CHAPTER 13

Stability of the
Radiative Gradient

We found that if radiative equilibrium obtains, i.e., if the energy is trans-
ported through the layers of a star by radiation alone, the temperature
gradient is given to good approximation in the stellar interior in terms of the
local values of opacity x (Rosseland mean mass absorption coefficient, see
Chap. 8), density p, “interior luminosity” L(r) (net outward rate of flow of
energy through a sphere of radius r), and r by the relation

d _Kkp L(r)
—((1/3)aT*) = , 13.1
dr(( AnT") ¢ anr? ( a)
which may also be written as
dT 3 Li
LA N 2. L (13.1b)*

We now wish to decide whether the stellar material would be, dynamically,
in stable or unstable equilibrium under such a gradient as that given by (13.1).
In other words, with such a gradient, would the matter be stable or unstable
to small local perturbations?

Suppose the actual temperature gradient at the point under consideration
is that appropriate to radiative transfer, or, in other words, is given by (13.1).
Suppose now that an element of mass dm at the radial distance r suddenly
undergoes an arbitrarily small increase in temperature AT(r)>0, where

AT(r)=T,,(r)—-T(r), (13.2)

T,a(r) being the temperature of the element and T(r) being the temperature
of the unperturbed surrounding material at the point r. The pressure

* With a slight generalization of the definition of x, (13.1a) and (13.1b) apply also when
some (or all) of the energy is being transported by conduction; see Sect.16.7.
262



13 Stability of the Radiative Gradient 263

within the element will increase to a value slightly greater than the surround-
ing external pressure, and the volume of the element will increase quickly
until the internal and external pressures are equal. Thus the density p,,.(r) of
the element will have decreased below the density p(r) of the unperturbed
surroundings, so that the excess density

APP) = pynlr) = pAr) (13.2)

of the element will now be negative. The element will accordingly begin to
move outward under the influence of the buoyant forces of the surrounding
material. We assume that the pressure within the element acting upon the
surrounding material is always equal to the external pressure of the
surrounding material acting on the element; i.e., we assume that pressure
equilibrium obtains at all times:

Py(r) = P(r),

dpP _dP 13.3)
dr ,,,,_ dr’ (3.

where P(r) and dP/dr are the pressure and pressure gradient of the
surrounding material. In other words, we are assuming that the time required
for pressure equilibrium to become established in the element is small
compared with the times of interest. (This assumption is discussed further in
Sect. 14.3.)

The values of T, (r) and p,.(r) of the element as it moves outward will
depend, in general, on P(r) (since the pressure forces may do work on the
element) and on the way in which the element exchanges heat with its
surroundings. In the special case of adiabatic motion (no net gains or losses
of heat by the element) T;,(r) and p,,(r) would be determined only by the
value of P(r) at each point through the adiabatic relations between 7 and P
and between p and P. However, we consider here the general (not necessarily
adiabatic) case.

It is clear, now, that for a condition of stable equilibrium to exist the
density p.(r) of the element must eventually become equal to the unperturbed
density p(r) of the surroundings at some point further out; for, when these
two densities are equal, the upward buoyant force is exactly balanced by the
downward gravitational force, and the net force on the element is zero. In
other words, the p,,(r) curve shown in Fig. 13.1 must cross the unperturbed
p(r) curve at some value of r greater than that at which the temperature
increase occurred. Since we have chosen AT, and hence Ap, to be arbitrarily

whence
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Fig. 13.1 A case of stability against convection. Ap is to be regarded as an
infinitesimal perturbation in density.

small, and since Ap is negative in the present example where AT is positive,
then, clearly, a necessary and sufficient general condition for stability of the
radiative gradient is that

d(Ap)/dr>0 (13.4)
or

(dp/dr)sm>(dp/dr)npert » (13.5)

where the subscript “unpert” refers to the unperturbed surroundings.

The forms (13.4) and (13.5) of the condition for stability against con-
vection may appear somewhat unconventional, as this condition is usually
expressed (see Sect.13.1) in terms of AT rather than of Ap. However, (13.4)
and (13.5) are perfectly general, whereas the usual expressions ((13.6) and
(13.7) below) are valid only in the case of uniform chemical composition and
under certain assumed conditions (see Sect.13.1).

Rather than proceding immediately from the general equations (13.4)
and (13.5), we consider, first, in Sect. 13.1 the somewhat more restricted case
of uniform chemical composition. This is the case of interest in most
applications; moreover, most of the conventional terminology and notation
regarding convective stability is based on this case. The more general case
of a non-uniform (but continuously varying in space) chemical composition
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is considered in Sect. 13.3. (The case of a discontinuously varying composition
is considered in Sect. 23.6a.) A crude order-of-magnitude estimate of the
degree of “superadiabaticity” of the temperature gradient in a convective
zone in the deep stellar interior is presented in Sect.13.2, and a general
discussion of convective stability in stars is given in Sect.13.4.

(Recently, a rigorous study of the conditions for instability against
convection, based on (essentially) a detailed linear stability analysis, has been
published by Lebovitz [Le65). This analysis yields the same criterion for
convective instability (sometimes called the *“‘Schwarzschild” criterion) as
does the conventional, more intuitive, treatment presented in Sect. 13.1. The
validity of the Schwarzschild criterion in the case of general relativistic fluid
dynamics has been established by Chandrasekhar [Ch65) and by Thorne
[Thé66a).)

13.1 Case of Uniform Chemical Composition

In this section we assume that the chemical composition is constant in
space. Hence, in the case of complete (or zero) ionization or dissociation the
mean molecular weight u (¢f. Chap. 15) is constant in space and the ‘‘material”
pressure P may be regarded, through the pressure equation of state, as (in

UNPERTURBED T(r)
~ ADIABATIC T(r)
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Fig. 13.2 A case of stability against convection. AT is to be regarded as an
infinitesimal perturbation in temperature.
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general) a function only of density p and temperature T (i.e., only changes in
p and T contribute to changes in P). In the case of partial ionization or
dissociation we assume instantaneous chemical equilibrium (see Sect. 9.12),
so that, again, P may be regarded, in general, as a function only of p and 7.

Consider now the rising element of mass dm which was conceptually
followed in the introduction to this chapter. The assumption of continuous
pressure equilibrium with its surroundings, together with the assumptions
stated in the preceding paragraph, require that, when the element attains the
same density as its surroundings, its temperature is also the same as that
of its surroundings. Hence, in this case of uniform chemical composition
we may base the discussion of the criterion for stability against convection
on the temperature excess AT(r), rather than on the density excess Ap(r),
and we shall do so in the remainder of this section.

Reference to Fig.13.2 and to the discussion in the introduction to this
chapter shows that in this case the condition for stability of the radiative
gradient is that

d(AT)/dr<0 (13.6)
or

(d7/dr) s <(dT/dr)yapen - (13.7)

Since d7/dr is always negative in the stellar interior (except possibly in
regions where neutrino energy losses are important, cf. Sects. 17.20, 26.4g,
and 26.4h; and possibly in degenerate stellar cores, c¢f. Eggleton [Eg66]) and
since T is always positive, we may write the necessary and sufficient condition
for stability of the radiative gradient (13.7) in the present case in the form

1/dT 1/dT

l_i(dr)l- g '7‘(dr>unpcn

According to (13.8), then, for stability of the radiative gradient the Tj,(r)
curve must be steeper than the unperturbed 7(r) curve of the surroundings.
The condition (13.8) is quite general (within the assumptions stated in the
first paragraph of this section) but not very useful for practical computations
of stellar models: in order to evaluate (d7/dr),,,, consideration of heat
exchange mechanisms with the surroundings of the element would be
required and, in general, an iterative procedure of constructing a stellar
model might be necessary in this general case. In the important special case
where no energy sources are effective in the element,* however, (13.8) can be
replaced by a simpler condition. If there are no effective energy sources in

. (13.8)

* For further clarification and discussion of this point, see Chap. 14.
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the rising element, then the element can only /ose heat to its surroundings,
either by radiation or by conduction.* Hence T, (r) will fall more sharply
with increasing r than would be the case if the element were moving adia-
batically (i.e., exchanging no heat, in the net, with its surroundings); thus the
T;m(r) curve will in this case be sreeper than the adiabatic 7(r) curve:

|(dT/dr)ym| = |(AT/dr),,| - (13.9)

It is clear, then, that whenever (13.9) is valid, the necessary and sufficient
condition (13.8) can be replaced by the simpler sufficient condition for
stability of the radiative gradient:
(@)
dr unpert,

1/dT\ | 1

‘T(dr)“|> lT

since satisfaction of (13.10) will guarantee satisfaction of (13.8), provided
that (13.9) is valid.

In case (13.9) is not satisfied, as may be the case if effective energy sources
(such as nuclear sources) are present in the element, then of course (13.10) is
not strictly the correct condition for stability and the more general condition
(13.8) should be used. This case, however, presents no difficulty in practice
since, as will be shown in Sect.13.2, (d7/dr),,, is likely to be equal to
(d7/dr),q to high accuracy even in those parts of a star (generally, the deeper
regions) where nuclear energy sources are effective. Consequently, the
condition (13.10) may be used, in practical calculations, as the condition for
stability even in this case, although (13.8) is really the rigorously correct
condition under the assumed conditions. The condition (13.10) is universally
used in calculations of chemically homogeneous stellar models.

If (13.8) is satisfied, the inertia of the upward-moving element will cause
it to overshoot its equilibrium position (defined by the intersection of the
T,m(r) and the T(r) curves). Subsequently, however, a restoring force on the
element will develop because T,(r) will then be less than 7(r), whence
Pam(r)>p(r), and the gravitational force on the element will exceed the
buoyant force. The motion of the element will thus eventually be reversed,
and there is clearly no tendency for convective motions to develop, i.e., the
material is stable against convection.

We now assume that the radiative gradient is stable, i.e., that (13.8) is
satisfied at the point under consideration. For simplicity, we shall assume
that the simpler condition (13.10) can be used as the stability criterion. To

, (13.10)

* As is pointed out in Chap. 14, thelheat loss here refers only to the *‘horizontal” loss,
and has nothing to do with the heat gains or losses associated with thermal equilibrium
(cf. Chap. $).
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describe the unperturbed temperature gradient at the point of interest, we may
make use of the effective polytropic index which was defined in Chap. 12 by
the relation

(dInP/dInT),—1=n/r),

which may be written in the form

(IdT 1 (ldP A
T dr )ypen  ne+1\Pdr)’ '

Equation (13.11) expresses the actual, unperturbed temperature gradient at
the point of interest in terms of the pressure gradient and the effective poly-
tropic index at that point.

For the adiabatic relation between P and T at the point of interest,
we have (¢f. (9.88)) (I;,—1)/I3;=(dInT/dIn P),y, which may also be

written in the form
1dT n,-1/1dpP
bl TR —). (13.12)
T dr /., r, \Pdr

Using (13.11) and (13.12) in (13.10), we obtain

1
=1

n> (13.13)

as the condition expressing stability of the radiative gradient under the
assumed conditions when the simple condition (13.10) is appropriate. (When
the more general condition (13.8) must be used, the adiabatic exponent I in
(13.13) may be replaced by the polytropic exponent I, which relates P and T
during the motion of the moving element. However, in this book we shall
always assume that the simpler condition (13.10) is an adequate criterion for
stability of the radiative gradient under the assumed conditions.)

For example, if the equation of state is of the perfect gas law form,
P = const. pT, we have I'; = y = cp/cy (cf. Sect. 9.14b), and (13.13) becomes
n,>1/(y—1). For a non-relativistic, perfect monatomic gas y = 5/3 (cf.
Sect. 10.7a), whence n,> 1.5 for stability of the radiative gradient. As another
example, consider the case where the gas pressure is negligible compared
with the radiation pressure. Then we have I, = 4/3 (¢f. Sect. 9.16), so that
n,>3 for stability against convection. In an actual star n, usually decreases
inward, at least at points below the regions of hydrogen and helium ionization
but not too near the stellar center, ¢f. Part 11 of this book. Consequently, it
follows that radiation pressure may be expected to increase the value of r
below which instability against convection exists over the value which would
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obtain in the absence of radiation pressure (this expectation is confirmed in
the models of Deinzer and Salpeter [De64) and Meggitt [Me65]). Thus the
effect of radiation pressure is to reduce the steepness of the adiabatic tempe-
rature gradient at a given point and thus to favor instability against convec-
tion.

To summarize: At every pointin a chemically homogeneous star at which
the radiative gradient is stable, we must have, combining (13.10) and (13.12),

(d'" T) <5l (13.14)
dnP),” I, ' ’

We now consider the case in which the radiative gradient is unstable, i.e.,
(13.8) is not satisfied. In this case the radiative temperature gradient that
would prevail under perfectly static conditions (i.e., with all existing con-
vective motions artifically suppressed) is steeper than the gradient (d7/dr),,,
which a rising element would follow. This clearly represents a case of unstable

-
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Fig. 13.3 A case of instability against convection. AT is to be regarded as an
infinitesimal perturbation in temperature.

equilibrium; for, if the temperature of a small element of matter suddenly
increased by an infinitesimal amount, the element would rise, following the
T;m(r) curve in Fig. 13.3, and would continue to rise until it reached a point,
considerably further out, at which the T,,(r) curve and the radiative T(r)
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curve crossed again, or else until the element had dissolved through turbulent
mixing. Similarly, a slight decrease in the temperature of the element would
cause it to descend toward the center of the star. If no effective energy sources
are present in the element, then (d77/dr),, will clearly be intermediate in
value between (d7/dr), the *‘static” gradient, and (d7/dr),4, the adiabatic
gradient. In this case, then, the actual average gradient in the convection zone
will also be steeper than (d7/dr),, under conditions of instability against
convection.

Under these conditions, then, upward and downward convection currents
would be set up which would carry large amounts of energy from the interior of
the star, thuseffectingan overall decrease in the steepness of the 7(r)curve which
would otherwise obtain in a perfectly static condition. Eventually a *‘steady”
situation would be realized, in which both radiation and convection compete
as transport mechanisms, each carrying a part of the total energy flux. The
actual T(r) curve within the convective region would then have a slope
intermediate between that of the radiative 7(r) curve and that of the adiabatic
T(r) curve. That is, the actual T(r) curve would be superadiabatic (steeper
than the adiabatic T(r) curve) but Jess steep than the radiative T(r) curve. It
is clear that the actual 7(r) curve in the convecting region must be super-
adiabatic if there are no effective energy sources in the region; if the actual
gradient were exactly adiabatic under these conditions, then there would be
no energy transport by convection, and hence no *‘driving force™ for the
convection. The extent to which the superadiabatic gradient would differ
from the adiabatic would depend on the ratio of the excess heat energy that
each unit mass of the gas would have to carry away from the interior to the
total internal thermal energy of the unit mass.

13.2 Estimate of the Degree of
Superadiabaticity in the Deep Interior

In the deep interior of a star the superadiabatic gradient is always only
negligibly steeper than the adiabatic one. This question of the magnitude of
the superadiabaticity will be discussed much more fully in Chap. 14; in this
section, however, we shall give a rough order-of-magnitude estimate of the
extent to which the superadiabatic gradient exceeds the adiabatic in the deep
interior.

Consider a spherical shell of thickness A within a convective region in the
deep interior of a star (see Fig.13.4). We assume that there is no nuclear
energy production occurring in the regions of interest. We take A to be the
“mixing length™ (c¢f. Chap. 14); i.e., the “mean free path” of an average
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turbulence element. Also, let ¢ be the “‘mean life”” of an average turbulence
element, or the time required for the element to convect through the
distance A. It is clear, then, that a time of the order of # must elapse before an
amount of energy L(r)t incident on the lower boundary of the shell in time ¢
can emerge from the top of the shell at radius 7+ A, where L(r) is the net rate
at which energy is carried by convection outward through a sphere of radius
r (we are here neglecting the energy transport by radiation, since the present

| A=l |
CONVECTIVE REGION

Fig. 13.4 Illustration for estimating the superadiabaticity of the
temperature gradient.

argument is only an order-of-magnitude one). (Note that, if we consider
luminosities averaged over times comparable to or longer than ¢, we must
have L(r) = L(r+ A) if there is negligible gravitational or nuclear energy
released within the shell of thickness A in the time ¢.) The matter of mass AM
within the shell effectively “stores” this energy L(r)t incident in time ¢ on the
bottom of the shell, and then releases it at the top of the shell. Thus, in time ¢
each unit mass of material in the shell will absorb the amount of energy
L(r)t/AM and will consequently “heat up” by the amount AT =
L(r)1/AM]/c, , where we take ¢, ~(3/2)®/u as the specific heat per unit mass
at constant volume. If the average temperature of the material during the
time tis T, then the excess of the superadiabatic gradient over the adiabatic
will be of order
A|(dT/dr)| AT~L(r)r/AM

—t ] 13.15
ATane" T ~ e (1315
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For typical conditions in the deep interior of a star of approximately solar
type we may take L(r)~10°? erg/sec, 1~10° sec (see Chap.14*), AM~
~(1/10)M ;,~10°? gm, and T~ 10"°K . Thus L(r){/AM~10" erg/gm is the
amount of energy absorbed per gram during the time ¢, and ¢, T =
(3/2(A/u)T~10®% x 107 ~ 10'* erg/gm is the average internal energy per gram
of the stellar material. Hence the fractional excess of the actual temperature
gradient in the convective region over the adiabatic is

A|dT/dr|
[(dT/dr),|

which is a very small excess indeed.

Thus, in a convective region in the deep interior of a star we expect that
the actual, superadiabatic temperature gradient can be approximated to a
very high degree of accuracy by the adiabatic temperature gradient. Hence,
within a convective region in the deep interior the temperature gradient should
be given very accurately by the relation

bl Y - B (13.16)
Tdr I, Pdr

Outside such a region, where the material is in radiative equilibrium, the
temperature gradient is given by (13.1):

dT 3 kp L(r)

It should be mentioned that in the outer stellar layers, where the internal
energy per unit mass is small due to the relatively low temperatures, the
actual temperature gradient in a convective region may depart appreciably
from the adiabatic gradient. Hence, in the outer layers a slightly super-
adiabatic gradient may not provide an adequate representation of the actual
temperature gradient (see Chap. 14).

13.3 Case of Non-Uniform Chemical Composition

We consider now the more general case where the chemical composition
varies (continuously) with radial distance. The “material” pressure P must
now be considered a function not only of p and T, but also of mean molecular

* At the end of Sect. 14.6 an order-of-magnitude derivation of the value of AT/T, as well
as values of other convective quantities, in the deep stellar interior will be presented,
which does not require a priori knowledge of the value of .



13.3 Stability of the Radiative Gradient 273

weight x. In this case it is necessary to go back to the general forms (13.4)
and (13.5) of the condition for stability against convection. We use In P
instead of r as the independent radial variable, where P is the total pressure
(which always increases inward in a star in hydrostatic equilibrium).
Equation (13.4) becomes

d(Ap)
3.
dinP (L3:15}
and (13.5) becomes
dl dl
vl "p) . (13.19)
dinP /s \dInP/,  cr

Before expressing (13.19) in terms of temperature gradients, let us digress
for a moment to consider from a physical standpoint the fate of an element of
mass dm whose temperature Tj,,(P) abruptly increases over the temperature
T(P) of its surroundings by a small amount and whose density p,.(P)
decreases (still assuming pressure equilibrium of the element with its
surroundings) below the density p(P) of its surroundings by a small amount.
Just as in Sect. 13.1, the element will move outward because of the presence
of the unbalanced buoyant forces. As the element moves outward, we may
assume that the mean molecular weight in the element remains constant and
equal to the value characteristic of the location in the star where the element
originated.* Because of the assumed spatial variation of mean molecular
weight, a difference between the mean molecular weight 4, of the element
and the mean molecular weight u(P) of its immediate surroundings develops.
In the case of stability against convection, the element will eventually reach
a position where p,,(P) = p(P) and the buoyancy and the gravitational
forces balance each other. After a slight overshoot and possibly some
oscillations about this position, the element will soon (at least for the
moment) come to rest. However, because u,,, # u(P) at this “equilibrium”
position and because the “‘material” pressure P is, through the pressure
equation of state, a function of p, T, and 4, it follows that T}, (P)# T(P),
i.e., although the element experiences zero net force and is (temporarily)
at rest, it has a different temperature from that of its immediate
surroundings.

The subsequent fate of the element depends on the value of the time, say
t4, during which it can retain its identity against diffusive mixing with its

* We ignore here and until the end of this section any possible changes in u resulting from
ionization and/or dissociation within the element; see the last paragraph in this section.
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surroundings, as compared with the value of the time, say 1,, required for
significant heat exchanges with its surroundings. If t,<1,, the element will
mix with its surroundings and lose its identity. If, on the other hand,
t,>-1,, the element will exchange heat with its surroundings and tend to
acquire their temperature, with a consequent change in density from that of
its surroundings. This change in density will lead to further motions of the
element, either inward or outward, but on a much longer time scale than that
associated with the original motion of the element. If x(P) decreases outward
(as is normally the case with evolving stars, see Sects. 23.6 and 26.4) and if
the equation of state is the perfect gas law (possibly modified to include black
body radiation pressure), then when the element has just come to rest, we
will have T,,(P)> T(P), and the element will cool down, contract, and so
move inward. It is clear that the element, if it did not first dissolve through
diffusive mixing with its surroundings, would eventually have to return to
the level from which it originated. Hence, in the present case of u decreasing
outward, satisfaction of the condition (13.19) will insure stability not only
against ordinary convection, but also against slow, “convective”-like
motions having a much longer time scale than for ordinary convective
motions. If u(P) increases outward, then satisfaction of the condition (13.19)
will, again, insure stability against ordinary convection. However, it is easy
to see that the material will in this case be unstable against slow, ‘“‘convective’-
like mixing on a much longer time scale than for ordinary convection; we
may refer to such slow, “‘convective”-like motions as *‘quasi-convection.”
This case of u(P) increasing outward, however, does not ordinarily arise in
stars during the course of slow, quasi-static evolutionary processes (dis-
regarding effects of ionization and/or dissociation; see the end of this
section).

At any rate, (13.19) is certainly the correct criterion for stability against
convection as understood in the ordinary sense. We now wish to express this
criterion in terms of temperature gradients.

In order to express (d In p/d In P),,, in terms of a temperature gradient, we
recall that we have assumed that the mean molecular weight u of the element
does not change during its motion.* Hence, as we follow the element, the
pressure change within the element is made up only of changes in density p
and temperature T, not in u. We write the pressure equation of state in the
general form P = P(p,T,u) and take the logarithmic differential, keeping u
fixed. We obtain

dinP=yxdinp+xdInT, (13.20)

¢ See the earlier footnote in this section.
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where (¢f. (9.81) and (9.82))

X, = AP , (13.21)

> \olmp/s,

iIT = gln_l’) . (13.22)
oinT/,,

We then obtain from (13.20)

din 1 dinT

( Pl wXZ7 Y, (13.23)
dinP/s, x, 1,\dInPJ,,

where we assume that, in view of the arbitrarily small initial temperature
perturbation in the element, x, and x; have the same values in the element
as in the unperturbed surroundings at each level.

In the case of (dInp/dInP), ..., Wwe must take into account the change
in u that is experienced as one moves about in the unperturbed surroundings
(because of the non-uniform composition). In this case we must have,
instead of (13.20),

dinP=ydinp+xydInT+ydInyu, (13.24)
where
OlnP
= , 13.25
l‘ (alnu)p.T ( )
so that
dl 1 dl dl
( np ,_.__..H( . Au(ClnK) (13.26)
dinP/epen %, x,\dIn P/ 0 x,\dInP

Using (13.23) and (13.26) in (13.19), and replacing the subscripts “unpert”
by “‘rad” (for ‘“‘radiative’), we obtain as the (necessary and sufficient) con-
dition for stability against convection in regions of continuously varying (in

space) composition
dinT dinT dl
) &) S (13.27)
dinP)m7—\dInP/,,, xrdinP

which reduces to the usual condition (see Sect.13.1) when g is constant in
space.

If there are no (nuclear) energy sources in the regions of interest, then
(13.27) may be replaced by a simpler and more useful (but less general) con-
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dition. In this case we have (see Sect.13.1) (dinT/dInP),,=(dInT/dInP),,,
so that (13.27) becomes

dIn T dinT Zu dlnp
( < - (13.28a)
dinP).y \dInP/,y yrdInP

or, in terms of (/3—1)/I3,=(dIn T/dIn P),4 (cf. Sect. 9.14),

(13.28b)

dinT <I‘z—l 2, dlinp
(dlnP),,.. I, yrdlnP’

which differs from (13.14) only in the presence of the last term. Condition
(13.28b) is sufficient (but not necessary) in the same sense as is condition
(13.10).

Consider, for example, an equation of state appropriate to a mixture of
an ideal gas and black body radiation:

R | B
P=—pT+-aT"®, (13.29)
m 3

where all symbols have their usual meaning (see Chap. 1). We readily obtain
from (13.29) the results y, = —fand y = 4—3f, where f is the ratio of gas
to total (gas plus radiation) pressure. Hence (13.28b) becomes in this case

dinT F,—l+ B dinu
dinP), I, 4-38dlnP’

(13.30)

an equation which was derived by Sakashita, Ono, and Hayashi [Sa59] and
which has been used in a number of investigations of stellar evolution (for
example, Stothers [St66¢c, 66d] and Hofmeister, Kippenhahn, and Weigert
[Ho64]). According to this equation, a mean molecular weight x which
increases (continuously) inward (the usual situation in evolving stars, cf.
Sects. 23.6 and 26.4) tends to stabilize the corresponding regions against
convection, since dIn u/d In P> 0 in this case.

Consider now the case where the chemical composition is constant in
space but where u varies with position as a result of ionization and/or
dissociation. At least in a static star chemical equilibrium (cf. Sects. 9.12
and 13.1) may be assumed to obtain in the unperturbed surroundings, and u
for the surroundings is then a function of p and 7. The effects of the variable
 are then absorbed into the y, and x; in (13.24). If instantaneous chemical
equilibrium is assumed to obtain in the perturbed element, then u for the
element is also a function of p and T, and effects of the variable x4 do not have
to be considered explicitly. Hence, in this case of instantaneous chemical
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equilibrium the usual condition (13.10) or (13.28b) (without the last term)
for stability against convection obtains, even in regions where spatial vari-
ations in u are brought about by ionization and/or dissociation.

If, on the other hand, instantaneous chemical equilibrium is nor assumed
to obtain in the perturbed element, then a term similar to the last term in
(13.24) must be added to the right side of (13.20) for the element. Also, the
values of y, and yr for the element could no longer be assumed to be the
same as for the unperturbed surroundings at the given level, even if the initial
temperature perturbation of the element were infinitely small. It is clear that
a much more complicated expression than (13.28b) for stability against
convection would result for this last case, which is not ordinarily of much
interest anyway.

13.4 General Discussion of
Stability Against Convection

In view of the above considerations, we see that, in general, the onset of
convection at some point in a star is governed by the steepness of the
radiative temperature gradient relative to the adiabatic gradient at that point,
corrected, if necessary, for the presence of a non-uniform chemical compo-
sition. In the deep interior of a star, where I, may be essentially constant or
slowly varying (and greater than 4/3), the steepness of the adiabatic gradient
(with respect to pressure) is essentially constant, and therefore the onset of
convection will be determined essentially by the steepness of the local
radiative gradient (with respect to pressure). (We are here and in the next
few paragraphs assuming that the correction term for the effects of a non-
uniform composition is negligible or zero.) The radiative gradient with
respect to pressure may be obtained by combining the equation of radiative
transfer,

1dT 3 xp L(r)

and the equation of hydrostatic equilibrium,

1dP M
-G (r) p

Pdr rr P
to obtain

<dlnT) _ 3 ‘ﬂ’.L(r). (13.30)
din P/, .4

Since the ratio P/T* is generally (but not always) a slowly varying function of
position in a star in radiative equilibrium (this statement will be justified in
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Sect. 23.2), 1t is seen that the onset of convection in the deep interior is
determined primarily by the values of x and L(r)/M(r). A large value of x
means that a steeper temperature gradient is required for a given flux of
energy to be transported by radiation than a small value. In the deep interior
of an actual star x generally decreases toward the center; this effect then
serves to hinder the onset of convection. The factor L(r)/M(r), however, may
tend to favor the onset of convection as r decreases. If the energy sources are
strongly concentrated toward the center, then L(r) will remain equal to L
until r becomes very small. But the interior mass M(r) will steadily decrease
with decreasing r (as r> at points sufficiently close to the center). Thus, as one
descends toward the center, the ratio L(r)/M(r) will probably become suffi-
ciently large at some point to initiative convection, and a convective core
will result. Hence stars with highly concentrated energy sources will almost
certainly have convective cores. If the energy sources are more-or-less
uniformly distributed, however, then L(r) may decrease with decreasing r
almost as rapidly as M(r), so that the ratio L(r)/M(r) may increase only very
slowly (or perhaps remain constant) with decreasing r. The radiative gradient
may therefore never become steep enough to initiate convection. Stars with
not-so-highly concentrated energy sources therefore may or may not have
convective cores.

In the outer layers of a star, now, where L(r)~L and M(r)>~M, the
factor L(r)/M(r) no longer plays any direct role in determining the onset of
convection. In these regions, however, the steepness of the adiabatic temper-
ature gradient is not constant, but is very sensitive to the state of ionization
(or dissociation) of the dominant constituents (such as hydrogen and helium)
of the stellar envelope. In a region of partial ionization of hydrogen or
helium I, will drop to a value near unity, so that the adiabatic gradient will
become relatively small, as may be seen from the relation

-1 (dinT
I, \dinP),

(see Sect. 9.18). If the adiabatic gradient becomes flatter than the radiative
gradient (as will almost certainly be the case for hydrogen ionization, and
probably also for one or both stages of helium ionization), then a convective
zone will be initiated, in which convection may or may not carry an appreciable
fraction of the total flux (see Chap. 14).

The role played by x in the outer layers is the same as in the deep interior;
i.e., an inward increase in the value of k will favor convective transfer, and an
inward decrease in the value of x will favor radiative transfer. Moreover, a
small value of I, will also tend to favor convective transfer. It might be
added that both of these factors that favor convective transfer are strongly
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operative in the region of hydrogen ionization. Therefore, probably all stars
that contain a large abundance of hydrogen (which includes practically all
stars), and which are not so hot that hydrogen is completely ionized even at
the photosphere, have hydrogen convection zones near their surfaces. The
importance of such a hydrogen convection zone in influencing the structure
of the star, however, depends on the fraction of the flux carried by convection
and on the depth of the convection zone. These effects will be discussed in
later chapters.

As was pointed out in Sect. 13.3, a non-uniform chemical composition for
which the mean molecular weight increases inward continuously (cf. Sects.
23.6 and 26.4) tends to stabilize the corresponding regions against convection.

Another useful and enlightening viewpoint is obtained by relating the
question of convective stability to the question of whether the local specific
entropy S (entropy per unit mass, say) of the unperturbed material is
increasing or decreasing inward in the star. This viewpoint is useful at least
in the case of uniform chemical composition and in case no irreversible
processes (such as nuclear reactions, ¢f. Sects. 3.1, 9.12, and the paragraph
following (17.75"); or viscous heating) are occurring at the point under con-
sideration. We shall see that in these cases the specific entropy in a star in
hydrostatic equilibrium always decreases inward in convectively stable
regions.

To show this, we regard total pressure P and temperature 7T as the inde-
pendent thermodynamic variables, and we consider an infinitesimal reversible
process, in which S changes by the amount dS. Using the relation (valid for
reversible processes, ¢f. Chap. 9) TdS = dE+ Pd(1/p) (E = internal energy
per unit mass), assuming that £ is a function only of p and 7, and using
some of the identities established in Sects. 9.11 and 9.14, we obtain

dS = ¢p(V=-V,9)dInP, (13.31)

where cp is the specific heat per unit mass at constant pressure, and where we
have used the abbreviations (¢/. Chap. 14)

V=(dIn7/d InP), (13.32)
Va=(Iy=1)/I; =(dInT/d InP),,. (13.33)

In the present application of (13.31) V may be taken as the actual
temperature gradient (with respect to pressure) of the unperturbed material
at the point of interest, V,4 as the corresponding adiabatic gradient (cf.
(13.12)), and dIn P as an increment in In P of the unperturbed material
corresponding to an inward or outward displacement of the point of
observation (see remarks made in connection with (9.9°) and (9.9")). Since
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P always increases inward in a star in hydrostatic equilibrium, it follows
from (13.31) that S in such a star always decreases inward in convectively
stable regions (V < V,4, ¢f. (13.10)) under the assumed conditions, Q.E.D. In
convectively unstable regions (V> V,4), S would clearly increase inward in a
star in hydrostatic equilibrium if convective motions were artificially
suppressed. Hence, in the present case of uniform composition where no
irreversible processes are occurring and for a star in hydrostatic equilibrium,
the local behavior of the specific entropy S (assuming convective motions to
be suppressed) can also be used as a criterion for convective stability: The
material is convectively stable or unstable according as S (in the absence of
convective motions) decreases or increases inward, respectively.

Note that S is constant with depth in the absence of viscous heating in a
convective zone in adiabatic equilibrium (V = V,4). As we have pointed out
earlier in this chapter, the actual gradient in a real convection zone must be
slightly superadiabatic (V only slightly greater than V,,), if no nuclear reactions
are occurring, so that under these conditions S increases inward slowly
(perhaps negligibly so, ¢f. Chap.20) in an actual convection zone.



