An Intr oduction to the C shell

William Joy
(revised for 4.3BSD by Mark Seiden)

Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

ABSTRAT

Cshis a ne&v command language interpreter fokix® systems. Itincorporates
good features of other shells andhiatory mechanism similar to theedo of INTERLISP.
While incorporating man features of other shells which nealariting shell programs
(shell scripts) easiemost of the features unique ¢share designed more for the interac-
tive UNIX user

UNIX users who h& read a general introduction to the system will fincakuable
basic e&planation of the shell hereSimple terminal interaction witbshis possible after
reading just the first section of this documemhe second section describes the shell’
capabilities which you canxplore after you hae begun to become acquainted with the
shell. Latersections introduce features which are usefutl ot necessary for all users of
the shell.

Additional information includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

Intr oduction

A shellis a command language interpret&shis the name of one particular command interpreter
onuNiIx. The primary purpose afshis to translate command lines typed at a terminal into system actions,
such as imocation of other programsCshis a user program just kkany you might write. Hopefully, csh
will be a \ery useful program for you in interacting with threix system.

In addition to this document, you willamt to refer to a cgpof the uNix User Reference Manual.
Thecshdocumentation in section 1 of the manuaMmtes a full description of all features of the shell and
is the definitve reference for questions about the shell.

Many words in this document are shio initalics. These are importantaxds; names of commands,
and words which hae gecial meaning in discussing the shell amgx. Mary of the words are defined in
a dossary at the end of this documeilftyou dont know what is meant by a evd, you should look for it
in the glossary

Acknowledgements

Numerous people ka provided good input about prus \ersions oftshand aided in its delyging
and in the delgging of its documentation. would especially lik to thank Michael Ubell who made the
crucial obseration that history commands could be done wedr she word structure of input &, and
implemented a prototype history mechanism in an oldesien of the shellEric Allman has also praded
a large number of useful comments on the shell, helping to unify those concepts which are present and to
identify and eliminate useless and giaally useful featuresMike OBrien suggested the pathname hash-
ing mechanism which speeds commandcation. JimKulp added the job control and directory stack
primitives and added their documentation to this introduction.

usD:4-2 Anlintroduction to the C shell

1. Terminal usage of the shell

1.1. Thebasic notion of commands

A shellin uNix acts mostly as a medium through which oiergramsare irvoked. Whileit has a
set ofbuilt-in functions which it performs directlynost commands causgeeution of programs that are, in
fact, external to the shellThe shell is thus distinguished from the command interpreters of other systems
both by the &ct that it is just a user program, and by #a fhat it is used almost@usively as a mecha-
nism for irvoking other programs.

Commandsn the UNIX system consist of a list of strings words interpreted as aommand name
followed byarguments.Thus the command

mail bill

consists of tw words. Thefirst word mail names the command to beeeuted, in this case the mail pro-
gram which sends messages to other uséne shell uses the name of the command in attempting to
execute it for you. It will look in a number ofiirectoriesfor a file with the namenail which is expected to
contain the mail program.

The rest of the wrds of the command arevgh as argumentsto the command itself when it is
executed. Inthis case we specified also thguamentbill which is interpreted by thmail program to be the
name of a user to whom mail is to be sdntnormal terminal usage we might use thail command as
follows.

% mail bill
| havea question about the csh documentation.
My document seems to be missing page 5.
Does a page fevexist?

Bill
EOT
%

Here we typed a message to senbliloand ended this message with a "D which sent an end-of-file
to the mail program(Here and throughout this document, the notatioti | s to be read ‘control-x” and
represents the striking of ttxekey while the control ky is held davn.) Themail program then echoed the
characters ‘E@ and transmitted our messagéhe characters ‘% ' were printed before and after the mail
command by the shell to indicate that inpatswneeded.

After typing the ‘% ' prompt the shell as reading command input from our termindle typed a
complete command ‘mail bill'' The shell thenxecuted themail program with agumentbill and went dor
mant waiting for it to complete.The mail program then read input from our terminal until we signaled an
end-of-file via typing a "D after which the shell noticed that mail had completed and signaled usdkat it w
ready to read from the terminalaiyg by printing another ‘%’ prompt.

This is the essential pattern of all interaction withx through the shell A complete command is
typed at the terminal, the shekeeutes the command and when thisgaition completes, it prompts for a
new command. Ifyou run the editor for an hguhe shell will patiently wait for you to finish editing and
obediently prompt you @&in whenger you finish editing.

An example of a useful command you cateaite nav is the tsetcommand, which sets the deft
eraseandkill characters on your terminal — the erase character erases the last character you typed and the
kill character erases the entire line yowdentered sodr. By default, the erase character is the delete k
(equivalent to “?’) and the kill character is “U.Some people prefer to nakhe erase character the
backspacedy equivalent to "H’). You can male this be true by typing

tset —e

which tells the programsetto set the erase character to tse®fault setting for this character (a
backspace).

An Introduction to the C shell USD:4-3

1.2. Flagarguments

A useful notion inuNix is that of aflag agument. Whilemary arguments to commands specify file
names or user names, somguanents rather specify an optional capability of the command which you
wish to invoke. By cornvention, such ajuments bgin with the character ‘-’ §fphen). Thushe command

Is
will produce a list of the files in the currambrking directory. The option—s is the size option, and
Is —s

causeds to also gve, for each file the size of the file in blocks of 512 charactéh&e manual section for
each command in thenix reference manual ggs the available options for each commandhe Is com-
mand has a lge number of useful and interesting optioMost other commands ta gther no options or
only one or tw options. Itis hard to remember options of commands which are not wsgdrequently
so mostuNix utilities perform only one or ta functions rather than Wilg a lage number of hard to
remember options.

1.3. Outputto files

Commands that normally read input or write output on the terminal can als@dugeel with this
input and/or output done to a file.

Thus suppose we wish tovgathe current date in a file called \mb The command
date

will print the current date on our terminalhis is because our terminal is thealéf standad output for
the date command and the date command prints the date on its standard Tepshell lets usedirect
the standad outputof a command through a notation using thetadaracter > and the name of the file
where output is to be placedhus the command

date > nwv

runs thedate command such that its standard output is the filev*mather than the terminalThus this
command places the current date and time into the fil&'‘nti is important to knev that thedate com-
mand vas unavare that its output @s going to a file rather than to the terminghe shell performed this
redirectionbefore the command fan executing.

One other thing to note here is that the filawhneed not hee exsted before thdatecommand was
executed; the shell muld have aeated the file if it did notest. Andif the file did ist? Ifit had «isted
previously these prgous contents auld hare been discardedA shell optionnoclobberexists to preent
this from happening accidentally; it is discussed in section 2.2.

The system normallydeps files which you create with >’ and all other fil@wus the defult is for
files to be permanentf you wish to create a file which will be renea automatically you can bgin its
name with a ‘#' charactgethis ‘scratch’ character denotes tlaetfthat the file will be a scratch file-Fhe
system will remage such files after a couple of days, or sooner if file space becoenggight. Thus, in
running thedatecommand abee, we don’t really want to sae the output foreer, o0 we would more lilely
do

date > #nw

1.4. Metacharactersin the shell

The shell has a lge number of special characters€lik’) which indicate special functionde sy
that these notations yasyntacticandsemantianeaning to the shellln general, most characters which are
neither letters nor digits i@ ecial meaning to the shellWe dall shortly learn a means giiotation

*Note that if your erase character is a ‘#, you wilea precede the ‘#' with a ‘\".The fact that the ‘# char
acter is the old (prerr) standard erase character means that it seldom appears in a file name,vesthadlo
corvention to be used for scratch filef. you are using arr, your erase character should be a "H, as we
demonstrated in section 1.1vin¢his could be set up.

UsD:4-4 Anlintroduction to the C shell

which allovs us to usenetadaracters without the shell treating them inyagpecial vay.

Metacharacters normally ¥xa dfect only when the shell is reading our inpiYe reed not verry
about placing shell metacharacters in a letter we are sendingpilji@mr when we are typing inxeor data
to some other programNote that the shell is only reading input when it has prompted with ‘% ’ (although
we can type our inputven before it prompts).

1.5. Input from files; pipelines

We learned abee how to redirect the standad outputof a command to a filelt is also possible to
redirect thestandad input of a command from a fileThis is not often necessary since most commands
will read from a file whose name isvgh as an agument. V¢ can give the command

sort < data

to run thesort command with standard input, where the command normally reads its input, from the file
‘data’. We would more lilely say

sort data

letting thesort command open the file ‘data’ for input itself since this is less to type.
We dhould note that if we just typed

sort

then the sort programaowmld sort lines from itstandad input. Since we did notedirectthe standard input,
it would sort lines as we typed them on the terminal until we typed a "D to indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command with the stan-
dard input of another.e. to run the commands in a sequencenknas apipeline For instance the com-
mand

Is —s

normally produces a list of the files in our directory with the size of each in blocks of 512 char>ers.
are interested in learning which of our files igést we may wish to ke this sorted by size rather than by
name, which is the dadilt way in whichls sorts. V¢ oould look at the manoptions ofls to see if there
was an option to do this bt would eventually discwer that there is notlnstead we can use a couple of sim-
ple options of thesortcommand, combining it witts to get what we ant.

The—n option of sort specifies a numeric sort rather than an alphabeticTéoug.
Is —s | sort —n

specifies that the output of tlecommand run with the optioss is to bepipedto the commandort run
with the numeric sort optionThis would give us a ®rted list of our files by size ubwith the smallest first.
We muld then use ther reverse sort option and tHeeadcommand in combination with the pieus com-
mand doing

Is —s | sort —n —r | head -5

Here we hae taken a list of our files sorted alphabeticaéigch with the size in blockd/Ne haverun this to
the standard input of theort command asking it to sort numerically irvesse order (lagest first). This
output has then been run into the commheddwhich gives us the first fav lines. Inthis case we he
asledheadfor the first 5 lines.Thus this command ggs us the names and sizes of our Hkest files.

The notation introduced abe is called thepipe mechanism. Commandgparated by|” characters
are connected together by the shell and the standard output of each is run into the standard input.of the ne
The leftmost command in a pipeline will normally ¢aits standard input from the terminal and the right-
most will place its standard output on the termirather eamples of pipelines will be gn later when
we discuss the history mechanism; one important use of pipes which is illustrated there is in the routing of
information to the line printer

An Introduction to the C shell USsD:4-5

1.6. Filenames

Many commands to bexecuted will need the names of files aglanents.uNix pathnamegonsist
of a number otomponentseparated by ‘/.Each componentxeept the last names a directory in which
the next component resides, infe€t specifying thgpath of directories to follav to reach the file.Thus the
pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory ofrdloé directory ‘/’. Within this directory
the file named is ‘motd’ which stands for ‘message of the dayathnamehat beins with a slash is said
to be arabsolutepathname since it is specified from the absolute top of the entire directory hiefiich
system (theoot). Pathnameswvhich do not bgin with */" are interpreted as starting in the curresairking
directory, which is, by dedult, yourhomedirectory and can be changed dynamically by ddehange
directory commandSuch pathnames are said torblative to the working directory since theare found
by starting in the wrking directory and descending taver levels of directories for eacbomponenof the
pathname. Ithe pathname contains no slashes at all then the file is contained iritiegndirectory
itself and the pathname is merely the name of the file in this direcdrsolute pathnames V& ro rela-
tion to the verking directory

Most filenames consist of a number of alphanumeric characterssafpefiods). Infact, all printing
characters>xept /' (slash) may appear in filenamdsis incorvenient to hae nost non-alphabetic char
acters in filenames because mahthese hae pecial meaning to the shelllhe character ™ (period) is
not a shell-metacharacter and is often used to separagt¢msionof a file name from the base of the
name. Thus

prog.c prog.o prog.errs prog.output

are four related filesThey share abaseportion of a name (a base portion being that part of the name that is
left when a trailing '.and following characters which are notare stripped dj. Thefile ‘prog.c’ might

be the source for a C program, the file ‘prog.o’ the corresponding object file, the file ‘prog.errs’ the errors
resulting from a compilation of the program and the file ‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation

prog.*
This expression isxpanded by the shell, before the command to which it isgamraant is gecuted, into a
list of names which lggn with ‘prog’. The character **' here matches yasequence (including the empty
sequence) of characters in a file nariae names which match are alphabetically sorted and placed in the
argument lisof the commandThus the command

echo prog.*
will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, andesedif order than we listed them &bo The echo
command recges four words as ajuments, een though we only typed oneosd as as gument directly
The four words were generated filename gpansionof the one input ward.

Other notations fofilename gpansionare also eeilable. Thecharacter *?’ matches wsingle char
acter in a filenameThus

echo ??? ?2??
will echo a line of filenames; first those with one character names, then those ovithar@cter names,
and finally those with three character namélse names of each length will be independently sorted.

Another mechanism consists of a sequence of characters between ‘[' afithi§ metasequence
matches ansingle character from the enclosed séhus

USsD:4-6 Anlintroduction to the C shell

prog.[co]
will match

prog.c prog.o
in the kample abwe. We can also place tavcharacters around a ‘=’ in this notation to denote a range.
Thus

chap.[1-5]
might match files

chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. Thids shorthand for

chap.[12345]

and otherwise equalent.

An important point to note is that if a list ofgament vords to a command (aargument list)con-
tains filename xpansion syntax, and if this flenamgpansion syntaxails to match ay existing file
names, then the shell considers this to be an error and prints a diagnostic

No match.

and does nobe&cute the command.

Another \ery important point is that files with the characteat the bginning are treated specially
Neither **" or “?’ or the ‘[’ I’ mechanism will match it. This prevents accidental matching of the filenames
‘’and ‘.! in the working directory which h&e pecial meaning to the system, as well as other files such as
.cshic which are not normally visibleWe will discuss the special role of the fileshic later

Another filename x@ansion mechanismgis access to the pathname of themedirectory of other
users. Thisiotation consists of the character ™ (tilde) felied by another usarlogin name.For instance
the word “bill' would map to the pathname ‘/usr/bill’ if the home directory for ‘bildsv/usr/bill’. Since,
on lage systems, users mayvhdogin directories scattered/e mary different disk wlumes with difer-
ent prefix directory names, this notation\pdes a comenient way of accessing the files of other users.

A special case of this notation consists of a ™ alone, e.g. “/mbdkis notation is ¥panded by the
shell into the file ‘mbox’ in youhomedirectory i.e. into ‘/usr/bill/mbox’ for me on Ernie Ccax, the UCB
Computer Science DepartmemX machine, where this documentw/preparedThis can be ery useful
if you have wisedcd to change to another directory andrédound a file you wish to cgpusing cp. If |
give the command

cp thatfile ~
the shell will épand this command to
cp thatfile /usr/bill

since my home directory is /ust/bill.

There alsoxsts a mechanism using the characters ‘{’ and ‘} for ablattng a set of wrds which
have mmmon parts Bt cannot be abbvated by the abege mechanisms because yhare not files, are the
names of files which do not yekist, are not thus ceeniently described.This mechanism will be
described much latein section 4.2, as it is used less frequently

1.7. Quotation

We havealready seen a number of metacharacters used by the Thelle metacharacters pose a
problem in that we cannot use them directly as partooodsv Thughe command

echo *

will not echo the character ‘*'.It will either echo an sorted list of filenames in the curnentking

An Introduction to the C shell usD:4-7

directory or print the message ‘No match’ if there are no files in thikiwg directory
The recommended mechanism for placing characters which are neither numbers, diditst, ‘£, ‘.
in an agument vord to a command is to enclose it with single quotation characters ', i.e.
echo ¥

There is one special character ‘" which is used byhistory mechanism of the shell and which cannot be
escapedy placing it within "’ characterslt and the character ‘" itself can be preceded by a single ‘\' to
prevent their special meaninglhus

echo \'\!

prints
1

These two mechanisms sfiite to place apprinting character into a evd which is an gument to a shell
command. Thgcan be combined, as in

echo \""*

which prints

%
since the first '\’ escaped the first "’ and the “*awenclosed between ’ characters.

1.8. Terminating commands

When you arexecuting a command and the shell iaiting for it to complete there arevemsl ways
to force it to stop.For instance if you type the command

cat /etc/passwd

the system will print a cgpof a list of all users of the system on your termin&his is likely to continue
for several minutes unless you stop iYou can send aINTERRUPT signalto thecat command by typing "C
on your terminal.* Sincecat does not tai any precautions to wid or otherwise handle this signal the
INTERRUPT Will cause it to terminateThe shell notices thaiat has terminated and prompts yolaegwith
‘% ’. If you hit INTERRUPT again, the shell will just repeat its prompt since it handlg&RRUPT signals
and chooses to continue teeeute commands rather than terminating lat did, which would have the
effect of logging you out.

Another vay in which mayg programs terminate is when thget an end-of-file from their standard
input. Thusthe mail program in the first>eample abwe was terminated when we typed a "D which gener
ates an end-of-file from the standard inptiihe shell also terminates when it gets an end-of-file printing
‘logout’; UNIX then logs you dfthe system.Since this means that typing too igdD’s can accidentally
log us of, the shell has a mechanism forymeting this. This ignoreeofoption will be discussed in section
2.2.

If a command has its standard input redirected from a file, then it will normally terminate when it
reaches the end of this fil&hus if we &ecute

mail bill < prepared.tet

the mail command will terminate without our typing a "This is because it read to the end-of-file of our
file ‘prepared.tet’ in which we placed a message for ‘bill’ with an editor prograie could also hee
done

cat prepared.i¢ | mailbill

since thecat command wuld then hae written the te&t through the pipe to the standard input of the mail
command. Whethe cat command completed itould have terminated, closing dan the pipeline and the

*On some older Unix systems tbeL or RusouT key has the same fefct. "stty all" will tell you the INTR ky
value.

uUsD:4-8 Anlintroduction to the C shell

mail command wuld have receved an end-of-file from it and terminatedUsing a pipe here is more com-
plicated than redirecting input so weomdd more lilely use the first form.These commands could also
have been stopped by sending AITERRUPT.

Another possibility for stopping a command is to suspendxésuéion temporarilywith the possi-
bility of continuing eecution later This is done by sending sropP signal via typing a "Z.This signal
causes all commands running on the terminal (usually ohenbre if a pipeline is»ecuting) to become
suspended. Thehell notices that the command(sy&deen suspended, types ‘Stopped’ and then prompts
for a nev command. Thereviously executing command has been suspendeat ptherwise unéécted by
the sToP signal. Ary other commands can beeeuted while the original command remains suspended.
The suspended command can be continued usinfg ttemmand with no @uments. Thehell will then
retype the command to remind you which command is being continued, and cause the command to resume
execution. Unlessary input files in use by the suspended commane iaen changed in the meantime,
the suspension has ndesft whatsoeer on the execution of the commandThis feature can beevy useful
during editing, when you need to look at another file before continuingx@dmpe of command suspen-
sion follows.

% mail harold

Someone just copied a big file into my directory and its name is
Z

Stopped

% Is

funnyfile

prog.c

prog.o

% jobs

[1] + Stopped maiharold
% fg

mail harold

funnyfile. Do you knev who did it?

EOT

%

In this xkample someone as sending a message to Harold anddbthe name of the file heanted to
mention. Themail command w&s suspended by typing "XVhen the shell noticed that the mail program

was auspended, it typed ‘Stopped’ and prompted forw cemmand. Therhels command \as typed to

find out the name of the filéThe jobs command was run to find out which commandag/suspended. At

this time thefg command was typed to continuexecution of the mail programlnput to the mail program

was then continued and ended with a "D which indicated the end of the message at which time the mail pro-
gram typed E®@. The jobscommand will shav which commands are suspendéithe “Z should only be

typed at the bginning of a line sinceverything typed on the current line is discarded when a signal is sent
from the leyboard. Thisalso happens omWTERRUPT, and QUIT signals. Mordanformation on suspending

jobs and controlling them is\gn in sction 2.6.

If you write or run programs which are not fully dejged then it may be necessary to stop them
somavhat ungracefully This can be done by sending themuar signal, sent by typing a "This will usu-
ally provoke the shell to produce a messagelik

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the running pscgmganivhen
it terminated due to theuiT signal. You can gamine this file yourself, or foravrd information to the
maintainer of the program telling him/her where ¢bee fie is.

If you run background commands (agpkained in section 2.6) then these commands will ignore
INTERRUPT andQuIT signals at the terminalTo gop them you must use thél command. Seeection 2.6
for an ekample.

An Introduction to the C shell uUsD:4-9

If you want to éamine the output of a command withouving it move df the screen as the output
of the

cat /etc/passwd
command will, you can use the command
more /etc/passwd

Themore program pauses after each complete screen-full and types ‘~—More—-"at which point you can hit
a Pace to get another screen full, a return to get another line, a ‘?’ to get some help on other commands, or
a ‘g’ to end thanore program. Yu can also use more as a fijlies.

cat /etc/passwd | more

works just like the more simple more command a&o

For stopping output of commands nowatving mote you can use the "Sk o gop the typeout.The
typeout will resume when you hit "Q oryaather key, but "Q is normally used because it only restarts the
output and does not become input to the program which is runfimg.works well on lav-speed termi-
nals, it at 9600 baud it is hard to type "S and &t enough to paginate the output nicahg a program
like moreis usually used.

An additional possibility is to use the O flush output character; when this character is typed, all out-
put from the current command is ttno avay (quickly) until the n&t input read occurs or until the xie
shell prompt. This can be used to alloa ommand to complete without Viag to sufer through the out-
put on a slar terminal; "O is a toggle, so flushing can be turnédptyping "O agin while output is being
flushed.

1.9. Whatnow?

We haveso far seen a number of mechanisms of the shell and learned a lot aboay timewtich it
operates. Theemaining sections will go yet further into the internals of the shallydu will surely vant
to try using the shell before you goyaiurther To try it you can log in tauNix and type the follawing
command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get onto the
system. Thud would use ‘chsh bill /bin/csh’.You only have to do this once; it takes effect at next
login. You are naw ready to try usingsh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is ‘/bin/sh’.
In fact, much of the alve dscussion is applicable to ‘/bin/shThe net section will introduce manfea-
tures particular tashso you should change your shelkcghbefore you bgin reading it.

USsD:4-10 Anintroduction to the C shell

2. Detailson the shell br terminal users

2.1. Shellstartup and termination

When you login, the shell is started by the system in floaredirectory and bgins by reading com-
mands from a filecshr in this directory All shells which you may start during your terminal session will
read from this file.We will later see what kinds of commands are usefully placed tHesenow we need
not have tis file and the shell does not complain about its absence.

A login shell executed after you login to the system, will, after it reads commands.f&rsime, read
commands from a fildogin also in your home directaryThis file contains commands which you wish to
do each time you login to thenix system. My.login file looks something lig:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${promptlusers" ; users
alias ts \
“set noglob ;al “tset —s —m dialup:c100rv4pna —m plugboard:?hp2621nl **’;
ts; stty intr "C kill "U crt
set time=15 history=10
msgs —f
if (e $mail) then
echo "${prompt}mail"
mail
endif

This file contains seral commands to bexecuted byuNix each time | login.The first is asetcom-
mand which is interpreted directly by the shéllsets the shellariableignoreeofwhich causes the shell to
not log me dfif | hit "D. Rather| use thdogoutcommand to log dthe system.By setting themail vari-
able, | ask the shell toatch for incoming mail to meEvery 5 minutes the shell looks for this file and tells
me if more mail has akéd there. Analternatve o this is to put the command

biff y

in place of thisset; this will cause me to be notified immediately when mailvestiand to be sl the
first few lines of the n& message.

Next | set the shell ariable ‘time’ to ‘15’ causing the shell to automatically print out statistics lines
for commands whichxecute for at least 15 secondsasfutime. Thevariable ‘history’ is set to 10 indicat-
ing that | wvant the shell to remember the last 10 commands | typehiisitey list (described later).

| create aralias “ ts” which executes aset(1) command setting up the modes of the termifidie
parameters ttsetindicate the kinds of terminal which | usually use when not on a hardwiredIgben
execute ‘ts” and also use thsttycommand to change the interrupt character to "C and the line kill charac-
ter to "U.

| then run the ‘msgs’ program, which pides me with ay system messages which Ivgarot seen
before; the ‘—f option here preents it from telling me aything if there are no memessages. Finallyf
my mailbox file &ists, then | run the ‘mail’ program to process my mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processindagin file and bgin
reading commands from the terminal, prompting for each with ‘When I log of (by giving thelogout
command) the shell will print ‘logout’ anckecute commands from the file *.logout’ if ikists in my home
directory After that the shell will terminate amohix will log me of the system.If the system is not going
down, | will receive a rew login messageln ary case, after the ‘logout’ message the shell is committed to
terminating and will tag& ro further input from my terminal.

2.2. Shellvariables

The shell maintains a set wdiriables. We saaw &ove te \ariableshistoryandtimewhich had alues
10" and ‘15'. In fact, each shellariable has asalue an array of zero or mastrings. Shell variables may

An Introduction to the C shell usD:4-11

be assignedalues by the set commant.has seeral forms, the most useful of whichaw gven above and
is

set name=alue

Shell variables may be used to stoues which are to be used in commands later through a substi-
tution mechanismThe shell ariables most commonly referenced arey&er, those which the shell itself
refers to. By changing the alues of theseariables one can directlyfa€t the behaor of the shell.

One of the most importanawiables is theariablepath. This variable contains a sequence of direc-
tory names where the shell searches for commanlssetcommand with no guments shwes the alue
of all variables currently defined (we usually s&f)in the shell. The deéult value for path will be shvan
by setto be

% =t

argv 0

cwd {usr/bill
home {usr/bill
path (/usr/ucb /bin /ustr/bin)
prompt %

shell /bin/csh
status 0

term c100rv4pna
user bill

%

This output indicates that thanable path points to the current directohahd then ‘/usr/ucb’, ‘/bin’ and
‘lusr/bin’. Commandsvhich you may write might be in’ ‘(usually one of your directorieslCommands
developed at Berkley, live in ‘/usr/ucb’ while commands #eloped at Bell Laboratoriesvie in ‘/bin’ and
‘lusr/bin’.

A number of locally deeloped programs on the systerweliin the directory ‘/usr/local’.If we wish
that all shells which we Wioke © haveaccess to thesewgrograms we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)
in our file.cshicin our home directoryTry doing this and then logging out and back in and do
set

again to see that thealue assigned tpathhas changed.

One thing you should bevare of is that the shelkamines each directory which you insert into your
path and determines which commands are contained tBeept for the current directory, ‘which the
shell treats speciallyhis means that if commands are added to a directory in your search path after you
have darted the shell, tlyewill not necessarily be found by the shdfi.you wish to use a command which
has been added in thisay you should gie the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added commandSince the shell has to look in the current directoryri.each command, placing it
at the end of the path specification usualtykg equialently and reducesverhead.

Other useful bilt in variables are theariablehomewhich shavs your home directoryewd which
contains your currentaevking directorythe \ariableignoreeofwhich can be set in youlogin file to tell the
shell not to git when it recetes en end-of-file from a terminal (as described &Bpo The variable
‘ignoreeof’is one of seeral variables which the shell does not care about #igevof, only whether tlye
aresetor unset. Thus to set thisariable you simply do

T Another directory that might interest you is /uswnahich contains manuseful usercontrituted pro-
grams preided with Berleley Unix.

usD:4-12 Anintroduction to the C shell

set ignoreeof
and to unset it do
unset ignoreeof

These gie the \ariable ‘ignoreedfno value, lut none is desired or required.

Finally, some other bilt-in shell variables of use are thanablesnoclobberandmail. The metasyn-
tax

> filename

which redirects the standard output of a command wédhwrite and destrp the preious contents of the
named file.In this way you may accidentallyverwrite a file which is aluable. Ifyou would prefer that
the shell not werwrite files in this vay you can

set noclobber

in your .login file. Thentrying to do
date > nw

would cause a diagnostic if ‘n0 existed already You could type
date >! now

if you really wanted to werwrite the contents of ‘n@. The ‘>!" is a special metasyntax indicating that
clobbering the file is ok. T

2.3. Theshell's history list

The shell can maintainfastory listinto which it places the ards of prgious commandsilt is pos-
sible to use a notation to reuse commands ards/ from commands in forming wecommands. This
mechanism can be used to repeatiptes commands or to correct minor typing mistsk commands.

The followving figure gives a ample session wolving typical usage of the history mechanism of the
shell. Inthis ekample we hee a vey simple C program which has ad(or two) in it in the file ‘lug.c’,
which we ‘cat’ out on our terminalWe then try to run the C compiler on it, referring to the filaings
‘1$’, meaning the last gument to the préous commandHere the V" is the history mechanismvatation
metacharacteend the ‘$’ stands for the lastgarment, by analogy to ‘$’ in the editor which stands for the
end of the line.The shell echoed the command, as duld hare keen typed without use of the history
mechanism, and thenxeeuted it. The compilation yielded error diagnostics so wevman the editor on
the file we were trying to compile, fix thedy and run the C compiler aig, this time referring to this com-
mand simply as ‘!c’, which repeats the last command which started with the lettdrttere were other
commands starting with ‘c’ done recently we couldéhaaid ‘!cc’ or even ‘lcc:p’ which would have
printed the last command starting with ‘cc’ withomeeuting it.

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there asilaviag,
ran the editor agjn. Afterfixing the program we ran the C compilefaayg hut tacled onto the command
an tra ‘-0 kug’ telling the compiler to place the resultant binary in the filgy*brather than ‘a.out’.In
general, the history mechanisms may be usgdilaere in the formation of mecommands and other char
acters may be placed before and after the substituted commands.

We then ran the ‘size’ command to seavlarge the binary program images wevbareated were,
and then an ‘Is -I' command with the samguement list, denoting thegument list **'. Finally we ran the
program ‘lug’ to see that its output is indeed correct.

To make a umbered listing of the program we ran the ‘num’ command on the €iggcb Inorder
to compress out blank lines in the output of ‘num’ we ran the output through the filter tesmiskpelled
it as spp.To correct this we used a shell substitute, placing the atdated nev text between ' characters.
This is similar to the substitute command in the editénally, we repeated the same command with ‘I,

1TThe space between the ‘" and therd/ ‘now’ is critical here, as ‘Ine’ would be an imocation of thehistory
mechanism, and kia a btally different efect.

An Introduction to the C shell UsD:4-13

% cat hug.c
main()

{

}
% cc !9
cc hug.c
"bug.c", line 4: ne/line in string or char constant
"bug.c", line 5: syntax error
% ed!$
ed hug.c
29
4s/);"&Ip
printf("hello");

printf("hello);

w
30
q
% lc
cc hug.c
% aout
hello% le
ed hug.c
30
4s/lo/lo\\n/p
printf("hello\n");

w
32
q
% !c —o bug
cc lug.c —o lig
% gze a.out bg
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% Is - 1*
Is -l a.out lig
—rwxr—xr—x 1 bill 3932 Dec 19 09:41 a.out
—rwxr—xr-x 1 hill 3932 Dec 19 09:42 g
% bug
hello
% num kug.c | spp
spp: Command not found.
% “spp”ssp
num hug.c | ssp

1 main()

3 {

4 printf("hello\n");

5}
% '] lpr
num tug.c | ssp | Ipr
%

but sent its output to the line printer

usD:4-14 Anintroduction to the C shell

There are other mechanismsitable for repeating commandd-he history command prints out a
number of preious commands with numbers by whichytltan be referencedlhere is a \ay to refer to a
previous command by searching for a string which appeared in it, and there ardestheseful, ays to
select aguments to include in a wecommand. Acomplete description of all these mechanismsviengin
the C shell manual pages in theix Programmegs Manual.

2.4. Aliases

The shell has anlias mechanism which can be used to m#iansformations on input commands.
This mechanism can be used to simplify the commands you type, to suppljt defuments to com-
mands, or to perform transformations on commands and tigeimants. Thalias fcility is similar to a
macro fcility. Some of the features obtained by aliasing can be obtained also using shell command files,
but these tak pace in another instance of the shell and cannot direddgtahe current shells ginonment
or involve ammmands such asl which must be done in the current shell.

As an gample, suppose that there is avnesrsion of the mail program on the system calledvne
mail’ you wish to use, rather than the standard mail program which is called ‘tfigibu place the shell
command

alias mail nevmail
in your.cshc file, the shell will transform an input line of the form
mail bill

into a call on ‘nevmail’. More generally suppose we wish the command ‘Is’ tavays shav sizes of files,
that is to alvays do ‘-s’. We @an do

aliasIs Is —s
or even

alias dir Is —s
creating a n& command syntax ‘dir’ which does an ‘Is —df.we say

dir “bill
then the shell will translate this to

Is —s /mnt/bill

Thus thealias mechanism can be used toyid® short names for commands, toyide defult agu-

ments, and to define weshort commands in terms of other commantiss also possible to define aliases

which contain multiple commands or pipelines,wimg where the guments to the original command are
to be substituted using thacilities of the history mechanisnThus the definition

alias cd ‘cd \I*; Is”

would do anls command after each change directod)command. W enclosed the entire alias definition

in ’ characters to preent most substitutions from occurring and the character *;’ from being recognized as
a metacharacterThe ‘" here is escaped with a ‘\' to pent it from being interpreted when the alias com-
mand is typed in.The \I*" here substitutes the entiregaiment list to the pre-aliasingl command, with-

out giving an error if there were nogquments. The;’ separating commands is used here to indicate that
one command is to be done and then the. ngimilarly the definition

alias whois “grep \I" /etc/passwd’

defines a command which looks up its firgfusment in the passwd file.

Warning: The shell currently reads theshc file each time it starts ugf you place a lage number
of commands there, shells will tend to starindyo A mechanism for sang the shell evironment after
reading thecshc file and quickly restoring it is underwiopment, It for nov you should try to limit the
number of aliases you Y& b a reasonable numher 10 or 15 is reasonable, 50 or 60 will cause a

An Introduction to the C shell USD:4-15

noticeable delay in starting up shells, and entile system seem sluggish when yoecete commands
from within the editor and other programs.

2.5. More redirection; >> and >&
There are a f@ more notations useful to the terminal user whichehat been introduced yet.

In addition to the standard output, commands alsee fmdiagnostic outputwhich is normally
directed to the terminalven when the standard output is redirected to a file or a dipis. occasionally
desirable to direct the diagnostic output along with the standard odgunstance if you ant to redirect
the output of a long running command into a file and wish e baecord of ag error diagnostic it pro-
duces you can do

command >& file

The >&' here tells the shell to route both the diagnostic output and the standard output int&lfite’.
larly you can gre the command

command & | pr

to route both standard and diagnostic output through the pipe to the line printer diaemon
Finally, it is possible to use the form

command >> file

to place output at the end of ansting file.t

2.6. Dbs; Backgmound, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands sepa-
rated by semicolons, a singlab is created by the shell consisting of these commands together as a unit.
Single commands without pipes or semicolons create the simplestsbglly every line typed to the
shell creates a jobSome lines that create jobs (one per line) are

sort < data
Is —s | sort —n | head -5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is startesldegr@aund
job. This means that the shell does natitwor it to complete it immediately prompts and is ready for
another commandThe job runsn the ba&groundat the same time that normal jobs, caltecegound
jobs, continue to be read arxkeuted by the shell one at a tim€hus

du > usage &

would run thedu program, which reports on the disk usage of yoorking directory (as well as gmirec-
tories belav it), put the output into the file ‘usage’ and return immediately with a prompt for ¥heam-
mand without out &iting for du to finish. The du program would continue ®ecuting in the background
until it finished, @en though you can type andezute more commands in the mean tinvghen a back-
ground job terminates, a message is typed by the shell just beforextlpramapt telling you that the job
has completedIn the folloving example thedu job finishes sometime during th&eeution of themail
command and its completion is reported just before the prompt afteaiheb is finished.

+ A command of the form
command >&! file
exists, and is used whemoclobberis set andile already aists.
T If noclobberis set, then an error will resultfife does not ®ist, otherwise the shell will creafie if it doesnt
exist. Aform
command >>! file
makes it not be an error for file to notist whennoclobberis set.

USD:4-16 Anintroduction to the C shell

% du > usage &

[1] 503

% mail bill

How do you knav when a background job is finished?
EOT

[1] - Done du > usage

%

If the job did not terminate normally the ‘Done’ message might say something elsKilied'. If you
want the terminations of background jobs to be reported at the tinpeotiear (possibly interrupting the
output of other forground jobs), you can set thetify variable. Inthe preious example this wuld mean
that the ‘Done’ message mightyegacmme right in the middle of the message to BBlackground jobs are
unafected by ap signals from the kyboard like the STOP, INTERRUPT, or QUIT signals mentioned earlier

Jobs are recorded in a table inside the shell unt tdseninate. Inthis table, the shell remembers
the command names gaiments and thprocess numbsiof all commands in the job as well as therking
directory where the job as started Each job in the table is either runnimgthe foegoundwith the shell
waiting for it to terminate, runningn the ba&ground, or suspendedOnly one job can be running in the
foreground at one time,ub several jobs can be suspended or running in the background at Asceach
job is started, it is assigned a small identifying number callejoptheumberwhich can be used later to
refer to the job in the commands described weldob numbers remain the same until the job terminates
and then are re-used.

When a job is started in the background using ‘&', its numdsewell as the process numbers of all
its (top level) commands, is typed by the shell before prompting you for another comnuaretafple,

% Is —s | ©rt —n > usage &
[2] 2034 2035
%

runs the ‘Is’ program with the ‘=s’ options, pipes this output into the ‘sort’ program with the ‘-—n’ option
which puts its output into the file ‘usageSince the ‘&’ was at the end of the line, theseotprograms
were started together as a background jsther starting the job, the shell prints the job number in keisck

(2 in this case) follwed by the process number of each program started in th@l@n the shell immedi-
ately prompts for a mecommand, leging the job running simultaneously

As mentioned in section 1.8, fgmund jobs becomsuspendedy typing "Z which sends sToP
signal to the currently running fayeund job A background job can become suspended by usingtdipe
command described b&lo When jobs are suspended ytheerely stop ay further progress until started
again, either in the foground or the backgroundThe shell notices when a job becomes stopped and
reports this dct, much lile it reports the termination of background jold%or foreground jobs this looks
like

% du > usage
Z

Stopped

%

‘Stopped’ message is typed by the shell when it notices thauthegram stoppedFor background jobs,
using thestopcommand, it is

% ort usage &

[1] 2345

% dop %1

[1] + Stopped (signal) sort usage
%

Suspending foiground jobs can beevy useful when you need to temporarily change what you are doing
(execute other commands) and then return to the suspended\ist, foreground jobs can be suspended
and then continued as background jobs usingotheommand, allwing you to continue other ark and

An Introduction to the C shell usD:4-17

stop waiting for the forground job to finish.Thus

% du > usage

Z

Stopped

% bg

[1] du > usage &
%

starts ‘du’ in the forground, stops it before it finishes, then continues it in the backgroumdnagjlonore
foreground commands to beeeuted. Thisis especially helpful when a fayeund job ends up taking
longer than youxgected and you wish you had started it in the background in dfirenirey.

All job contol commands can takan arlgument that identifies a particular jolll job nhame agu-
ments bgin with the character ‘%’, since some of the job control commands also accept process numbers
(printed by thggscommand.) Thelefault job (when no gument is gien) is called theurrentjob and is
identified by a '+’ in the output of thebscommand, which shes you which jobs you va. When only
one job is stopped or running in the background (the usual case)viais dhe current job; thus nogar
ment is neededlf a job is stopped while running in the fgreund it becomes theurrent job and the
existing current job becomes tipeevous job — identified by a ‘=’ in the output gbbs. When the current
job terminates, the pvus job becomes the current joWhen given, the agument is either ‘%-’ (indicat-
ing the preious job); ‘%#', where # is the job number; ‘Y%opgrefhere pref is some unique prefix of the
command name andguments of one of the jobs; or ‘%?’ folled by some string found in only one of the
jobs.

Thejobscommand types the table of jobsyigg the job numbeicommands and status (‘Stopped’ or
‘Running’) of each background or suspended j@ith the ‘~I' option the process numbers are also typed.

% du > usage &

[1] 3398

% Is —s | ©rt —n > myfile &

[2] 3405

% mail bill

Z

Stopped

% jobs

[1] = Running du> usage
[2] Running Is —s | sort —n > myfile
[3] + Stopped maibill

% fg %s

Is —s | sort —n > myfile

% more myfile

Thefg command runs a suspended or background job in thgréoned. Itis used to restart a pie
ously suspended job or change a background job to run in tlggdonel (alleving signals or input from
the terminal). In the abwe example we usedg to change the ‘Is’ job from the background to the fore-
ground since we anted to it for it to finish before looking at its output fild.he bg command runs a
suspended job in the backgrounid.is usually used after stopping the currently runninggaend job
with the sTop signal. Thecombination of thestop signal and thédg command changes a fgreund job
into a background jobThe stopcommand suspends a background job

Thekill command terminates a background or suspended job immedibatetydition to jobs, it may
be gwven process numbers asgaiments, as printed tps. Thus, in the xample abwe, the runningdu com-
mand could heae been terminated by the command

% kill %1
[1] Terminated dw usage
%

USD:4-18 Anintroduction to the C shell

The notify command (not theariable mentioned earlier) indicates that the termination of a specific
job should be reported at the time it finishes insteadadtfrvg for the ngt prompt.

If a job running in the background tries to read input from the terminal it is automatically stopped.
When such a job is then run in the fgr@und, input can begn to the job If desired, the job can be run
in the background agn until it requests input ag. Thisis illustrated in the follwing sequence where the
‘s’ command in the td editor might tak a bng time.

% ed bigfile

120000
1,$s/thisverd/thatword/
Z

Stopped

% bg

[1] ed bigfile &

%

. me forground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000

q
%

So after the ‘s’ commandag issued, the ‘ed’ job ag stopped with “Z and then put in the background
usingbg. Some time later when the ‘s’ commandsafinishededtried to read another command anasw
stopped because jobs in the background cannot read from the teritieddy command returned the ‘ed’
job to the forground where it could once @g accept commands from the terminal.

The command
stty tostop

causes all background jobs run on your terminal to stop whgrat@bout to write output to the terminal.
This prevents messages from background jobs from interruptingyforand job output and allies you to
run a job in the background without losing terminal outpualso can be used for interagiprograms that
sometimes hae long periods without interactionThus each time it outputs a prompt for more input it will
stop before the promptt can then be run in the fayeund usingg, more input can be gén and, if neces-
sary stopped and returned to the backgrouHdis stty command might be a good thing to put in your
Jogin file if you do not lile autput from background jobs interrupting youonk. It also can reduce the
need for redirecting the output of background jobs if the output isempthig:

% dty tostop
% wc hugefile &
[1] 10387
% ed text
... ome time later
q
[1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile
13371 30123 302577
% dty —tostop

Thus after some time the ‘wc’ command, which counts the linesdsvand characters in a file, had one
line of output. When it tried to write this to the terminal it stoppeBly restarting it in the foground we
allowed it to write on the terminalxactly when we were ready to look at its outpBrograms which
attempt to change the mode of the terminal will also block, whether dostopis set, when theare not

An Introduction to the C shell USsD:4-19

in the forground, as it wuld be \ery unpleasant to ke a lackground job change the state of the terminal.

Since thglobs command only prints jobs started in the currenitgcating shell, it knas nothing
about background jobs started in other login sessions or within shellTiegps can be used in this case
to find out about background jobs not started in the current shell.

2.7. Working Dir ectories

As mentioned in section 1.6, the shell iwajs in a particulaworking directory The ‘change direc-
tory’ commandchdir (its short formcd may also be used) changes therking directory of the shell, that
is, changes the directory you are located in.

It is useful to ma& a drectory for each project you wish toovk on and to place all files related to
that project in that directoryThe ‘male drectory’ commandmkdir, creates a me directory The pwd
(‘print working directory’) command reports the absolute pathname of dking directory of the shell,
that is, the directory you are located ifhus in the gample belov:

% pwd

{usr/bill

% mkdir newpaper
% chdir nevpaper
% pwd
[usr/bill/newvpaper
%

the user has created andveabto the directorynenpaper where, for gample, he might place a group of
related files.

No matter where you kia noved to in a drectory hierarcly, you can return to your ‘home’ login
directory by doing just

cd
with no aguments. Thaame ‘. always means the directory almthe current one in the hieraggtthus
cd ..

changes the sheadlworking directory to the one directly almte current oneThe name *..can be used
in ary pathname; thus,

cd ../programs

means change to the directory ‘programs’ contained in the directowe dim current onelf you have
several directories for dferent projects undegay, your home directorythis shorthand notation permits
you to switch easily between them.

The shell avays remembers the pathname of its curreottking directory in the ariablecwd. The
shell can also be requested to remember thaque directory when you change to aveorking direc-
tory. If the ‘push directory’ commanpushdis used in place of thed command, the shell ges the name
of the current wrking directory on airectory stak before changing to the weone. You can see this list
at ary time by typing the ‘directories’ commaratits.

% pushd nevpaper/references
“Inewpaper/references ~

% pushd /usr/lib/tmac

usr/lib/tmac “/nepaper/references
% dirs

Jusr/lib/tmac “/nepaper/references ~
% popd

“Inewpaper/references ~

% popd

USsD:4-20 Anintroduction to the C shell

%

The list is printed in a horizontal line, reading left to right, with a tilde (*) as shorthand for your home direc-
tory—in this case ‘/usr/bill. The directory stack is printed whesethere is more than one entry on it and

it changes.lt is also printed by airs command. Dirs is usually &ster and more informaé than pwd

since it shavs the current wrking directory as well as grother directories remembered in the stack.

The pushdcommand with no gument alternates the current directory with the first directory in the
list. The'pop directory’popdcommand without an gument returns you to the directory you were in prior
to the current one, discarding theypozis current directory from the stack @etting it). Typing popdsev-
eral times in a series tak you backard through the directories you had been in (changed tpublyd
command. Therare other options tpushdandpopdto manipulate the contents of the directory stack and
to change to directories not at the top of the stack; semstimanual page for details.

Since the shell remembers therking directory in which each jobas started, it arns you when
you might be confused by restarting a job in thegoyend which has a dérent working directory than
the current wrking directory of the shellThus if you start a background job, then change the shlk-
ing directory and then cause the background job to run in thgréoned, the shell arns you that the avk-
ing directory of the currently running fape@und job is diierent from that of the shell.

% dirs -
/mnt/bill

% od myproject
% dirs
“Imyproject

% ed prog.c
1143

Z

Stopped

%o ..

% Is

myproject
textfile

% fg

ed prog.c (wd: “/myproject)

This way the shell wrns you when there is an implied change ofking directory even though no cd
command s issued.In the abwe example the ‘ed’ job ws still in ‘/mnt/bill/project’ @en though the
shell had changed to ‘/mnt/bill’A similar warning is gien when such a foground job terminates or is
suspended (using tlegop signal) since the return to the shelhagimplies a change ofarking directory

% fg

ed prog.c (wd: “/myproject)
.. . dter some editing

q

(wd naw: ")

%

These messages are sometimes confusing if you use programs that changentheirking directories,
since the shell only remembers which directory a job is started in, and assumes it stayShierd.
option ofjobswill type the working directory of suspended or background jobs when itfisrdift from the
current vorking directory of the shell.

2.8. Usefulbuilt-in commands
We row gve a few d the useful hilt-in commands of the shell describingshthey are used.

The alias command described am is used to assign mealiases and to shwthe «isting aliases.
With no aguments it prints the current aliasésmay also be gien only one agument such as

An Introduction to the C shell usD:4-21

alias Is

to shav the current alias foe.g., ‘Is’.

The echo command prints its guments. Itis often used irshell scriptsor as an interaate com-
mand to see what filenamepansions will produce.

The history command will she the contents of the history lishe humbers gen with the history
evants can be used to referenceviimas events which are dffcult to reference using the coxteal mecha-
nisms introduced alve. There is also a shelbviable callegprompt. By placing a ‘I character in itsalue
the shell will there substitute the number of the current command in the historyolistan use this num-
ber to refer to this command in a history substitutibhus you could

set prompt="\! % ~
Note that the ‘' character had to becapedere @en within "’ characters.

Thelimit command is used to restrict use of resour&®®#h no aguments it prints the current limi-
tations:

cputime unlimited
filesize unlimited
datasize 5618bytes
stacksize 51Rbytes

coredumpsize unlimited
Limits can be set, e.g.:
limit coredumpsize 128k

Most reasonable units abbiations will work; see theshmanual page for more details.
Thelogoutcommand can be used to terminate a login shell whicighaseofset.

The rehashcommand causes the shell to recompute a table of where commands are [Doistésl.
necessary if you add a command to a directory in the currensskalith path and wish the shell to find it,
since otherwise the hashing algorithm may tell the shell that the comnaandl iw that directory when the
hash table &s computed.

The repeatcommand can be used to repeat a commavaaddimes. Thus to mak 5 mpies of the
file onein the filefiveyou could do

repeat 5 cat one >> fiv

Theseter command can be used to satigbles in the efironment. Thus
setern TERM adm3a

will set the \alue of the evironment \ariableTERM to ‘adm3a’. A user progranprinternv exists which will
print out the ewironment. ltmight then sha:

% printerv

HOME=/usr/bill

SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER=Dill

%

Thesoucecommand can be used to force the current shell to read commands fronT aufie.
source .cshrc

can be used after editing in a change tadkkc file which you wish to taé dfect right avay.

uUsD:4-22 Anintroduction to the C shell

The time command can be used to cause a command to be timed no matteubb cpu time it
takes. Thus

% time cp /etc/rc /ust/bill/rc
0.0u 0.1s 0:01 8% 2+1k 3+2io 1pf+Ow
% time wec /etc/rc /usr/bill/rc

52 178 1347 /etc/rc

52 178 1347 /usr/bill/rc

104 356 2694 total
0.1u 0.1s 0:00 13% 3+3k 5+3io0 7pf+0w
%

indicates that thep command used a gkgible amount of user time (u) and about 1/10th of a system time

(s); the elapsed timeag 1 second (0:01), therasvan aerage memory usage of 2k bytes of program space

and 1k bytes of data spacenthe cpu time imolved (2+1k); the program did three disk reads araldisk

writes (3+2i0), and took one pagauft and vas not s\apped (1pf+0w).The word count command/ic on

the other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a second of
elapsed time.The percentage ‘13%’ indicates thateothe period when it as actre the command ‘wc’

used anerage of 13 percent of thealable cpucycles of the machine.

The unalias and unsetcommands can be used to remaliases and ariable definitions from the
shell, andunsetem removes variables from the etronment.

2.9. Whatelse?

This concludes the basic discussion of the shell for terminal ufbese are more features of the
shell to be discussed here, and all features of the shell are discussed in its manu@pagssful feature
which is discussed later is tlieread built-in command which can be used to run the same command
sequence with a number offéifent aguments.

If you intend to useNix a lot you you should look through the rest of this document and the csh
manual pages (sectionl) to becommniliar with the otherdcilities which areailable to you.

An Introduction to the C shell USD:4-23

3. Shellcontrol structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells todkedrio read and xecute com-
mands from these files, which are calill scripts. We here detail those features of the shell useful to
the writers of such scripts.

3.2. Make

It is important to first note what shell scripts a@ useful for There is a program callethale
which is \ery useful for maintaining a group of related files or performing sets of operations on related
files. For instance a lge program consisting of one or more files carelis dependencies described in a
malefile which contains definitions of the commands used to create thdseenliffles when changes
occur Definitions of the means for printing listings, cleaning up the directory in which the files reside, and
installing the resultant programs are eashd most appropriately placed in thiglefile This format is
superior and preferable to maintaining a group of shell procedures to maintain these files.

Similarly when vorking on a document malefile may be created which defineswhdifferent \er
sions of the document are to be created and which optionsfbbr troff are appropriate.

3.3. Invocation and the agv variable
A cshcommand script may be interpreted by saying

% csh script ...

wherescriptis the name of the file containing a groupcsificommands and *..is replaced by a sequence
of aguments. Theshell places these grments in the ariableargv and then bgins to read commands
from the script. These parameters are thesaikable through the same mechanisms which are used te refer
ence ay other shell ariables.

If you male the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at thgibaing of the shell script (i.e. g, the file with a ‘# character) then a
‘/bin/csh’ will automatically be imoked to execute ‘script’ when you type

script

If the file does not leen with a ‘# then the standard shell ‘/bin/sh’ will be usedstecate it. This allovs
you to conert your older shell scripts to usshat your comenience.

3.4. \Variable substitution

After each input line is bran into words and history substitutions are done on it, the input line is
parsed into distinct commandBefore each command igeeuted a mechanism kwoes variable substitu-
tion is done on theseavds. Keyed by the character ‘$’ this substitution replaces the namexiables by
their values. Thus

echo $agv

when placed in a command scrippwid cause the currenalie of the ariableargv to be echoed to the
output of the shell scriptlt is an error folargvto be unset at this point.

A number of notations are prialed for accessing components and aitdb of ariables. Thanota-
tion
$?name

expands to ‘1’ if name isetor to ‘0’ if name is noset. It is the fundamental mechanism used for checking
whether particularariables hae been assignedalues. Allother forms of reference to undefineatiables
cause errors.

uUsD:4-24 Anintroduction to the C shell

The notation
$#tname
expands to the number of elements in thdablename Thus

% st agv=(a b c)
% echo $?agv

1

% echo $#agv

3

% unset agv

% echo $?agv

0

% echo $agv
Undefined ariable: agv.
%

It is also possible to access the components afiabe which has seral values. Thus
Sagv[1]
gives the first component &drgv or in the @ample abwe ‘a’. Similarly
$agv[$#agv]
would give ‘c’, and
Sagv[1-2]
would give ‘a B. Other notations useful in shell scripts are
$n
wheren is an intger as a shorthand for
Sagv[n]
then th parameter and
$*
which is a shorthand for
$agv
The form
$$

expands to the process number of the current sBatice this process number is unique in the system it can
be used in generation of unique temporary file nariiég. form

$<

is quite special and is replaced by th&tdime of input read from the shalltandard input (not the script it
is reading). This is useful for writing shell scripts that are intenggtieading commands from the terminal,
or even writing a shell script that acts as a fijtexading lines from its input file. Thus the sequence

echo 'yes or no?\c’

set a=($<)
would write out the prompt ‘yes or no?’ without awiliee and then read the answer into tlagiable ‘a’.
In this case ‘$#a’ wuld be ‘0’ if either a blank line or end-of-file ("D)aw typed.

One minor diference between t$ and ‘$agv[n]’ should be noted hereThe form ‘$agv[n]’ will
yield an error ifnis not in the range ‘1-$#gw’ while ‘$n’ will never yield an out of range subscript error

An Introduction to the C shell USD:4-25

This is for compatibility with the ay older shells handled parameters.

Another important point is that it is ve¥ an eror to give a sibrange of the form ‘n-’; if there are
less tham components of the gn variable then no ards are substitutedA range of the form ‘m-n’
likewise returns an emptyeetor without gring an error whem exceeds the number of elements of the
given variable, preided the subscriptis in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possihlduate &pressions in
the shell based on thalues of ariables. Irfact, all the arithmetic operations of the language C weai¢- a
able in the shell with the same precedence thagthheein C. In particular the operations ‘=="and ‘1=’
compare strings and the operators ‘&&’ and’ implement the boolean and/or operatioithe special
operators ‘=" and ‘I’ are similar to ‘=="and ‘I="»xept that the string on the right side camehpattern
matching characters (E*, ? a []) and the test is whether the string on the left matches the pattern on the

right.
The shell also alles file enquiries of the form
—? filename
where ?’ is replace by a number of single charactEos.instance thexpression primitie
—e filename

tell whether the file ‘filename’xgsts. Otherprimitives test for read, write andxecute access to the file,
whether it is a directorpr has non-zero length.

It is possible to test whether a command terminates norrbgley primitive d the form ‘{ command
} which returns true, i.e. ‘1’ if the command succeexsieg normally with &it status 0, or ‘0’ if the com-
mand terminates abnormally or witkitestatus non-zerolf more detailed information about thgeeution
status of a command is required, it can keceted and theariable ‘$status’ Xamined in the ng com-
mand. Since$status’ is set bywery command, it is ery transient.It can be saed if it is incorvenient to
use it only in the single immediately folling command.

For a full list of expression componentyalable see the manual section for the shell.

3.6. Sampleshell script

A sample shell script which mak use of thexpression mechanism of the shell and some of its con-
trol structure follavs:

USD:4-26 Anintroduction to the C shell

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory “/backup if thyediffer from the files

dready in “/backup

#

set noglob

foreach i ($agv)

if ($i " *.c) continue # not a .c file so do nothing

if (! —r “/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp —s $i “/backup/$i:t # to set $status

if ($status != 0) then
echo n& backup of $i
cp $i “/backup/$i:t
endif
end

This script maks use of thdoreath command, which causes the shell i@oaite the commands
between thdoreac and the matchingndfor each of the alues gien between ‘(" and ‘)’ with the named
variable, in this case ‘i’ set to succesasivalues in the list.Within this loop we may use the command
breakto stop &ecuting the loop andontinueto prematurely terminate one iteration andibehe net.
After theforead loop the iteration ariable { in this case) has thealue at the last iteration.

We st the wariablenoglob here to preent filename rpansion of the members afgv. This is a
good idea, in general, if thegarments to a shell script are filenames whickehdready beenxpanded or
if the aguments may contain filenamepansion metacharactert.is also possible to quote each use of a
‘$’ variable e&pansion, bt this is harder and less reliable.

The other control construct used here is a statement of the form
if (expression Yhen
command
endif

The placement of theekwords here isiot flexible due to the current implementation of the shell.t
The shell does lva another form of the if statement of the form

if (expression rommand
which can be written
TThe follaving two formats are not currently acceptable to the shell:
if (expression) #Won't work!
then
command
endif

and

if (expression Yhen commandendif #Won't work

An Introduction to the C shell usD:4-27

if (expression)\
command

Here we hee escaped the ndine for the sak d appearance. Theommand must not wolve ‘|’, ‘&’ or
" and must not be another control commarithe second form requires the final ‘\'itomediately pre-
cede the end-of-line.

The more general statements alve dso admit a sequence else—if pairs follaved by a singlelse
and arendif e.g.:

if (expression Yhen
commands

else if(expression Yhen
commands

else
commands
endif

Another important mechanism used in shell scripts is the *:" modi¥és can use the modifier “:r’
here to ®tract a root of a filename or ‘e’ toteact theextension. Thus if the ariablei has the alue
‘‘mnt/foo.bar’ then

% echo $i $i:r $ice
/mnt/foo.bar /mnt/foo bar
%

shavs hav the ‘“:r' modifier strips df the trailing ‘.bar’ and the the “:e’ modifier s only the ‘bar’.
Other modifiers will tai& df the last component of a pathnamevieg the head “:h’ or all lt the last com-
ponent of a pathname lgag the tail “:t'. These modifiers are fully described in ttghmanual pages in
the Users Reference Manuallt is also possible to use tiktemmand substitutiomechanism described in
the net major section to perform modifications on strings to then reenter thessinglfonment. Since
each usage of this mechanismalves the creation of a weprocess, it is much morejgensve o use than

the modification mechanism. Finallwe rote that the character ‘# Xeally introduces a shell com-
ment in shell scripts (i not from the terminal) All subsequent characters on the input line after a ‘#’ are
discarded by the shelllhis character can be quoted using ‘"’ or ‘\' to place it in gument vord.

3.7. Othercontrol structures
The shell also has control structurdsile andswitch similar to those of CThese tak the forms

while (expression)
commands
end

and

T Itis dso important to note that the current implementation of the shell limits the number of " modifiers on a
‘$’ substitution to 1.Thus

% echo $i $i:h:t
la/blc /a/b:t
%

does not do what oneowld expect.

USD:4-28 Anintroduction to the C shell

switch (word)

casestrl:
commands
breaksw

casestrn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section ésh. C programmers should note that we bseakswto exit from a
switch while breakexits awhile or foread loop. Acommon mista& to make in cshscripts is to uséreak
rather tharbreakswin switches.

Finally, cshallows agotostatement, with labels looking gkhey do in C, i.e.:

loop:
commands
gotoloop

3.8. Supplyinginput to commands

Commands run from shell scripts raeeby default the standard input of the shell which is running
the script. This is diferent from preious shells running undemix. It allows shell scripts to fully partici-
pate in pipelines,ui mandatesxtra notation for commands which are toddakine data.

Thus we need a metanotation for supplying inline data to commands in shell s&sipis.ecample,
consider this script which runs the editor to delete leading blanks from the lines ingrankrarfile:

% cat deblank

deblank —— remee leading blanks
foreach i ($agv)

ed - $i << "EOF’

1,8s/ ¥

w

q

"EOF

end

%

The notation ‘<< "EOF"’ means that the standard input foethedmmand is to come from thexten the
shell script file up to the meline consisting of xactly “EOF". The fact that the ‘EOF’ is enclosed in
characters, i.e. quoted, causes the shell to not perfaniabile substitution on the int&ming lines.In gen-
eral, if ary part of the vord following the ‘<<’ which the shell uses to terminate thd te be gven to the
command is quoted then these substitutions will not be perfortnethis case since we used the form
‘1,$" in our editor script we needed to insure that this ‘@5wnot ariable substitutedWe uld also hee
insured this by preceding the ‘$’ here with a ‘\', i.e.:

1\$s/ 1*//

but quoting the ‘EOF’ terminator is a more reliableywf achiging the same thing.

An Introduction to the C shell USD:4-29

3.9. Catchinginterrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script so
that we can clean up these fil&&e an then do

onintr label

wherelabelis a label in our programif an interrupt is receed the shell will do a ‘goto label’ and we can
remove the temporary files and then do ext command (which is dilt in to the shell) to &t from the
shell script. If we wish to &it with a non-zero status we can do

exit(1)

e.g. to it with status ‘1'.

3.10. Whatelse?

There are other features of the shell useful to writers of shell procedlineszerboseand echo
options and the relateely and—x command line options can be used to help trace the actions of the shell.
The —n option causes the shell only to read commands and naedate them and may sometimes be of
use.

One other thing to note is theghwill not execute shell scripts which do notdie with the character
‘#', that is shell scripts that do notdia with a commentSimilarly, the ‘/bin/sh’ on your system may well
defer to ‘csh’ to interpret shell scripts whichgirewith ‘#’. This allons shell scripts for both shells todi
in harmolty.

an

There is also another quotation mechanism using " whichwvallanly some of thexpansion mech-
anisms we hae 9 far discussed to occur on the quoted string andesdovmak this string into a single
word as ' does.

USD:4-30 Anintroduction to the C shell

4. Other, less commonly used, shell featas

4.1. Loopsat the terminal; variables as \ectors

It is occasionally useful to use th@read control structure at the terminal to aid in performing a
number of similar commanddg:or instance, there were at one point three shells in use on theyQary
system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/cshTo count the number of persons using each shell
one could hee issued the commands

% grep —c csh$ /etc/passwd
27

% grep —c nsh$ /etc/passwd
128

% grep —c -v sh$ /etc/passwd
430

%

Since these commands aery similar we can us®read to do this more easily

% foreach i ("sh$” “csh$” "-v sh$")
? gep —c $i /etc/passwd

? end

27

128

430

%

Note here that the shell prompts for input with *? * when reading the body of the loop.

Very useful with loops areariables which contain lists of filenames or othe@rdg. You can, for
example, do

% set a=('Is")
% echo $a
csh.n csh.rm
% ls

csh.n

csh.rm

% echo $#a
2

%

The setcommand hereayethe \ariablea a list of all the filenames in the current directory atig. W
can then iteratever these names to performyachosen function.

The output of a command within ™’ characters isvated by the shell to a list ofards. You can
also place the *' quoted string within “” characters toetach (non-empty) line as a component of the
variable; prerenting the lines from being split intookds at blanks and tab# modifier “:x’ exists which
can be used later toxgand each component of thariable into anotherariable splitting it into separate
words at embedded blanks and tabs.

4.2. Braceq ... } in argument expansion

Another form of filename>gansion, alluded to beforevilves the characters ‘{" and ‘}.These
characters specify that the contained strings, separatetdrg to be consecwily substituted into the
containing characters and the resukgamded left to rightThus

A{strl,str2,...strn}B

expands to

An Introduction to the C shell uUsD:4-31

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filenampamsions, and may be applied rectdlyi (i.e. nested).
The results of eachxpanded string are sorted separatkdit to right order being presexd. Theresulting
filenames are not required teig if no other &pansion mechanisms are usdthis means that this mecha-
nism can be used to generatguaments which are not filenamest lvhich hae common parts.

A typical use of this wuld be
mkdir “/{hdrs,retrofit,csh}

to male subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directorihis mechanism is most useful
when the common prefix is longer than in thiaraple, i.e.

chown root /usr/{ucb/{e,edit},lib/{ex?.?* hav_ex}}

4.3. Commandsubstitution

A command enclosed in ' characters is replaced, just before filenamegparaled, by the output
from that commandThus it is possible to do

set pwd="pwd"
to save the current directory in theaviablepwdor to do
ex grep —-| TRACE *.c’

to run the editorex supplying as guments those files whose names end in ‘.c’ whicke Hae string
‘TRACE’ in them.*

4.4. Otherdetails not corered here

In particular circumstances it may be necessary tavkhe eact nature and order of tifent sub-
stitutions performed by the shellhe exact meaning of certain combinations of quotations is also occa-
sionally important.These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in wriikgprograms, and
delugging shell scriptsSee the csh(1) manual section for a list of these options.

Command &pansion also occurs in input redirected with ‘<<’ and within “ quotatioRsfer to the shell
manual section for full details.

uUsD:4-32 Anintroduction to the C shell

Appendix — Special characters

The following table lists the special characterssfiand theuNix system, giing for each the section(s) in
which it is discussedA number of these characters alswdgecial meaning inxgressions. Sethe csh
manual section for a complete list.

Syntactic metacharacters

; 2.4 separatesommands to bexecuted sequentially

| 15 separatesommands in a pipeline

() 2236 brackts expressions andariable \alues

& 2.5 follows commands to bexecuted without wvaiting for completion

Filename metacharacters

/ 1.6 separatesomponents of a file'pathname
1.6 separateot parts of a file name fronxtensions
’ 16 epansion character matchingyasingle character
* 1.6 epansion character matchingyasequence of characters
[] 1.6 epansion sequence matching/angle character from a set
~ 1.6 usedat the bginning of a filename to indicate home directories
{} 4.2 usedo specify groups of guments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of follang single character
1.7 prevents meta-meaning of a group of characters
" 4.3 like’, but allowvs variable and commandcgeansion

Input/output metacharacters

< 15 indicatesedirected input
> 1.3 indicategedirected output

Expansion/substitution metacharacters

$ 34 indicatewariable substitution

! 2.3 indicatesistory substitution

: 3.6 precedesubstitution modifiers

h 2.3 usedn special forms of history substitution
: 4.3 indicatescommand substitution

Other metacharacters

13,3.6 bgins scratch file names; indicates shell comments
- 1.2 prefives option (flag) @uments to commands
% 26 prefixes job name specifications

An Introduction to the C shell USD:4-33

Glossary

This glossary lists the most important terms introduced in the introduction to the sheNemefgi
erences to sections of the shell document for further information about tReferences of the form ‘pr
(1)’ indicate that the commargt is in theuNix User Reference manual in sectionYou can look at an
online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this manual.

Your current directory has the nameds well as the name printed by the command
pwd; see alsdalirs. The current directory’*is usually the firscomponentf the search
path contained in theaviablepath, thus commands which are inare found first (2.2).
The characteris dso used in separatimgpmponent®f filenames (1.6).The character

‘.’ at the bginning of acomponenbf a pathnames treated specially and not matched
by thefilename gpansionmetacharacters *?’, **’, and ‘[’ ']’ pairs (1.6).

Each directory has a file.in it which is a reference to its parent directoifter
changing into the directory witthdir, i.e.

chdir paper
you can return to the parent directory by doing

chdir ..

The current directory is printed fpyvd (2.7).

a.out Compilersvhich create xecutable images create them, byaidf, in the filea.out. for
historical reasons (2.3).

absolute pathname
A pathnamewhich beains with a ‘/’ isabsolutesince it specifies thpath of directories
from the bginning of the entire directory system — called ithat directory Pathname
which are notibsoluteare calledelative (see definition ofelative pathnamp(1.6).

alias Analias specifies a shorter or tfent name for aNnix command, or a transformation
on a command to be performed in the sh&le shell has a commaatias which estab-
lishesaliasesand can print their currentlues. Theommandunaliasis used to remee
aliases(2.4).

argument Commands UNIX receve a Ist of argumenwords. Thughe command

echoabc

consists of theommand namicho’ and threargumentwords ‘a’, ‘b’ and ‘c’. The set
of argumentsafter thecommand name said to be thargument listof the command
(1.2).

argv Thelist of aguments to a command written in the shell language (a shell script or shell
procedure) is stored in awable calledargv within the shell. This name is tadn from
the cowentional name in the C programming language (3.4).

background Commandstarted without &iting for them to complete are calléddkground com-
mands (2.6).

base Afilename is sometimes thought of as consisting lidisepart, before an‘.’ character
and anexension- the part after the’:. Seefilenameandexension(1.6) and basename
).

bg Thebg command causessaspendegbb to continue xecution in thebadground(2.6).

bin A directory containing binaries of programs and shell scripts toxé&ieed is typically

called abin directory The standard systehin directories are ‘/bin’ containing the most
heavily used commands and ‘/usr/bin” which contains most other user progiaras.
grams deeloped at UC Berdley live in ‘/usr/ucb’, while locally written programsvié in

UsD:4-34 Anintroduction to the C shell

‘lusr/local’. Gamesre lept in the directory ‘/usragmes’. You can place binaries inyan
directory If you wish to g&ecute them often, the name of the directories should be a
componenbf the \ariablepath

break Breakis a liltin command used toxé& from loops within the control structure of the
shell (3.7).
breaksw Thdreakswbuiltin command is used taxe from aswitch control structure, lik abreak

exits from loops (3.7).

builtin A command gecuted directly by the shell is calledailtin command. Mostommands
in UNIX are not hilt into the shell, bt rather gist as files irbin directories. Theseom-
mands are accessible because the directories in whighetfide are named in tipath

variable.

case Acasecommand is used as a label isvaitch statement in the shedloontrol structure,
similar to that of the language @etails are gien in the shell documentation ‘csh (1)’
(3.7).

cat Thecat program concatenates a list of specified files orstaedad output It is usu-
ally used to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8, 2.3).

cd The cd command is used to change tverking directory With no aguments,cd
changes youwworking directoryto be youthomedirectory (2.4, 2.7).

chdir Thechdir command is a syngm for cd. Cdis usually used because it is easier to type.

chsh Thechshcommand is used to change the shell which you usevon By default, you

use an dierent \ersion of the shell which resides in ‘/bin/siYou can change your
shell to ‘/bin/csh’ by doing

chsh yowlogin-name /bin/csh
Thus | would do
chsh bill /bin/csh

It is only necessary to do this onc&he net time you log in touNix after doing this
command, you will be usingshrather than the shell in ‘/bin/sh’ (1.9).

cmp Cmpis a program which compares filel.is usually used on binary files, or to see if
two files are identical (3.6)For comparing tet files the prograndiff, described in ‘dif
(1) is used.

command Afunction performed by the system, either by the shellu{léilocommangior by a pro-

gram residing in a file in a directory within th&ix system, is called @@mmand1.1).

command name
When a command is issued, it consists ecbmmand namewhich is the first wrd of
the command, follwed by aguments. Theorvention onunix is that the first wrd of a
command names the function to be performed (1.1).

command substitution
The replacement of a command enclosed in *’ characters byxtheutiput by that com-
mand is calledommand substitutio@.3).

component Apart of apathnamebetween /' characters is calleccamponentf thatpathname A
variable which has multiple strings aslwe is said to he ®veaal componers; each
string is acomponenof the \ariable.

continue Abuiltin command which causexeeution of the enclosindoread or while loop to
cycle prematurely Smilar to the continuecommand in the programming language C
(3.6).

control- Certainspecial characters, calledntol characters, are produced by holdingvdahe

CONTROL key on your terminal and simultaneously pressing another charameh like
the SHIFT key is used to produce upper case characters. Tohuasol-c is produced by

An Introduction to the C shell USD:4-35

core dump

cp

csh
.cshrc

cwd

date
delugging

default:

DELETE
detached

diagnostic

directory

directory stack

dirs
du

echo
else

holding davn thecoNTROL key while pressing the ‘c’ &y. Usually UNIX prints an caret
(") followed by the corresponding letter when you typmatrol character (e.g. “C’ for
contmwol-c (1.8).

When a program terminates abnormgathe system places an image of its current state
in a file named ‘core’.This core dumpcan be ramined with the system dedpger ‘adb

(1) or ‘'sdb (1)’ in order to determine what went wrong with the program (1f8he
shell produces a message of the form

lllegd instruction (core dumped)

(where ‘lllegd instruction’ is only one of seral possible messages), you should report
this to the author of the program or a system administisteng the ‘core’ file.

Thecp (copy) program is used to cgghe contents of one file into another filkkis one
of the most commonly usedix commands (1.6).

Thename of the shell program that this document describes.

Thefile .cshic in your homedirectory is read by each shell as iglms eecution. Itis
usually used to change the setting of thdablepathand to sealias parameters which
are to tak dfect globally (2.1).

Thecwd variable in the shell holds thebsolute pathnamef the currentvorking ditec-
tory. It is changed by the shell wheree your currentworking directory changes and
should not be changed otherwise (2.2).

Thedatecommand prints the current date and time (1.3).

Delugging is the process of correcting miséskin programs and shell scriptBhe shell
has seeral options and ariables which may be used to aid in skelugging (4.4).

Thelabel default: is used within shelswitch statements, as it is in the C language to
label the code to bexecuted if none of theaselabels matches thealue switched on
(3.7).

TheDELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job Mary users change the interrupt character to be "C.

Acommand that continues running in thadkground after you logout is said to be
detaded

Arerror message produced by a program is often referred tdiagnastic Most error
messages are not written to ttandad output since that is often directedvay from
the terminal (1.3, 1.5)Error messages are instead written todiagnostic outputvhich
may be directedveay from the terminal, lt usually is not. Thusdiagnosticswill usu-
ally appear on the terminal (2.5).

Astructure which contains filesAt any time you are in one particuldirectorywhose
names can be printed by the commamed The chdir command will change you to
anotherirectory, and male the files in thatirectoryvisible. Thedirectoryin which you
are when you first login is yolmomedirectory (1.1, 2.7).

The shell sees the names of pwous working directoriesin the directory stak when
you change your curremtorking directoryvia thepushdcommand. Thelirectory stak
can be printed by using tlters command, which includes your currembrking ditec-
tory as the first directory name on the left (2.7).

Thedirs command prints the shedklirectory stak (2.7).

Thedu command is a program (described in ‘du (1)) which prints the number of disk
blocks is all directories belpand including your currentvorking directory(2.6).

Theacho command prints its guments (1.6, 3.6).
Theelsecommand is part of the ‘if-then-else-eridibntrol command construct (3.6).

USD:4-36

endif

EOF

escape

/etc/passwd

exit

exit status

expansion

expressions

extension

fg

Anintroduction to the C shell

If anif statement is ended with theowd then al lines following theif up to a line start-
ing with the word endif or elseare eecuted if the condition between parentheses after
theif is true (3.6).

An endof-file is generated by the terminal by a control-d, and wyen@ command
reads to the end of a file which it has bearemgiss input. Commandseceving input
from a pipe receve an endof-file when the command sending them input completes.
Most commands terminate when yheceve an endof-file. The shell has an option to
ignoreendof-file from a terminal input which may help yoedp from logging out acci-
dentally by typing too mancontrol-d’s (1.1, 1.8, 3.8).

Acharacter '\’ used to pvent the special meaning of a metacharacter is sag$¢ape
the character from its special meanifthus

echo *
will echo the character *’ while just
echo *

will echo the names of the file in the current directdry this example, \escaps **

(1.7). Therds also a non-printing character callescape usually labelledesc or ALT-
MODE on terminal lkeyboards. Somelder UNIX systems use this character to indicate
that output is to bsuspended Most systems use control-s to stop the output and con-
trol-q to start it.

Thifile contains information about the accounts currently on the sydteconsists of
a line for each account with fields separated by ‘' characters (Yd&).can look at this
file by saying

cat /etc/passwd

The command§inger andgrep are often used to search for information in this fikee
‘finger (1), ‘passwd(5)’, and ‘grep (1)’ for more details.

The ext command is used to force termination of a shell script, andilisifito the shell
(3.9).

A command which disa@rs a problem may reflect this back to the command (such as a
shell) which ivoked (executed) it. It does this by returning a non-zero number asts
status a gatus of zero being considered ‘normal terminatiofhe ext command can be
used to force a shell command script teegh ron-zeroext status(3.6).

Thereplacement of strings in the shell input which contain metacharacters by other
strings is referred to as the procesgxfansion Thus the replacement of theowd *’

by a sorted list of files in the current directory is a ‘filenam@aasion’. Similarlythe
replacement of the characters ‘I’ by thattef the last command is a ‘historxpan-

sion’. Expansionsre also referred to asibstitutiong1.6, 3.4, 4.2).

Expressionsare used in the shell to control the conditional structures used in the writing
of shell scripts and in calculatingalues for these scriptsThe operators\ailable in
shellexpressionsare those of the language C (3.5).

Filenamesften consist of dasename and aexensionseparated by the character .
By corvention, groups of related files often share the senename. Thusf ‘prog.c’
were a C program, then the object file for this programule be stored in ‘prog.o’.
Similarly a paper written with the ‘-me’ nfofmacro package might be stored in
‘paperme’ while a formattedersion of this paper might beft in ‘papeout’ and a list
of spelling errors in ‘papearrs’ (1.6).

Thejob contol commandfg is used to run dadkgroundor suspendegbb in thefore-
ground(1.8, 2.6).

An Introduction to the C shell uUsD:4-37

filename

Eaclfile in uNix has a name consisting of up to 14 characters and not including the
character ‘/’ which is used ipathnamebuilding. Mostfilenamesdo not bgin with the
character ', and contain only letters and digits with perhaps aeparating thébase
portion of thefilenamefrom anexension(1.6).

filename &pansion

flag

foreach

foreground

goto

grep

head

history

home directory

Filename gpansionuses the metacharacters **’, *?’ and ‘[and ‘]’ to pigde a con-
venient mechanism for naming filetlsingfilename gpansionit is easy to name all the
files in the current directorgr al files which hae a @mmonroot name. Othefilename
expansionmechanisms use the metacharacter “” andwafites in other users’ directo-
ries to be named easily (1.6, 4.2).

Mary UNIX commands acceptguments which are not the names of files or other users
but are used to modify the action of the commandbkese are referred to #iag options,

and by comention consist of one or more letters preceded by the character ‘=’ (1.2).
Thus thds (list files) command has an option ‘=S’ to list the sizes of filHss is speci-

fied

Is -s

Thdoreadh command is used in shell scripts and at the terminal to specify repetition of
a ®quence of commands while thalue of a certain shellaviable ranges through a
specified list (3.6, 4.1).

Whercommands arexecuting in the normal ay such that the shell isating for them
to finish before prompting for another commandythee said to bdoregound jobsor
running in the foegound This is as opposed tmadkground Foregroundjobs can be
stopped by signals from the terminal caused by typirfgréiiit control characters at the
keyboard (1.8, 2.6).

Theshell has a commangbto used in shell scripts to transfer control to eegilabel
(3.7).

Thegrepcommand searches through a list gfuanent files for a specified stringhus
grep bill /etc/passwd

will print each line in the filéetc/passwavhich contains the string ‘bill’ Actually, grep
scans forregular expressionsin the sense of the editors ‘ed (1) and ‘@). Grep
stands for ‘globally findegular expressionand print’ (2.4).

Théheadcommand prints the first\ielines of one or more filedf you have a lunch of
files containing tet which you are wndering about it is sometimes useful to head
with these files as guments. Thiill usually shav enough of what is in these files to
let you decide which you are interested in (1.5).

Headis also used to describe the part giathnamebefore and including the last ‘/
character Thetail of apathnamds the part after the last ‘/'The :h’ and “:t' modifiers
allow theheador tail of apathnamestored in a shellariable to be used (3.6).

Thehistory mechanism of the shell alie previous commands to be repeated, possibly
after modification to correct typing misekor to change the meaning of the command.
The shell has history listwhere these commands aepk and distoryvariable which
controls hav lamge this list is (2.3).

Each user has bhome diectory, which is gven in your entry in the passwd file,
letc/passwd This is the directory which you are placed in when you first logime cd
or chdir command with no guments tag&s you back to this directorwhose name is
recorded in the shellaviablehome You can also access theme diectoriesof other
users in forming filenames usingfilename gpansionnotation and the character
(1.6).

USD:4-38

ignoreeof

input

interrupt

job

job control

job number

jobs
kill

Jogin

login shell

logout

Jlogout

Anintroduction to the C shell

A conditional command within the shell, tifecommand is used in shell command
scripts to ma& decisions about what course of action tcetadxt (3.6).

Normallyyour shell will &it, printing ‘logout’ if you type a control-d at a prompt of ‘%
". This is the way you usually log dfthe system.You can setthe ignoreeofvariable if
you wish in your.login file and then use the commalodoutto logout. This is useful if
you sometimes accidentally type too maontrol-d characters, logging yourselff of
(2.2).

Mary commands oruNix take information from the terminal or from files which yhe
then act on.This information is calledhput Commands normally read famput from
their standad inputwhich is, by dedult, the terminal.This standad inputcan be redi-
rected from a file using a shell metanotation with the characterMany commands
will also read from a file specified agament. Commandslaced inpipelineswill read
from the output of the pvéous command in thpipeline The leftmost command in a
pipelinereads from the terminal if you neither redirectifgut nor give it a flename to
use asstandad input Special mechanismsxist for supplying input to commands in
shell scripts (1.5, 3.8).

Aninterruptis a signal to a program that is generated by typing "C. (On otdlgions

of UNIX the RuBoUT or DELETE key were used for this purposel) causes most pro-
grams to stop>@cution. Certairprograms, such as the shell and the editors, handle an
interrupt in special vays, usually by stopping what there doing and prompting for
another commandWhile the shell is xecuting another command andiiting for it to
finish, the shell does not listen taterrupts. The shell often wkes up when you hit
interruptbecause mancommands die when thi@eceve aninterrupt (1.8, 3.9).

Oneor more commands typed on the same input line separated by ‘|’ or ‘;’ characters are
run together and are calledab. Simple commands run by themsedswithout ay ‘|’

or ‘;’ characters are the simplgebs. bbsare classified aforegound, badground or
suspended?.6).

The huiltin functions that control thexecution of jobs are calleb contol commands.
These ardg, fg, dop, kill (2.6).

When each job is started it is assigned a small humber cajtenl rumberwhich is
printed nat to the job in the output of tjebscommand. Thisiumber preceded by a
‘%’ charactey can be used as angament tgob contiol commands to indicate a specific
job (2.6).

Thejobscommand prints a table shimg jobs that are either running in thadkground
or aresuspende?.6).

A command which sends a signal to a job causing it to terminate (2.6).

Thefile .login in your homedirectory is read by the shell each time you logiutmx
and the commands there are@ited. Therare a number of commands which are use-
fully placed here, especialfetcommands to the shell itself (2.1).

The shell that is started on your terminal when you login is calledlggiur shell It is
different from other shells which you may run (e.g. on shell scripts) in that it reads the
.login file before reading commands from the terminal and it readdotpeut file after

you logout (2.1).

Thelogoutcommand causes a login shell tate Normally, alogin shell will eit when
you hit control-d generating amdof-file, but if you have tignoreeofin you.login file
then this will not verk and you must udegoutto log of theuNix system (2.8).

Whenyou log of uNix the shell will &ecute commands from the fillogoutin your
homedirectory after it prints ‘logout’.

The commandipr is the line printer daemonThe standard input dpr spooled and
printed on theuNix line printer You can also gk Ipr a list of filenames as guments to
be printed.It is most common to udpr as the last component op#eline(2.3).

An Introduction to the C shell USD:4-39

Is Thels (list files) command is one of the most commonly ugeik commands. \lth no
argument filenames it prints the names of the files in the current dire¢tdws a num-
ber of usefulflag aguments, and can also bes@i the names of directories asggar
ments, in which case it lists the names of the files in these directories (1.2).

mail Themail program is used to send and reeairessages from othenix users (1.1, 2.1),
whether thg are logged on or not.

malke The male command is used to maintain one or more related files andjaoize func-
tions to be performed on these filda.mary waysmale is easier to use, and more help-
ful than shell command scripts (3.2).

malefile Thefile containing commands fonale is calledmalefile or Makefile (3.2).

manual Themanualoften referred to is thesNix manual’. ltcontains 8 numbered sections with
a description of eacluNix program (section 1), system call (section 2), subroutine (sec-
tion 3), deice (section 4), special data structure (section &neg(section 6), miscella-
neous item (section 7) and system administration program (sectiofh8)e are also
supplementary documents (tutorials and reference guides) feidinali programs which
require gplanation in more detail,An online \ersion of themanual is accessible
through themancommand. Itglocumentation can be obtained online via

man man

If you cant decide what manual page to look in, try #popog1) command.The sup-
plementary documents are in subdirectories of /usr/doc.

metacharacter

Many characters which are neither letters nor digitgehgpecial meaning either to the
shell or touNix. These characters are callegtabaracters. If it is necessary to place
these characters ingquments to commands without thenving their special meaning
then thg must bequoted An example of ametadaracteris the character >’ which is
used to indicate placement of output into a fitl@r the purposes of thieistory mecha-
nism, most unquotethetadaracters form separate ards (1.4). The appendix to this
users manual lists thenetaharactersin groups by their function.

mkdir Themkdircommand is used to create awrdirectory.

modifier Substitutionswith the history mechanism, &yed by the character ‘'or of variables
using the metacharacter ‘$’, are often subjected to modifications, indicated by placing
the character *’ after the substitution and faling this with themodifieritself. The
command substitutiomechanism can also be used to perform modification in a similar
way, but this notation is less clear (3.6).

more Theprogrammore writes a file on your terminal allng you to control hev much text
is displayed at a timeMore can mae through the file screen-full by screen-full, line by
line, search forard for a string, or start ag at the bginning of the file.It is generally
the easiest ay of viaving a file (1.8).

noclobber Theshell has aariablenoclobberwhich may be set in the filéogin to prevent acciden-
tal destruction of files by the >’ output redirection metasyntax of the shell (2.2, 2.5).

noglob Theshell \ariablenoglobis set to suppress tfilename gpansionof amuments contain-
ing the metacharacters ™, *', *?’, ‘' and ‘]’ (3.6).

notify Thenotify command tells the shell to report on the termination of a spéeifiground
job at the &act time it occurs as opposed taiting until just before the méprompt to
report the terminationThe notify variable, if set, causes the shell tovays report the
termination ofbadgroundjobs eactly when thg occur (2.6).

onintr Theonintr command is bilt into the shell and is used to control the action of a shell
command script when anterrupt signal is receied (3.9).

output Maly commands iruNix result in some lines oferruchjalrl? called themutput. This
outputis usually placed on what is ko as thestandar

USD:4-40

path

pathname

pipeline

popd

port

pr

printerv

process

Anintroduction to the C shell

connected to the userterminal. Theshell has a syntax using the metacharacter ‘>’ for
redirecting thestandad outputof a command to a file (1.3)Jsing thepipe mechanism
and the metacharacter ‘|’ it is also possible fordfamdad output of one command to
become thestandad input of another command (1.5)Certain commands such as the
line printer daemop do not place their results on te@ndad outputbut rather in more
useful places such as on the line printer (2Simnilarly thewrite command places its
output on another ussrterminal rather than itstandad output (2.3). Commandslso
have adiagnostic outputvhere thg write their error messagesdlormally these go to the
terminal &en if the standad outputhas been sent to a file or another commautlit lis
possible to direct error diagnostics along vatAndad outputusing a special metanota-
tion (2.5).

Theshell has a ariable path which gives the names of the directories in which it
searches for the commands which it igegi It always checks first to see if the com-
mand it is gven is kuilt into the shell.If it is, then it need not search for the command as
it can do it internally If the command is notuiltin, then the shell searches for a file
with the name gien in each of the directories in ttgathvariable, left to right. Since the
normal definition of thgathvariable is

path (./usr/ucb /bin /usr/bin)

the shell normally looks in the current directayd then in the standard system directo-
ries ‘/usr/ucb’, ‘/bin’ and ‘/usr/bin’ for the named command (2.Rthe command can-
not be found the shell will print an error diagnostfcripts of shell commands will be
executed using another shell to interpret them if/thave‘execute’ permission setThis

is normally true because a command of the form

chmod 755 script

was executed to turn thisecute permission on (3.3)f you add n&v commands to a
directory in thepath you should issue the commarathash(2.2).

Alist of names, separated by ‘/' characters, formpathname Each component,
between succes& '/’ characters, names a directory in which th&tr@mponenfile
resides.Pathnamesavhich bayin with the character '/’ are interpreted relatio theroot
directory in the filesystemOtherpathnamesre interpreted relag © the current direc-
tory as reported bpwd. The last component of @athnamemay name a directoryput
usually names a file.

Agroup of commands which are connected togetherstandad output of each con-
nected to thestandad inputof the nat, is called gipeline The pipe mechanism used
to connect these commands is indicated by the shell metacharacter ‘| (1.5, 2.3).

Thepopd command changes the sheNvorking directory to the directory you most
recently left using theushdcommand. Ireturns to the directory without Wiag to type
its name, fagetting the name of the currembrking directorybefore doing so (2.7).

Thepart of a computer system to which each terminal is connected is cplbet &Jsu-

ally the system has a &4 number oports some of which are connected to telephone
lines for dial-up access, and some of which are permanently wired directly to specific
terminals.

Thepr command is used to prepare listings of the contents of files with headers gi
the name of the file and the date and time at which the d¢dlast modified (2.3).

Theprinterv command is used to print the current settingasfables in the efronment
(2.8).

Arinstance of a running program is callegracesy2.6). UNIX assigns eacprocessa
unigue number when it is started — called phecess numberProcess numbercan be
used to stop ingidual processesising thekill or stopcommands when thgrocessesre
part of a detacheldad<groundjob.

An Introduction to the C shell uUsD:4-41

program

prompt

pushd

ps

pwd
quit

guotation

redirection

rehash

Usuallysynorymous withcommang a hnary file or shell command script which per
forms a useful function is often calleghegram.

Maty programs will print aprompton the terminal when tlgeexpect input. Thus the
editor ‘ex (1) will print a " when it expects input.The shellpromptsfor input with ‘%
" and occasionally with *? * when reading commands from the terminal (TH¢.shell
has a wariablepromptwhich may be set to a f#rent \alue to change the shsllimain
prompt This is mostly used when dedpging the shell (2.8).

Thepushdcommand, which means ‘push directory’, changes the skalking direc-
tory and also remembers the curremrking directorybefore the change is made, allo
ing you to return to the same directory via fegdcommand later without retyping its
name (2.7).

Thepscommand is used to slvdhe processes you are currently runni@ch process

is shavn with its unique process numben indication of the terminal name it is
attached to, an indication of the state of the process (whether it is running, stopped,
awadting some gent (sleeping), and whether it is apped out), and the amount @#u

time it has used s@af The command is identified by printing some of therdg used

when it was irvoked (2.6). Shellssuch as theshyou use to run thps command, are

not normally shavn in the output.

Thepwd command prints the fulpathnameof the currentworking directory The dirs
builtin command is usually a better arasster choice.

Thequit signal, generated by a control-\, is used to terminate programs which ave beha
ing unreasonablylt normally produces a core image file (1.8).

Theprocess by which metacharacters arevgred their special meaning, usually by
using the character “ in pairs, or by using the character V', is referreddooéation
a.7).

Theouting of input or output from or to a file is kmo asredirectionof input or output
(1.3).

Theehashcommand tells the shell to n@ld its internal table of which commands are
found in which directories in youpath This is necessary when awrogram is
installed in one of these directories (2.8).

relative papthname

repeat

root

RUBOUT

scratch file

script

A pathnamewhich does not lgn with a /' is called arelative pathnamesince it is
interpretedelative to the currenworking directory The firstcomponenof such gpath-
namerefers to some file or directory in tleorking directory, and subsequertompo-
nentsbetween ‘/' characters refer to directories bethe working directory Pathnames
that are notelative are calledabsolute pathname4.6).

Theepeatcommand iterates another command a specified number of times.

Thedirectory that is at the top of the entire directory structure is calleddhdirectory
since it is the ‘root’ of the entire tree structure of directorieke name used ipath-
namedo indicate theootis /. Pathnamesstarting with ‘/" are said to babsolutesince
they start at theroot directory Rootis also used as the part opathnamethat is left
after remeing theexension Seefilenamefor a further gplanation (1.6).

The RUBOUT or DELETE key is dten used to erase the pieusly typed character; some
users prefer theacksmce for this purpose.On older \ersions ofunix this key erved
as theNTr character

Files whose names bi@ with a ‘#' are referred to ascratch files since the are auto-
matically remeed by the system after a couple of days of non-use, or more frequently if
disk space becomes tight (1.3).

Sequencesf shell commands placed in a file are called shell commsarigts It is
often possible to perform simple tasks using ttsesptswithout writing a program in a

UsD:4-42 Anintroduction to the C shell

language such as C, by using the shell to selbgtiun other programs (3.3, 3.10).

set Thebuiltin setcommand is used to assignanealues to shell ariables and to skothe
values of the currentariables. Maw shell variables hae gecial meaning to the shell
itself. Thusby using thesetcommand the bekar of the shell can be fafcted (2.1).

seten Variables in the afronment ‘ewiron (5)' can be changed by using theten builtin
command (2.8).The printernv command can be used to print ttedue of the ariables in
the ewironment.

shell A shellis a command language interpretér is possible to write and run youmm
shell as shellsare no diferent than apother programs asf as the system is concerned.
This manual deals with the details of one particskeail calledcsh.

shell script Seescript (3.3, 3.10).

signal Asignalin UNIX is a short message that is sent to a running program which causes some-
thing to happen to that procesSignalsare sent either by typing specaintrol charac-
ters on the &yboard or by using thkill or stopcommands (1.8, 2.6).

sort Thesort program sorts a sequence of lines isys that can be controlled bygament
flags(1.5).
source Thesource command causes the shell to read commands from a specifidltl iflenost

useful for reading files such ashc after changing them (2.8).

special character
Seemetatharacters and the appendix to this manual.

standard W refer often to thestandad input and standad output of commands.Seeinput and
output(1.3, 3.8).
status Acommand normally returns statuswhen it finishes.By corvention astatusof zero

indicates that the command succeed€dmmands may return non-zestatusto indi-
cate that some abnormaleat has occurredThe shell ariablestatusis set to thestatus
returned by the last commantl.is most useful in shell command scripts (3.6).

stop Thestopcommand causesbadgroundjob to becomeuspende?.6).

string A sequential group of characters @¢aktogether is called string. Stringscan contain
ary printable characters (2.2).

stty Thestty program changes certain parameters insid& which determine he your ter
minal is handled See ‘stty (1)’ for a complete description (2.6).

substitution Theshell implements a number sd@ibstitutionsvhere sequences indicated by metachar

acters are replaced by other sequendastable gamples of this are histosubstitution
keyed by the metacharacter ‘" andnablesubstitutionindicated by ‘$’. We dso refer
to substitutionsaasexpansiony3.4).

suspended Aob becomesuspendedfter astop signal is sent to it, either by typingcantmol-z at
the terminal (forforegound jobs) or by using thetopcommand (fobadkgroundjobs).
Whensuspendeda job temporarily stops running until it is restarted by eitherfghar
bgcommand (2.6).

switch Theswitch command of the shell alies the shell to select one of a number of sequences
of commands based on argament string.It is similar to theswitch statement in the
language C (3.7).

termination Whera oommand which is beingxecuted finishes we say it undeesterminationor
terminates. Commands normally terminate when ytheead anendof-file from their
standad input It is dso possible to terminate commands by sending themtamupt
or quit signal (1.8). Thekill program terminates specified jobs (2.6).

then Thethen command is part of the shall’if-then-else-endif'control construct used in
command scripts (3.6).

An Introduction to the C shell USD:4-43

time

tset

tty

unalias
UNIX

unset

Thetime command can be used to measure the amourrwénd real time consumed
by a specified command as well as the amount of disk i/o, memory utilized, and number
of page &ults and saps takn by the command (2.1, 2.8).

Thetsetprogram is used to set standard erase and kill characters and to tell the system
what kind of terminal you are usindt is often irvoked in a.login file (2.1).

Theword tty is a historical abbkeation for ‘teletype’ which is frequently used imnix
to indicate theport to which a gven terminal is connectedThe tty command will print
the name of théy or port to which your terminal is presently connected.

Thaunaliascommand remees diases (2.8).

UNIX is an operating system on whickhruns. UNIX provides Bcilities which allev csh
to invoke aher programs such as editors and fermatters which you may wish to use.

Thainsetcommand remees the definitions of shellariables (2.2, 2.8).

variable xpansion

variables

verbose

wcC

while
word

Seevariablesandexpansion(2.2, 3.4).

Variablesin cshhold one or more strings aalue. Themost common use efriablesis

in controlling the behaor of the shell. Seepath noclobbey and ignoreeoffor exam-
ples. Variables such asargv are also used in writing shell programs (shell command
scripts) (2.2).

Theverboseshell variable can be set to cause commands to be echoed afteraties-
tory expanded. Thigs often useful in dalgging shell scriptsThe verbosevariable is
set by the sheld'—v command line option (3.10).

Thewc program calculates the number of charactesdeg; and lines in the files whose
names are gen as aguments (2.6).

Thewhile builtin control construct is used in shell command scripts (3.7).
A sequence of characters which forms aguarent to a command is calledward.

Many characters which are neither letters, digits, ‘*’'nor ‘/’ form wordsall by them-
seles &en if they are not surrounded by blank#ny sequence of characters may be
made into avord by surrounding it with *’ charactersceept for the characters “’ and
‘I which require special treatment (1.1)Yhis process of placing special characters in

wordswithout their special meaning is callgdoting

working directory

write

At ary given time you are in one particular directpigalled yourworking directory.
This directorys name is printed by thpwd command and the files listed by/are the
ones in this directoryYou can changeorking directoriesusingchdir.

The write command is an obsoleteaw of communicating with other users who are
logged in touNix (you hare o take turns typing). If you are both using display termi-
nals, usealk(1), which is much more pleasant.

