A Fast File System ér UNIX*

Marshall Kirk McKusidk, Wiliam N. Joyt,
Samuel JLefflert, Robert S. &bry

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, CA 94720

ABSTRAT

A reimplementation of the UNIX file system is describ&dhe reimplementation
provides substantially higher throughput rates by using moxéfeallocation policies
that allav better locality of reference and can be adapted to a wide range of peripheral
and processor characteristic¥he nev file system clusters data that is sequentially
accessed and prigles two block sizes to allw fast access to Ige files while not asting
large amounts of space for small fileésile access rates of up to ten timastér than the
traditional UNIX file system arexperienced. Longheeded enhancements to the pro-
grammers’ interdce are discussed.hese include a mechanism to place advisory locks
on files, atensions of the name space across file systems, the ability to use long file
names, and prisions for administratie antrol of resource usage.

Revised February 18, 1984

CR Catgories and Subject Descriptors: D.4@perating Systems] File Systems Management fite
organization, diectory structues, access methgdd.4.2 [Operating Systems] Storage Management —
allocation/deallocation sategies, secondary stage avices D.4.8 [Operating Systems] Performance -
measuements, opational analysisH.3.2[Inf ormation Systems] Information Storage file organization

Additional Keywords and Phrases: UNIX, file systenganization, file system performance, file system
design, application program intade.

General €rms: file system, measurement, performance.

* UNIX is a trademark of Bell Laboratories.

T William N. Joy is aurrently emplged by: Sun Microsystems, Inc, 2550 Garciserfue, Mountain ew, CA
94043

F Samuel J. Ldfer is currently empliged by: Lucasfilm Ltd., PO Box 2009, San &elf CA 94912

This work was done under grants from the National Sciermen#ation under grant MCS80-05144, and the
Defense Adance Research Projects Aggri®oD) under ARR Order No. 4031 monitored by Ma Elec-
tronic System Command under Contract No. NO0039-82-C-0235.

SMM:05-2 AFast File System fouNix

TABLE OF CONTENTS

1. Introduction
2. Oldfile system

3. Newfile system oganization
3.1. Optimizingstorage utilization
3.2. Filesystem parameterization
3.3. Layoutpolicies

4. Performance

5. File system functional enhancements
5.1. Longfile names

5.2. Filelocking

5.3. Symbolidinks

5.4. Rename

5.5. Quotas

Acknowledgements

References

1. Introduction

This paper describes the changes from the original 512 byte UNIX file system towthenae
released with the 4.2 Bezley Software Distritution. It presents the mafitions for the changes, the meth-
ods used to &ct these changes, the rationale behind the design decisions, and a description wf the ne
implementation. Thisliscussion is follwed by a summary of the results thavddeen obtained, direc-
tions for future work, and the additions and changes thaeHzen made to thatilities that are\ailable
to programmers.

The original UNIX system that runs on the PDP-111 has simple agehtefde system dcilities.
File system input/output isuffered by the &rnel; there are no alignment constraints on data transfers and
all operations are made to appear synchrondlistransfers to the disk are in 512 byte blocks, which can
be placed arbitrarily within the data area of the file syst¥mtually no constraints other thawadable
disk space are placed on file gth [Ritchie74], [Thompson78].*

When used on theAX-11 together with other UNIX enhancements, the original 512 byte UNIX file
system is incapable of pridling the data throughput rates that mapplications require.For example,
applications such as VLSI design and image processing do a small amount of processingeoqueitei-
ties of data and need toveaa high throughput from the file systeniligh throughput rates are also needed
by programs that map files from the file system intgdarrtual address spaceBaging data in and out of
the file system is liély to occur frequently [Ferrin82bIThis requires a file system piding higher band-
width than the original 512 byte UNIX one that yires only about te percent of the maximum disk
bandwidth or about 20 kilobytes per second per arm [White80], [Smith81b].

Modifications hae been made to the UNIX file system to impedts performance Since the UNIX
file system intedice is well understood and not inherentlyaslthis development retained the abstraction
and simply changed the underlying implementation to increase its througbpusequentlyusers of the
system hee rot been &ced with masse oftware comersion.

Problems with file system performancevéabeen dealt with xensvely in the literature; see
[Smith81a] for a sumy. Previous work to impraze the UNIX file system performance has been done by
[Ferrin82a]. TheUNIX operating system dve mary of its ideas from Multics, a lge, high performance

T DEC, PDRVAX, MASSBUS, and UNIRJS are trademarks of Digital Equipment Corporation.
* | n practice, a files 9ze is constrained to be less than about onehyig.

A Fast File System fouNix SMM:05-3

operating system [Feiertag71Qther work includes Hydra [Almes78], Spice [Thompson80], and a file sys-
tem for a LISP evironment [Symbolics81].A good introduction to the pisical latencies of disks is
described in [Pechura83].

2. Old File System

In the file system deloped at Bell Laboratories (thé&raditional” file system), each disk d& is
divided into one or more partition&€ach of these disk partitions may contain one file syst#irfile sys-
tem neer spans multiple partitions.1A file system is described by its sufpdock, which contains the
basic parameters of the file systefrhese include the number of data blocks in the file system, a count of
the maximum number of files, and a pointer toftke list a linked list of all the free blocks in the file sys-
tem.

Within the file system are fileCertain files are distinguished as directories and contain pointers to
files that may themsedg be directoriesEvery file has a descriptor associated with it calleéhade An
inode contains information describingvieership of the file, time stamps marking last modification and
access times for the file, and an array of indices that point to the data blocks for tRerfitee purposes
of this section, we assume that the first 8 blocks of the file are directly referencallidxy stored in an
inode itself*. An inode may also contain references to indirect blocks containing further data block indices.
In a file system with a 512 byte block size, a singly indirect block contains 128 further block addresses, a
doubly indirect block contains 128 addresses of further singly indirect blocks, and a triply indirect block
contains 128 addresses of further doubly indirect blocks.

A 150 meaabyte traditional UNIX file system consists of 4 gabytes of inodes follwed by 146
megabytes of data.This oganization sgregates the inode information from the data; thus accessing a file
normally incurs a long seek from the fdghode to its dataFiles in a single directory are not typically
allocated consecuw# dots in the 4 mgabytes of inodes, causing manon-consecutie Hocks of inodes to
be accessed whereeuting operations on the inodes ovaal files in a directory

The allocation of data blocks to files is also suboptimdime traditional file system mer transfers
more than 512 bytes per disk transaction and often finds thatxheawiential data block is not on the
same glinder, forcing seeks between 512 byte transf@ise combination of the small block size, limited
read-ahead in the system, and gnsaeks seerely limits file system throughput.

The first work at Berleley on the UNIX file system attempted to imme both reliability and
throughput. Theeliability was improed by staging modifications to critical file system information so
that the could either be completed or repaired cleanly by a program after a crastgki78]. Thefile
system performanceas impraoed by a factor of more than tavby changing the basic block size from 512
to 1024 bytes.The increase as because of mwfactors: each disk transfer accessed twice as much data,
and most files could be described without need to access indirect blocks since the direct blocks contained
twice as much dataThe file system with these changes will henceforth be referred to alslthile system.

This performance impx@ment gvea drong indication that increasing the block sizaswa good
method for impreing throughput.Although the throughput had doubled, the old file syste® still using
only about four percent of the disk bandwidifhe main problem as that although the free listaw ini-
tially ordered for optimal access, it quickly became scrambled as files were created ared.reffventu-
ally the free list became entirely random, causing files @ tteeir blocks allocated randomlyer the
disk. Thisforced a seek beforer@ry block accessAlthough old file systems pvided transfer rates of up
to 175 kilobytes per second whenyheere first created, this rate deteriorated to 30 kilobytes per second
after a fev weeks of moderate use because of this randomization of data block plac@imengt.vas no
way of restoring the performance of an old file systewept to dump, rabld, and restore the file system.
Another possibility as aiggested by [Maruyama76], onld be to hee a pocess that periodically

T By “partition” here we refer to the subiion of plysical space on a disk de In the traditional file sys-
tem, as in the nefile system, file systems are really located in logical disk partitions that vedgm This
overlapping is madeailable, for k<ample, to allav programs to copentire disk drves containing multiple file
systems.

* The actual number maywy from system to systemytas usually in the range 5-13.

SMM:05-4 AFast File System fouNix

reoganized the data on the disk to restore locality

3. Newfile system oganization

In the nev file system aganization (as in the old file systemganization), each disk dré mntains
one or more file system@ file system is described by its supdock, located at the ening of the file
system$ dsk partition. Because the supétock contains critical data, it is replicated to proteciiast
catastrophic lossThis is done when the file system is created; since the-blgmr data does not change,
the copies need not be referenced unless a head crash or other hard disk error cauaak Hupeitock
to be unusable.

To insure that it is possible to create files agdaas 2 bytes with only tw levds of indirection, the
minimum size of a file system block is 4096 byt&he size of file system blocks can bg @ower of two
greater than or equal to 4098he block size of a file system is recorded in the file systamperblock so
it is possible for file systems with tBfent block sizes to be simultaneously accessible on the same system.
The block size must be decided at the time that the file system is created; it cannot be subsequently changed
without rehluilding the file system.

The nev file system aganization dvides a disk partition into one or more areas catigithder
groups A cylinder group is comprised of one or more consgeutylinders on a disk.Associated with
each glinder group is some bookkping information that includes a redundantycoipthe supeiblock,
space for inodes, a bit map describingilable blocks in the yinder group, and summary information
describing the usage of data blocks within thiender group. The bit map of @ailable blocks in theyin-
der group replaces the traditional file systefree list. For each glinder group a static number of inodes
is allocated at file system creation timEhe deéult poligy is to dlocate one inode for each 2048 bytes of
space in theyinder group, Bpecting this to bear more than will eer be needed.

All the cylinder group book&eping information could be placed at thgibaing of each yinder
group. Havever if this approach were used, all the redundant informatimuldivbe on the top platteiA
single hardware filure that destied the top platter could cause the loss of all redundant copies of the
superblock. Thusthe glinder group book&eping information ligns at a arying ofset from the bgin-
ning of the glinder group. The ofset for each successicylinder group is calculated to be about one track
further from the bginning of the glinder group than the precedingliader group. In this way the redun-
dant information spirals @ into the pack so that asingle track, glinder, or platter can be lost without
losing all copies of the supbtock. Excepfor the first glinder group, the space between thgibring of
the g/linder group and the lganing of the glinder group information is used for data blocks.t

3.1. Optimizing storage utilization

Data is laid out so that Iger blocks can be transferred in a single disk transaction, greatly increasing
file system throughputAs an eample, consider a file in thewdile system composed of 4096 byte data
blocks. Inthe old file system this file @uld be composed of 1024 byte blocly increasing the block
size, disk accesses in theanile system may transfer up to four times as much information per disk trans-
action. Inlarge files, seeral 4096 byte blocks may be allocated from the saytieder so that een lamger
data transfers are possible before requiring a seek.

The main problem with lger blocks is that most UNIX file systems are composed o/ reaall
files. Auniformly large block size astes spaceTable 1 shavs the effect of file system block size on the
amount of vasted space in the file systeffhe files measured to obtain these figures reside on one of our

T While it appears that the firsylonder group could be laid out with its sugsock at the ‘known” | ocation,

this would not vork for file systems with blocks sizes of 16 kilobytes or gredfars is because of a require-
ment that the first 8 kilobytes of the disk be resdrior a bootstrap program and a separate requirement that the
cylinder group information kggn on a file system block boundaryo gart the glinder group on a file system
block boundaryfile systems with block sizes ¢mr than 8 kilobytes ould hae b leave an empty space
between the end of the boot block and thgifireng of the glinder group. Without knaving the size of the file
system blocks, the systermould not knev what roundup function to use to find theglming of the first glin-

der group.

A Fast File System fouNix SMM:05-5

time sharing systems that has roughly 1.2lgiges of on-line storag&-he measurements are based on the
active wser file systems containing about 92(yaiytes of formatted space.

Space used | % waste | Oganization
775.2 Mb 0.0 Dateonly, no separation between files
807.8 Mb 4.2 Dateonly, each file starts on 512 byte boundary
828.7 Mb 6.9 Datat inodes, 512 byte block UNIX file system
866.5 Mb 11.8 Datat inodes, 1024 byte block UNIX file system
948.5 Mb 22.4 Datat inodes, 2048 byte block UNIX file system
1128.3 Mb 45.6 Datat inodes, 4096 byte block UNIX file system

Table 1 — Amount of vasted space as a function of block size.

The space wasted is calculated to be the percentage of space on the disk not containing usks thaa.
block size on the disk increases, thaste rises quick/yto an intolerable 45.6% waste with 4096 byte file
system blocks.

To be able to use lage blocks without undueaste, small files must be stored in a mofieieht way.
The nav file system accomplishes this goal by ailltg the dvision of a single file system block into one
or morefragments The file system fragment size is specified at the time that the file system is created;
each file system block can optionally be aolknto 2, 4, or 8 fragments, each of which is addressdbie.
lower bound on the size of these fragments is constrained by the disk sector size, typically 5IPhiaytes.
block map associated with eacflieder group records the spacesitable in a glinder group at the frag-
ment level; to determine if a block isvailable, aligned fragments areganined. Figurel shows a piece of
a map from a 4096/1024 file system.

Bits in map XXXX ~ XXOO OOXX 0000
Fragment numbers 0-3 4-7 8-11 12-15
Block numbers 0 1 2 3

Figure 1 — Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragmentXarshows that the fragment is in use, while@'"
shaws that the fragment isvalable for allocation.In this exkample, fragments 0-5, 10, and 11 are in use,
while fragments 6-9, and 12-15 are frégagments of adjoining blocks cannot be used as a full block,
evan if they are laige enough.In this ekample, fragments 6—9 cannot be allocated as a full block; only frag-
ments 12-15 can be coalesced into a full block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is repre-
sented by zero or more 4096 byte blocks of data, and possibly a single fragmentedfladddk. system
block must be fragmented to obtain space for a small amount of data, the remaining fragments of the block
are made \&ilable for allocation to other filesAs an &le consider an 11000 byte file stored on a
4096/1024 byte file systenthis file would uses tw full size blocks and one three fragment portion of
another block.If no block with three aligned fragments igiable at the time the file is created, a full size
block is split yielding the necessary fragments and a single unused fragrhentemaining fragment can
be allocated to another file as needed.

Space is allocated to a file when a program dogsta system call.Each time data is written to a
file, the system checks to see if the size of the file has increal$eab& file needs to bexpanded to hold
the nev data, one of three conditionsists:

1) Thereis enough space left in an already allocated block or fragment to holdvirdatee Thenewn
data is written into thevailable space.

2) Thefile contains no fragmented blocks (and the last block in the file containficiesifspace to
hold the ne data). Ifspace ®ists in a block already allocated, the space is filled with degta. If
the remainder of the medata contains more than a full block of data, a full block is allocated and the

* A program may beerwriting data in the middle of arxisting file in which case spaceowld already hee
been allocated.

SMM:05-6 AFast File System fouNix

first full block of nev data is written thereThis process is repeated until less than a full block of
new data remains.If the remaining n& data to be written will fit in less than a full block, a block
with the necessary fragments is located, otherwise a full block is locHtedremaining ne data is
written into the located space.

3) Thefile contains one or more fragments (and the fragments contaifidieufspace to hold the we
data). Ifthe size of the medata plus the size of the data already in the fragmentseds the size of
a full block, a nev block is allocated.The contents of the fragments are copied to tlytnbeng of
the block and the remainder of the block is filled wittvidata. Theprocess then continues as in (2)
abore. Otherwise, if the n& data to be written will fit in less than a full block, a block with the nec-
essary fragments is located, otherwise a full block is locaked. contents of thexesting fragments
appended with the medata are written into the allocated space.

The problem with xpanding a file one fragment at a a time is that data may be copigdimes as
a fragmented blockx@ands to a full block.Fragment reallocation can be minimized if the user program
writes a full block at a time xeept for a partial block at the end of the filgince file systems with déf-
ent block sizes may reside on the same system, the file systeracatesals beerxiended to praide appli-
cation programs the optimal size for a read or writer. files the optimal size is the block size of the file
system on which the file is being accessEd. other objects, such as pipes and stskthe optimal size is
the underlying bffer size. This feature is used by the Standard Input/Output Libeapackage used by
most user programsThis feature is also used by certain system utilities such avaschnd loaders that
do their avn input and output management and need the highest possible file system bandwidth.

The amount of wsted space in the 4096/1024 bytevrfde system ayanization is empirically
obsened to be about the same as in the 1024 byte old file systamization. Afile system with 4096
byte blocks and 512 byte fragments has about the same amouasteldvepace as the 512 byte block
UNIX file system. The nev file system uses less space than the 512 byte or 1024 byte file systems for
indexing information for lage files and the same amount of space for small fileese sa@ngs are dbset
by the need to use more space feefing track of ilable free blocks.The net result is about the same
disk utilization when a nefile systems fragment size equals an old file systehhock size.

In order for the layout policies to befetdtive, a fle system cannot besgt completely full.For each
file system there is a parametirmed the free space reserthat gies the minimum acceptable percent-
age of file system blocks that should be fréfehe number of free blocks drops belthis level only the
system administrator can continue to allocate blodk®e \alue of this parameter may be changed &t an
time, even when the file system is mounted and\&tiThe transfer rates that appear in section 4 were
measured on file systemepk less than 90% full (a reserd 10%). If the number of free blocksiffs to
zero, the file system throughput tends to be cut in half, because of the inability of the file system to localize
blocks in a file. If a file systens performance dgrades because ofv@filling, it may be restored by
removing files until the amount of free space oncaiageaches the minimum acceptabbieele Access
rates for files created during periods of little free space may be restoredvimg rifeeir data once enough
space is ilable. Thefree space resesuvrust be added to the percentage akte when comparing the
organizations g¥en in Table 1. Thus, the percentage ofaste in an old 1024 byte UNIX file system is
roughly comparable to a wed096/512 byte file system with the free space resest/at 5%. (Compare
11.8% wasted with the old file system to 6.9%ste + 5% reseed space in the nefile system.)

3.2. Filesystem parameterization

Except for the initial creation of the free list, the old file system ignores the parameters of the under
lying hardware. Ithas no information about either theypital characteristics of the mass storagecde
or the hardware that interacts with itA goal of the nw file system is to parameterize the processor capa-
bilities and mass storage characteristics so that blocks can be allocated in an optimum configuration-depen-
dent way. Parameters used include the speed of the procelednardvare support for mass storage trans-
fers, and the characteristics of the mass storagieede Disktechnology is constantly impring and a
given installation can ha sveal different disk technologies running on a single procedsach file sys-
tem is parameterized so that it can be adapted to the characteristics of the disk on which it is placed.

For mass storage gieees such as disks, theméile system tries to allocatewélocks on the same
cylinder as the prgous block in the same fileOptimally, these ne blocks will also be rotationally well

A Fast File System fouNix SMM:05-7

positioned. Thealistance betweerrotationally optimal’ blocks \aries greatly; it can be a conseeati
block or a rotationally delayed block depending on system characteri€icsa processor with an
input/output channel that does not requirey gnocessor intemntion between mass storage transfer
requests, tew consecutre dsk blocks can often be accessed withoutesinfg lost time because of an inter
vening disk reolution. For processors without input/output channels, the main processor must field an
interrupt and prepare for awealisk transfer The epected time to service this interrupt and schedule a
new disk transfer depends on the speed of the main processor

The plysical characteristics of each disk include the number of blocks per track and the rate at which
the disk spins.The allocation routines use this information to calculate the number of milliseconds
required to skip wer a Hock. Thecharacteristics of the processor include thgeeted time to service an
interrupt and schedule awaealisk transfer Given a Hock allocated to a file, the allocation routines calcu-
late the number of blocks to skipep so that the ngt block in the file will come into position under the
disk head in thexpected amount of time that it & to start a medisk transfer operationFor programs
that sequentially accessdaramounts of data, this strggeminimizes the amount of time sperditing for
the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, Wlender group summary informa-
tion includes a count of thevalable blocks in aginder group at dferent rotational positionsEight rota-
tional positions are distinguished, so the resolution of the summary information is 2 milliseconds for a typi-
cal 3600 regolution per minute diie. The supeblock contains a ector of lists calledotational layout
tables The \ector is ind&ed by rotational position.Each component of theewtor lists the indeinto the
block map for eery data block contained in its rotational positiafhen looking for an allocatable block,
the system first looks through the summary counts for a rotational position with a non-zero blocktcount.
then uses the indeof the rotational position to find the appropriate list to use taxittd@ugh only the rel-
evant parts of the block map to find a free block.

The parameter that defines the minimum number of milliseconds between the completion of a data
transfer and the initiation of another data transfer on the sgiinéer can be changed atyatime, even
when the file system is mounted and\atilf a file system is parameterized to lay out blocks with a rota-
tional separation of 2 milliseconds, and the disk pack is thesedrio asystem that has a processor requir
ing 4 milliseconds to schedule a disk operation, the throughput will drop precipitously because of lost disk
revolutions on nearly wery block. If the eventual taget machine is knen, the file system can be parame-
terized for it en though it is initially created on a €fent processorEven if the mave is ot known in
adwance, the rotational layout delay can be reconfigured after the diskéd socthat all further allocation
is done based on the characteristics of the hmest.

3.3. Layout policies

The file system layout policies arevidied into two distinct parts. At the top leel are global policies
that use file system wide summary information to enddcisions rgarding the placement of meinodes
and data blocksThese routines are responsible for deciding the placementotlirectories and files.
They aso calculate rotationally optimal block layouts, and decide when to force a long seekoydime
der group because there are ifisiént blocks left in the currentyinder group to do reasonable layouts.
Below the global polig routines are the local allocation routines that use a locally optimal scheme to lay
out data blocks.

Two methods for impraing file system performance are to increase the locality of reference to mini-
mize seek laternycas described by [fivedi80], and to impree the layout of data to maklarger transfers
possible as described by [i#ainen77]. Theglobal layout policies try to impuwe performance by cluster
ing related information.They cannot attempt to localize all data references, rhust also try to spread
unrelated data among féifent ¢linder groups.If too much localization is attempted, the locglirder
group may run out of space forcing the data to be scattered to nonybindeic groups. Taken to an
extreme, total localization can result in a single huge cluster of data resembling the old file System.
global policies try to balance thedwonflicting goals of localizing data that is concurrently accessed while
spreading out unrelated data.

One allocatable resource is inodésodes are used to describe both files and directohiesles of
files in the same directory are frequently accessed togeffberexample, the‘list directory” command

SMM:05-8 AFast File System fouNix

often accesses the inode for each file in a direcfbing layout polig tries to place all the inodes of files in

a drectory in the sameytinder group. To ensure that files are distrited throughout the disk, a fifent
policy is used for directory allocationA new drectory is placed in aytinder group that has a greater than
aveage number of free inodes, and the smallest number of directories alreadyhe intent of this pol-

icy is o dlow the inode clustering poljcto succeed most of the timeThe allocation of inodes within a
cylinder group is done using axiefree stratgy. Although this allocates the inodes randomly within a
cylinder group, all the inodes for a particulatieder group can be read with 8 to 16 disk transféss.

most 16 disk transfers are required becausgdiader group may hae o more than 2048 inodes.Jhis

puts a small and constant upper bound on the number of disk transfers required to access the inodes for all
the files in a directoryln contrast, the old file system typically requires one disk transfer to fetch the inode
for each file in a directory

The other major resource is data blocksnce data blocks for a file are typically accessed together
the poligy routines try to place all data blocks for a file in the saylinder group, preferably at rotationally
optimal positions in the samglmder. The problem with allocating all the data blocks in the saytiader
group is that lage files will quickly use up\ailable space in theytinder group, forcing a spill\ver to
other areas.Further using all the space in &linder group causes future allocations foy dite in the
cylinder group to also spill to other aredsleally none of theydinder groups shouldver become com-
pletely full. The heuristic solution chosen is to redirect block allocation toferelift ¢/linder group when
a file exceeds 48 kilobytes, and ateey megabyte thereaftet The newly chosen glinder group is selected
from those glinder groups that he& a geater than\zerage number of free blocks lefAlthough big files
tend to be spread ouv@ the disk, a mgabyte of data is typically accessible before a long seek must be
performed, and the cost of one long seek peyange is small.

The global polig routines call local allocation routines with requests for specific blo€ks. local
allocation routines will aays allocate the requested block if it is free, otherwise it allocates a free block of
the requested size that is rotationally closest to the requested Hidlok.global layout policies had com-
plete information, thecould alvays request unused blocks and the allocation routiegdibe reduced to
simple bookkeping. Havever, maintaining complete information is costly; thus the implementation of the
global layout polig uses heuristics that emglonly partial information.

If a requested block is novalable, the local allocator uses a fouvdkallocation stratgy:

1) Usethe net available block rotationally closest to the requested block on the sgiinelar. It is
assumed here that head switching time is zémw.disk controllers where this is not the case, it may
be possible to incorporate the time required to switch between disk platters when constructing the
rotational layout tablesThis, havever, has not yet been tried.

2) If there are no blockssalable on the sameytinder, use a block within the samglmder group.

3) If that gylinder group is entirely full, quadratically hash thgireder group number to choose another
cylinder group to look for a free block.

4) Finallyif the hashdils, apply anxhaustve sarch to all glinder groups.

Quadratic hash is used because of its speed in finding unused slots in nearly full hash tables
[Knuth75]. Filesystems that are parameterized to maintain at least 10% free space rarely use gyis strate
File systems that are run without maintaining &ee space typically ka few free blocks that almost
ary alocation is random; the most important characteristic of the gyraised under such conditions is
that the stratgy be fst.

* The first spill @er point at 48 kilobytes is the point at which a file on a 4096 byte block file system first
requires a single indirect blockrhis appears to be a natural first point at which to redirect block allocation.
The other spillger points are chosen with the intent of forcing block allocation to be redirected when a file has
used about 25% of the data blocks inybnder group. In observing the ne file system in day to day use, the
heuristics appear toark well in minimizing the number of completely filleglioder groups.

A Fast File System fouNix SMM:05-9

4. Performance

Ultimately, the proof of the déctiveness of the algorithms described in thevjmes section is the
long term performance of thewdile system.

Our empirical studies ka shown that the inode layout polichas been éctive. When running the
“list directory’ command on a lge directory that itself contains madirectories (to force the system to
access inodes in multiplglmder groups), the number of disk accesses for inodes is cutaayoa 6f tvo.
The impravements are ven more dramatic for laye directories containing only files, disk accesses for
inodes being cut by @aé€tor of eight.This is most encouraging for programs such as spooling daemons that
access mansmall files, since these programs tend to flood the disk request queue on the old file system.

Table 2 summarizes the measured throughput of thefite system. Several comments need to be
made about the conditions under which these tests werelrhentest programs measure the rate at which
user programs can transfer data to or from a file without performingranoessing on it.These programs
must read and write enough data to insure th#ieing in the operating system does ndéeif the results.
They are also run at least three times in succession; the first to get the system intnastate and the
second tw to insure that thexperiment has stabilized and is repeatafilae tests used and their results
are discussed in detail in [Kridle83]The systems were running multi-usext lvere otherwise quiescent.
There vas no contention for either the CPU or the disk afime only diference between the UNUES and
MASSBUS tests s the controller All tests used an AMPEX Capricorn 330 gaeyte Winchester disk.
As Table 2 shass, all file system test runs were on/&Xv/11/750. All file systems had been in production
use for at least a month before being measufids: same number of system calls were performed in all
tests; the basic system callechead vas a ngligible portion of the total running time of the tests.

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 29Kbytes/sec 29/983% 11%
new 4096/1024 750/UNIBIS 221Kbytes/sec 221/9832% 43%
new 8192/1024 750/UNIBIS 233Kbytes/sec 233/9834% 29%
new 4096/1024 750/MASSBS | 466Kbytes/sec 466/9887% 73%
new 8192/1024 750/MASSBS | 466Kbytes/sec 466/9887% 54%
Table 2a — Reading rates of the old and/méNIX file systems.
Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 48Kbytes/sec 48/983% 29%
new 4096/1024 750/UNIBIS 142Kbytes/sec 142/98B4% 43%
new 8192/1024 750/UNIBIS 215Kbytes/sec 215/9832% 46%
new 4096/1024 750/MASSBS | 323Kbytes/sec 323/9833% 94%
new 8192/1024 750/MASSBS | 466Kbytes/sec 466/9837% 95%

Table 2b — Writing rates of the old andmé&NIX file systems.

Unlike the old file system, the transfer rates for the ffiee system do not appear to changero
time. Thethroughput rate is tied much more strongly to the amount of free space that is maintéieed.
measurements inable 2 were based on a file system with a 10% free spaceereSymthetiovork loads
suggest that throughput deteriorates to about half the rasigiTable 2 when the file systems are full.

The percentage of bandwidthven in Table 2 is a measure of thdegftive uilization of the disk by
the file system.An upper bound on the transfer rate from the disk is calculated by multiplying the number
of bytes on a track by the number ofaleitions of the disk per secondhe bandwidth is calculated by
comparing the data rates the file system is able to\achkéea prcentage of this ratdJsing this metric,
the old file system is only able to use about 3-5% of the disk bandwidth, whileattidengystem uses up
to 47% of the bandwidth.

T A UNIX command that is similar to the reading test that we usécpidile /dev/null”, where file’’ is @ght
megabytes long.

SMM:05-10 AFast File System fouNix

Both reads and writes araster in the ne system than in the old systenthe biggestdctor in this
speedup is because of thegkar block size used by thevndile system.The overhead of allocating blocks
in the n&v system is greater than thgehead of allocating blocks in the old systemwieer fewer blocks
need to be allocated in thewnsystem because there bigger The net dect is that the cost per byte allo-
cated is about the same for both systems.

In the nev file system, the reading rate isvays at least asabt as the writing rateThis is to be
expected since thegknel must do more avk when allocating blocks than when simply reading thalote
that the write rates are about the same as the read rates in the 8192 byte block file system; the write rates
are slover than the read rates in the 4096 byte block file sysféra. slaver write rates occur because the
kernel has to do twice as maudisk allocations per second, making the processor unableei kp with
the disk transfer rate.

In contrast the old file system is about 50%tér at writing files than reading theifhis is because
the write system call is asynchronous and thendéd can generate disk transfer requests masterf than
they can be serviced, hence disk transfers queue up in the sk bache.Because the diskuffer cache
is sorted by minimum seek distance, therage seek between the scheduled disk writes is much less than
it would be if the data blocks were written out in the random disk order in whiglarhgeneratedHow-
eva when the file is read, the read system call is processed synchronously so the disk blocks must be
retrieved from the disk in the non-optimal seek order in whicty thee requested.This forces the disk
scheduler to do long seeks resulting invadothroughput rate.

In the nev system the blocks of a file are more optimally ordered on the dig&n though reads are
still synchronous, the requests are presented to the disk in a much betteEeedehough the writes are
still asynchronous, tlyeare already presented to the disk in minimum seek order so there @mto dpe
had by reordering themHence the disk seek latencies that limited the old file system litide effect in
the nev file system.The cost of allocation is thadtor in the ne system that causes writes to bevato
than reads.

The performance of the wefile system is currently limited by memory to memoryycoperations
required to mee data from disk bffers in the systers’aldress space to dataffers in the uses aldress
space. Theseopy operations account for about 40% of the time spent performing an input/output opera-
tion. If the luffers in both address spaces were properly aligned, this transfer could be performed without
copying by using the XX virtual memory management hardwe. Thiswould be especially desirable
when transferring lge amounts of dataMe dd not implement this because ibuld change the user inter
face to the file system in twmajor ways: user programsomld be required to allocateutfers on page
boundaries, and dateowld disappear fromuifers after being written.

Greater disk throughput could be acte by rewriting the disk dwvers to chain togethereknel
buffers. Thiswould allonv contiguous disk blocks to be read in a single disk transachtarny disks used
with UNIX systems contain either 32 or 48 512 byte sectors per tiaakh track holds»actly two or
three 8192 byte file system blocks, or four or six 4096 byte file system blbkhksnability to use contigu-
ous disk blocks é&ctively limits the performance on these disks to less than 50% ofviilakde band-
width. If the net block for a file cannot be laid out contiguoyghen the minimum spacing to thexhe
allocatable block on grplatter is between a sixth and a half @otation. Theimplication of this is that the
best possible layout without contiguous blocks uses only half of the bandwidth gifzem track. If each
track contains an odd number of sectors, then it is possible toedselkotational delay to gmumber of
sectors by finding a block thatdies at the desired rotational position on another trddie reason that
block chaining has not been implemented is becauseutdawrequire reriting all the disk dwers in the
system, and the current throughput rates are already limited by the speedveildbéegrocessors.

Currently only one block is allocated to a file at a timetechnique used by the DEMOS file system
when it finds that a file is gnang rapidly is to preallocate seeral blocks at once, releasing them when the
file is closed if thg remain unusedBy batching up allocations, the system can reducevitrb@ad of allo-
cating at each write, and it can cutafoon the number of disk writes needed ¢ef the block pointers on
the disk synchronized with the block allocatione#i79]. Thistechnique s not included because block
allocation currently accounts for less than 10% of the time spent in a write system call andaondbeg
current throughput rates are already limited by the speed ofaltebée processors.

A Fast File System fouNix SMM:05-11

5. File system functional enhancements

The performance enhancements to the UNIX file system did not requichamges to the semantics
or data structures visible to application prografdswever, savaal changes had been generally desired for
some time bt had not been introduced because theuld require users to dump and restore all their file
systems. Sincthe nav file system already required altigting file systems to be dumped and restored,
these functional enhancements were introduced at this time.

5.1. Longfile names

File names can mobe d nearly arbitrary lengthOnly programs that read directories afeeted by
this change.To promote portability to UNIX systems that are not running the fiee system, a set of
directory access routinesveabeen introduced to pvide a consistent inteate to directories on both old
and nev systems.

Directories are allocated in 512 byte units called churikss size is chosen so that each allocation
can be transferred to disk in a single operatiGhunks are bradn up into @riable length records termed
directory entries.A directory entry contains the information necessary to map the name of a file to its asso-
ciated inode.No directory entry is allwed to span multiple chunkslhe first three fields of a directory
entry are fied length and contain: an inode numliee size of the entyyand the length of the file name
contained in the entryThe remainder of an entry iamable length and contains a null terminated file
name, padded to a 4 byte boundafjie maximum length of a file name in a directory is currently 255
characters.

Available space in a directory is recorded byihg one or more entries accumulate the free space in
their entry size fieldsThis results in directory entries that arggiarthan required to hold the entry name
plus fixed length fields.Space allocated to a directory shouldais be completely accounted for by total-
ing up the sizes of its entrie§Vhen an entry is deleted from a directdty space is returned to a yims
entry in the same directory chunk by increasing the size of tiwopseentry by the size of the deleted
entry If the first entry of a directory chunk is free, then the emindde number is set to zero to indicate
that it is unallocated.

5.2. Filelocking

The old file system had no mision for locking files. Processes that needed to synchronize the
updates of a file had to use a separtiek’ file. A process wuld try to create dlock’ file. If the cre-
ation succeeded, then the process could proceed with its update; if the craisgthnttien the process
would wait and try agin. Thismechanism had three @vbacks. Processe®mnsumed CPU time by loop-
ing over attempts to create lockd.ocks left lying around because of system crashes had to be manually
removed (normally in a system startup command scriftinally, processes running as system administra-
tor are alvays permitted to create files, so were forced to useferelift mechanismWhile it is possible to
get around all these problems, the solutions are not straigharfhrao a mechanism for locking files has
been added.

The most general schemes allmultiple processes to concurrently update a fikeveral of these
techniques are discussed in [Peterson@3$impler technique is to serialize access to a file with lodks.
attain reasonablefefiencgy, certain applications require the ability to lock pieces of a fiecking davn to
the byte lgel has been implemented in the Wurfile system by [Bass81]However, for the standard sys-
tem applications, a mechanism that locks at the granularity of a fildigesuf

Locking schemesall into two dasses, those using hard locks and those using advisory [bbks.
primary diference between advisory locks and hard locks is xteneof enforcementA hard lock is
always enforced when a program tries to access a file; an advisory lock is only applied when it is requested
by a program.Thus advisory locks are onlyfettive when all programs accessing a file use the locking
scheme. Wh hard locks there must be someemide polioy implemented in thedenel. Wth advisory
locks the polig is left to the user programsn the UNIX system, programs with system administrator-pri
ilege are allwed override ary protection schemeBecause manof the programs that need to use locks
must also run as the system administraterchose to implement advisory locks rather than create an addi-
tional protection scheme thataw inconsistent with the UNIX philosoplor could not be used by system

SMM:05-12 AFast File System fouNix

administration programs.

The file locking &cilities allav cooperating programs to apply advisatyaed or exclusivelocks on
files. Onlyone process may @ an exclusive lock on a file while multiple shared locks may be present.
Both shared andxelusive locks cannot be present on a file at the same tifreey lock is requested when
another process holds axckisive lock, or an gclusive lock is requested when another process holgs an
lock, the lock request will block until the lock can be obtainBdcause shared andctusive locks are
advisory onlyeven if a process has obtained a lock on a file, another process may access the file.

Locks are applied or reraed only on open files.This means that locks can be manipulated without
needing to close and reopen a filkhis is useful, for @ample, when a process wishes to apply a shared
lock, read some information and determine whether an update is required, then applysaredock and
update the file.

A request for a lock will cause a process to block if the lock can not be immediately obtaines.
tain instances this is unsatsfory For example, a process thatawts only to check if a lock is present
would require a separate mechanism to find out this informa@amsequentlya process may specify that
its locking request should return with an error if a lock can not be immediately obt&eed) able to
conditionally request a lock is useful tddemon’ processes that wish to service a spooling aibthe
first instance of the daemon locks the directory where spoolieg takce, later daemon processes can eas-
ily check to see if an agt daemon gists. Sincdocks «ist only while the locking processesi#, lock
files can neer be left actve dter the processesi or if the system crashes.

Almost no deadlock detection is attemptéddhe only deadlock detection done by the system is that
the file to which a lock is applied must not alreadyeha bck of the same type (i.e. the second af tuc-
cessve C

A Fast File System fouNix SMM:05-13

existence of the tget name.

Rename wrks both on data files and directoridd/hen renaming directories, the system must do
special alidation checks to insure that the directory tree structure is not corrupted by the creation of loops
or inaccessible directoriesSuch corruption wuld occur if a parent directory were wed into one of its
descendants. Thedlidation check requires tracing the descendents of tgettdirectory to insure that it
does not include the directory beingved.

5.5. Quotas

The UNIX system has traditionally attempted to share\ailable resources to the greatestemt
possible. Thusry single user can allocate all theadable space in the file systenin certain ewiron-
ments this is unacceptabl€onsequentlya quota mechanism has been added for restricting the amount of
file system resources that a user can obtaéire quota mechanism sets limits on both the number of inodes
and the number of disk blocks that a user may allocateeparate quota can be set for each user on each
file system.Resources are\gin both a hard and a soft limitwWhen a programxeeeds a soft limit, a arn-
ing is printed on the users terminal; théeatling program is not terminated unlessciteeds its hard limit.
The idea is that users should stay tetbeir soft limit between login sessionsjtlihey may use more
resources while tlyeare actvely working. To encourage this beki#or, users are arned when logging in if
they are over any o their soft limits. If users #&ils to correct the problem for too nyalogin sessions, tlye
are &entually reprimanded by ling their soft limit enforced as their hard limit.

Acknowledgements

We thank Robert Elz for his ongoing interest in thevride system, and for adding disk quotas in a
rational and dicient manner We dso acknavledge Dennis Ritchie for his suggestions on the appropriate
modifications to the user intade. V¢ gpreciate Michael Reell's explanations on he the DEMOS file
system worked; may of his ideas were used in this implementati@pecial commendation goes to Peter
Kessler and Robert Henry for actingdikeal users during the early dejging stage when file systems were
less stable than thieshould hae teen. Thecriticisms and suggestions by theiesvs contrituted signifi-
cantly to the coherence of the papEinally we thank our sponsors, the National SciermenBation under
grant MCS80-05144, and the Defense &dte Research Projects AggriboD) under ARR Order No.
4031 monitored by Nal Electronic System Command under Contract No. NO0O039-82-C-0235.

References

[Almes78] AlmesG., and Robertson, G'An Extensible File System for Hydra" Proceedings
of the Third International Conference on Safter Engineering, IEEE, May 1978.

[Bass81] Bass]. "Implementatiobescription for File Locking", Oyx Systems Inc, 73 E.
Trimble Rd, San Jose, CA 95131 Jan 1981.

[Feiertag71] Feiertadk. J. and Qganick, E. I., "The Multics Input-Output System", Proceed-
ings of the Third Symposium on Operating Systems Principl€s,A0ct 1971.
pp 35-41

[Ferrin82a] Ferrin,T.E., "Performance and Rostness Impnements in érsion 7 UNIX",
Computer Graphics Laboratoryedhnical Report 2, School of Pharmatdniver-
sity of California, San Francisco, January 19&2esented at the 1982ivier
Usenix Conference, Santa Monica, California.

[Ferrin82b] Ferrin,T.E., "Performance Issuses of VMUNIX WRsited", ;login: (The Usenix
Association Nessletter), W0l 7, #5, Nowember 1982. pp 3-6

[Kridle83] Kridle, R., and McKisick, M., "Performance Egcts of Disk Subsystem Choices

for VAX Systems Running 4.2BSD UNIX", Computer Systems Research Group,

SMM:05-14

[Kowdski78]
[Knuth75]
[Maruyama76]
[Nevalainen77]
[Pechura83]
[Peterson83]
[Powell79]
[Ritchie74]
[Smith81a]
[Smith81b]
[Symbolics81]
[Thompson78]
[Thompson80]
[Trivedi80]

[White80]

AFast File System fouNix

Dept of EECS, Bemdey, CA 94720, Bchnical Report #8.

Kowdski, T. "FSCK - The UNIX System Check Program", Bell Laborgtéyr-
ray Hill, NJ 07974. March 1978

Kunth, D. "The Art of Computer Programming”oWime 3 - Sorting and Search-
ing, Addison-Vésley Publishing Compay Inc, Reading, Mass, 1975. pp 506-549
Maruyam&., and Smith, S."Optimal reoganization of Distrituted Space Disk

Files", CACM, 19, 11. No 1976. pp 634-642

Neaainen, O., ¥sterinen, M. "Determining Blocking BEctors for Sequential
Files by Heuristic Methods", The Computer Journal, 20, 3. Aug 1977. pp 245-247

Pechurd)., and Schodfer, J "Estimating File Accessime of Flopy Disks",
CACM, 26, 10. Oct 1983. pp 754-763

Petersog. "ConcurrentReading While Writing", £M Transactions on Pro-
gramming Languages and System€M, 5, 1. Jan 1983. pp 46-55

Pavell, M. "The DEMOS File System", Proceedings of the Sixth Symposium on
Operating Systems PrinciplesCM, Nov 1977. pp 33-42

Ritchie,D. M. and Thompson, K., "The UNIXife-Sharing System", G2M 17,
7. July 1974. pp 365-375

SmithA. "Input/OutputOptimization and Disk Architectures: A Sex, Perfor
mance and Ealuation 1. Jan 1981. pp 104-117

Smith,A. "Bibliography on Fle and I/O System Optimization and RelateapT
ics", Operating Systems few, 15, 4. Oct 1981. pp 39-54

"SymbolicsFile System", Symbolics Inc, 9600 DeSotaweA Chatsworth, CA
91311 Aug 1981.

ThompsorkK. "UNIX Implementation”, Bell Systeme€thnical Journal, 57, 6,
part 2. pp 1931-1946 July-August 1978.

ThompsorM. "SpiceFile System”, Carrgge-Mellon Uniersity, Department of
Computer Science, Pittgiy, FA 15213 #CMU-CS-80, Sept 1980.

Trivedi, K. "Optimal Selection of CPU Speed, iee Capabilities, and File
Assignments", Journal of theCM, 27, 3. July 1980. pp 457-473

White, R. M. "Disk Storage &chnology", Scientific American, 243(2), August
1980.

