrinsic function that is not an elemental or inquiry function. A transformational function
usually changes an array actual argument into a scalar result or another array, rather than
applying the argument element by element.

truncation

Glossary Page 26 of 27

Can be either of the following:
l A technique that approximates a numeric value by dropping its fractional value and using

only the integer portion.
l The process of removing one or more characters from the left or right of a number or

string.
type declaration statement

A nonexecutable statement specifying the data type of one or more variables: an INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, CHARACTER,
LOGICAL, or TYPE statement. Also called a type declaration or type specification.

type parameter
Defines an intrinsic data type. The type parameters are kind and length. The kind type
parameter (KIND=) specifies the range for the integer data type, the precision and range for real
and complex data types, and the machine representation method for the character and logical
data types. The length type parameter (LEN=) specifies the length of a character string. See
also kind type parameter.

U

ultimate component
For a derived type or a structure, a component that is of intrinsic type or has the POINTER
attribute, or an ultimate component of a component that is a derived type and does not have the
POINTER attribute.

unary operator
An operator that operates on one operand. For example, the minus sign in -A and the .NOT.
operator in .NOT. (J .GT. K).

undefined
For a data object, the property of not having a determinate value.

underflow
An error condition occurring when the result of an arithmetic operation yields a result that is
smaller than the minimum value in the range of a data type. For example, in unsigned
arithmetic, underflow occurs when a result is negative. See also denormalized number.

unformatted data
Data written to a file by using unformatted I/O statements; for example, binary numbers.

unformatted I/O statement
An I/O statement that does not contain format specifiers and therefore does not translate the
data being transferred. Contrast with formatted I/O statement.

unformatted record
A record that is transmitted in internal format between internal and external storage.

unit identifier
The identifier that specifies an external unit or internal file. The identifier can be any one of the
following:

l An integer expression whose value must be zero or positive
l An asterisk (*) that corresponds to the default (or implicit) I/O unit
l The name of a character scalar memory reference or character array name reference for

an internal file
Also called a device code, or logical unit number.

unspecified storage unit
A unit of storage for holding a pointer or a scalar that is not a pointer and is of type other than
default integer, default character, or default real.

Glossary Page 27 of 27

use association
The process by which the entities in a module are made accessible to other scoping units
(through a USE statement in the scoping unit).

user-defined type
See derived type.

V

variable
A data object (stored in a memory location) whose value can change during program execution.
A variable can be a named data object, an array element, an array section, a structure
component, or a substring. In FORTRAN 77, a variable was always scalar and named. Contrast
with constant.

variable format expression
A numeric expression enclosed in angle brackets (<>) that can be used in a FORMAT
statement. If necessary, it is converted to integer type before use.

variable-length record type
A file format in which records may be of different lengths.

vector subscript
A rank-one array of integer values used as a section subscript to select elements from a parent
array. Unlike a subscript triplet, a vector subscript specifies values (within the declared bounds
for the dimension) in an arbitrary order. Contrast with subscript triplet. See also array section
and section subscript.

W

wait function
A function that blocks the execution of a calling thread until a specified set of conditions has
been satisfied.

	Language Reference
	Copyright Page
	Introduction
	Conventions
	Syntax Conventions
	Platform Labels

	Overview
	Language Standards Conformance
	Language Compatibility
	Fortran 90 Features
	New Features
	Improved Features

	Fortran 95 Features

	Program Structure, Characters, and Source Forms
	Program Structure
	Statements
	Required Order of Statements
	Statements Restricted in Scoping Units

	Names
	Keywords

	Character Sets
	Source Forms
	Free Source Form
	Fixed and Tab Source Forms
	Fixed-Format Lines
	Tab-Format Lines

	Source Code Useable for All Forms

	Data Types, Constants, and Variables
	Intrinsic Data Types
	Integer Data Types
	Integer Constants

	Real Data Types
	General Rules for Real Constants
	REAL(4) Constants
	REAL(8) or DOUBLE PRECISION Constants
	REAL(16) Constants (VMS, U*X)

	Complex Data Types
	General Rules for Complex Constants
	COMPLEX(4) Constants
	COMPLEX(8) or DOUBLE COMPLEX Constants

	Logical Data Types
	Logical Constants

	Character Data Type
	Character Constants
	C Strings in Character Constants
	Character Substrings

	Derived Data Types
	Derived-Type Definition
	Default Initialization
	Structure Components
	Structure Constructors

	Binary, Octal, Hexadecimal, and Hollerith Constants
	Binary Constants
	Octal Constants
	Hexadecimal Constants
	Hollerith Constants
	Determining the Data Type of Nondecimal Constants

	Variables
	Data Types of Scalar Variables
	Specification of Data Type
	Implicit Typing Rules

	Arrays
	Whole Arrays
	Array Elements
	Array Sections
	Subscript Triplets
	Vector Subscripts

	Array Constructors

	Expressions and Assignment Statements
	Expressions
	Numeric Expressions
	Using Parentheses in Numeric Expressions
	Data Type of Numeric Expressions

	Character Expressions
	Relational Expressions
	Logical Expressions
	Defined Operations
	Summary of Operator Precedence
	Initialization and Specification Expressions
	Initialization Expressions
	Specification Expressions

	Assignment Statements
	Intrinsic Assignments
	Numeric Assignment Statements
	Logical Assignment Statements
	Character Assignment Statements
	Derived-Type Assignment Statements
	Array Assignment Statements

	Defined Assignments
	Pointer Assignments
	WHERE Statement and Construct
	FORALL Statement and Construct

	Specification Statements
	Type Declaration Statements
	Declaration Statements for Noncharacter Types
	Declaration Statements for Character Types
	Declaration Statements for Derived Types
	Declaration Statements for Arrays
	Explicit-Shape Specifications
	Automatic Arrays
	Adjustable Arrays

	Assumed-Shape Specifications
	Assumed-Size Specifications
	Deferred-Shape Specifications

	ALLOCATABLE Attribute and Statement
	AUTOMATIC and STATIC Attributes and Statements
	COMMON Statement
	DATA Statement
	DIMENSION Attribute and Statement
	EQUIVALENCE Statement
	Making Arrays Equivalent
	Making Substrings Equivalent
	EQUIVALENCE and COMMON Interaction

	EXTERNAL Attribute and Statement
	IMPLICIT Statement
	INTENT Attribute and Statement
	INTRINSIC Attribute and Statement
	NAMELIST Statement
	OPTIONAL Attribute and Statement
	PARAMETER Attribute and Statement
	POINTER Attribute and Statement
	PUBLIC and PRIVATE Attributes and Statements
	SAVE Attribute and Statement
	TARGET Attribute and Statement
	VOLATILE Attribute and Statement

	Dynamic Allocation
	ALLOCATE Statement
	Allocation of Allocatable Arrays
	Allocation of Pointer Targets

	DEALLOCATE Statement
	Deallocation of Allocatable Arrays
	Deallocation of Pointer Targets

	NULLIFY Statement

	Execution Control
	Branch Statements
	Unconditional GO TO Statement
	Computed GO TO Statement
	The ASSIGN and Assigned GO TO Statements
	Arithmetic IF Statement

	CALL Statement
	CASE Constructs
	CONTINUE Statement
	DO Constructs
	Forms for DO Constructs
	Execution of DO Constructs
	Iteration Loop Control
	Nested DO Constructs
	Extended Range

	DO WHILE Statement
	CYCLE Statement
	EXIT Statement

	END Statement
	IF Construct and Statement
	IF Construct
	IF Statement

	PAUSE Statement
	RETURN Statement
	STOP Statement

	Program Units and Procedures
	Main Program
	Modules and Module Procedures
	Module References
	USE Statement

	Block Data Program Units
	Functions, Subroutines, and Statement Functions
	General Rules for Function and Subroutine Subprograms
	Recursion
	Pure Procedures
	Elemental Procedures

	Functions
	RESULT Keyword
	Function References

	Subroutines
	Statement Functions

	External Procedures
	Internal Procedures
	Argument Association
	Optional Arguments
	Array Arguments
	Pointer Arguments
	Assumed-Length Character Arguments
	Character Constant and Hollerith Arguments
	Alternate Return Arguments
	Dummy Procedure Arguments
	References to Generic Procedures
	References to Generic Intrinsic Functions
	References to Elemental Intrinsic Procedures

	References to Non-Fortran Procedures

	Procedure Interfaces
	Determining When Procedures Require Explicit Interfaces
	Defining Explicit Interfaces
	Defining Generic Names for Procedures
	Defining Generic Operators
	Defining Generic Assignment

	CONTAINS Statement
	ENTRY Statement
	ENTRY Statements in Function Subprograms
	ENTRY Statements in Subroutine Subprograms

	Intrinsic Procedures
	Argument Keywords in Intrinsic Procedures
	Overview of Intrinsic Procedures
	Categories of Intrinsic Functions
	Intrinsic Subroutines
	Bit Functions

	Data Transfer I/O Statements
	Records and Files
	Components of Data Transfer Statements
	I/O Control List
	Unit Specifier
	Format Specifier
	Namelist Specifier
	Record Specifier
	Key-Field-Value Specifier (VMS only)
	Key-of-Reference Specifier (VMS only)
	I/O Status Specifier
	Branch Specifiers
	Advance Specifier
	Character Count Specifier

	I/O Lists
	Simple List Items in I/O Lists
	Implied-Do Lists in I/O Lists

	READ Statements
	Forms for Sequential READ Statements
	Rules for Formatted Sequential READ Statements
	Rules for List-Directed Sequential READ Statements
	Rules for Namelist Sequential READ Statement
	Rules for Unformatted Sequential READ Statements

	Forms for Direct-Access READ Statements
	Rules for Formatted Direct-Access READ Statements
	Rules for Unformatted Direct-Access READ Statements

	Forms for Indexed READ Statements (VMS only)
	Rules for Formatted Indexed READ Statements (VMS only)
	Rules for Unformatted Indexed READ Statements (VMS only)

	Forms and Rules for Internal READ Statements

	ACCEPT Statement
	WRITE Statements
	Forms for Sequential WRITE Statements
	Rules for Formatted Sequential WRITE Statements
	Rules for List-Directed Sequential WRITE Statements
	Rules for Namelist Sequential WRITE Statements
	Rules for Unformatted Sequential WRITE Statements

	Forms for Direct-Access WRITE Statements
	Rules for Formatted Direct-Access WRITE Statements
	Rules for Unformatted Direct-Access WRITE Statements

	Forms for Indexed WRITE Statements (VMS only)
	Rules for Formatted Indexed WRITE Statements (VMS only)
	Rules for Unformatted Indexed WRITE Statements (VMS only)

	Forms and Rules for Internal WRITE Statements

	PRINT and TYPE Statements
	REWRITE Statement

	I/O Formatting
	Format Specifications
	Character Format Specifications

	Data Edit Descriptors
	Forms for Data Edit Descriptors
	General Rules for Numeric Editing
	Integer Editing
	I Editing
	B Editing
	O Editing
	Z Editing

	Real and Complex Editing
	F Editing
	E and D Editing
	EN Editing
	ES Editing
	G Editing
	Complex Editing

	Logical Editing (L)
	Character Editing (A)
	Default Widths for Data Edit Descriptors
	Terminating Short Fields of Input Data

	Control Edit Descriptors
	Forms for Control Edit Descriptors
	Positional Editing
	T Editing
	TL Editing
	TR Editing
	X Editing

	Sign Editing
	SP Editing
	SS Editing
	S Editing

	Blank Editing
	BN Editing
	BZ Editing

	Scale-Factor Editing (P)
	Slash Editing (/)
	Colon Editing (:)
	Dollar-Sign ($) and Backslash (\) Editing
	Character Count Editing (Q)

	Character String Edit Descriptors
	Character Constant Editing
	H Editing

	Nested and Group Repeat Specifications
	Variable Format Expressions
	Printing of Formatted Records
	Interaction Between Format Specifications and I/O Lists

	File Operation I/O Statements (WNT, W95, U*X)
	BACKSPACE Statement
	CLOSE Statement
	DELETE Statement
	ENDFILE Statement
	INQUIRE Statement
	ACCESS Specifier
	ACTION Specifier
	BINARY Specifier (WNT, W95)
	BLANK Specifier
	BLOCKSIZE Specifier (WNT, W95)
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DELIM Specifier
	DIRECT Specifier
	EXIST Specifier
	FORM Specifier
	FORMATTED Specifier
	IOFOCUS Specifier (WNT, W95)
	MODE Specifier (WNT, W95)
	NAME Specifier
	NAMED Specifier
	NEXTREC Specifier
	NUMBER Specifier
	OPENED Specifier
	ORGANIZATION Specifier
	PAD Specifier
	POSITION Specifier
	READ Specifier
	READWRITE Specifier
	RECL Specifier
	RECORDTYPE Specifier
	SEQUENTIAL Specifier
	SHARE Specifier (WNT, W95)
	UNFORMATTED Specifier
	WRITE Specifier

	OPEN Statement
	ACCESS Specifier
	ACTION Specifier
	ASSOCIATEVARIABLE Specifier
	BLANK Specifier
	BLOCKSIZE Specifier
	BUFFERCOUNT Specifier
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DEFAULTFILE Specifier
	DELIM Specifier
	DISPOSE Specifier
	FILE Specifier
	FORM Specifier
	IOFOCUS Specifier (WNT, W95)
	MAXREC Specifier
	MODE Specifier (WNT, W95)
	NAME Specifier
	ORGANIZATION Specifier
	PAD Specifier
	POSITION Specifier
	READONLY Specifier
	RECL Specifier
	RECORDSIZE Specifier
	RECORDTYPE Specifier
	SHARE Specifier (WNT, W95)
	SHARED Specifier
	STATUS Specifier
	TITLE Specifier
	TYPE Specifier
	USEROPEN Specifier

	REWIND Statement
	UNLOCK Statement

	Compilation Control Statements and Compiler Directives
	Compilation Control Statements
	General Compiler Directives
	Syntax Rules for General Directives
	Equivalent Compiler Options

	Scope and Association
	Scope
	Unambiguous Generic Procedure References
	Resolving Procedure References
	References to Generic Names
	References to Specific Names
	References to Nonestablished Names

	Association
	Name Association
	Argument Association
	Use and Host Association

	Pointer Association
	Storage Association
	Storage Units and Storage Sequence
	Array Association

	Obsolescent and Deleted Language Features
	Obsolescent Language Features in Fortran 90
	Deleted Language Features in Fortran 95
	Obsolescent Language Features in Fortran 95

	Additional Language Features
	FORTRAN-66 Interpretation of the EXTERNAL Statement
	Alternative Syntax for the PARAMETER Statement
	Alternative Syntax for Octal and Hexadecimal Constants
	Alternative Syntax for a Record Specifier
	Alternative Syntax for the DELETE Statement
	Alternative Form for Namelist External Records
	Record Structures
	Structure Declarations
	Type Declarations
	Substructure Declarations

	References to Record Fields
	Aggregate Assignment

	Character and Key Code Charts
	ASCII Character Codes
	ASCII Character Codes Chart 1
	ASCII Character Codes Chart 2 (IBM character set)

	ANSI Character Codes
	ANSI Character Codes Chart

	Key Codes
	Key Codes Chart 1
	Key Codes Chart 2

	Data Representation Models
	Model for Integer Data
	Model for Real Data
	Model for Bit Data

	FORTRAN 77 Syntax
	FORTRAN 77 Data Types
	FORTRAN 77 Intrinsic Functions
	FORTRAN 77 Statements

	Summary of Language Extensions
	DIGITAL Fortran Language Extensions
	Source Forms
	Names
	Character Sets
	Intrinsic Data Types
	Constants
	Derived Data Types
	Arrays
	Expressions and Assignment
	Specification Statements
	Procedures
	Compilation Control Statements
	Built-In Functions
	I/O Statements
	I/O Formatting
	File Operation Statements
	Compiler Directives
	Intrinsic Procedures
	Additional Language Features

	High Performance Fortran Language Extensions
	Data Parallel Statements
	Procedure Prefixes
	Intrinsic Procedures

	A to Z Reference
	Language Summary Tables
	Program Unit Calls and Definitions: table
	Program Control Statements and Procedures: table
	Specifying Variables: table
	System, Drive, and Directory Procedures: table
	File Management: table
	Input/Output Procedures: table
	Random Number Procedures: table
	Date and Time Procedures: table
	Keyboard and Speaker Procedures: table
	Error Handling: table
	Argument Inquiry: table
	Memory Allocation and Deallocation Procedures: table
	Array Procedures: table
	Numeric and Type Conversion Procedures: table
	Trigonometric, Exponential, Root, and Logarithmic Procedures: table
	Floating-Point Inquiry and Control Procedures: table
	Character Procedures: table
	Bit Operation and Representation Procedures: table
	QuickWin Procedures: table
	Graphics Procedures: table
	Dialog Procedures: table
	Compiler Directives: table
	National Language Standard Procedures: table
	Portability Procedures: table
	COM and Automation Procedures: table
	Miscellaneous Run-Time Procedures: table
	Functions Not Allowed as Actual Arguments: table

	A to B
	ABORT
	ABOUTBOXQQ
	ABS
	ACCEPT
	ACCESS
	ACHAR
	ACOS
	ACOSD
	ADJUSTL
	ADJUSTR
	AIMAG
	AINT
	ALARM
	ALIAS
	ALL
	ALLOCATABLE
	ALLOCATE
	ALLOCATED
	AND
	ANINT
	ANY
	APPENDMENUQQ
	ARC, ARC_W
	ASIN
	ASIND
	ASM (Alpha only)
	ASSIGN -- Label Assignment
	Assignment(=) -- Defined Assignment
	Assignment -- Intrinsic
	ASSOCIATED
	ATAN
	ATAND
	ATAN2
	ATAN2D
	ATTRIBUTES
	AUTOAddArg
	AUTOAllocateInvokeArgs
	AUTODeallocateInvokeArgs
	AUTOGetExceptInfo
	AUTOGetProperty
	AUTOGetPropertyByID
	AUTOGetPropertyInvokeArgs
	AUTOInvoke
	AUTOMATIC
	AUTOSetProperty
	AUTOSetPropertyByID
	AUTOSetPropertyInvokeArgs
	BACKSPACE
	BEEPQQ
	BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN
	BIC, BIS
	BIT
	BIT_SIZE
	BLOCK DATA
	BSEARCHQQ
	BTEST
	BYTE

	C to D
	CALL
	CASE
	CEILING
	CHANGEDIRQQ
	CHANGEDRIVEQQ
	CHAR
	CHARACTER
	CHDIR
	CHMOD
	CLEARSCREEN
	CLICKMENUQQ
	CLOCK
	CLOSE
	CMPLX
	COMAddObjectReference
	COMCLSIDFromProgID
	COMCLSIDFromString
	COMCreateObjectByGUID
	COMCreateObjectByProgID
	COMGetActiveObjectByGUID
	COMGetActiveObjectByProgID
	COMGetFileObject
	COMInitialize
	COMMITQQ
	COMMON
	COMPLEX
	COMQueryInterface
	COMReleaseObject
	COMUninitialize
	CONJG
	CONTAINS
	CONTINUE
	COS
	COSD
	COSH
	COTAN
	COTAND
	COUNT
	CPU_TIME
	CSHIFT
	CTIME
	CYCLE
	DATA
	DATE
	DATE_AND_TIME
	DBESJ0, DBESJ1, DBESJN, DBESY0, DBESY1, DBESYN
	DBLE
	DCMPLX
	DEALLOCATE
	DECLARE and NODECLARE
	DECODE
	DEFINE and UNDEFINE
	DEFINE FILE
	DELDIRQQ
	DELETE
	DELETEMENUQQ
	DELFILESQQ
	Derived Type
	%DESCR (VMS only)
	DFLOAT
	DIGITS
	DIM
	DIMENSION
	DISPLAYCURSOR
	DLGEXIT
	DLGGET, DLGGETINT, DLGGETLOG, DLGGETCHAR
	DLGINIT, DLGINITWITHRESOURCEHANDLE
	DLGISDLGMESSAGE
	DLGMODAL
	DLGMODELESS
	DLGSENDCTRLMESSAGE
	DLGSET, DLGSETINT, DLGSETLOG, DLGSETCHAR
	DLGSETRETURN
	DLGSETSUB
	DLGUNINIT
	DO
	DO WHILE
	DOT_PRODUCT
	DOUBLE COMPLEX
	DOUBLE PRECISION
	DPROD
	DRAND, DRANDM
	DREAL
	DTIME (WNT only)

	E to F
	ELEMENTAL
	ELLIPSE, ELLIPSE_W
	ELSE Directive
	ELSE
	ELSEIF Directive
	ELSE IF
	ELSEWHERE
	ENCODE
	END
	END DO
	ENDIF Directive
	END IF
	ENDFILE
	END FORALL
	END INTERFACE
	END WHERE
	ENTRY
	EOF
	EOSHIFT
	EPSILON
	EQUIVALENCE
	ERRSNS
	ETIME (WNT only)
	EXIT
	EXIT Subroutine
	EXP
	EXPONENT
	EXTERNAL
	FDATE
	FGETC
	FIND
	FINDFILEQQ
	FIXEDFORMLINESIZE
	FLOAT
	FLOODFILL, FLOODFILL_W
	FLOODFILLRGB, FLOODFILLRGB_W
	FLOOR
	FLUSH
	FOCUSQQ
	FOR_CHECK_FLAWED_PENTIUM
	FOR_GET_FPE
	FOR_RTL_FINISH_
	FOR_RTL_INIT_
	FOR_SET_FPE
	FOR_SET_REENTRANCY
	FORALL
	FORMAT
	FP_CLASS
	FPUTC
	FRACTION
	FREE
	FREEFORM and NOFREEFORM
	FSEEK
	FSTAT
	FTELL
	FULLPATHQQ
	FUNCTION

	G
	GERROR
	GETACTIVEQQ
	GETARCINFO
	GETARG
	GETBKCOLOR
	GETBKCOLORRGB
	GETC
	GETCHARQQ
	GETCOLOR
	GETCOLORRGB
	GETCONTROLFPQQ (x86 only)
	GETCWD
	GETCURRENTPOSITION, GETCURRENTPOSITION_W
	GETDAT
	GETDRIVEDIRQQ
	GETDRIVESIZEQQ
	GETDRIVESQQ
	GETENV
	GETENVQQ
	GETEXITQQ
	GETFILEINFOQQ
	GETFILLMASK
	GETFONTINFO
	GETGTEXTEXTENT
	GETGTEXTROTATION
	GETHWNDQQ
	GETIMAGE, GETIMAGE_W
	GETLASTERRORQQ
	GETLINESTYLE
	GETLOG
	GETPHYSCOORD
	GETPID
	GETPIXEL, GETPIXEL_W
	GETPIXELRGB, GETPIXELRGB_W
	GETPIXELS
	GETPIXELSRGB
	GETSTATUSFPQQ (x86 only)
	GETSTRQQ
	GETTEXTCOLOR
	GETTEXTCOLORRGB
	GETTEXTPOSITION
	GETTEXTWINDOW
	GETTIM
	GETUID
	GETUNITQQ
	GETVIEWCOORD, GETVIEWCOORD_W
	GETWINDOWCONFIG
	GETWINDOWCOORD
	GETWRITEMODE
	GETWSIZEQQ
	GMTIME
	GOTO -- Assigned
	GOTO -- Computed
	GOTO -- Unconditional
	GRSTATUS

	H to I
	HOSTNAM
	HUGE
	IACHAR
	IAND
	IARGC
	IARGCOUNT (VMS only)
	IARGPTR
	IBCHNG
	IBCLR
	IBITS
	IBSET
	ICHAR
	IDATE
	IDATE Intrinsic Subroutine
	IDATE Portability Routine

	IDENT
	IEOR
	IERRNO
	IF -- Arithmetic
	IF -- Logical
	IF Construct
	IF DEFINED Directive
	IF Directive Construct
	IFIX
	ILEN
	IMAGESIZE, IMAGESIZE_W
	IMPLICIT
	INCHARQQ
	INCLUDE
	INDEX
	INITIALIZEFONTS
	INITIALSETTINGS
	INQFOCUSQQ
	INQUIRE
	INSERTMENUQQ
	INT
	INTEGER Directive
	INTEGER
	INTEGERTORGB
	INTENT
	INTERFACE
	INTRINSIC
	IOR
	IRAND, IRANDM
	ISHA
	ISHC
	ISHFT
	ISHFTC
	ISHL
	ISNAN
	ITIME

	J to L
	JDATE
	KILL
	KIND
	LBOUND
	LCWRQQ (x86 only)
	LEADZ
	LEN
	LEN_TRIM
	LGE
	LGT
	LINETO, LINETO_W
	LINETOAR
	LINETOAREX
	LLE
	LLT
	LNBLNK
	LOADIMAGE, LOADIMAGE_W
	LOC
	%LOC
	LOG
	LOG10
	LOGICAL Function
	LOGICAL
	LONG
	LSHIFT
	LSTAT
	LTIME

	M to N
	MAKEDIRQQ
	MALLOC
	MAP...END MAP
	MATHERRQQ (x86 only)
	MATMUL
	MAX
	MAXEXPONENT
	MAXLOC
	MAXVAL
	MBCharLen
	MBConvertMBToUnicode
	MBConvertUnicodeToMB
	MBCurMax
	MBINCHARQQ
	MBINDEX
	MBJISToJMS and MBJMSToJIS
	MBLead
	MBLen
	MBLen_Trim
	MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE
	MBNext
	MBPrev
	MBSCAN
	MBStrLead
	MBVERIFY
	MERGE
	MESSAGE
	MESSAGEBOXQQ
	MIN
	MINEXPONENT
	MINLOC
	MINVAL
	MOD
	MODIFYMENUFLAGSQQ
	MODIFYMENUROUTINEQQ
	MODIFYMENUSTRINGQQ
	MODULE
	MODULE PROCEDURE
	MODULO
	MOVETO, MOVETO_W
	MULT_HIGH (Alpha only)
	MVBITS
	NAMELIST
	NARGS
	NEAREST
	NINT
	NLSEnumCodepages
	NLSEnumLocales
	NLSFormatCurrency
	NLSFormatDate
	NLSFormatNumber
	NLSFormatTime
	NLSGetEnvironmentCodepage
	NLSGetLocaleInfo
	NLS Date and Time Format
	NLSSetEnvironmentCodepage
	NLSSetLocale
	NOT
	NULL
	NULLIFY
	NUMBER_OF_PROCESSORS
	NWORKERS

	O to P
	OBJCOMMENT
	OPEN
	OPTIONAL
	OPTIONS Directive
	OPTIONS
	OR
	OUTGTEXT
	OUTTEXT
	PACK Directive
	PACK
	PACKTIMEQQ
	PARAMETER
	PASSDIRKEYSQQ
	PAUSE
	PEEKCHARQQ
	PERROR
	PIE, PIE_W
	POINTER -- Fortran 90
	POINTER -- DIGITAL Fortran
	POLYGON, POLYGON_W
	POPCNT
	POPPAR
	PRECISION
	PRESENT
	PRINT
	PRIVATE
	PROCESSORS_SHAPE
	PRODUCT
	PROGRAM
	PSECT
	PUBLIC
	PURE
	PUTC
	PUTIMAGE, PUTIMAGE_W

	Q to R
	QEXT (VMS and U*X)
	QFLOAT (VMS and U*X)
	QSORT
	RADIX
	RAISEQQ
	RAN
	RAN Intrinsic Function
	RAN Run-Time Routine

	RAND, RANDOM
	RANDOM
	RANDOM_NUMBER
	RANDOM_SEED
	RANDU
	RANGE
	READ
	REAL Directive
	REAL Function
	REAL
	RECORD
	RECTANGLE, RECTANGLE_W
	RECURSIVE
	%REF
	REGISTERMOUSEEVENT
	REMAPALLPALETTERGB, REMAPPALETTERGB
	RENAME
	RENAMEFILEQQ
	REPEAT
	RESHAPE
	RESULT
	RETURN
	REWIND
	REWRITE
	RGBTOINTEGER
	RINDEX
	RRSPACING
	RSHIFT
	RTC
	RUNQQ

	S
	SAVE
	SAVEIMAGE, SAVEIMAGE_W
	SCALE
	SCAN
	SCROLLTEXTWINDOW
	SCWRQQ (x86 only)
	SECNDS
	SECNDS Intrinsic Function
	SECNDS Portability Routine

	SEED
	SELECT CASE...END SELECT
	SELECTED_INT_KIND
	SELECTED_REAL_KIND
	SEQUENCE
	SETACTIVEQQ
	SETBKCOLOR
	SETBKCOLORRGB
	SETCLIPRGN
	SETCOLOR
	SETCOLORRGB
	SETCONTROLFPQQ (x86 only)
	SETDAT
	SETENVQQ
	SETERRORMODEQQ
	SETEXITQQ
	SET_EXPONENT
	SETFILEACCESSQQ
	SETFILETIMEQQ
	SETFILLMASK
	SETFONT
	SETGTEXTROTATION
	SETLINESTYLE
	SETMESSAGEQQ
	SETPIXEL, SETPIXEL_W
	SETPIXELRGB, SETPIXELRGB_W
	SETPIXELS
	SETPIXELSRGB
	SETTEXTCOLOR
	SETTEXTCOLORRGB
	SETTEXTPOSITION
	SETTEXTWINDOW
	SETTIM
	SETVIEWORG
	SETVIEWPORT
	SETWINDOW
	SETWINDOWCONFIG
	SETWINDOWMENUQQ
	SETWRITEMODE
	SETWSIZEQQ
	SHAPE
	SHORT
	SIGN
	SIN
	SIND
	SINH
	SIGNAL
	SIGNALQQ
	SIZE
	SIZEOF
	SLEEP
	SLEEPQQ
	SNGL
	SORTQQ
	SPACING
	SPLITPATHQQ
	SPREAD
	SQRT
	SRAND
	SSWRQQ (x86 only)
	STAT
	Statement Function
	STATIC
	STOP
	STRICT and NOSTRICT
	STRUCTURE...END STRUCTURE
	SUBROUTINE
	SUBTITLE
	SUM
	SYSTEM
	SYSTEM_CLOCK
	SYSTEMQQ

	T to Z
	TAN
	TAND
	TANH
	TARGET
	TIME
	TIME Intrinsic Subroutine
	TIME Portability Routine

	TIMEF
	TINY
	TITLE
	TRAILZ
	TRANSFER
	TRANSPOSE
	TRIM
	TYPE
	Type Declarations
	UBOUND
	UNION...END UNION
	UNLINK
	UNLOCK
	UNPACK
	UNPACKTIMEQQ
	UNREGISTERMOUSEEVENT
	USE
	%VAL
	VERIFY
	VIRTUAL
	VOLATILE
	WAITONMOUSEEVENT
	WHERE
	WRAPON
	WRITE
	XOR
	ZEXT

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

