
Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editoredit assumes no prior familiarity with computers or with text
editing. Itsaim is to lead the beginning UNIX† user through the fundamental steps of writing and revising a file of
text. Edit, a version of the text editorex, was designed to provide an informative environment for new and casual
users.

We welcome comments and suggestions about this tutorial and theUNIX documentation in general.

September 1981

†UNIX is a trademark of Bell Laboratories.

USD:11-2 Edit:A Tutorial

Contents
Introduction 3

Session 14
Making contact withUNIX 4
Logging in 4
Asking foredit 4
The ‘‘Command not found’’ message 5
A summary 5
Entering text 5
Messages fromedit 5
Te xt input mode 6
Making corrections 6
Writing text to disk 7
Signing off 7

Session 2 8
Adding more text to the file 8
Interrupt 8
Making corrections 8
Listing what’s in the buffer (p) 9
Finding things in the buffer 9
The current line 10
Numbering lines (nu)10
Substitute command (s)10
Another way to list what’s in the buffer (z) 11
Saving the modified text 12

Session 3 13
Bringing text into the buffer (e) 13
Moving text in the buffer (m) 13
Copying lines (copy) 14
Deleting lines (d) 14
A word or two of caution 15
Undo (u) to the rescue15
More about the dot (.) and buffer end ($) 16
Moving around in the buffer (+ and −) 16
Changing lines (c)17

Session 4 18
Making commands global (g)18
More about searching and substituting19
Special characters19
IssuingUNIX commands from the editor20
Filenames and file manipulation20
The file (f) command20
Reading additional files (r)21
Writing parts of the buffer 21
Recovering files 21
Other recovery techniques 21
Further reading and other information22
Usingex 22

Index 23

Edit: A Tutorial USD:11-3

Intr oduction
Te xt editing using a terminal connected to a computer allows you to create, modify, and print text easily. A

text editor is a program that assists you as you create and modify text. Thetext editor you will learn here is named
edit. Creating text using edit is as easy as typing it on an electric typewriter. Modifying text involves telling the text
editor what you want to add, change, or delete.You can review your text by typing a command to print the file con-
tents as they are currently. Another program (which we do not discuss in this document), a text formatter, rearranges
your text for you into ‘‘finished form.’’

These lessons assume no prior familiarity with computers or with text editing. They consist of a series of text
editing sessions which lead you through the fundamental steps of creating and revising text. After scanning each
lesson and before beginning the next, you should try the examples at a terminal to get a feeling for the actual process
of text editing. If you set aside some time for experimentation, you will soon become familiar with using the com-
puter to write and modify text. In addition to the actual use of the text editor, other features ofUNIX will be very
important to your work. You can begin to learn about these other features by reading one of the other tutorials that
provide a general introduction to the system.You will be ready to proceed with this lesson as soon as you are famil-
iar with (1) your terminal and its special keys, (2) how to login, (3) and the ways of correcting typing errors.Let’s
first define some terms:

program Aset of instructions, given to the computer, describing the sequence of steps the computer performs
in order to accomplish a specific task.The task must be specific, such as balancing your checkbook
or editing your text. A general task, such as working for world peace, is something we can all do, but
not something we can currently write programs to do.

UNIX UNIX is a special type of program, called an operating system, that supervises the machinery and all
other programs comprising the total computer system.

edit edit is the name of theUNIX text editor you will be learning to use, and is a program that aids you in
writing or revising text. Edit was designed for beginning users, and is a simplified version of an edi-
tor namedex.

file EachUNIX account is allotted space for the permanent storage of information, such as programs, data
or text. A file is a logical unit of data, for example, an essay, a program, or a chapter from a book,
which is stored on a computer system.Once you create a file, it is kept until you instruct the system
to remove it. You may create a file during oneUNIX session, end the session, and return to use it at a
later time. Files contain anything you choose to write and store in them.The sizes of files vary to
suit your needs; one file might hold only a single number, yet another might contain a very long doc-
ument or program.The only way to save information from one session to the next is to store it in a
file, which you will learn in Session 1.

filename Filenamesare used to distinguish one file from another, serving the same purpose as the labels of
manila folders in a file cabinet.In order to write or access information in a file, you use the name of
that file in aUNIX command, and the system will automatically locate the file.

disk Filesare stored on an input/output device called a disk, which looks something like a stack of phono-
graph records.Each surface is coated with a material similar to that on magnetic recording tape, and
information is recorded on it.

buffer A temporary work space, made available to the user for the duration of a session of text editing and
used for creating and modifying the text file. We can think of the buffer as a blackboard that is erased
after each class, where each session with the editor is a class.

USD:11-4 Edit:A Tutorial

Session 1

Making contact with UNIX

To use the editor you must first make contact with the computer by logging in toUNIX . We’ll quickly review
the standardUNIX login procedure for the two ways you can make contact: on a terminal that is directly linked to the
computer, or over a telephone line where the computer answers your call.

Dir ectly-linked terminals

Turn on your terminal and press theRETURNkey. You are now ready to login.

Dial-up terminals

If your terminal connects with the computer over a telephone line, turn on the terminal, dial the system access
number, and, when you hear a high-pitched tone, place the telephone handset in the acoustic coupler, if you are
using one.You are now ready to login.

Logging in

The message inviting you to login is:

login:

Type your login name, which identifies you toUNIX , on the same line as the login message, and pressRETURN. If the
terminal you are using has both upper and lower case,be sure you enter your login name in lower case;otherwise
UNIX assumes your terminal has only upper case and will not recognize lower case letters you may type.UNIX types
‘‘ login:’’ and you reply with your login name, for example ‘‘susan’’:

login: susan(and press theRETURNkey)

(In the examples, input you would type appears inbold faceto distinguish it from the responses fromUNIX .)

UNIX will next respond with a request for a password as an additional precaution to prevent unauthorized peo-
ple from using your account.The password will not appear when you type it, to prevent others from seeing it.The
message is:

Password: (type your password and pressRETURN)

If any of the information you gav eduring the login sequence was mistyped or incorrect,UNIX will respond with

Login incorrect.

login:

in which case you should start the login process anew. Assuming that you have successfully logged in,UNIX will
print the message of the day and eventually will present you with a % at the beginning of a fresh line.The % is the
UNIX prompt symbol which tells you thatUNIX is ready to accept a command.

Asking for eeddii tt

You are ready to tellUNIX that you want to work with edit, the text editor. Now is a convenient time to choose
a name for the file of text you are about to create.To begin your editing session, typeedit followed by a space and
then the filename you have selected; for example, ‘‘text’’. After that, press theRETURN key and wait for edit’s
response:

% edit text (followed by aRETURN)
"text" No such file or directory
:

If you typed the command correctly, you will now be in communication with edit.Edit has set aside a buffer for use
as a temporary working space during your current editing session.Since ‘‘text’’ i s a new file we are about to create
the editor was unable to find that file, which it confirms by saying:

Edit: A Tutorial USD:11-5

"text" No such file or directory

On the next line appears edit’s prompt ‘‘:’ ’, announcing that you are incommand modeand edit expects a command
from you. You may now begin to create the new file.

The ‘‘Command not found’’ message

If you misspelled edit by typing, say, ‘‘editor’’, this might appear:

% editor
editor: Command not found
%

Your mistake in calling edit ‘‘editor’’ was treated byUNIX as a request for a program named ‘‘editor’’. Sincethere is
no program named ‘‘editor’’, UNIX reported that the program was ‘‘not found’’. A new % indicates thatUNIX is
ready for another command, and you may then enter the correct command.

A summary

Your exchange withUNIX as you logged in and made contact with edit should look something like this:

login: susan
Password:
... A Message of General Interest ...
% edit text
"text" No such file or directory
:

Entering text

You may now begin entering text into the buffer. This is done byappending(or adding) text to whatever is
currently in the buffer. Since there is nothing in the buffer at the moment, you are appending text to nothing; in
effect, since you are adding text to nothing you are creating text. Mostedit commands have two equivalent forms: a
word that suggests what the command does, and a shorter abbreviation of that word. Many beginners find the full
command names easier to remember at first, but once you are familiar with editing you may prefer to type the
shorter abbreviations. Thecommand to input text is ‘‘append’’. (It may be abbreviated ‘‘a’’.) Type append and
press theRETURNkey.

% edit text
: append

Messages from eeddii tt

If you make a mistake in entering a command and type something that edit does not recognize, edit will
respond with a message intended to help you diagnose your error. For example, if you misspell the command to
input text by typing, perhaps, ‘‘add’’ i nstead of ‘‘append’’ or ‘‘a’’, you will receive this message:

: add
add: Not an editor command
:

When you receive a diagnostic message, check what you typed in order to determine what part of your command
confused edit.The message above means that edit was unable to recognize your mistyped command and, therefore,
did not execute it. Instead, a new ‘‘:’ ’ appeared to let you know that edit is again ready to execute a command.

Text input mode

By giving the command ‘‘append’’ (or using the abbreviation ‘‘a’’), you enteredtext input mode, also known
as append mode. When you enter text input mode, edit stops sending you a prompt.You will not receive any
prompts or error messages while in text input mode.You can enter pretty much anything you want on the lines.The

USD:11-6 Edit:A Tutorial

lines are transmitted one by one to the buffer and held there during the editing session.You may append as much
text as you want, andwhen you wish to stop entering text lines you should type a period as the only character on the
line and press theRETURNkey. When you type the period and pressRETURN, you signal that you want to stop
appending text, and edit responds by allowing you to exit text input mode and reenter command mode.Edit will
again prompt you for a command by printing ‘‘:’ ’.

Leaving append mode does not destroy the text in the buffer. You have to leave append mode to do any of the
other kinds of editing, such as changing, adding, or printing text. If you type a period as the first character and type
any other character on the same line, edit will believe you want to remain in append mode and will not let you out.
As this can be very frustrating, be sure to typeonly the period and theRETURNkey.

This is a good place to learn an important lesson about computers and text: ablank space is a character as far
as a computer is concerned.If you so much as type a period followed by a blank (that is, type a period and then the
space bar on the keyboard), you will remain in append mode with the last line of text being:

.

Let’s say that you enter the lines (try to typeexactlywhat you see, including ‘‘thiss’’):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
.

The last line is the period followed by aRETURN that gets you out of append mode.

Making corr ections

If you have read a general introduction toUNIX , you will recall that it is possible to erase individual letters that
you have typed. Thisis done by typing the designated erase character as many times as there are characters you
want to erase.

The usual erase character varies from place to place and user to user. Often it is the backspace (control-H), so
you can correct typing errors in the line you are typing by holding down theCTRL key and typing the ‘‘H’ ’ key.
(Sometimes it is the DEL key.) If you type the erase character you will notice that the terminal backspaces in the
line you are on.You can backspace over your error, and then type what you want to be the rest of the line.

If you make a bad start in a line and would like to begin again, you can either backspace to the beginning of
the line or you can use the at-sign ‘‘@’’ to erase everything on the line:

Text edtiing is strange, but@
Text editing is strange, but nice.

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh line to type on.You may
immediately begin to retype the line.This, unfortunately, does not work after you type the line and pressRETURN.
To make corrections in lines that have been completed, it is necessary to use the editing commands covered in the
next sessions.

Writing text to disk

You are now ready to edit the text. Onecommon operation is to write the text to disk as a file for safekeeping
after the session is over. This is the only way to save information from one session to the next, since the editor’s
buffer is temporary and will last only until the end of the editing session.Learning how to write a file to disk is sec-
ond in importance only to entering the text. To write the contents of the buffer to a disk file, use the command
‘‘ write’’ (or its abbreviation ‘‘w’ ’):

: write

Edit will copy the contents of the buffer to a disk file.If the file does not yet exist, a new file will be created auto-
matically and the presence of a ‘‘[New file]’’ w ill be noted. The newly-created file will be given the name specified
when you entered the editor, in this case ‘‘text’’. To confirm that the disk file has been successfully written, edit will
repeat the filename and give the number of lines and the total number of characters in the file.The buffer remains
unchanged by the ‘‘write’ ’ command. Allof the lines that were written to disk will still be in the buffer, should you

Edit: A Tutorial USD:11-7

want to modify or add to them.

Edit must have a name for the file to be written.If you forgot to indicate the name of the file when you began
to edit, edit will print in response to your write command:

No current filename

If this happens, you can specify the filename in a new write command:

: write text

After the ‘‘write’ ’ (or ‘‘w’ ’), type a space and then the name of the file.

Signing off

We hav edone enough for this first lesson on using theUNIX text editor, and are ready to quit the session with
edit. To do this we type ‘‘quit’ ’ (or ‘‘q’ ’) and pressRETURN:

: write
"text" [New file] 3 lines, 90 characters
: quit
%

The % is fromUNIX to tell you that your session with edit is over and you may commandUNIX further. Since we
want to end the entire session at the terminal, we also need to exit from UNIX . In response to theUNIX prompt of
‘‘ % ’’ type the command

% logout

This will end your session withUNIX , and will ready the terminal for the next user. It is always important to type
logout at the end of a session to make absolutely sure no one could accidentally stumble into your abandoned ses-
sion and thus gain access to your files, tempting even the most honest of souls.

This is the end of the first session onUNIX text editing.

USD:11-8 Edit:A Tutorial

Session 2

Login with UNIX as in the first session:

login: susan (carriage return)
Password: (give password and carriage return)

... A Message of General Interest ...
%

When you indicate you want to edit, you can specify the name of the file you worked on last time.This will start
edit working, and it will fetch the contents of the file into the buffer, so that you can resume editing the same file.
When edit has copied the file into the buffer, it will repeat its name and tell you the number of lines and characters it
contains. Thus,

% edit text
"text" 3 lines, 90 characters
:

means you asked edit to fetch the file named ‘‘text’’ f or editing, causing it to copy the 90 characters of text into the
buffer. Edit awaits your further instructions, and indicates this by its prompt character, the colon (:). In this session,
we will append more text to our file, print the contents of the buffer, and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append command to enter text
input mode.When ‘‘append’’ i s the first command of your editing session, the lines you enter are placed at the end
of the buffer. Here we’ll use the abbreviation for the append command, ‘‘a’’:

: a
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.
.

You may recall that once you enter append mode using the ‘‘a’’ (or ‘‘append’’) command, you need to type a line
containing only a period (.)to exit append mode.

Interrupt

Should you press theRUB key (sometimes labelledDELETE) while working with edit, it will send this message
to you:

Interrupt
:

Any command that edit might be executing is terminated by rub or delete, causing edit to prompt you for a new
command. Ifyou are appending text at the time, you will exit from append mode and be expected to give another
command. Theline of text you were typing when the append command was interrupted will not be entered into the
buffer.

Making corr ections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect character or cancel the
entire line of input by erasing in the usual way. Refer either to the last few pages of Session 1 if you need to review
the procedures for making a correction.The most important idea to remember is that erasing a character or can-
celling a line must be done before you press theRETURNkey.

Edit: A Tutorial USD:11-9

Listing what’ s in the buffer (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines in the buffer. To
print the contents of the buffer, type the command:

: 1,$p

The ‘‘1’ ’† stands for line 1 of the buffer, the ‘‘$’ ’ i s a special symbol designating the last line of the buffer, and ‘‘p’ ’
(or print) is the command to print from line 1 to the end of the buffer. The command ‘‘1,$p’’ giv es you:

This is some sample text.
And thiss is some more text.
Te xt editing is strange, but nice.
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can’t be printed, which can be done by striking a key while
theCTRL key is pressed. Inprinting lines, edit uses a special notation to show the existence of non-printing charac-
ters. Supposeyou had introduced the non-printing character ‘‘control-A’’ i nto the word ‘‘illustrate’’ by accidently
pressing theCTRL key while typing ‘‘a’’. This can happen on many terminals because theCTRL key and the ‘‘A’’ k ey
are beside each other. If your finger presses between the two keys, control-A results.When asked to print the con-
tents of the buffer, edit would display

it does illustrˆAte the editor.

To represent the control-A, edit shows ‘‘ˆA’’ . The sequence ‘‘ˆ’ ’ f ollowed by a capital letter stands for the one char-
acter entered by holding down theCTRL key and typing the letter which appears after the ‘‘ˆ’ ’. We’ll soon discuss
the commands that can be used to correct this typing error.

In looking over the text we see that ‘‘this’’ i s typed as ‘‘thiss’’ i n the second line, a deliberate error so we can
learn to make corrections. Let’s correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it.We can find ‘‘thiss’’ i n the text we have
entered by looking at a listing of the lines.Physically speaking, we search the lines of text looking for ‘‘thiss’’ and
stop searching when we have found it. The way to tell edit to search for something is to type it inside slash marks:

: /thiss/

By typing /thiss/ and pressingRETURN, you instruct edit to search for ‘‘thiss’’. If you ask edit to look for a pattern
of characters which it cannot find in the buffer, it will respond ‘‘Pattern not found’’. Whenedit finds the characters
‘‘ thiss’’, it will print the line of text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the line.

†The numeral ‘‘one’’ i s the top left-most key, and should not be confused with the letter ‘‘el’ ’.

USD:11-10 Edit:A Tutorial

The current line

Edit keeps track of the line in the buffer where it is located at all times during an editing session.In general,
the line that has been most recently printed, entered, or changed is the current location in the buffer. The editor is
prepared to make changes at the current location in the buffer, unless you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in the file, where the edi-
tor left off copying the lines from the file to the buffer. If your first editing command is ‘‘append’’, the lines you
enter are added to the end of the file, after the current line — the last line in the file.

You can refer to your current location in the buffer by the symbol period (.) usually known by the name ‘‘dot’’.
If you type ‘‘.’’ and carriage return you will be instructing edit to print the current line:

: .
And thiss is some more text.

If you want to know the number of the current line, you can type.= and pressRETURN, and edit will respond
with the line number:

: .=
2

If you type the number of any line and pressRETURN, edit will position you at that line and print its contents:

: 2
And thiss is some more text.

You should experiment with these commands to gain experience in using them to make changes.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of each printed line.To
see the number and the text of the current line type

: nu
2 And thiss is some more text.

Note that the shortest abbreviation for the number command is ‘‘nu’’ (and not ‘‘n’ ’, which is used for a different
command). You may specify a range of lines to be listed by the number command in the same way that lines are
specified for print.For example,1,$nu lists all lines in the buffer with their corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from ‘‘thiss’’ to ‘‘this’’. As far as edit is con-
cerned, changing things is a matter of substituting one thing for another. As a stood forappend,sos stands forsub-
stitute. We will use the abbreviation ‘‘s’’ to reduce the chance of mistyping the substitute command.This command
will instruct edit to make the change:

2s/thiss/this/

We first indicate the line to be changed, line 2, and then type an ‘‘s’’ to indicate we want edit to make a substitution.
Inside the first set of slashes are the characters that we want to change, followed by the characters to replace them,
and then a closing slash mark.To summarize:

2s/what is to be changed/ what to change it to /

If edit finds an exact match of the characters to be changed it will make the changeonly in the first occurrence of the
characters. Ifit does not find the characters to be changed, it will respond:

Substitute pattern match failed

indicating that your instructions could not be carried out.When edit does find the characters that you want to
change, it will make the substitution and automatically print the changed line, so that you can check that the correct
substitution was made.In the example,

Edit: A Tutorial USD:11-11

: 2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters ‘‘thiss’’, and when the first exact match is found, ‘‘thiss’’
will be changed to ‘‘this’’. Strictly speaking, it was not necessary above to specify thenumber of the line to be
changed. In

: s/thiss/this/

edit will assume that we mean to change the line where we are currently located (‘‘.’’). In this case, the command
without a line number would have produced the same result because we were already located at the line we wished
to change.

For another illustration of the substitute command, let us choose the line:

Te xt editing is strange, but nice.

You can make this line a bit more positive by taking out the characters ‘‘strange, but ’’ so the line reads:

Te xt editing is nice.

A command that will first position edit at the desired line and then make the substitution is:

: /strange/s/strange, but //

What we have done here is combine our search with our substitution.Such combinations are perfectly legal, and
speed up editing quite a bit once you get used to them.That is, you do not necessarily have to use line numbers to
identify a line to edit.Instead, you may identify the line you want to change by asking edit to search for a specified
pattern of letters that occurs in that line.The parts of the above command are:

/strange/ tells edit to find the characters ‘‘strange’’ i n the text
s tells edit to make a substitution
/strange, but // substitutes nothing at all for the characters ‘‘strange, but ’’

You should note the space after ‘‘but’’ i n ‘‘/strange, but /’’. If you do not indicate that the space is to be taken
out, your line will read:

Te xt editing is nice.

which looks a little funny because of the extra space between ‘‘is’ ’ and ‘‘nice’’. Again, we realize from this that a
blank space is a real character to a computer, and in editing text we need to be aware of spaces within a line just as
we would be aware of an ‘‘a’’ or a ‘‘4’ ’.

Another way to list what’s in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other commands may be more
convenient for viewing large sections of text. You can ask to see a screen full of text at a time by using the com-
mandz. If you type

: 1z

edit will start with line 1 and continue printing lines, stopping either when the screen of your terminal is full or when
the last line in the buffer has been printed.If you want to read the next segment of text, type the command

: z

If no starting line number is given for the z command, printing will start at the ‘‘current’’ l ine, in this case the last
line printed. Viewing lines in the buffer one screen full at a time is known aspaging. Paging can also be used to
print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second session.If you (in
haste) type ‘‘q’ ’ to quit the session your dialogue with edit will be:

USD:11-12 Edit:A Tutorial

: q
No write since last change (:quit! overrides)
:

This is edit’s warning that you have not written the modified contents of the buffer to disk. You run the risk of losing
the work you did during the editing session since you typed the latest write command.Because in this lesson we
have not written to disk at all, everything we have done would have been lost if edit had obeyed theq command. If
you did not want to save the work done during this editing session, you would have to type ‘‘q!’ ’ or (‘‘ quit!’’) to
confirm that you indeed wanted to end the session immediately, leaving the file as it was after the most recent
‘‘ write’’ command. However, since you want to save what you have edited, you need to type:

: w
"text" 6 lines, 171 characters

and then follow with the commands to quit and logout:

: q
% l ogout

and hang up the phone or turn off the terminal whenUNIX asks for a name.Terminals connected to the port selector
will stop after the logout command, and pressing keys on the keyboard will do nothing.

This is the end of the second session onUNIX text editing.

Edit: A Tutorial USD:11-13

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit.You should try to login without looking at the notes, but if you
must then by all means do.

Did you remember to give the name of the file you wanted to edit?That is, did you type

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named ‘‘text’’ i nto the buffer. If
you did forget to tell edit the name of your file, you can get it into the buffer by typing:

: e text
"text" 6 lines, 171 characters

The commandedit, which may be abbreviatede, tells edit that you want to erase anything that might already be in
the buffer and bring a copy of the file ‘‘text’’ i nto the buffer for editing. You may also use the edit (e) command to
change files in the middle of an editing session, or to give edit the name of a new file that you want to create.
Because the edit command clears the buffer, you will receive a warning if you try to edit a new file without having
saved a copy of the old file. This gives you a chance to write the contents of the buffer to disk before editing the
next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means of themove (m)
command. Thefirst two examples are for illustration only, though after you have read this Session you are welcome
to return to them for practice.The command

: 2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move command is that you
specify the first line to be moved, the last line to be moved, the move command ‘‘m’ ’, and the line after which the
moved text is to be placed. So,

: 1,3m6

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer. To move only one
line, say, line 4, to a location in the buffer after line 5, the command would be ‘‘4m5’’.

Let’s move some text using the command:

: 5,$m1
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many lines were affected by
the move and prints the last moved line for your inspection.If you want to see more than just the last line, you can

USD:11-14 Edit:A Tutorial

: 4,$m1

or, combining context searching and the move command:

: /And this is some/,/This is text/m/This is some sample/

(Do not type both examples here!)The problem with combining context searching with the move command is that
your chance of making a typing error in such a long command is greater than if you type line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original lines where they
were. Copy has the same format as the move command, for example:

: 2,5copy $

makes a copy of l ines 2 through 5, placing the added lines after the buffer’s end ($). Experiment with the copy com-
mand so that you can become familiar with how it works. Notethat the shortest abbreviation for copy is co (and not
the letter ‘‘c’ ’, which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number followed bydeleteor d.
This example deletes line 4, which is ‘‘This is text added in Session 2.’’ i f you typed the commands suggested so
far.

: 4d
It doesn’t mean much here, but

Here ‘‘4’ ’ i s the number of the line to be deleted, and ‘‘delete’’ or ‘‘d’ ’ i s the command to delete the line.After
executing the delete command, edit prints the line that has become the current line (‘‘.’’).

If you do not happen to know the line number you can search for the line and then delete it using this
sequence of commands:

: /added in Session 2./
This is text added in Session 2.
: d
It doesn’t mean much here, but

The ‘‘/added in Session 2./’’ asks edit to locate and print the line containing the indicated text, starting its search at
the current line and moving line by line until it finds the text. Onceyou are sure that you have correctly specified the
line you want to delete, you can enter the delete (d) command.In this case it is not necessary to specify a line num-
ber before the ‘‘d’ ’. If no line number is given, edit deletes the current line (‘‘.’’), that is, the line found by our
search. Afterthe deletion, your buffer should contain:

This is some sample text.
And this is some more text.
Te xt editing is nice.
It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text.
Te xt editing is nice.
This is text added in Session 2.
It doesn’t mean much here, but

To delete both lines 2 and 3:

Edit: A Tutorial USD:11-15

And this is some more text.
Te xt editing is nice.

you type

: 2,3d
2 lines deleted

which specifies the range of lines from 2 to 3, and the operation on those lines — ‘‘d’ ’ f or delete.If you delete more
than one line you will receive a message telling you the number of lines deleted, as indicated in the example above.

The previous example assumes that you know the line numbers for the lines to be deleted.If you do not you
might combine the search command with the delete command:

: /And this is some/,/Text editing is nice./d

A word or two of caution

In using the search function to locate lines to be deleted you should beabsolutely sure the characters you give
as the basis for the search will take edit to the line you want deleted.Edit will search for the first occurrence of the
characters starting from where you last edited − that is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which edit will do as easily
as if you had meant it.For this reason, it is usually safer to specify the search and then delete in two separate steps,
at least until you become familiar enough with using the editor that you understand how best to specify searches.
For a beginner it is not a bad idea to double-check each command before pressingRETURN to send the command on
its way.

Undo (u) to the rescue

Theundo (u) command has the ability to reverse the effects of the last command that changed the buffer. To
undo the previous command, type ‘‘u’ ’ or ‘‘undo’’. Undo can rescue the contents of the buffer from many an unfor-
tunate mistake. However, its powers are not unlimited, so it is still wise to be reasonably careful about the com-
mands you give.

It is possible to undo only commands which have the power to change the buffer — for example, delete,
append, move, copy, substitute, and even undo itself. The commands write (w) and edit (e), which interact with disk
files, cannot be undone, nor can commands that do not change the buffer, such as print.Most importantly, theonly
command that can be reversed by undo is the last ‘‘undo-able’’ command you typed.You can use control-H and @
to change commands while you are typing them, and undo to reverse the effect of the commands after you have
typed them and pressedRETURN.

To illustrate, let’s issue an undo command.Recall that the last buffer-changing command we gav edeleted the
lines formerly numbered 2 and 3.Typing undo at this moment will reverse the effects of the deletion, causing those
two lines to be replaced in the buffer.

: u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of the line which is now
‘‘ dot’’ (the current line).

Mor e about the dot (.) and buffer end ($)

The function assumed by the symbol dot depends on its context. It can be used:

1. toexit from append mode; we type dot (and only a dot) on a line and pressRETURN;

2. torefer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being edited:

USD:11-16 Edit:A Tutorial

: .=

If we type ‘‘ .=’’ we are asking for the number of the line, and if we type ‘‘ .’’ w e are asking for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the buffer in commands such
as print, copy, and move. The dollar sign as a command asks edit to print the last line in the buffer. If the dollar sign
is combined with the equal sign ($=) edit will print the line number corresponding to the last line in the buffer.

‘‘ .’’ and ‘‘$’ ’, then, represent line numbers.Whenever appropriate, these symbols can be used in place of line
numbers in commands.For example

: .,$d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and −)

When you are editing you often want to go back and re-read a previous line. You could specify a context
search for a line you want to read if you remember some of its text, but if you simply want to see what was written a
few, say 3, lines ago, you can type

−3p

This tells edit to move back to a position 3 lines before the current line (.)and print that line.You can move for-
ward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of your current position.

You may use ‘‘+’ ’ and ‘‘−’ ’ i n any command where edit accepts line numbers.Line numbers specified with
‘‘ +’’ or ‘‘−’ ’ can be combined to print a range of lines.The command

: −1,+2copy$

makes a copy of 4 lines: thecurrent line, the line before it, and the two after it. The copied lines will be placed after
the last line in the buffer ($), and the original lines referred to by ‘‘−1’’ and ‘‘+2’’ remain where they are.

Try typing only ‘‘−’ ’; you will move back one line just as if you had typed ‘‘−1p’’. Typing the command ‘‘+’ ’
works similarly. You might also try typing a few plus or minus signs in a row (such as ‘‘+++’’) to see edit’s
response. Typing RETURN alone on a line is the equivalent of typing ‘‘+1p’’; it will move you one line ahead in the
buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a ‘‘+’ ’ or a carriage
return alone on the line, edit will remind you that you are at the end of the buffer:

At end-of-file
or

Not that many lines in buffer

Similarly, if you try to move to a position before the first line, edit will print one of these messages:

Nonzero address required on this command
or

Negative address − first buffer line is 1

The number associated with a buffer line is the line’s ‘‘address’’, in that it can be used to locate the line.

Changing lines (c)

You can also delete certain lines and insert new text in their place.This can be accomplished easily with the
change (c)command. Thechange command instructs edit to delete specified lines and then switch to text input
mode to accept the text that will replace them.Let’s say you want to change the first two lines in the buffer:

Edit: A Tutorial USD:11-17

This is some sample text.
And this is some more text.

to read

This text was created with theUNIX text editor.

To do so, you type:

: 1,2c
2 lines changed
This text was created with theUNIX text editor.
.
:

In the command1,2cwe specify that we want to change the range of lines beginning with 1 and ending with 2 by
giving line numbers as with the print command.These lines will be deleted.After you typeRETURN to end the
change command, edit notifies you if more than one line will be changed and places you in text input mode.Any
text typed on the following lines will be inserted into the position where lines were deleted by the change command.
You will r emain in text input mode until you exit in the usual way, by typing a period alone on a line.Note
that the number of lines added to the buffer need not be the same as the number of lines deleted.

This is the end of the third session on text editing withUNIX .

USD:11-18 Edit:A Tutorial

Session 4

This lesson covers several topics, starting with commands that apply throughout the buffer, characters with
special meanings, and how to issueUNIX commands while in the editor. The next topics deal with files: more on
reading and writing, and methods of recovering files lost in a crash.The final section suggests sources of further
information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if you have a number of
instances of a word to change it appears that you have to type the command repeatedly, once for each time the
change needs to be made.Edit, however, provides a way to make commands apply to the entire contents of the
buffer − theglobal (g)command.

To print all lines containing a certain sequence of characters (say, ‘‘text’’) the command is:

: g/text/p

The ‘‘g’ ’ i nstructs edit to make a global search for all lines in the buffer containing the characters‘‘ text’’. The ‘‘ p’’
prints the lines found.

To issue a global command, start by typing a ‘‘g’ ’ and then a search pattern identifying the lines to be affected.
Then, on the same line, type the command to be executed for the identified lines.Global substitutions are frequently
useful. For example, to change all instances of the word ‘‘text’’ to the word ‘‘material’’ the command would be a
combination of the global search and the substitute command:

: g/text/s/text/material/g

Note the ‘‘g’ ’ at the end of the global command, which instructs edit to change each and every instance of ‘‘text’’ to
‘‘ material’’. If you do not type the ‘‘g’ ’ at the end of the command only thefirst instance of ‘‘text’’ in each line will
be changed (the normal result of the substitute command).The ‘‘g’ ’ at the end of the command is independent of the
‘‘ g’’ at the beginning. You may give a command such as:

: 5s/text/material/g

to change every instance of ‘‘text’’ i n line 5 alone.Further, neither command will change ‘‘text’’ to ‘‘material’’ i f
‘‘ Te xt’’ begins with a capital rather than a lower-caset.

Edit does not automatically print the lines modified by a global command.If you want the lines to be printed,
type a ‘‘p’ ’ at the end of the global command:

: g/text/s/text/material/gp

You should be careful about using the global command in combination with any other − in essence, be sure of what
you are telling edit to do to the entire buffer. For example,

: g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your document, since most lines
have spaces between words and thus would be deleted.After executing the global command, edit will print a warn-
ing if the command added or deleted more than one line.Fortunately, the undo command can reverse the effects of a
global command.You should experiment with the global command on a small file of text to see what it can do for
you.

Mor e about searching and substituting

In using slashes to identify a character string that we want to search for or change, we have always specified
the exact characters.There is a less tedious way to repeat the same string of characters.To change ‘‘text’’ to
‘‘ texts’’ we may type either

: /text/s/text/texts/

as we have done in the past, or a somewhat abbreviated command:

Edit: A Tutorial USD:11-19

: /text/s//texts/

In this example, the characters to be changed are not specified − there are no characters, not even a space, between
the two slash marks that indicate what is to be changed.This lack of characters between the slashes is taken by the
editor to mean ‘‘use the characters we last searched for as the characters to be changed.’’

Similarly, the last context search may be repeated by typing a pair of slashes with nothing between them:

: /does/
It doesn’t mean much here, but
: //
it does illustrate the editor.

(You should note that the search command found the characters ‘‘does’’ i n the word ‘‘doesn’t’’ i n the first search
request.) Becauseno characters are specified for the second search, the editor scans the buffer for the next occur-
rence of the characters ‘‘does’’.

Edit normally searches forward through the buffer, wrapping around from the end of the buffer to the begin-
ning, until the specified character string is found.If you want to search in the reverse direction, use question marks
(?) instead of slashes to surround the characters you are searching for.

It is also possible to repeat the last substitution without having to retype the entire command.An ampersand
(&) used as a command repeats the most recent substitute command, using the same search and replacement pat-
terns. Afteraltering the current line by typing

: s/text/texts/

you type

: /text/&

or simply

: //&

to make the same change on the next line in the buffer containing the characters ‘‘text’’.

Special characters

Tw o characters have special meanings when used in specifying searches:‘‘ $’’ and ‘‘ˆ’ ’. ‘ ‘$’ ’ i s taken by the
editor to mean ‘‘end of the line’’ and is used to identify strings that occur at the end of a line.

: g/text.$/s//material./p

tells the editor to search for all lines ending in ‘‘text.’’ (and nothing else, not even a blank space), to change each
final ‘‘text.’’ t o ‘‘material.’’ , and print the changed lines.

The symbol ‘‘ˆ’ ’ i ndicates the beginning of a line.Thus,

: s/ˆ/1. /

instructs the editor to insert ‘‘1.’’ and a space at the beginning of the current line.

The characters ‘‘$’ ’ and ‘‘ˆ’ ’ hav especial meanings only in the context of searching.At other times, they are
ordinary characters.If you ever need to search for a character that has a special meaning, you must indicate that the
character is to lose temporarily its special significance by typing another special character, the backslash (\), before
it.

: s/\\$/dollar/

looks for the character ‘‘$’ ’ i n the current line and replaces it by the word ‘‘dollar’’. Were it not for the backslash,
the ‘‘$’ ’ would have represented ‘‘the end of the line’’ i n your search rather than the character ‘‘$’ ’. The backslash
retains its special significance unless it is preceded by another backslash.

USD:11-20 Edit:A Tutorial

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful to you or ask for a list
of your files. Removing and listing files are not functions of the editor, and so they require the use ofUNIX system
commands (also referred to as ‘‘shell’’ commands, as ‘‘shell’’ i s the name of the program that processesUNIX com-
mands). You do not need to quit the editor to execute aUNIX command as long as you indicate that it is to be sent to
the shell for execution. To use theUNIX commandrm to remove the file named ‘‘junk’ ’ type:

: !rm junk
!
:

The exclamation mark (!)indicates that the rest of the line is to be processed as a shell command.If the buffer con-
tents have not been written since the last change, a warning will be printed before the command is executed:

[No write since last change]

The editor prints a ‘‘!’ ’ when the command is completed.Other tutorials describe useful features of the system, of
which an editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as thecurrent filename.
Edit remembers as the current filename the name given when you entered the editor. The current filename changes
whenever the edit (e) command is used to specify a new file. Onceedit has recorded a current filename, it inserts
that name into any command where a filename has been omitted.If a write command does not specify a file, edit, as
we have seen, supplies the current filename.If you are editing a file named ‘‘draft3’’ having 283 lines in it, you can
have the editor write onto a different file by including its name in the write command:

: w chapter3
"chapter3" [new file] 283 lines, 8698 characters

The current filename remembered by the editorwill not be changed as a result of the write command.Thus, if the
next write command does not specify a name, edit will write onto the current file (‘‘draft3’’) and not onto the file
‘‘ chapter3’’.

The file (f) command

To ask for the current filename, typefile (or f). In response, the editor provides current information about the
buffer, including the filename, your current position, the number of lines in the buffer, and the percent of the distance
through the file your current location is.

: f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written, the editor will tell you that the file
has been ‘‘[Modified]’ ’. After you save the changes by writing onto a disk file, the buffer will no longer be consid-
ered modified:

: w
"text" 4 lines, 88 characters
: f
"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer at a specified location, essentially
copying new lines between two existing lines. To use it, specify the line after which the new text will be placed, the
read (r) command, and then the name of the file.If you have a file named ‘‘example’’, the command

Edit: A Tutorial USD:11-21

: $r example
"example" 18 lines, 473 characters

reads the file ‘‘example’’ and adds it to the buffer after the last line.The current filename is not changed by the read
command.

Writing parts of the buffer

Thewrite (w) command can write all or part of the buffer to a file you specify. We are already familiar with
writing the entire contents of the buffer to a disk file.To write only part of the buffer onto a file, indicate the begin-
ning and ending lines before the write command, for example

: 45,$w ending

Here all lines from 45 through the end of the buffer are written onto the file namedending. The lines remain in the
buffer as part of the document you are editing, and you may continue to edit the entire buffer. Your original file is
unaffected by your command to write part of the buffer to another file.Edit still remembers whether you have sav ed
changes to the buffer in your original file or not.

Recovering files

Although it does not happen very often, there are timesUNIX stops working because of some malfunction.
This situation is known as acrash. Under most circumstances, edit’s crash recovery feature is able to save work to
within a few lines of changes before a crash (or an accidental phone hang up).If you lose the contents of an editing
buffer in a system crash, you will normally receive mail when you login that gives the name of the recovered file. To
recover the file, enter the editor and type the commandrecover (rec), followed by the name of the lost file.For
example, to recover the buffer for an edit session involving the file ‘‘chap6’’, the command is:

: recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the contents of the saved buffer
carefully before writing it back onto the original file.For best results, write the buffer to a new file temporarily so
you can examine it without risk to the original file.Unfortunately, you cannot use the recover command to retrieve a
file you removed using the shell commandrm .

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your work by using the
commandpreserve (pre), which saves the buffer as if the system had crashed.If you are writing a file and you get
the message ‘‘Quota exceeded’’, you have tried to use more disk storage than is allotted to your account.Proceed
with cautionbecause it is likely that only a part of the editor’s buffer is now present in the file you tried to write.In
this case you should use the shell escape from the editor (!)to remove some files you don’t need and try to write the
file again. If this is not possible and you cannot find someone to help you, enter the command

: preserve

and wait for the reply,

File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you do, the buffer will be
lost, and you may not be able to save your file. If the reply is ‘‘File preserved.’’ y ou can leave the editor (or logout)
to remedy the situation.After a preserve, you can use the recover command once the problem has been corrected, or
the−r option of the edit command if you leave the editor and want to return.

If you make an undesirable change to the buffer and type a write command before discovering your mistake,
the modified version will replace any previous version of the file.Should you ever lose a good version of a docu-
ment in this way, do not panic and leave the editor. As long as you stay in the editor, the contents of the buffer
remain accessible.Depending on the nature of the problem, it may be possible to restore the buffer to a more com-
plete state with the undo command.After fixing the damaged buffer, you can again write the file to disk.

USD:11-22 Edit:A Tutorial

Further r eading and other information

Edit is an editor designed for beginning and casual users.It is actually a version of a more powerful editor
calledex. These lessons are intended to introduce you to the editor and its more commonly-used commands.We
have not covered all of the editor’s commands, but a selection of commands that should be sufficient to accomplish
most of your editing tasks.You can find out more about the editor in theEx Reference Manual,which is applicable
to bothex andedit. One way to become familiar with the manual is to begin by reading the description of com-
mands that you already know.

Usingee xx

As you become more experienced with using the editor, you may still find that edit continues to meet your
needs. However, should you become interested in usingex, it is easy to switch.To begin an editing session withex,
use the nameex in your command instead ofedit.

Edit commands also work in ex, but the editing environment is somewhat different. You should be aware of a
few differences betweenexandedit. In edit, only the characters ‘‘ˆ’ ’, ‘ ‘$’ ’, and ‘‘\’ ’ hav especial meanings in search-
ing the buffer or indicating characters to be changed by a substitute command.Several additional characters have
special meanings in ex, as described in theEx Reference Manual.Another feature of the edit environment prevents
users from accidently entering two alternative modes of editing,openandvisual, in which the editor behaves quite
differently from normal command mode.If you are using ex and you encounter strange behavior, you may have
accidently entered open mode by typing ‘‘o’ ’. Type theESC key and then a ‘‘Q’ ’ to get out of open or visual mode
and back into the regular editor command mode.The documentAn Introduction to Display Editing with Vi provide
full details of visual mode.

Edit: A Tutorial USD:11-23

Index

addressing,seeline numbers
ampersand, 20
append mode, 6-7
append (a) command, 6, 7, 9
‘‘ At end of file’’ (message), 18
backslash (\), 21
buffer, 3
caret (ˆ), 10, 20
change (c) command, 18
command mode, 5-6
‘‘ Command not found’’ (message), 6
context search, 10-12, 19-21
control characters (‘‘ˆ’ ’ notation), 10
control-H, 7
copy (co) command, 15
corrections, 7, 16
current filename, 21
current line (.), 11, 17
delete (d) command, 15-16
dial-up, 5
disk, 3
documentation, 3, 23
dollar ($), 10, 11, 17, 20-21
dot (.) 11, 17
edit (text editor), 3, 5, 23
edit (e) command, 5, 9, 14
editing commands:

append (a), 6, 7, 9
change (c), 18
copy (co), 15
delete (d), 15-16
edit (text editor), 3, 5, 23
edit (e), 5, 9, 14
file (f), 21-22
global (g), 19
move (m), 14-15
number (nu), 11
preserve (pre), 22-23
print (p), 10
quit (q), 8, 13
read (r), 22
recover (rec), 22, 23
substitute (s), 11-12, 19, 20
undo (u), 16-17, 23
write (w), 8, 13, 21, 22
z, 12-13
! (shell escape), 21
$=, 17
+, 17
−, 17
//, 12, 20

??, 20
., 11, 17
.=, 11, 17

entering text, 3, 6-7
erasing

characters (ˆH), 7
lines (@), 7

error corrections, 7, 16
ex (text editor), 23
Ex Reference Manual, 23
exclamation (!), 21
file, 3
file (f) command, 21-22
file recovery, 22-23
filename, 3, 21
global (g) command, 19
input mode, 6-7
Interrupt (message), 9
line numbers,see alsocurrent line

dollar sign ($), 10, 11, 17
dot (.), 11, 17
relative (+ and −), 17

list, 10
logging in, 4-6
logging out, 8
‘‘ Login incorrect’’ (message), 5
minus (−), 17
move (m) command, 14-15
‘‘ Negative address—first buffer line is 1’’ (message), 18
‘‘ No current filename’’ (message), 8
‘‘ No such file or directory’’ (message), 5, 6
‘‘ No write since last change’’ (message), 21
non-printing characters, 10
‘‘ Nonzero address required’’ (message), 18
‘‘ Not an editor command’’ (message), 6
‘‘ Not that many lines in buffer’’ (message), 18
number (nu) command, 11
password, 5
period (.), 11, 17
plus (+), 17
preserve (pre) command, 22-23
print (p) command, 10
program, 3
prompts

% (UNIX), 5
: (edit), 5, 6, 7

(append), 7
question (?), 20
quit (q) command, 8, 13
read (r) command, 22
recover (rec) command, 22, 23

USD:11-24 Edit:A Tutorial

recovery, seefile recovery
references, 3, 23
remove (rm) command, 21, 22
reverse command effects (undo), 16-17, 23
searching, 10-12, 19-21
shell, 21
shell escape (!), 21
slash (/), 11-12, 20
special characters (ˆ, $, \), 10, 11, 17, 20-21
substitute (s) command, 11-12, 19, 20
terminals, 4-5
text input mode, 7
undo (u) command, 16-17, 23
UNIX , 3
write (w) command, 8, 13, 21, 22
z command, 12-13

