
Ex Reference Manual
Version 3.7

William Joy

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex a line oriented text editor, which supports both command and display oriented editing.
This reference manual describes the command oriented part ofex; the display editing features of
exare described inAn Introduction to Display Editing with Vi. Other documents about the editor
include the introductionEdit: A tutorial, the Ex/edit Command Summary, and aVi Quick Refer-
encecard.

1. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking.The commandedit
invokes a version ofex designed for more casual or beginning users by changing the default settings of some of
these options.To simplify the description which follows we assume the default settings of the options.

When invoked, exdetermines the terminal type from theTERM variable in the environment. Itthere is aTERM-

CAP variable in the environment, and the type of the terminal described there matches theTERM variable, then that
description is used.Also if theTERMCAP variable contains a pathname (beginning with a/) then the editor will seek
the description of the terminal in that file (rather than the default /etc/termcap).If there is a variableEXINIT in the
environment, then the editor will execute the commands in that variable, otherwise if there is a file.exrc in your
HOME directoryex reads commands from that file, simulating asourcecommand. Optionsetting commands placed
in EXINIT or .exrc will be executed before each editor session.

A command to enterexhas the following prototype:†

ex [−] [−v] [−t tag] [−r] [−l] [−wn] [−x] [−R] [+command] name ...

The most common case edits a single file with no options, i.e.:

exname

The− command line option option suppresses all interactive-user feedback and is useful in processing editor scripts
in command files.The−v option is equivalent to usingvi rather thanex. The−t option is equivalent to an initialtag
command, editing the file containing thetag and positioning the editor at its definition.The −r option is used in
recovering after an editor or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The−l option sets up for editingLISP, setting theshowmatch and lisp options. The−w
option sets the default window size ton, and is useful on dialups to start in small windows. The−x option causesex
to prompt for akey, which is used to encrypt and decrypt the contents of the file, which should already be encrypted
using the same key, seecrypt(1). The−R option sets thereadonlyoption at the start.Namearguments indicate files

The financial support of anIBM Graduate Fellowship and the National Science Foundation under grants MCS74-07644-A03 and MCS78-07291 is
gratefully acknowledged.

† Brackets ‘[’ ‘]’ surround optional parameters here.

USD:12-2 ExReference Manual

to be edited.An argument of the form+commandindicates that the editor should begin by executing the specified
command. Ifcommandis omitted, then it defaults to ‘‘$’ ’, positioning the editor at the last line of the first file ini-
tially. Other useful commands here are scanning patterns of the form ‘‘/pat’’ or line numbers, e.g. ‘‘+100’’ starting
at line 100.

2. Filemanipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in thecurrentfile name. Ex per-
forms all editing actions in a buffer (actually a temporary file) into which the text of the file is initially read.
Changes made to the buffer have no effect on the file being edited unless and until the buffer contents are written out
to the file with awrite command. Afterthe buffer contents are written, the previous contents of the written file are
no longer accessible.When a file is edited, its name becomes the current file name, and its contents are read into the
buffer.

The current file is almost always considered to beedited. This means that the contents of the buffer are logi-
cally connected with the current file name, so that writing the current buffer contents onto that file, even if i t exists,
is a reasonable action.If the current file is noteditedthenexwill not normally write on it if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is saved as thealternate
file name.Similarly if a file is mentioned but does not become the current file, it is saved as the alternate file name.

2.3. Filenameexpansion

Filenames within the editor may be specified using the normal shell expansion conventions. Inaddition, the
character ‘%’ in filenames is replaced by thecurrentfile name and the character ‘#’ by thealternatefile name.†

2.4. Multiple files and named buffers

If more than one file is given on the command line, then the first file is edited as described above. The remain-
ing arguments are placed with the first file in theargument list.The current argument list may be displayed with the
argscommand. Thenext file in the argument list may be edited with thenext command. Theargument list may also
be respecified by specifying a list of names to thenext command. Thesenames are expanded, the resulting list of
names becomes the new argument list, andexedits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file,ex has a group of
named buffers. Theseare similar to the normal buffer, except that only a limited number of operations are available
on them.The buffers have namesa throughz.‡

2.5. Readonly

It is possible to useex in read onlymode to look at files that you have no intention of modifying.This mode
protects you from accidently overwriting the file. Read only mode is on when thereadonlyoption is set.It can be
turned on with the−R command line option, by theview command line invocation, or by setting thereadonlyoption.
It can be cleared by settingnoreadonly. It is possible to write, even while in read only mode, by indicating that you
really know what you are doing.You can write to a different file, or can use the ! form of write, even while in read
only mode.

3. ExceptionalConditions

* Thefile command will say ‘‘[Not edited]’’ i f the current file is not considered edited.

† This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied on anedit command after aNo write
since last changediagnostic is received.

‡ It is also possible to refer toA throughZ; the upper case buffers are the same as the lower but commands append to named buffers rather than
replacing if upper case names are used.

Ex Reference Manual USD:12-3

3.1. Errors and interrupts

When errors occurex (optionally) rings the terminal bell and, in any case, prints an error diagnostic.If the
primary input is from a file, editor processing will terminate.If an interrupt signal is received, exprints ‘‘Interrupt’’
and returns to its command level. If the primary input is a file, thenexwill exit when this occurs.

3.2. Recovering fr om hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written out, or if the system
crashes, either the editor (in the first case) or the system (after it reboots in the second) will attempt to preserve the
buffer. The next time you log in you should be able to recover the work you were doing, losing at most a few lines
of changes from the last point before the hangup or editor crash.To recover a file you can use the−r option. If you
were editing the fileresume, then you should change to the directory where you were when the crash occurred, giv-
ing the command

ex −r resume

After checking that the retrieved file is indeed ok, you canwrite it over the previous contents of that file.

You will normally get mail from the system telling you when a file has been saved after a crash.The com-
mand

ex−r

will print a list of the files which have been saved for you. (In the case of a hangup, the file will not appear in the
list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes.The primary mode iscommandmode. Commandsare entered in command mode
when a ‘:’ prompt is present, and are executed each time a complete line is sent.In text inputmodeexgathers input
lines and places them in the file.The append, insert,andchange commands use text input mode.No prompt is
printed when you are in text input mode.This mode is left by typing a ‘.’ alone at the beginning of a line, andcom-
mandmode resumes.

The last three modes areopenand visual modes, entered by the commands of the same name, and, within
open and visual modestext insertionmode. Openandvisualmodes allow local editing operations to be performed
on the text in the file. Theopencommand displays one line at a time on any terminal whilevisualworks onCRT ter-
minals with random positioning cursors, using the screen as a (single) window for file editing changes.These
modes are described (only) inAn Introduction to Display Editing with Vi.

5. Commandstructur e

Most command names are English words, and initial prefixes of the words are acceptable abbreviations. The
ambiguity of abbreviations is resolved in favor of the more commonly used commands.*

5.1. Commandparameters

Most commands accept prefix addresses specifying the lines in the file upon which they are to have effect.
The forms of these addresses will be discussed below. A number of commands also may take a trailing countspeci-
fying the number of lines to be involved in the command.†Thus the command ‘‘10p’’ w ill print the tenth line in the
buffer while ‘‘delete 5’’ w ill delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being given after the com-
mand name.‡

* A s an example, the commandsubstitutecan be abbreviated ‘s’ while the shortest available abbreviation for thesetcommand is ‘se’.

† Counts are rounded down if necessary.

‡ Examples would be option names in asetcommand i.e. ‘‘set number’’, a file name in anedit command, a regular expression in asubstitute
command, or a target address for acopycommand, i.e. ‘‘1,5 copy 25’’.

USD:12-4 ExReference Manual

5.2. Commandvariants

A number of commands have two distinct variants. Thevariant form of the command is invoked by placing
an ‘!’ immediately after the command name.Some of the default variants may be controlled by options; in this case,
the ‘!’ serves to toggle the default.

5.3. Flagsafter commands

The characters ‘#’, ‘p’ and ‘l’ may be placed after many commands.** Inthis case, the command abbreviated
by these characters is executed after the command completes.Sinceex normally prints the new current line after
each change, ‘p’ is rarely necessary. Any number of ‘+’ or ‘−’ characters may also be given with these flags.If they
appear, the specified offset is applied to the current line value before the printing command is executed.

5.4. Comments

It is possible to give editor commands which are ignored.This is useful when making complex editor scripts
for which comments are desired.The comment character is the double quote: ".Any command line beginning with
" is ignored. Commentsbeginning with " may also be placed at the ends of commands, except in cases where they
could be confused as part of text (shell escapes and the substitute and map commands).

5.5. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands by a ‘|’ character.
However theglobal commands, comments, and the shell escape ‘!’must be the last command on a line, as they are
not terminated by a ‘|’.

5.6. Reportinglarge changes

Most commands which change the contents of the editor buffer give feedback if the scope of the change
exceeds a threshold given by the report option. Thisfeedback helps to detect undesirably large changes so that they
may be quickly and easily reversed with anundo. After commands with more global effect such asglobal or visual,
you will be informed if the net change in the number of lines in the buffer during this command exceeds this thresh-
old.

6. Commandaddressing

6.1. Addressing primitives

. The current line.Most commands leave the current line as the last line which they affect.
The default address for most commands is the current line, thus ‘.’ i s rarely used alone as
an address.

n Thenth line in the editor’s buffer, lines being numbered sequentially from 1.

$ The last line in the buffer.

% An abbreviation for ‘‘1,$’’, the entire buffer.

+n −n An offset relative to the current buffer line.†

/pat/ ?pat? Scan forward and backward respectively for a line containingpat, a regular expression (as
defined below). Thescans normally wrap around the end of the buffer. If all that is desired
is to print the next line containingpat, then the trailing/ or ? may be omitted.If pat is
omitted or explicitly empty, then the last regular expression specified is located.‡

´´ ´x Before each non-relative motion of the current line ‘.’, the previous current line is marked
with a tag, subsequently referred to as ‘´´’.This makes it easy to refer or return to this pre-
vious context. Marksmay also be established by themark command, using single lower

** A ‘p’ or ‘l’ must be preceded by a blank or tab except in the single special case ‘dp’.

† The forms ‘.+3’ ‘+3’ and ‘+++’ are all equivalent; if the current line is line 100 they all address line 103.

‡ The forms\/ and \? scan using the last regular expression used in a scan; after a substitute// and?? would scan using the substitute’s regular
expression.

Ex Reference Manual USD:12-5

case lettersx and the marked lines referred to as ‘´x’.

6.2. Combiningaddressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ‘,’ or ‘ ;’. Suchaddress lists
are evaluated left-to-right.When addresses are separated by ‘;’ the current line ‘.’ i s set to the value of the previous
addressing expression before the next address is interpreted.If more addresses are given than the command
requires, then all but the last one or two are ignored. If the command takes two addresses, the first addressed line
must precede the second in the buffer.†

7. Commanddescriptions

The following form is a prototype for allexcommands:

addresscommand! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in the file. For sanity
with use from withinvisualmode,ex ignores a ‘‘:’ ’ preceding any command.

In the following command descriptions, the default addresses are shown in parentheses, which arenot, how-
ev er, part of the command.

abbreviate word rhs abbr:ab

Add the named abbreviation to the current list.When in input mode in visual, ifword is typed as a complete
word, it will be changed torhs.

(.) append abbr:a
text
.

Reads the input text and places it after the specified line.After the command, ‘.’ addresses the last line input
or the specified line if no lines were input.If address ‘0’ is given, text is placed at the beginning of the buffer.

a!
text
.

The variant flag toappendtoggles the setting for theautoindentoption during the input oftext.

args

The members of the argument list are printed, with the current argument delimited by ‘[’ and ‘]’.

(. , .) changecount abbr:c
text
.

Replaces the specified lines with the inputtext. The current line becomes the last line input; if no lines were
input it is left as for adelete.

c!
text
.

The variant togglesautoindentduring thechange.

† Null address specifications are permitted in a list of addresses, the default in this case is the current line ‘.’; thus ‘,100’ is equivalent to ‘.,100’.
It is an error to give a prefix address to a command which expects none.

USD:12-6 ExReference Manual

(. , .) copyaddr flags abbr:co

A copyof the specified lines is placed afteraddr, which may be ‘0’.The current line ‘.’ addresses the last line
of the copy. The commandt is a synonym for copy.

(. , .) deletebuffer count flags abbr:d

Removes the specified lines from the buffer. The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end, the new last line becomes the current line.If a namedbuffer is speci-
fied by giving a letter, then the specified lines are saved in that buffer, or appended to it if an upper case letter
is used.

edit file abbr:e
exfile

Used to begin an editing session on a new file. Theeditor first checks to see if the buffer has been modified
since the lastwrite command was issued.If it has been, a warning is issued and the command is aborted.The
command otherwise deletes the entire contents of the editor buffer, makes the named file the current file and
prints the new filename. Afterinsuring that this file is sensible† the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is typed.If there were
any non-ASCII characters in the file they are stripped of their non-ASCII high bits, and any null characters in the
file are discarded.If none of these errors occurred, the file is considerededited. If the last line of the input file
is missing the trailing newline character, it will be supplied and a complaint will be issued.This command
leaves the current line ‘.’ at the last line read.‡

e! file

The variant form suppresses the complaint about modifications having been made and not written from the
editor buffer, thus discarding all changes which have been made before editing the new file.

e +n file

Causes the editor to begin at linen rather than at the last line;n may also be an editor command containing no
spaces, e.g.: ‘‘+/pat’’.

file abbr:f

Prints the current file name, whether it has been ‘[Modified]’ since the lastwrite command, whether it isread
only, the current line, the number of lines in the buffer, and the percentage of the way through the buffer of the
current line.*

file file

The current file name is changed tofile which is considered ‘[Not edited]’.

(1 , $)global /pat/ cmds abbr:g

First marks each line among those specified which matches the given regular expression. Thenthe given com-
mand list is executed with ‘.’ i nitially set to each marked line.

The command list consists of the remaining commands on the current input line and may continue to multiple
lines by ending all but the last such line with a ‘\’.If cmds(and possibly the trailing/ delimiter) is omitted,
each line matchingpat is printed. Append, insert,andchange commands and associated input are permitted;
the ‘.’ terminating input may be omitted if it would be on the last line of the command list.Openandvisual
commands are permitted in the command list and take input from the terminal.

† I.e., that it is not a binary file such as a directory, a block or character special file other than/dev/tty, a terminal, or a binary or executable file (as
indicated by the first word).

‡ If executed from withinopenor visual,the current line is initially the first line of the file.

* I n the rare case that the current file is ‘[Not edited]’ this is noted also; in this case you have to use the formw! to write to the file, since the edi-
tor is not sure that awrite will not destroy a file unrelated to the current contents of the buffer.

Ex Reference Manual USD:12-7

Theglobal command itself may not appear incmds. Theundocommand is also not permitted there, asundo
instead can be used to reverse the entireglobal command. Theoptionsautoprintandautoindentare inhibited
during aglobal, (and possibly the trailing/ delimiter) and the value of thereport option is temporarily infinite,
in deference to areport for the entire global.Finally, the context mark ‘´´’ is set to the value of ‘.’ before the
global command begins and is not changed during a global command, except perhaps by anopenor visual
within theglobal.

g! /pat/ cmds abbr:v

The variant form ofglobal runscmdsat each line not matchingpat.

(.) insert abbr:i
text
.

Places the given text before the specified line.The current line is left at the last line input; if there were none
input it is left at the line before the addressed line.This command differs fromappendonly in the placement
of text.

i!
text
.

The variant togglesautoindentduring theinsert.

(. , .+1) join count flags abbr:j

Places the text from a specified range of lines together on one line.White space is adjusted at each junction to
provide at least one blank character, two if there was a ‘.’ at the end of the line, or none if the first following
character is a ‘)’.If there is already white space at the end of the line, then the white space at the start of the
next line will be discarded.

j!

The variant causes a simplerjoin with no white space processing; the characters in the lines are simply con-
catenated.

(.) k x

Thek command is a synonym for mark. It does not require a blank or tab before the following letter.

(. , .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ‘ˆI’ and the end of each line is
marked with a trailing ‘$’. The current line is left at the last line printed.

map lhs rhs

The mapcommand is used to define macros for use invisual mode. Lhs should be a single character, or the
sequence ‘‘#n’’, for n a digit, referring to function key n. When this character or function key is typed in
visualmode, it will be as though the correspondingrhs had been typed.On terminals without function keys,
you can type ‘‘#n’’. Seesection 6.9 of the ‘‘Introduction to Display Editing with Vi’ ’ f or more details.

(.) mark x

Gives the specified line markx, a single lower case letter. The x must be preceded by a blank or a tab. The
addressing form ‘´x’ then addresses this line.The current line is not affected by this command.

USD:12-8 ExReference Manual

(. , .) moveaddr abbr:m

Themovecommand repositions the specified lines to be afteraddr. The first of the moved lines becomes the
current line.

next abbr:n

The next file from the command line argument list is edited.

n!

The variant suppresses warnings about the modifications to the buffer not having been written out, discarding
(irretrievably) any changes which may have been made.

n filelist
n +command filelist

The specifiedfilelist is expanded and the resulting list replaces the current argument list; the first file in the
new list is then edited.If commandis given (it must contain no spaces), then it is executed after editing the
first such file.

(. , .) number count flags abbr:# or nu

Prints each specified line preceded by its buffer line number. The current line is left at the last line printed.

(.) openflags abbr:o
(.) open/pat/ flags

Enters intraline editingopenmode at each addressed line.If pat is given, then the cursor will be placed ini-
tially at the beginning of the string matched by the pattern.To exit this mode use Q.SeeAn Introduction to
Display Editing with Vi for more details.

preserve

The current editor buffer is saved as though the system had just crashed.This command is for use only in
emergencies when awrite command has resulted in an error and you don’t know how to sav eyour work.
After apreserveyou should seek help.

(. , .) print count abbr:p or P

Prints the specified lines with non-printing characters printed as control characters ‘ˆx ’; delete (octal 177) is
represented as ‘ˆ?’.The current line is left at the last line printed.

(.) put buffer abbr:pu

Puts back previously deletedor yanked lines. Normallyused withdeleteto effect movement of lines, or with
yank to effect duplication of lines.If no buffer is specified, then the lastdeletedor yanked text is restored.*
By using a named buffer, text may be restored that was saved there at any previous time.

quit abbr:q

Causesex to terminate.No automatic write of the editor buffer to a file is performed.However, ex issues a
warning message if the file has changed since the lastwrite command was issued, and does notquit.† Nor-
mally, you will wish to save your changes, and you should give awrite command; if you wish to discard them,
use theq! command variant.

* But no modifying commands may intervene between thedeleteor yankand theput, nor may lines be moved between files without using a
named buffer.

† Exwill also issue a diagnostic if there are more files in the argument list.

Ex Reference Manual USD:12-9

q!

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr:r

Places a copy of the text of the given file in the editing buffer after the specified line.If no file is given the
current file name is used.The current file name is not changed unless there is none in which casefile becomes
the current name.The sensibility restrictions for theedit command apply here also.If the file buffer is empty
and there is no current name thenextreats this as aneditcommand.

Address ‘0’ is legal for this command and causes the file to be read at the beginning of the buffer. Statistics
are given as for theedit command when theread successfully terminates.After a read the current line is the
last line read.‡

(.) read !command

Reads the output of the commandcommandinto the buffer after the specified line.This is not a variant form
of the command, rather a read specifying acommandrather than afilename;a blank or tab before the! is
mandatory.

recover file

Recovers file from the system save area. Usedafter a accidental hangup of the phone** or a system crash**
or preservecommand. Exceptwhen you usepreserveyou will be notified by mail when a file is saved.

rewind abbr:rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

setparameter

With no arguments, prints those options whose values have been changed from their defaults; with parameter
all it prints all of the option values.

Giving an option name followed by a ‘?’ causes the current value of that option to be printed.The ‘?’ is
unnecessary unless the option is Boolean valued. Booleanoptions are given values either by the form ‘set
option’ to turn them on or ‘set nooption’ to turn them off; string and numeric options are assigned via the form
‘setoption=value’.

More than one parameter may be given to set; they are interpreted left-to-right.

shell abbr:sh

A new shell is created.When it terminates, editing resumes.

sourcefile abbr:so

Reads and executes commands from the specified file.Sourcecommands may be nested.

(. , .) substitute /pat/repl / options count flags abbr:s

On each specified line, the first instance of patternpat is replaced by replacement patternrepl. If the global
indicator option character ‘g’ appears, then all instances are substituted; if theconfirmindication character ‘c’
appears, then before each substitution the line to be substituted is typed with the string to be substituted
marked with ‘↑’ characters. Bytyping an ‘y’ one can cause the substitution to be performed, any other input
causes no change to take place. Afterasubstitutethe current line is the last line substituted.

‡ Within openandvisualthe current line is set to the first line read rather than the last.

** The system saves a copy of the file you were editing only if you have made changes to the file.

USD:12-10 ExReference Manual

Lines may be split by substituting new-line characters into them.The newline in repl must be escaped by pre-
ceding it with a ‘\’. Other metacharacters available inpatandrepl are described below.

stop

Suspends the editor, returning control to the top level shell. If autowriteis set and there are unsaved changes,
a write is done first unless the formstop! is used. Thiscommands is only available where supported by the
teletype driver and operating system.

(. , .) substituteoptions count flags abbr:s

If patandrepl are omitted, then the last substitution is repeated.This is a synonym for the& command.

(. , .) t addr flags

Thet command is a synonym for copy.

ta tag

The focus of editing switches to the location oftag, switching to a different line in the current file where it is
defined, or if necessary to another file.‡

The tags file is normally created by a program such asctags, and consists of a number of lines with three
fields separated by blanks or tabs.The first field gives the name of the tag, the second the name of the file
where the tag resides, and the third gives an addressing form which can be used by the editor to find the tag;
this field is usually a contextual scan using ‘/pat/’ to be immune to minor changes in the file.Such scans are
always performed as ifnomagic was set.

The tag names in the tags file must be sorted alphabetically.

unabbreviate word abbr:una

Deleteword from the list of abbreviations.

undo abbr:u

Reverses the changes made in the buffer by the last buffer editing command.Note thatglobal commands are
considered a single command for the purpose ofundo(as areopenandvisual.) Also, the commandswrite and
editwhich interact with the file system cannot be undone.Undo is its own inverse.

Undoalways marks the previous value of the current line ‘.’ as ‘´´’. After anundothe current line is the first
line restored or the line before the first line deleted if no lines were restored.For commands with more global
effect such asglobalandvisualthe current line regains it’s pre-command value after anundo.

unmap lhs

The macro expansion associated bymapfor lhs is removed.

(1 , $)v /pat/ cmds

A synonym for theglobal command variantg!, running the specifiedcmdson each line which does not match
pat.

version abbr:ve

Prints the current version number of the editor as well as the date the editor was last changed.

(.) visual type count flags abbr:vi

Enters visual mode at the specified line.Type is optional and may be ‘−’ , ‘↑’ or ‘ .’ as in thez command to
specify the placement of the specified line on the screen.By default, if type is omitted, the specified line is
placed as the first on the screen.A countspecifies an initial window size; the default is the value of the option

‡ If you have modified the current file before giving a tag command, you must write it out; giving anothertag command, specifying notag will
reuse the previous tag.

Ex Reference Manual USD:12-11

window. See the documentAn Introduction to Display Editing with Vi for more details.To exit this mode,
type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1 , $)write file abbr:w

Writes changes made back tofile, printing the number of lines and characters written.Normally file is omitted
and the text goes back where it came from.If a file is specified, then text will be written to that file.* If the
file does not exist it is created.The current file name is changed only if there is no current file name; the cur-
rent line is never changed.

If an error occurs while writing the current andeditedfile, the editor considers that there has been ‘‘No write
since last change’’ even if the buffer had not previously been modified.

(1 , $)write>> file abbr:w>>

Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normalwrite command, and will write to any file which the system permits.

(1 , $)w !command

Writes the specified lines intocommand.Note the difference betweenw! which overrides checks andw !
which writes to a command.

wq name

Like awrite and then aquit command.

wq! name

The variant overrides checking on the sensibility of thewrite command, asw! does.

xit name

If any changes have been made and not written, writes the buffer out. Then, in any case, quits.

(. , .) yank buffer count abbr:ya

Places the specified lines in the namedbuffer, for later retrieval via put. If no buffer name is specified, the
lines go to a more volatile place; see theputcommand description.

(.+1) z count

Print the next countlines, defaultwindow.

(.) z type count

Prints a window of text with the specified line at the top.If type is ‘−’ the line is placed at the bottom; a ‘.’
causes the line to be placed in the center.* A count gives the number of lines to be displayed rather than dou-
ble the number specified by thescroll option. Ona CRT the screen is cleared before display begins unless a
count which is less than the screen size is given. Thecurrent line is left at the last line printed.

* The editor writes to a file only if it is the current file and isedited, if the file does not exist, or if the file is actually a teletype,/dev/tty, /dev/null.
Otherwise, you must give the variant formw! to force the write.

* Forms ‘z=’ and ‘z↑’ also exist; ‘z=’ places the current line in the center, surrounds it with lines of ‘−’ characters and leaves the current line at
this line. The form ‘z↑’ prints the window before ‘z−’ would. Thecharacters ‘+’, ‘↑’ and ‘−’ may be repeated for cumulative effect. Onsome
v2 editors, notypemay be given.

USD:12-12 ExReference Manual

! command

The remainder of the line after the ‘!’ character is sent to a shell to be executed. Within the text of command
the characters ‘%’ and ‘#’ are expanded as in filenames and the character ‘!’ is replaced with the text of the
previous command.Thus, in particular, ‘!!’ repeats the last such shell escape.If any such expansion is per-
formed, the expanded line will be echoed.The current line is unchanged by this command.

If there has been ‘‘[No write]’ ’ of the buffer contents since the last change to the editing buffer, then a diagnos-
tic will be printed before the command is executed as a warning. Asingle ‘!’ is printed when the command
completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input tocommand;the resulting output then
replaces the input lines.

($) =

Prints the line number of the addressed line.The current line is unchanged.

(. , .) > count flags
(. , .) < count flags

Perform intelligent shifting on the specified lines;< shifts left and> shift right. The quantity of shift is deter-
mined by theshiftwidthoption and the repetition of the specification character. Only white space (blanks and
tabs) is shifted; no non-white characters are discarded in a left-shift.The current line becomes the last line
which changed due to the shifting.

ˆD

An end-of-file from a terminal input scrolls through the file.Thescroll option specifies the size of the scroll,
normally a half screen of text.

(.+1 , .+1)
(.+1 , .+1) |

An address alone causes the addressed lines to be printed.A blank line prints the next line in the file.

(. , .) & options count flags

Repeats the previoussubstitutecommand.

(. , .) ˜ options count flags

Replaces the previous regular expression with the previous replacement pattern from a substitution.

8. Regularexpressions and substitute replacement patterns

8.1. Regularexpressions

A regular expression specifies a set of strings of characters.A member of this set of strings is said to be
matchedby the regular expression.Ex remembers two previous regular expressions: the previous regular expression
used in asubstitutecommand and the previous regular expression used elsewhere (referred to as the previousscan-
ning regular expression.) Theprevious regular expression can always be referred to by a nullre, e.g. ‘//’ or ‘??’.

8.2. Magicand nomagic

The regular expressions allowed byex are constructed in one of two ways depending on the setting of the
magic option. Theex and vi default setting ofmagic gives quick access to a powerful set of regular expression
metacharacters. Thedisadvantage ofmagic is that the user must remember that these metacharacters aremagic and
precede them with the character ‘\’ to use them as ‘‘ordinary’’ characters. With nomagic, the default foredit, regular
expressions are much simpler, there being only two metacharacters. Thepower of the other metacharacters is still
available by preceding the (now) ordinary character with a ‘\’.Note that ‘\’ is thus always a metacharacter.

Ex Reference Manual USD:12-13

The remainder of the discussion of regular expressions assumes that that the setting of this option ismagic.†

8.3. Basicregular expression summary

The following basic constructs are used to constructmagic mode regular expressions.

char An ordinary character matches itself.The characters ‘↑’ at the beginning of a line, ‘$’ at the end
of line, ‘*’ as any character other than the first, ‘.’, ‘\’, ‘[’, and ‘ ˜’ are not ordinary characters and
must be escaped (preceded) by ‘\’ to be treated as such.

↑↑ At the beginning of a pattern forces the match to succeed only at the beginning of a line.

$ At the end of a regular expression forces the match to succeed only at the end of the line.

. Matches any single character except the new-line character.

\< Forces the match to occur only at the beginning of a ‘‘variable’’ or ‘‘word’’; that is, either at the
beginning of a line, or just before a letter, digit, or underline and after a character not one of these.

\> Similar to ‘\<’, but matching the end of a ‘‘variable’’ or ‘‘word’’, i.e. either the end of the line or
before character which is neither a letter, nor a digit, nor the underline character.

[string] Matches any (single) character in the class defined bystring. Most characters instring define
themselves. Apair of characters separated by ‘−’ instring defines the set of characters collating
between the specified lower and upper bounds, thus ‘[a−z]’ as a regular expression matches any
(single) lower-case letter. If the first character ofstring is an ‘↑’ then the construct matches those
characters which it otherwise would not; thus ‘[↑a−z]’ matches anything but a lower-case letter
(and of course a newline). To place any of the characters ‘↑’, ‘[’, or ‘−’ in string you must escape
them with a preceding ‘\’.

8.4. Combiningregular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string which can be
divided with the first piece matching the first regular expression and the second piece matching the second.Any of
the (single character matching) regular expressions mentioned above may be followed by the character ‘*’ to form a
regular expression which matches any number of adjacent occurrences (including 0) of characters matched by the
regular expression it follows.

The character ‘˜’ may be used in a regular expression, and matches the text which defined the replacement
part of the lastsubstitutecommand. Aregular expression may be enclosed between the sequences ‘\(’ and ‘\)’ with
side effects in thesubstitutereplacement patterns.

8.5. Substitutereplacement patterns

The basic metacharacters for the replacement pattern are ‘&’ and ‘˜’; these are given as ‘\&’ and ‘\˜’ when
nomagic is set. Each instance of ‘&’ is replaced by the characters which the regular expression matched.The
metacharacter ‘˜’ stands, in the replacement pattern, for the defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escaping character ‘\’.
The sequence ‘\n’ i s replaced by the text matched by then-th regular subexpression enclosed between ‘\(’ and ‘\)’.†
The sequences ‘\u’ and ‘\l’ cause the immediately following character in the replacement to be converted to upper-
or lower-case respectively if this character is a letter. The sequences ‘\U’ and ‘\L’ turn such conversion on, either
until ‘\E’ or ‘\e’ is encountered, or until the end of the replacement pattern.

9. Option descriptions

† To discern what is true withnomagic it suffices to remember that the only special characters in this case will be ‘↑’ at the beginning of a regular
expression, ‘$’ at the end of a regular expression, and ‘\’.With nomagic the characters ‘˜’ and ‘&’ also lose their special meanings related to the
replacement pattern of a substitute.

† When nested, parenthesized subexpressions are present,n is determined by counting occurrences of ‘\(’ starting from the left.

USD:12-14 ExReference Manual

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of eachappend, change or
insertcommand or when a new line isopenedor created by anappend, change, insert, or substituteoperation
within openor visualmode,ex looks at the line being appended after, the first line changed or the line inserted
before and calculates the amount of white space at the start of the line.It then aligns the cursor at the level of
indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed indenting level. If more
white space is typed at the beginning of a line, the following line will start aligned with the first non-white
character of the previous line. To back the cursor up to the preceding tab stop one can hitˆD. The tab stops
going backwards are defined at multiples of theshiftwidth option. You cannotbackspace over the indent,
except by sending an end-of-file with aˆD.

Specially processed in this mode is a line with no characters added to it, which turns into a completely blank
line (the white space provided for theautoindentis discarded.)Also specially processed in this mode are lines
beginning with an ‘↑’ and immediately followed by aˆD. This causes the input to be repositioned at the
beginning of the line, but retaining the previous indent for the next line. Similarly, a ‘0’ followed by aˆD
repositions at the beginning but without retaining the previous indent.

Autoindentdoesn’t happen inglobalcommands or when the input is not a terminal.

autoprint , ap default: ap

Causes the current line to be printed after eachdelete, copy, join, move, substitute, t, undoor shift command.
This has the same effect as supplying a trailing ‘p’ to each such command.Autoprint is suppressed in globals,
and only applies to the last of many commands on a line.

autowrite , aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it and give a next,
re wind, stop, tag, or ! command, or â↑↑ (switch files) or̂] (tag goto) command invisual. Note, that theedit
andex commands donot autowrite. In each case, there is an equivalent way of switching when autowrite is
set to avoid theautowrite (edit for next, re wind! for .I rewind , stop! for stop, tag! for tag, shell for !, and
:e #and a:ta! command from withinvisual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the input.A complaint is
registered the first time a backspace character is discarded.Beautifydoes not apply to command input.

dir ectory, dir default: dir=/tmp

Specifies the directory in whichex places its buffer file. If this directory in not writable, then the editor will
exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence ofg andc suffixes on substitute commands to be remembered, and to be tog-
gled by repeating the suffices. Thesuffix r makes the substitution be as in the˜ command, instead of like&.

errorbells, eb default: noeb

Error messages are preceded by a bell.*If possible the editor always places the error message in a standout
mode of the terminal (such as inverse video) instead of ringing the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system expands tabs).

* Bell ringing inopenandvisualon errors is not suppressed by settingnoeb.

Ex Reference Manual USD:12-15

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression matching.In addition, all
upper case characters in regular expressions are mapped to lower case except in character class specifications.

lisp default: nolisp

Autoindentindents appropriately forlisp code, and the() { } [[and]] commands inopenandvisualare modi-
fied to have meaning forlisp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines as in thelist com-
mand.

magic default: magic forexandvi†

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with only ‘↑’ and ‘$’
having special effects. Inaddition the metacharacters ‘˜’ and ‘&’ of the replacement pattern are treated as nor-
mal characters.All the normal metacharacters may be mademagic whennomagic is set by preceding them
with a ‘\’.

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, ifnomesgis set.

modeline default: nomodeline

If modelineis set, then the first 5 lines and the last five lines of the file will be checked for ex command lines
and the comands issued.To be recognized as a command line, the line must have the stringex: or vi: pre-
ceeded by a tab or a space.This string may be anywhere in the line and anything after the: is interpeted as
editor commands.This option defaults to off because of unexpected behavior when editting files such as
/etc/passwd.

number, nu default: nonumber

Causes all output lines to be printed with their line numbers.In addition each input line will be prompted for
by supplying the line number it will have.

open default: open

If noopen, the commandsopenandvisualare not permitted.This is set foredit to prevent confusion resulting
from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage returns when printing
more than one (logical) line of output, greatly speeding output on terminals without addressable cursors when
text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPPLIbp

Specifies the paragraphs for the{ and} operations inopenandvisual. The pairs of characters in the option’s
value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a ‘:’.

† Nomagic for edit.

USD:12-16 ExReference Manual

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb terminal (e.g. during
insertions invisual the characters to the right of the cursor position are refreshed as each input character is
typed.) Usefulonly at very high speed.

remap default: remap

If on, macros are repeatedly tried until they are unchanged.For example, if o is mapped toO, and O is
mapped toI , then if remapis set,o will map toI , but if noremapis set, it will map toO.

report default: report=5†

Specifies a threshold for feedback from commands.Any command which modifies more than the specified
number of lines will provide feedback as to the scope of its changes.For commands such asglobal, open,
undo, and visualwhich have potentially more far reaching scope, the net change in the number of lines in the
buffer is presented at the end of the command, subject to this same threshold.Thus notification is suppressed
during aglobalcommand on the individual commands performed.

scroll default: scroll=1⁄2 window

Determines the number of logical lines scrolled when an end-of-file is received from a terminal input in com-
mand mode, and the number of lines printed by a command modez command (double the value ofscroll).

sections default: sections=SHNHHHU

Specifies the section macros for the[[and]] operations inopenand visual. The pairs of characters in the
options’s value are the names of the macros which start paragraphs.

shell, sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command ‘!’, and by theshell command. The
default is taken from SHELL in the environment, if present.

shiftwidth , sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing witĥD when usingautoindentto append text,
and by the shift commands.

showmatch, sm default: nosm

In openandvisualmode, when a) or } is typed, move the cursor to the matching(or { for one second if this
matching character is on the screen.Extremely useful withlisp.

slowopen, slow terminal dependent

Affects the display algorithm used invisual mode, holding off display updating during input of new text to
improve throughput when the terminal in use is both slow and unintelligent.SeeAn Introduction to Display
Editing with Vi for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be ontabstopboundaries for the purposes of display.

taglength, tl default: tl=0

Tags are not significant beyond this many characters. Avalue of zero (the default) means that all characters
are significant.

† 2 for edit.

Ex Reference Manual USD:12-17

tags default: tags=tags /usr/lib/tags

A path of files to be used as tag files for thetag command. Arequested tag is searched for in the specified
files, sequentially. By default, files calledtagsare searched for in the current directory and in /usr/lib (a mas-
ter file for the entire system).

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been ‘[No write since last change]’ before a ‘!’command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. Thedefault is 8 at slow speeds (600 baud or
less), 16 at medium speed (1200 baud), and the full screen (minus one line) at higher speeds.

w300, w1200 w9600

These are not true options but setwindow only if the speed is slow (300), medium (1200), or high (9600),
respectively. They are suitable for an EXINIT and make it easy to change the 8/16/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the file.

wrapmargin, wm default: wm=0

Defines a margin for automatic wrapover of text during input inopenandvisualmodes. SeeAn Introduction
to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made beforewrite commands, allowing a write to any file which the system pro-
tection mechanism will allow.

10. Acknowledgements

Chuck Haley contributed greatly to the early development ofex. Bruce Englar encouraged the redesign which
led toex version 1. Bill Joy wrote versions 1 and 2.0 through 2.7, and created the framework that users see in the
present editor. Mark Horton added macros and other features and made the editor work on a large number of termi-
nals and Unix systems.

