Berkeley Softwase Architecture Manual
4.4BSD Edition

William Joy, Robert Fabry,
Samuel Ldfer, M. Kirk McKusid,
Michael Kaels

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, CA 94720

ABSTRET

This document summarizes thacilities praided by the 4.4BSD ersion of the
UNIX* operating systemlt does not attempt to act as a tutorial for use of the system nor
does it attempt toxplain or justify the design of the systeacilities. It gives reither
motivation nor implementation details, iaviar of brevity.

The first section describes the baséeriel functions pndded to a UNIX process:
process naming and protection, memory management,aseftwterrupts, object refer
ences (descriptors), time and statistics functions, and resource coifittelse &cilities,
as well asdcilities for bootstrap, shutdm and process accounting, arevyiled solely
by the lernel.

The second section describes the standard system abstractions for files and file sys-
tems, communication, terminal handling, and process control andygie. These
facilities are implemented by the operating system or byaréteener processes.

* UNIX is a trademark of Bell Laboratories.

PSD:5-2

TABLE OF CONTENTS

Intr oduction.
0. Notation and types
1. Kernel primiti ves

1.1. Processes and mtection

1.1.1. Hostnd process identifiers
1.1.2. Processreation and termination
1.1.3. Useand group ids

1.1.4. Procesgroups

1.2. Memory management
1.2.1. Bx, data and stack
1.2.2. Mappingages

1.2.3. Rge protection control
1.2.4. Gving and getting advice
1.2.5. Protectioprimitives

1.3. Signals

1.3.1. Oerview

1.3.2. Signatypes

1.3.3. Signahandlers

1.3.4. Sendingignals

1.3.5. Protectingritical sections
1.3.6. Signaktacks

1.4. Timing and statistics
1.4.1. Reatime
1.4.2. Interal time

1.5. Descriptors

1.5.1. Theeference table

1.5.2. Descriptoproperties

1.5.3. Managinglescriptor references
1.5.4. Multipling requests

1.5.5. Descriptowrapping

1.6. Resouce contols
1.6.1. Procesgriorities
1.6.2. Resourcatilization
1.6.3. Resourckmits

1.7. Systenoperation support
1.7.1. Bootstrapperations
1.7.2. Shutdan operations
1.7.3. Accounting

4.4BSDArchitecture Manual

4.4BSD Architecture Manual

2. Systemfacilities

2.1. Genericoperations

2.1.1. Rea@nd write

2.1.2. Input/outputontrol

2.1.3. Non-blockingnd asynchronous operations

2.2. Filesystem

2.2.1 Owerview

2.2.2. Naming

2.2.3. Creatiorand remwd

2.2.3.1. Directorcreation and remal
2.2.3.2. Filecreation

2.2.3.3. Creatingeferences to deces
2.2.3.4. Portatreation

2.2.3.6. Filedevice, and portal remal
2.2.4. Readin@gnd modifying file attribtes
2.2.5. Linksand renaming

2.2.6. Extensiomand truncation
2.2.7. Checkingccessibility

2.2.8. Locking

2.2.9. Disqquotas

2.3. Interprocess communication

2.3.1. Interprocessommunication primities
2.3.1.1. Communicatiodomains

2.3.1.2. Soc#t types and protocols

2.3.1.3. Soc#t creation, naming and service establishment

2.3.1.4. Acceptingonnections
2.3.1.5. Makingzonnections
2.3.1.6. Sendingnd recaiing data

2.3.1.7. Scattergher and xchanging access rights

2.3.1.8. Usingead and write with soels

2.3.1.9. Shuttinglown hahes of full-duple& connections

2.3.1.10. Sodht and protocol options
2.3.2. UNIXdomain

2.3.2.1. TVpes of sockts

2.3.2.2. Naming

2.3.2.3. AccesHghts transmission
2.3.3. INTERNETdomain

2.3.3.1. Socét types and protocols
2.3.3.2. Sockt haming

2.3.3.3. AccesHghts transmission
2.3.3.4. Rw access

2.4. Terminals and devices

2.4.1. Brminals

2.4.1.1. Brminal input

2.4.1.1.1 Inpumodes

2.4.1.1.2 Interruptharacters
2.4.1.1.3 Lineaditing

2.4.1.2. Brminal output

2.4.1.3. Brminal control operations
2.4.1.4. Brminal hardvare support
2.4.2. Structuredevices

PSD:5-3

PSD:5-4 4.4BSDArchitecture Manual

2.4.3. Unstructuredevices
2.5. Process contol and delugging

I. Summary of facilities

4.4BSD Architecture Manual PSD:5-5

1. Notation and types

The notation used to describe system calls igremt of a C language call, consisting of a prototype
call followed by declaration of parameters and results.additional lkeyword result, not part of the nor

theread call, as described in section 2.1:

cc = read(fd, bf, nbytes);
result int cc; int fd; result char tif; int nbytes;

The first line shars hav theread routine is called, with three parameterss shavn on the second linec
is an intger andead also returns information in the paramdtef.

Description of all error conditions arising from each system call is netda here; the appear in
the programmes manual. Inparticular when accessed from the C language,yr@atis return a character
istic -1 value when an error occurs, returning the error code in the glabableerrno. Other languages
may present errors in fifrent ways.

A number of system standard types are defined in the includesyitgtypes.h>and used in the spec-
ifications here and in mgrC programs. Theseclude caddr_t giving a memory address (typically as a
character pointerpff_t giving a file ofset (typically as a long ingeer), and a set of unsigned typeshar,
u_short, u_int andu_long, shorthand names famsigned char, unsigned short etc.

PSD:5-6 4.4BSDArchitecture Manual

2. Kernel primiti ves

The facilities available to a UNIX user process are logicallyided into two parts: lernel fcilities
directly implemented by UNIX code running in the operating system, and syatdities implemented
either by the system, or in cooperation witeeaver pocess These krnel fcilities are described in this
section 1.

The facilities implemented in theeknel are those which define thi&IX virtual madine in which
each process rund.ike mary real machines, this virtual machine has memory managementdrardan
interrupt fcility, timers and countersThe UNIX virtual machine also alles access to files and other
objects through a set diescriptos. Each descriptor resembles avibe controlley and supports a set of
operations. Lik devices on real machines, some of which are internal to the machine and some of which
are eternal, parts of the descriptor machinery andtdin to the operating system, while other parts are
often implemented in seev processes on other machind$he facilities pravided through the descriptor
machinery are described in section 2.

4.4BSD Architecture Manual PSD:5-7

2.1. Processes and qtection

2.1.1. Hostand process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 64 characters (as
defined by MAXHOSTMMMELEN in <sys/paam.h>). Theseare set (by a prileged user) and returned
by the calls:

sethostid(hostid)
long hostid;

hostid = gethostid();
result long hostid,;

sethostname(name, len)
char *name; int len;

len = gethostnamex, buflen)
result int len; result char t; int buflen;

On each host runs a setmbcesses Each process is lgely independent of other processesjitg its
own protection domain, address space, timers, and an independent set of references to system or user
implemented objects.

Each process in a host is named by angantesalled theprocess id This number is in the range
1-30000 and is returned by thetpid routine:
pid = getpid();
result int pid,;

On each UNIX host this identifier is guaranteed to be unique; in a multi-hasirenent, the (hostid, pro-
cess id) pairs are guaranteed unique.

2.1.2. Pocess ceation and termination
A new process is created by making a logical duplicate ofstieg process:
pid = fork();
result int pid,;

Thefork call returns twice, once in the parent process, whiglés the process identifier of the child, and
once in the child process whepil is 0. The parent-child relationship induces a hierarchical structure on
the set of processes in the system.

A process may terminate byeeuting anext call:

exit(status)
int status;

returning 8 bits ofxt status to its parent.

When a child processigs or terminates abnormallthe parent process reees information about
ary event which caused termination of the child proceassecond call preides a non-blocking inteate
and may also be used to retganformation about resources consumed by the process during its lifetime.

PSD:5-8 4.4BSDArchitecture Manual

#include <syshait.h>

pid = wait(astatus);
result int pid; result union ait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union aitstatus *astatus;
int options; result struct rusage *arusage;

A process canwerlay itself with the memory image of another process, passing thly neeated
process a set of parameters, using the call:

execve(name, av, envp)
char *name, **agv, **envp;

The specifiechamemust be a file which is in a format recognized by the system, either a bxeauyable
file or a file which causes th&eeution of a specified interpreter program to process its contents.

2.1.3. Userand group ids

Each process in the system has associated witlo itderid’s: areal user idand aeffective user id
both 16 bit unsigned ingers (typeuid_t). Eachprocess has amal accounting goup idand aneffective
accounting goup id and a set ohiccess gyup ids. The group ids ae 16 bit unsigned ingeers (type
gid_t). Eachprocess may be inw&ral different access groups, with the maximum concurrent number of
access groups a system compilation paramieiconstant NGRUPS in the file<sys/paam.h> guaran-
teed to be at least 8.

The real and &dctive wser ids associated with a process are returned by:
ruid = getuid();
result uid_t ruid;
euid = geteuid();
result uid_t euid;

the real and éctive accounting group ids by:

rgid = getgid();
result gid_t gid;

egd = get@id();
result gid_t gid;

The access group id set is returned lggigroupscall*:
ngroups = getgroups(gidsetsize, gidset);

result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group &lae assigned at login time using tetieuid setegd, and setgoupscalls:

* The type of the gidset array in getgroups and setgroups remaigerifide compatibility with 4.2BSD It
may change tgid_t in future releases.

4.4BSD Architecture Manual PSD:5-9

setreuid(ruid, euid);
int ruid, euid;

setrgjid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)
int gidsetsize; int gidset[gidsetsize];

The setreuid call sets both the real andfesftive wserid’s, while thesetedd call sets both the real and
effective accounting group ié. Unlesghe caller is the superser ruid must be equal to either the current
real or efective wserid, andrgid equal to either the current real ofeetive accounting group id.The set-
groupscall is restricted to the supaser

2.1.4. Pocess goups

Each process in the system is also normally associated pititc@ss goup. The group of processes
in a process group is sometimes referred tojab and manipulated by highue system softvare (such as
the shell). The current process group of a process is returned lnetibgrp call:

parp = getpgrp(pid);
result int pgrp; int pid;

When a process is in a specific process group it maywesgdiware interrupts &tcting the group, causing

the group to suspend or resunxecaition or to be interrupted or terminateld. particular a g/stem termi-

nal has a process group and only processes which are in the process group of the terminal may read from
the terminal, allewing arbitration of terminals amongveeal different jobs.

The process group associated with a process may be changedétptrpcall:
setpgrp(pid, pgrp);
int pid, pgrp;

Newly created processes are assigned processigiinct from all processes and process groups, and the
same process group as their parghnormal (unprileged) process may set its process group equal to its
process id.A privileged process may set the process groupypeotess to anvalue.

PSD:5-10 4.4BSMArchitecture Manual

2.2. Memory managementt

2.2.1. Ext, data and stack

Each process s eecution with three logical areas of memory callext,telata and stackThe
text area is read-only and shared, while the data and stack areasaeetprthe processBoth the data
and stack areas may beended and contracted on program requéke call

addr = sbrk(incr);
result caddr_t addr; int incr;

changes the size of the data areanly bytes and returns thewend of the data area, while

addr = sstk(incr);
result caddr_t addr; int incr;
changes the size of the stack arg@he stack area is also automaticakyemded as neededn the \AX

the tet and data areas are adjacent in the Bibme while the stack section is in the Pgios, and gras
downward.

2.2.2. Mappingpages

The system supports sharing of data between processeswinglfmages to be mapped into mem-
ory. These mapped pages may dieed with other processes qrivate to the processProtection and
sharing options are defined<€sys/mman.h>as:

[* protections are chosen from these bitsedrtogether */

#define PRT_READ 0x04 /* pages can be read */
#define PRT_WRITE 0x02 /* pages can be written */
#define PRT_EXEC 0x01 /* pages can bexecuted */

/* flags contain mapping type, sharing type and options */
/* mapping type; choose one */

#define MAP_FILE 0x0001 /*mapped from a file or de&e */

#define MAP_ANON 0x0002 /*allocated from memorwwvap gpace */
#define MAP_TYPE 0x000f /*mask for type field */

[* sharing types; choose one */

#define MAP_SHARED 0x0010 /*share changes */

#define MAP_PRIXTE 0x0000 /*changes are pate */

/* other flags */

#define MAP_FIXED 0x0020 /*map addr must bexactly as requested */
#define MAP_INHERIT 0x0040 /*region is retained afterxec */

#define MAP_HASSEMAPHOREOx0080 /*region may contain semaphores */
#define MAP_NOPREALLOC 0x0100 /*do not preallocate space */

The cpu-dependent size of a page is returned byepegesizesystem call:
pagesize = getpagesize();
result int pagesize;

The call:

maddr = mmap(addlen, prot, flags, fd, pos);
result caddr_t maddr; caddr_t addr; int *len, prot, flags, fdf pbs;

causes the pages startingaaldr and continuing for at moden bytes to be mapped from the object

T This section represents the intaé planned for later releases of the syst@hthe calls described in this
section, onlysbrkandgetpagesizeare included in 4.3BSD.

4.4BSD Architecture Manual PSD:5-11

represented by descriptfat, sarting at byte déetpos The starting address of thegien is returned; for
the cowenience of the system, it may f@if from that supplied unless the MAP_FIXED flag igegi in
which case thexact address will be used or the call wdilf Theactual amount mapped is returneden
Theaddr, len, and posparameters must all be multiples of the pagesfzsuccessfummapwill delete ary
previous mapping in the allocated address rangjhe parameteprot specifies the accessibility of the
mapped pagesThe parameteflags specifies the type of object to be mapped, mapping options, and
whether modifications made to this mappedyaafithe page are to beegtprivate or are to besharedwith
other referencesPossible types include MAP_FILE, mapping gular file or charactespecial deice
memory and MAP_ANON, which maps memory not associated with goecific file. The file descriptor
used for creating MAP_ANON g#ons is used only for naming, and may beegies -1 if no name is asso-
ciated with the rgion.¥ The MAP_INHERIT flag alles a rgion to be inherited after aexec The
MAP_HASSEMAPHORE flag alws special handling for gions that may contain semaphorekhe
MAP_NOPREALLOC flag allas processes to allocategiens whose virtual address space, if fully allo-
cated, wuld exceed the ailable memory plus sap resourcesSuch rgions may get a SIGSEGV signal
if they page fult and resources are netidable to service their request; typically yheould free up some
resources viainmapso that when thereturn from the signal the pagauft could be successfully com-
pleted.

A facility is provided to synchronize a mappedji@n with the file it maps; the call

msync(addrlen);
caddr_t addr; int len;

writes aty modified pages back to the filesystem and updates the file modificationltiraris 0, all mod-

ified pages within the ggon containingaddr will be flushed; iflen is non-zero, only the pages containing
addr andlen succeeding locations will bex@mined. Al required synchronization of memory caches will
also tale gace at this time.Filesystem operations on a file that is mapped for shared modifications are
unpredictablexcept after amsync

A mapping can be remed by the call

munmap(addden);
caddr_t addr; int len;

This call deletes the mappings for the specified address range, and causes further references to addresses
within the range to generatevaid memory references.

2.2.3. Rge potection control
A process can control the protection of pages using the call

mprotect(addren, prot);
caddr_t addr; int len, prot;

This call changes the specified pages teeh@otectionprot. Not all implementations will guarantee pro-
tection on a page basis; the granularity of protection changes may bgeasslan entire geon.

2.2.4. Gving and getting advice
A process that has kmtedge of its memory bekimr may use thenadvisecall:

madvise(addien, behw);
caddr_t addr; int len, beha

Behavdescribesxpected behaor, as gven in <sys/mman.h>

T The current design does not &lla process to specify the location of awvspaceln the future we may define
an additional mapping type, MAP_\R, in which the file descriptor gument specifies a file or wee to
which swapping should be done.

PSD:5-12 4.4BSMArchitecture Manual

#define MAD/_NORMAL 0 /* no further special treatment */
#define MAD/_RANDOM 1 /* expect random page references */
#define MAD/_SEQUENTIAL 2 /* expect sequential references */
#define MAD/_WILLNEED 3 /*will need these pages */

#define MAD/_DONTNEED 4 /*don't need these pages */

#define MAD/_SRACEAVAIL 5 /*insure that resources are resshy/

Finally, a process may obtain information about whether pages are core resident by using the call

mincore(addrlen, \ec)
caddr_t addr; int len; result charew;

Here the current core residgnaf the pages is returned in the character aveaywith a value of 1 mean-
ing that the page is in-core.

2.2.5. Synchonization primiti ves

Primitives ae provided for synchronization using semaphores in shared merergaphores must
lie within a MAP_SHARED rgion with at least modes ER_READ and PRT_WRITE. The
MAP_HASSEMAPHORE flag must ke keen specified when thegien was created.To acquire a lock a
process calls:

value = mset(sem, ait)
result int \alue; semaphore *sem; intit;

Mset indivisibly tests and sets the semapheem If the the preious \alue is zero, the process has
acquired the lock anahsetreturns true immediatelyOtherwise, if thewait flag is zero, dilure is returned.

If waitis true and the puous \alue is non-zeransetrelinquishes the processor until notified that it should
retry.

To release a lock a process calls:

mclear(sem)
semaphore *sem;

Mclear indivisibly tests and clears the semaphseen If the *WANT"’ flag is zero in the pweous \alue,
mclearreturns immediately If the "WANT'’ flag is non-zero in the prous \alue, mcleararranges for
waiting processes to retry before returning.

Two routines proide services analogous to therkelsleepandwalkeupfunctions interpreted in the
domain of shared memonrA process may relinquish the processor by calirsteepwith a set semaphore:

msleep(sem)
semaphore *sem;

If the semaphore is still set when it is chedlby the krnel, the process will be put in a sleeping state until
some other process issuesnanaleupfor the same semaphore within thgio: using the call:

mwakeup(sem)
semaphore *sem;

An mwaleupmay avaken dl sleepers on the semaphore, or magleen only the nat sleeper on a queue.

4.4BSD Architecture Manual PSD:5-13

2.3. Signals

2.3.1. Oerview

The system defines a setsifnalsthat may be delered to a processSignal delery resembles the
occurrence of a hardwe interrupt: the signal is bloe#t from further occurrence, the current process con-
text is saved, and a n& one is lilt. A process may specify tHendlerto which a signal is delered, or
specify that the signal is to xodked or ignored A process may also specify thati@faultaction is to be
taken when signals occur

Some signals will cause a process xd when thg are not caught.This may be accompanied by
creation of acore image file, containing the current memory image of the process for use in post-mortem
delugging. Aprocess may choose toveasgnals delvered on a special stack, so that sophisticated soft-
ware stack manipulations are possible.

All signals hae the sameoriority. If multiple signals are pending simultaneousiy order in which
they are delvered to a process is implementation specifgignal routines xecute with the signal that
caused their wocationblodked, but other signals may yet occuMechanisms are pvided whereby criti-
cal sections of code may protect themsslaginst the occurrence of specified signals.

2.3.2. Signakypes

The signals defined by the systeatfi fnto one of fie dasses: hardare conditions, softare condi-
tions, input/output notification, process control, or resource confiw. set of signals is defined in the file
<signal.h>.

Hardware signals are degd from exceptional conditions which may occur duringeution. Such
signals include SIGFPE representing floating point and other arithmetpteons, SIGILL for illgd
instruction &ecution, SIGSEGV for addresses outside the currently assigned area of n@md@IGBJS
for accesses that violate memory protection constraidther more cpu-specific hardave signals xast,
such as those for theartous customeresened instructions on the AX (SIGIOT, SSGEMT, and SIG-
TRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt signal;
SIGQUIT for the more pwerful quit signal, that normally causes a core image to be generated; SIGHUP
and SIGTERM that cause graceful process termination, either because a usembasp’, or by user or
program request; and SIGKILL, a morewssful termination signal which a process cannot catch or
ignore. Programsnay define theirwn asynchronousvents using SIGUSR1 and SIGUSR®ther soft-
ware signals (SIGALRM, SIGVALRM, SIGPROF) indicate thexpiration of intenal timers.

A process can request naotification via a SIGIO signal when input or output is possible on a descrip-
tor, or when anon-blodking operation completesA process may request to receia SGURG signal when
an ugent condition arises.

A process may bstoppedby a signal sent to it or the members of its process grobp.SIGSDP
signal is a pwerful stop signal, because it cannot be cau@ther stop signals SIGTSTBGTTIN, and
SIGTTOU are used when a user request, input request, or output requestvagpsdtie reason for stop-
ping the processA SIGCONT signal is sent to a process when it is continued from a stoppedPitate.
cesses may rec rotification with a SIGCHLD signal when a child process changes state, either by stop-
ping or by terminating.

Exceeding resource limits may cause signals to be gener&t&XCPU occurs when a process
nears its CPU time limit and SIGXFSZams that the limit on file size creation has been reached.

2.3.3. Signahandlers

A process has a handler associated with each sighal.handler controls theay the signal is deli
ered. Thecall

PSD:5-14 4.4BSMArchitecture Manual

#include <signal.h>

struct sigec {

int (*sv_handler)();
int sv_mask;
int sv_flags;

h

sigvec(signo, svosv)
int signo; struct sigec *sv; result struct sige *osv;

assigns interrupt handler address handletto signalsigna Each handler address specifies either an-inter
rupt routine for the signal, that the signal is to be ignored, or thataldattion (usually process termina-

tion) is to occur if the signal occur3he constants SIG_IGN and SIG_DEF usedages forsv_handler

cause ignoring or dafilting of a condition.The sv_maskvalue specifies the signal mask to be used when
the handler is woked; it implicitly includes the signal which wioked the handler Signal masks include

one bit for each signal; the mask for a sigsighois provided by the macrsigmasksigng, from <sig-

nal.h>. Sv_flags specifies whether system calls should be restarted if the signal handler returns and
whether the handler should operate on the normal run-time stack or a special signal stackw¥edf belo
0SsVis hon-zero, the pwious signal ector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. Ithe signal is not currentlylodked by the process then it will be dedred. Theprocess of signal
delivery adds the signal to be dedied and those signals specified in the associated signal handler’
sv_masko a set of thosenasledfor the process, sas the current process comteand places the process
in the contgt of the signal handling routinélhe call is arranged so that if the signal handling routxits e
normally the signal mask will be restored and the process will resxenatien in the original conie. If
the process wishes to resume in &edént contgt, then it must arrange to restore the signal mask itself.

The mask ofblocked signals is independent of handlers for signdtsdelays signals from being
delivered much as a raised harahe interrupt priority keel delays hardwre interrupts.Preventing an inter
rupt from occurring by changing the handler is analogous to disablingce dem further interrupts.

The signal handling routirev_handleiis called by a C call of the form

(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcortéscp;

Thesignogives the number of the signal that occurred, andcthele a word of information supplied by the
hardware. Thescpparameter is a pointer to a machine-dependent structure containing the information for
restoring the conie before the signal.

2.3.4. Sendingignals
A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(parp, signo)

int pgrp, signo;
Unless the process sending the signal igilpged, it must hee the same ééctive wser id as the process
receving the signal.

Signals are also sent implicitly from a terminavide to the process group associated with the termi-
nal when certain input characters are typed.

4.4BSD Architecture Manual PSD:5-15

2.3.5. Potecting critical sections
To block a section of code amst one or more signals,sagblod call may be used to add a set of
signals to thexasting mask, returning the old mask:

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later witisetmask

oldmask = sigsetmask(mask);
result long oldmask; long mask;
Thesigblod call can be used to read the current mask by specifying an emapky
It is possible to check conditions with some signals Edcland then to pauseaiting for a signal
and restoring the mask, by using:

sigpause(mask);
long mask;

2.3.6. Signaktacks
Applications that maintain compler fixed sze stacks can use the call

struct sigstack {
caddr_t SS_sp;
int ss_onstack;

h

sigstack(ss, 0ss)
struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack basedssitspfor delivery of signals. The alue ss_onstak indicates
whether the process is currently on the signal stack, a notion maintained redfimthe system.

When a signal is to be dedred, the system checks whether the process is on a signal Ktaok.
then the process is switched to the signal stack fovetgliwith the return from the signal arranged to
restore the prgous stack.

If the process wishes to &la ron-local &it from the signal routine, or run code from the signal
stack that uses a thfent stack, aigsta& call should be used to reset the signal stack.

PSD:5-16 4.4BSMArchitecture Manual

2.4. Timers

2.4.1. Reakime

The systens motion of the current Greenwich time and the current time zone is set and returned by
the call by the calls:

#include <sys/time.h>
settimeofday(tvp, tzp);

struct timeval * tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timesal * tp;
result struct timezone *tzp;

where the structures are definecasys/timeh> as:

struct timeval {

long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */
¥
struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

h

The precision of the system clock is haadlerdependentEarlier versions of UNIX contained only a 1-sec-
ond resolution grsion of this call, which remains as a library routine:

time(tvsec)
result long *tvsec;

returning only the tv_sec field from tlyettimeofdaycall.

2.4.2. Intewval time
The system pnades each process with three intdritmers, defined irsys/timeh>:

#define ITIMER_REAL 0 f* real time interals */
#define ITIMER_VIRUAL 1 [* virtual time intenals */
#define ITIMER_PRF 2 /* user and system virtual time */

The ITIMER_REAL timer decrements in real timé. could be used by a library routine to maintain a
wakeup service queueA SIGALRM signal is delvered when this timengpires.

The ITIMER_VIRTUAL timer decrements in process virtual timi.runs only when the process is
executing. ASIGVTALRM signal is delvered when it gpires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is running
on behalf of the processdt is designed to be used by processes to statistically profile deeumt®n. A
SIGPROF signal is deliered when it gpires.

A timer \alue is defined by thiémerval structure:
struct itimenal {

struct timeal it_intenal; /* timer intenal */
struct timeal it_value; [*current \alue */

4.4BSD Architecture Manual PSD:5-17

and a timer is set or read by the call:

getitimer(which, alue);
int which; result struct itimeat *value;

setitimer(which, alue, walue);
int which; struct itimeral *value; result struct itimeal *ovaue;

The third agument tosetitimerspecifies an optional structure to reeehe preious contents of the inter
val timer. A timer can be disabled by specifying a timalue of 0.

The system rounds@ument timer interals to be not less than the resolution of its cloEkis clock
resolution can be determined by loadingeayvsmall \alue into a timer and reading the timer back to see
what \alue resulted.

The alarm system call of earlier ersions of UNIX is preided as a library routine using the
ITIMER_REAL timer. The process profilingatilities of earlier ersions of UNIX remain because it is not
always possible to guarantee the automatic restart of system calls after receipt of aTdigmabfil call
arranges for thedenel to bgin gathering &ecution statistics for a process:

profil(buf, bufsize, ofset, scale);
result char *bof; int bufsize, ofset, scale;

This beyins sampling of the program counteith statistics maintained in the ugaovided huffer.

PSD:5-18 4.4BSMArchitecture Manual

2.5. Descriptors

2.5.1. Thereference table

Each process has access to resources thiesgriptos. Each descriptor is a handle allmg the
process to reference objects such as filedcee and communications links.

Rather than alleing processes direct access to descriptors, the system introdueelsod iledirec-
tion, so that descriptors may be shared between procdsaeh. process hasdescriptor efeence table
containing pointers to the actual descriptorse descriptors themsels thus hee multiple references, and
are reference counted by the system.

Each process has adix size descriptor reference table, where the size is returned gstdteble-
sizecall:

nds = getdtablesize();
result int nds;

and guaranteed to be at least Zle entries in the descriptor reference table are referred to by small inte-
gers; for @ample if there are 20 slots thare numbered 0 to 19.

2.5.2. Descriptorproperties

Each descriptor has a logical set of properties maintained by the system and defingghéyHsch
type supports a set of operations; some operations, such as reading and writing, are comweoal to se
abstractions, while others are uniquéhe generic operations applying to manfithese types are described
in section 2.1.Naming contgts, files and directories are described in section 3gction 2.3 describes
communications domains and setk TBrminals and (structured and unstructuredjias are described
in section 2.4.

2.5.3. Managingdescriptor references
A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int n&v; int old;

returning a cop of descriptor referenceld indistinguishable from the originalThe newv chosen by the
system will be the smallest unused descriptor referenceAlobpy of a descriptor reference may be made
in a specific slot by doing

dup2(old, n&);

int old, nev;

The dup2call causes the system to deallocate the descriptor reference currentiragalpt new, if any,
replacing it with a reference to the same descriptor asTdits deallocation is also performed by:

close(old);
int old;

2.5.4. Multiplexing requests
The system pnides a standarday to do synchronous and asynchronous mukiptéeof operations.

Synchronous multipkeng is performed by using theelectcall to examine the state of multiple
descriptors simultaneouslgnd to wait for state changes on those descript&@wsts of descriptors of interest
are specified as bit masks, as fako

4.4BSD Architecture Manual PSD:5-19

#include <sys/types.h>

nds = select(nd, in, outxeept, tvp);
result int nds; int nd; result fd_set *in, *out,xwept;
struct timeva * tvp;

FD_ZERO(&fdset);
FD_SET(fd, &fdset);
FD_CLR(fd, &fdset);
FD_ISSET(fd, &fdset);
int fs; fs_set fdset;

The selectcall examines the descriptors specified by the Beteut andexcept replacing the specified bit
masks by the subsets that select true for input, outputxaegt®nal conditions respeedly (ndindicates
the number of file descriptors specified by the bit masksdny descriptors meet the follang criteria,
then the number of such descriptors is returnedigand the bit masks are updated.

2fam T
A descriptor selects for input if an input oriented operation suckaaor receiveis possible, or if a
connection request may be accepted (see section 2.3.1.4).

2fam T
A descriptor selects for output if an output oriented operation suahitgsor sendis possible, or if

an operation that & ‘in progress, such as connection establishment, has completed (see section
2.1.3).

2fam T e

A descriptor selects for axeeptional condition if a condition thatowld cause a SIGURG signal to
be generatedxests (see section 1.3.2), or othevide-specific gents hae cccurred.

If none of the specified conditions is true, the operatiaitsWor one of the conditions to arise, blocking at
most the amount of time specified top. If tvpis given as O the selectwaits indefinitely

Options afflecting 1/0 on a descriptor may be read and set by the call:

dopt = fentl(d, cmd, &)
result int dopt; int d, cmd, gr

[* interesting alues for cmd */
#define F_SETFL

#define F_GETFL

#define F_SEDWN

#define F_GEDWN

* set descriptor options */
¥ get descriptor options */
[* set descriptorwner (pid/pgrp) */
/* get descriptor wner (pid/pgrp) */

(20N &) N SN b}

The F_SETFLcmdmay be used to set a descriptor in non-blocking 1/0O mode and/or enable signaling when
I/O is possible.F_SETOWN may be used to specify a process or process group to be signaled when using
the latter mode of operation or whemgent indications arise.

Operations on non-blocking descriptors will either complete immedjately an error EM@ULD-
BLOCK, partially complete an input or output operation returning a partial count, or return an error EIN-
PROGRESS noting that the requested operation is in progfesiescriptor which has signalling enabled
will cause the specified process and/or process group be signaled, with a SIGIO for input, output, or in-
progress operation complete, or a SIGURG faegptional conditions.

For example, when writing to a terminal using non-blocking output, the system will accept only as
much data as there isiffer space for and return; when making a connectionswiéat, the operation may
return indicating that the connection establishmentinisprogress’. The selectfacility can be used to
determine when further output is possible on the terminal, or when the connection establishment attempt is
complete.

PSD:5-20 4.4BSMArchitecture Manual

2.5.5. Descriptorwrapping. T

A user process mayuild descriptors of a specified type Wyappinga communications channel with
a g/stem supplied protocol translator:

new = wrap(old, proto)
result int ngv; int old; struct dprop *proto;

Operations on the descriptoid are then translated by the systemviied protocol translator into requests
on the underlying objedld in a way defined by the protocollhe protocols supported by therkel may
vary from system to system and are described in the programmers manual.

Protocols may be based on communications mukiipdeor a rights-passing style of handling multi-
ple requests made on the same objéct. instance, a protocol for implementing a file abstraction may or
may not include locally generatedead-ahead’requests. Aprotocol that preides for read-ahead may
provide higher performanceaubhave a nore dificult implementation.

Another ekample is the terminal diing facilities. Normallya terminal is associated with a commu-
nications line, and the terminal type and standard terminal access protocol are wrapped around a syn-
chronous communications line and/ai to the user If a virtual terminal is required, the terminal i
can be wrapped around a communications link, the other end of which is held by a virtual terminal protocol
interpreter

T The facilities described in this section are not included in 4.3BSD.

4.4BSD Architecture Manual PSD:5-21

2.6. Resource contols

2.6.1. Piocess priorities

The system gies CPU scheduling priority to processes thatéhaot used CPU time recentlyThis
tends to &va interactve processes and processes thatate only for short perioddt is possible to deter
mine the priority currently assigned to a process, process group, or the processes of a specdigd user
alter this priority using the calls:

#define PRIO_PACESS 0 /* process */
#define PRIO_PGRP 1 ¥ process group */
#define PRIO_USER 2 f*userid */

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

The \alueprio is in the range —20 to 20The de&ult priority is O; laver priorities cause moradaable
execution. Thegepriority call returns the highest priority (iest numerical alue) enjged by ay of the
specified processed.he setpriority call sets the priorities of all of the specified processes to the specified
vaue. Onlythe supeuser may laer priorities.

2.6.2. Resouce utilization

The resources used by a process are returnedyiyuaage call, returning information in a structure
defined in<sys/resouceh>:

#define RISAGE_SELF 0 /* usage by this process */
#define RISAGE_CHILDREN -1 /* usage by all children */

getrusage(who, rusage)
int who; result struct rusage *rusage;

struct rusage {

struct timeal ru_utime; [*user time used */

struct timeval ru_stime; /*system time used */

int ru_maxrss; /* maximum core resident set size: kbytes */
int ru_ixrss; /* integral shared memory size (kbytes*sec) */
int ru_idrss; /* unshared data memory size */

int ru_isrss; /* unshared stack memory size */

int ru_minflt; [* page-reclaims */

int ru_majflt; /* page fults */

int ru_nsvap; /* swaps */

int ru_inblock; /* block input operations */

int ru_oublock; /* block output operations */

int ru_msgsnd; /* messages sent */

int ru_msgrev; /* messages reoced */

int ru_nsignals; [* signals receied */

int ru_n/csw; /*voluntary contgt switches */

int ru_nwvcsw; /*involuntary cont&t switches */

¥
The who parameter specifies whose resource usage is to be retdrhedesources used by the current
process, or by all the terminated children of the current process may be requested.

PSD:5-22 4.4BSMArchitecture Manual

2.6.3. Resouce limits

The resources of a process for which limits are controlled by #reek are defined in
<sys/resouceh>, and controlled by thgerlimit andsetrlimit calls:

#define RLIMIT_CPU 0 ¥ cpu time in milliseconds */
#define RLIMIT_FSIZE 1 F maximum file size */
#define RLIMIT_DATA 2 maximum data ggment size */
#define RLIMIT_SPACK 3 /* maximum stack ggment size */
#define RLIMIT_CORE 4 ¥ maximum core file size */
#define RLIMIT_RSS 5 * maximum resident set size */
#define RLIM_NLIMITS 6
#define RLIM_INFINITY OX T fffffff
struct rlimit {

int rlim_cur; [* current (soft) limit */

int rlim_max; /* hard limit */

h

getrlimit(resource, rlp)
int resource; result struct rlimit *rlp;

setrlimit(resource, rlp)
int resource; struct rlimit *rip;

Only the supeuser can raise the maximum limitQther users may only altelim_cur within the
range from O tolim_maxor (irreversibly) lower rlim_max

4.4BSD Architecture Manual PSD:5-23

2.7. System operation support
Unless noted otherwise, the calls in this section are permitted only toleged user

2.7.1. Bootstrapoperations
The call

mount(blkde, dir, ronly);
char *blkdey, *dir; int ronly;

extends the UNIX name spac&he mountcall specifies a block gieee blkdes containing a UNIX file sys-
tem to be madevailable starting adir. If ronly is set then the file system is read-only; writes to the file
system will not be permitted and access times will not be updated when files are refe@indgschor
mally a name in the root directory

The call

swapon(blkdeg, gze);
char *blkdey; int size;

specifies a dace to be madevailable for paging and sapping.

2.7.2. Shutdavn operations
The call

unmount(dir);
char *dir;
unmounts the file system mounted din. This call will succeed only if the file system is not currently
being used.
The call

sync();
schedules input/output to clean all systearfidr caches.(This call does not require pileged status.)
The call

reboot(hav)
int how;

causes a machine halt or rebo®he call may request a reboot by specifyirayvas RB_AJTOBOOCT, o
that the machine be halted with RB_HRLThese constants are definedsys/reboot.h>

2.7.3. Accounting

The system optionallydeps an accounting record in a file for each processxitaioa the system.
The format of this record is pend the scope of this documerithe accounting may be enabled to a file
nameby doing

acct(path);
char *path;

If pathis null, then accounting is disable@®therwise, the named file becomes the accounting file.

PSD:5-24 4.4BSMArchitecture Manual

3. System facilities

This section discusses the systeilities that are not considered part of teenel.
The system abstractions described are:

1.fam T Directory contes
A directory contat is a position in the UNIX file system name spaGgerations on files and other
named objects in a file system ameals specified relate © such a contet.

1.fam T Files
Files are used to store uninterpreted sequence of bytes on which randormeactsssslwrites may
occur Pages from files may also be mapped into process address spadieettory may be read as
a file.

1.fam T Communications domains
A communications domain represents an interprocess communicatieingnerent, such as the
communicationsédcilities of the UNIX system, communications in the INTERNBETthe resource
sharing protocols and access rights of a resource sharing system on a lomd. netw

1.fam T Sockts

A socket is an endpoint of communication and the focal point for IPC in a communications domain.

Soclets may be created in pairs, ovegi names and used to rendeme with other soeis in a com-
munications domain, accepting connections from theseetock &changing messages with them.

These operations model a labeled or unlabeled communications graph, and can be used in a wide

variety of communications domainsSoclets can hee dfferenttypesto provide different semantics
of communication, increasing theXikility of the model.

1.fam T Terminals and other diees
Devices include terminals, pvaing input editing and interrupt generation and outpwy fbontrol
and editing, magnetic tapes, disks and other periphefélsy often support the generiead and
write operations as well as a numbeiiaft] s.

1.fam T Processes
Process descriptors piide facilities for control and delgging of other processes.

T Support for mapping files is not included in the 4.3 release.

4.4BSD Architecture Manual PSD:5-25

3.1. Generic operations

Many system abstractions support the operatioeel, write andioctl. We describe the basics of
these common primites here. Similarly the mechanisms whereby normally synchronous operations may
occur in a non-blocking or asynchronoastion are common to all system-defined abstractions and are
described here.

3.1.1. Reacand write

The read and write system calls can be applied to communications channels, files, terminals and
devices. Thg havethe form:

cc = read(fd, bf, nbytes);
result int cc; int fd; result caddr_uf int nbytes;

cc = write(fd, luf, nbytes);
result int cc; int fd; caddr_tuf; int nbytes;

Theread call transfers as much data as possible from the object defirfdddthe luffer at addresbuf of
sizenbytes The number of bytes transferred is returneddrwhich is -1 if a return occurred beforeyan
data vas transferred because of an error or use of non-blocking operations.

Thewrite call transfers data from theutfer to the object defined iy. Depending on the type &d,
it is possible that therrite call will accept some portion of the pided bytes; the user should resubmit the
other bytes in a later request in this cakeror returns because of interrupted or otherwise incomplete
operations are possible.

Scattering of data on input oattpering of data for output is also possible using an array of input/out-
put vector descriptorsThe type for the descriptors is definedsys/uio.h>as:

struct iovec {
caddr_t i™_msg; /*base of a component */
int iov_len; /*length of a component */
h

The calls using an array of descriptors are:

cc = readv(fd, ig, iovien);
result int cc; int fd; struct Mec *iov; int iovlen;

cc = writey(fd, iov, iovlen);
result int cc; int fd; struct Mec *iov; int iovlen;

Hereiovlenis the count of elements in ther array

3.1.2. Input/output control
Control operations on an object are performed byatikoperation:

ioctl(fd, request, bffer);
int fd, request; caddr_tifer;

This operation causes the specifiequestto be performed on the objdct Therequestparameter speci-

fies whether the gument lnffer is to be read, written, read and written, or is not needed, and also the size
of the huffer, as well as the requestDifferent descriptor types and subtypes within descriptor types may
use distinctoctl requests. & example, operations on terminals control flushing of input and output queues
and setting of terminal parameters; operations on disks cause formatting operations to occur; operations on
tapes control tape positioning.

The names for basic control operations are definedys/ioctl.h>

PSD:5-26 4.4BSMArchitecture Manual

3.1.3. Non-blockingand asynchionous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor in
non-blocking mode as described in section 1.9 Hereafter theead call will return a specific E\@ULD-
BLOCK error indication if there is no data to kead. The process maselectthe associated descriptor to
determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some of the
provided data, returning a shorter than normal length, or return an error indicating that the openation w
block. Moreoutput can be performed as soon aselactcall indicates the object is writeable.

Operations other than data input or output may be performed on a descriptor in a non-béstking f
ion. Theseoperations will return with a characteristic error indicating that &ne in progress if thecan-
not complete immediatelyThe descriptor may then Iseleced forwrite to find out when the operation has
been completedWhenselectindicates the descriptor is writeable, the operation has complBipknd-
ing on the nature of the descriptor and the operation, additionatyaotiay be started or the westate may
be tested.

4.4BSD Architecture Manual PSD:5-27

3.2. File system

3.2.1. Oerview

The file system abstraction pides access to a hierarchical file system structilife file system
contains directories (each of which may contain other sub-directories) as well as files and references to
other objects such aswees and inteprocess communications setg.

Each file is aganized as a linear array of byteNo record boundaries or system related information
is present in a fileFiles may be read and written in a random-accasisidn. Thauser may read the data
in a directory as though it were an ordinary file to determine the names of the containedtfdes; the
system may write into the directorieShe file system stores only a small amountwhership, protection
and usage information with a file.

3.2.2. Naming

The file system calls takpath namearguments. Theseonsist of a zero or more compondife
namesseparated by/*’ characters, where each file name is up to 255 ASCII charagtuslieg null and
“ /11.

Each process wabys has tw naming contets: one for the root directory of the file system and one
for the current wrking directory These are used by the system in the filename translation prdtess.
path name kgins with a /"', it is called a full path name and interpreted re&@t the root directory con-
text. If the path name does notdire with a */*’ it is called a relatie path name and interpreted relatio
the current directory conte

The system limits the total length of a path name to 1024 characters.

The file name'..” i n each directory refers to the parent directory of that direct®he parent direc-
tory of the root of the file system isagys that directory

The calls

chdir(path);
char *path;

chroot(path)
char *path;
change the currentarking directory and root directory comteof a process.Only the supeuser can

change the root directory cortef a process.

3.2.3. Cation and removal

The file system allos directories, files, special Wlees, and‘portals” to be aeated and renved
from the file system.

3.2.3.1. Diectory creation and removal
A directory is created with thekdir system call:

mkdir(path, mode);
char *path; int mode;

where the mode is defined as for files (seeviel®irectoriesare remwoed with thermdir system call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

PSD:5-28 4.4BSMArchitecture Manual

3.2.3.2. Filecreation
Files are created with tlepensystem call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

The path parameter specifies the name of the file to be creatée. oflag parameter must include
O_CREA from belav to cause the file to be createBits for oflag are defined ircsys/fileh>:

#define O_RDONY 000 [* open for reading */

#define O_WRNLY 001 [* open for writing */

#define O_RWWR 002 /* open for read & write */
#define O_NDELX 004 /* non-blocking open */
#define O_APPEND 010 /*append on each write */
#define O_CREA 01000 /*open with file create */
#define O_TRINC 02000 /* open with truncation */
#define O_EXCL 04000 /*error on create if filexasts */

One of O_RDONY, O WRONLY and O_RDNR should be specified, indicating what types of oper
ations are desired to be performed on the open Tilee operations will be cheeld aginst the uses’
access rights to the file before allng theopento succeedSpecifying O_APPEND causes writes to auto-
matically append to the fileThe flag O_CRERA causes the file to be created if it does misteavned by
the current user and the group of the containing directding protection for the mefile is specified in
mode The file mode is used as a three digit octal numBeach digit encodes read access as 4, write
access as 2 andeeute access as 1, or'ed togeth@he 0700 bits describenmer access, the 070 bits
describe the access rights for processes in the same group as the file, and the 07 bits describe the access
rights for other processes.

If the open specifies to create the file with O_EXCL and the file alredstg,ehen th@penwill f ail
without afecting the file in apway. This prosides a simplexlusive acess dcility. If the file eists hut
is a symbolic link, the open wilbifl regardless of the xdstence of the file specified by the link.

3.2.3.3. Ceating references to deices

The file system allws entries which reference peripheraVvides. Peripheralare distinguished as
block or character devices according by their ability to support block-oriented operati@evices are
identified by their‘major” and “minor’” device numbers.The major deice number determines the kind of
peripheral it is, while the minor diee number indicates one of possibly maeripherals of that kind.
Structured deéices hae dl operations performed internally inbfock” quantities while unstructured
devices often hee a umber of specialbctl operations, and may ¥, input and output performed irary-
ing units. Themknodcall creates special entries:

mknod(path, mode, d§
char *path; int mode, de

wheremodeis formed from the object type and access permissi®hs. parametedev is a configuration
dependent parameter used to identify specific character or blockJit2sle

3.2.3.4. Prtal creationt
The call

fd = portal(name, seev, param, dtype, protocol, domain, socktype)
result int fd; char *name, *seey, *param; int dtype, protocol;
int domain, socktype;

places anamein the file system name space that causes connection toea pesgess when the name is
used. Theportal call returns an agg portal infd as though an access had occurred twaetan inactie

T Theportal call is not implemented in 4.3BSD.

4.4BSD Architecture Manual PSD:5-29

portal, as nev described.

When an inactie portal is accessed, the system sets up aes@tkhe specifiedodtypein the speci-
fied communicationdomain(see section 2.3), and creates sbheverprocess, ging it the specifiegharam
as agument to help it identify the portal, and alseingyj it the nevly created sooit as descriptor number 0.
The accessor of the portal will create a ®8ék the samedomainandconnectto the serer. The user will
thenwrap the sockt in the specifiegirotocolto create an object of the required descriptor typeand
proceed with the operation whictaw/in progress before the portalsrencountered.

While the serer process holds the satwhich it receied as fd from theportal call on descriptor O
at actvation) further references will result in connections being made to the sanet.sock

3.2.3.5. Filedevice, and portal removal
A reference to a file, specialdee or portal may be remed with theunlink call,

unlink(path);
char *path;

The caller must hee write access to the directory in which the file is located for this call to be successful.

3.2.4. Readingand modifying file attrib utes
Detailed information about the attutes of a file may be obtained with the calls:

#include <sys/stat.h>

stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

Thestatstructure includes the file type, protectionnership, access times, size, and a count of hard links.
If the file is a symbolic link, then the status of the link itself (rather than the file the link references) may be
found using théstat call:

Istat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the group id of the direc-
tory in which it was createdThe avnership of a file may be changed by either of the calls

chown(path, evner, group);
char *path; int wner, group;

fchown(fd, avner, group);
int fd, ovner, group;

In addition to avnership, each file has threeds of access protection associated withTihese lg-
els are wner relatve, group relatve, and global (all users and groupdtach leel of access has separate
indicators for read permission, write permission, axetigte permission.The protection bits associated
with a file may be set by either of the calls:

chmod(path, mode);
char *path; int mode;
fchmod(fd, mode);
int fd, mode;

wheremodeis a \alue indicating the e protection of the file, as listed in section 2.2.3.2.

PSD:5-30 4.4BSMArchitecture Manual

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp)
char *path; struct timel * tvp[2];

This is particularly useful when maimg files between media, to presemelationships between the times
the file wvas modified.

3.2.5. Linksand renaming
Links allov multiple names for a file toxést. Linksexist independently of the file lirdd to.

Two types of links gist, hard links andsymboliclinks. A hard link is a reference counting mecha-
nism that allavs a file to hae nultiple names within the same file systeBymbolic links cause string sub-
stitution during the pathname interpretation process.

Hard links and symbolic links ke dfferent properties.A hard link insures the tget file will
always be accessibleyen after its original directory entry is remaed; no such guaranteeists for a sym-
bolic link. Symbolic links can span file systems boundaries.

The following calls create a melink, namedath2 to path1

link(pathl, path2);
char *pathl, *path2;

symlink(pathl, path2);
char *pathl, *path2;
Theunlink primitive may be used to rere dther type of link.
If a file is a symbolic link, thévalue’ of the link may be read with ttreadlink call,
len = readlink(path, udf, bufsize);
result int len; result char *path, 8 int bufsize;
This call returns, ifouf, the null-terminated string substituted into pathnames passing thpatiyh
Atomic renaming of file system resident objects is possible withetteanecall:

rename(oldname, mmame);
char *oldname, *n&name;

where botholdnameand nevnamemust be in the same file systeifi.nevnameexists and is a directory
then it must be empty

3.2.6. Extensiorand truncation

Files are created with zero length and may Xtereled simply by writing or appending to them.
While a file is open the system maintains a pointer into the file indicating the current location in the file
associated with the descriptofhis pointer may be nved about in the file in a random accessliion. ©
set the current et into a file, théseekcall may be used,

oldoffset = Iseek(fd, déet, type);
result of t oldoffset; int fd; of t offset; int type;

wheretypeis given in <sys/fileh> as one of:

#define SEEK_SET 0 * set file ofset to ofset */
#define SEEK_CUR 1 * set file ofset to current plus tdet */
#define SEEK_CUR 2 I* set file ofset to EOF plus d$et */

The call ‘Iseek(fd, 0, SEEK_CUR)returns the current fsfet into the file.

Files may hee “holes” in them. Holesare wid areas in the lineaxent of the file where data has
never been written. These may be created by seeking to a location in a file past the current end-of-file and
writing. Holesare treated by the system as zeatugd bytes.

4.4BSD Architecture Manual PSD:5-31

A file may be truncated with either of the calls:
truncate(path, length);
char *path; int length;
ftruncate(fd, length);
int fd, length;
reducing the size of the specified fildeagthbytes.

3.2.7. Checkingaccessibility

A process running with diérent real and é&ctive wser ids may interrage the accessibility of a file
to the real user by using thecessall:

accessible = access(pathyhp
result int accessible; char *path; intwio

Herehowis constructed by or’ing the folidng bits, defined irsys/fileh>:

#define F_OK 0 * file ists */
#define X_OK 1 * file is executable */
#define W_OK 2 [* file is writable */
#define R_OK 4 [* file is readable */

The presence or absence of advisory locks doesfeot #fe result ohccess

3.2.8. Locking

The file system prades basicdcilities that allev cooperating processes to synchronize their access
to shared filesA process may place an adviseead or write lock on a file, so that other cooperating pro-
cesses mayvaid interfering with the process’ accesthis simple mechanism prigles locking with file
granularity More granular locking can beiilt using the IPCdcilities to preide a lock managefThe sys-
tem does not force processes toyothe locks; thg are of an advisory nature only

Locking is performed after awpencall by applying thdlodk primitive,

flock(fd, haw);
int fd, how;

where théhowparameter is formed from bits defined<isys/fileh>:

#define LOCK_SH 1 f* shared lock */

#define LOCK_EX 2 * exclusive lock */

#define LOCK_NB 4 ¥ don’t block when locking */
#define LOCK_UN 8 /¥ unlock */

Successie lock calls may be used to increase or decrease \heofel ocking. If an object is currently
locked by another process whefiak call is made, the caller will be bloe# until the current lockvaner
releases the lock; this may beomled by including LOCK_NB in thehow parameter Specifying
LOCK_UN remaes dl locks associated with the descriptgkdvisory locks held by a process are auto-
matically deleted when the process terminates.

3.2.9. Diskquotas

As an optional dcility, each file system may be requested to impose limits on asudst’ usage.
Two quantities are limited: the total amount of disk space which a user may allocate in a file system and the
total number of files a user may create in a file syst®ootas arexg@ressed abard limits andsoftlimits.
A hard limit is alvays imposed; if a user auld exceed a hard limit, the operation which caused the
resource request wilbfl. A soft limit results in the user ree@ig a warning message ubwith allocation
succeeding. &cilities are preided to turn soft limits into hard limits if a user haseeded a soft limit for
an unreasonable period of time.

PSD:5-32 4.4BSMArchitecture Manual

To enable disk quotas on a file system $le¢quotecall is used:

setquota(special, file)
char *special, *file;

wherespecialrefers to a structured dee file where a mounted file systexists, andfile refers to a disk
guota file (residing on the file system associated gp#ria) from which user quotas should be obtained.
The format of the disk quota file is implementation dependent.

To manipulate disk quotas tlggiotacall is provided:
#include <sys/quota.h>
guota(cmd, uid, @, addr)
int cmd, uid, ag; caddr_t addr;

The indicateccmdis applied to the user IDid. The parameterarg andaddr are command specificThe
file <sys/quota.h>contains definitions pertinent to the use of this call.

4.4BSD Architecture Manual PSD:5-33

3.3. Inter process communications

3.3.1. Intemprocess communication primitves

3.3.1.1. Communicatiordomains

The system pnides access to arxtensible set of communicatioomains A communication
domain is identified by a manifest constant defined in the$ys/so&et.h>. Important standard domains
supported by the system are thenix’’” domain, AF_UNIX, for communication within the system, the
“Internet’ domain for communication in theARPA Internet, AF_INETand the ‘NS’ domain, AF_NS,
for communication using the Xerox Neivk Systems protocolsOther domains can be added to the sys-
tem.

3.3.1.2. Sockt types and potocols

Within a domain, communication &k place between communication endpointsvnassokes.
Each sockt has the potential toceéhange information with other saetls of an appropriate type within the
domain.

Each sockt has an associated abstract type, which describes the semantics of communication using
that sockt. Propertiesuch as reliabilityordering, and pneention of duplication of messages are deter
mined by the typeThe basic set of soektypes is defined insys/soke.h>:

/* Standard soadt types */

#define SOCK_DGRAM 1 f* datagram */

#define SOCK_STREAM 2 f* virtual circuit */

#define SOCK_RW 3 /* raw socket */

#define SOCK_RDM 4 * reliably-delvered message */
#define SOCK_SEQ@®KET 5 /* sequenced paeks */

The SOCK_DGRAM type models the semantics of datagrams irorlem@mmunication: messages may
be lost or duplicated and may agiaut-of-order A datagram soak may send messages to and recei
messages from multiple peerfhe SOCK_RDM type models the semantics of reliable datagrams: mes-
sages arve winduplicated and in-ordethe sender is notified if messages are Id3te sendandreceive
operations (described belp generate reliable/unreliable datagranihe SOCK_STREAM type models
connection-based virtual circuits: dvwvay byte streams with no record boundari€annection setup is
required before data communication mayibe The

PSD:5-34 4.4BSMArchitecture Manual

s = 9cket(domain, type, protocol);
result int s; int domain, type, protocol,

The sockt domain and type are as describedvap@nd are specified using the definitions from
<sys/soke.h>. The protocol may be gn as 0 meaning ay suitable protocol.One of seeral possible
protocols may be selected using identifiers obtained from a library rogétpegtobyname

An unconnected soek descriptor of a connection-oriented type may yield a connecteetsock
descriptor in one of tawways: either by actely connecting to another sogl or by becoming associated
with a name in the communications domain aedeptinga mnnection from another soek Datagram
soclets need not establish connections before use.

To accept connections or to reegei catagrams, a soek must first hee a bnding to a name (or
address) within the communications domasuch a binding may be established Wyrad call:

bind(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Datagram soakts may hee default bindings established when first sending data if xylicitly bound ear
lier. In d@ther case, a soek's bound name may be retvied with a getisodnamecall:

getsockname(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

while the pees rame can be retried with geipeername

getpeername(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

Domains may support soets with segeral names.

3.3.1.4. Acceptingconnections
Once a binding is made to a connection-orientededpitkis possible ttistenfor connections:

listen(s, backlog);
int s, backlog;

The badlog specifies the maximum count of connections that can be simultaneously queitath a
acceptance.
An acceptcall:

t = accept(s, name, anamelen);
result int t; int s; result struct sockaddr *name; result int *anamelen;

returns a descriptor for aweconnected, so&k from the queue of pending connectionssornf no new
connections are queued for acceptance, the call &itlfar a connection unless non-blocking 1/0 has been
enabled.

3.3.1.5. Makingconnections
An active onnection to a named satkis made by theonnectall:

connect(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Although datagram soeks do not establish connections, te@nectcall may be used with such set& to
create arassociationwith the foreign addressThe address is recorded for use in futseadcalls, which
then need not supply destination addresdgstagrams will be recesd only from that peerand asyn-
chronous error reports may be reedi

It is also possible to create connected pairs ofeteckithout using the domamihame space to ren-
dezwus; this is done with theodetpair callt:

T 4.3BSD supportsodketpair creation only in the'tinix’* communication domain.

4.4BSD Architecture Manual PSD:5-35

socletpair(domain, type, protocol, sv);
int domain, type, protocol; result int sv[2];
Here the returnesivdescriptors correspond to those obtained atiteptandconnect
The call
pipe(pv)
result int pv[2];

creates a pair of SOCK_STREAM set& in the UNIX domain, with pv[0] only writable and pv[1] only
readable.

3.3.1.6. Sendingnd receving data
Messages may be sent from a sidby:

cc = sendto(s, U, len, flags, to, tolen);
result int cc; int s; caddr_uly int len, flags; caddr_t to; int tolen;

if the soclet is not connected or:

cc = send(s, U, len, flags);
result int cc; int s; caddr_uffy int len, flags;

if the soclet is connectedThe corresponding recs rimitives ae:

msglen = recvfrom(s,Ud, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr ufjpint len, flags;
result caddr_t from; result int *fromlenaddr;

and

msglen = recv(s,Ud, len, flags);
result int msglen; int s; result caddr ufjpint len, flags;

In the unconnected case, the parameteasidtolenspecify the destination or source of the message,
while thefrom parameter stores the source of the message;fraordlenaddrinitially gives the size of the
frombuffer and is updated to reflect the true length ofritvaddress.

All calls cause the message to be reskin or sent from the messagaiffer of lengthlen bytes,
starting at addredsuf. The flags specify peeking at a message without reading it or sending ovirecei
high-priority out-of-band messages, as fako

#define MSG_PEEK 0x1 [* peek at incoming message */
#define MSG_OOB 0x2 [* process out-of-band data */

3.3.1.7. Scatter/gatheand exchanging access rights

It is possible scatter andatiper data and taxehange access rights with messagééen either of
these operations isvalved, the number of parameters to the call becomgs.larhugshe system defines a
message header structure <gys/soket.h>, which can be used to cemiently contain the parameters to
the calls:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iov *msg_io; [* scatter/gther array */

int msg_iwlen; [*# dements in msg_io*/
caddr_t msg_accrights; [* access rights sent/reged */
int msg_accrightslen; /* size of msg_accrights */

PSD:5-36 4.4BSMArchitecture Manual

Heremsg_namend msg_namelespecify the source or destination address if theetdskunconnected,;
msg_namenay be gien as a rull pointer if no names are desired or requirdtie msg_iv andmsg_iwlen
describe the scattedther locations, as described in section 2.A8cess rights to be sent along with the
message are specifiednmsg_accrightswhich has lengtimsg_accrightslenIn the ‘unix’’ domain these
are an array of ingeer descriptors, ta& from the sending process and duplicated in theveecei

This structure is used in the operatisesdms@gndrecvmsg

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

3.3.1.8. Usingead and write with sockets

The normal UNIXread andwrite calls may be applied to connected sziskand translated insend
andreceivecalls from or to a single area of memory and discardirygrigihts recered. A process may
operate on a virtual circuit soek a terminal or a file with blocking or non-blocking input/output operations
without distinguishing the descriptor type.

3.3.1.9. Shuttingdown halves of full-duplex connections
A process that has a full-duglesocket such as a virtual circuit and no longer wishes to read from or
write to this sockt can gie the call:

shutdavn(s, direction);
int s, direction;

wheredirectionis 0 to not read furthefl to not write further or 2 to completely shut the connectionwlo.
If the underlying protocol supports unidirectional or bidirectional shatdahis indication will be passed
to the peer For ekample, a shutden for writing might produce an end-of-file condition at the remote end.

3.3.1.10. Sockt and protocol options

Soclets, and their underlying communication protocols, may suppbidns These options may be
used to manipulate implementation- or protocol-spediidifies. Thegeisodopt andsetsokopt calls are
used to control options:

getsoclopt(s, level, optname, opti, optlen)
int s, level, optname; result caddr_t opdy result int *optlen;

setsockpt(s, level, optname, optal, optlen)
int s, level, optname; caddr_t opy; int optlen;

The optionoptnameis interpreted at the indicated protod®lel for soclets. If a value is specified with
optval and optlen it is interpreted by the sofewe operating at the specifiddvel The level
SOL_SOCKET is reseed to indicate options maintained by the sidicilities. Othedevel values indi-
cate a particular protocol which is to act on the option request; thgses\are normally interpreted as a
“ protocol numbet!

3.3.2. UNIXdomain
This section describes briefly the properties of the UNIX communications domain.

3.3.2.1. pes of sockts

In the UNIX domain, the SOCK_STREAM abstraction \pdes pipe-lile facilities, while
SOCK_DGRAM praides (usually) reliable message-style communications.

4.4BSD Architecture Manual PSD:5-37

3.3.2.2. Naming
Soclet names are strings and may appear in the UNIX file system name space through portalst.

3.3.2.3. AccesHghts transmission

The ability to pass UNIX descriptors with messages in this domaiwslhigration of service
within the system and alles user processes to be useduitding systemdcilities.

3.3.3. INTERNET domain

This section describes brieflywdhe Internet domain is mapped to the model described in this sec-
tion. Moreinformation will be found in the document describing the ogkwmplementation in 4.3BSD.

3.3.3.1. Sockt types and potocols

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the UDP protocol.
Each is layered atop the transpokteld nternet Protocol (IP).The Internet Control Message Protocol is
implemented atop/beside IP and is accessible viavesoaket. TheSOCK_SEQRCKET has no direct
Internet imily analogue; a protocol based on one from the GERIS family and layered on top of IP
could be implemented to fill thisag.

3.3.3.2. Sockt naming

Soclets in the Internet domainyerames composed of the 32 bit Internet address, and a 16 bit port
number Options may be used to ptide IP source routing or security optioriBhe 32-bit address is com-
posed of netark and host parts; the neivk part is wariable in size and is frequenencoded. Théehost
part may optionally be interpreted as a subnet field plus the host on subnet; this is is enabled by setting a
network address mask at boot time.

3.3.3.3. AccesHghts transmission
No access rights transmissiatilities are preided in the Internet domain.

3.3.3.4. Rawaccess

The Internet domain alles the supeuser access to thewdacilities of IP These intedices are
modeled as SOCK_RA sockets. Eachraw socket is associated with one IP protocol numbed receies
all trafiic receved for that protocol. This allovs administratie and delugging functions to occuiend
enables usdevel implementations of special-purpose protocols such asgatevay routing protocols.

T The 4.3BSD implementation of the UNIX domain embeds boundes®dk the UNIX file system name
space; this may change in future releases.

PSD:5-38 4.4BSMArchitecture Manual

3.4. Terminals and Devices

3.4.1. Erminals

Terminals supportead and write 1/O operations, as well as a collection of terminal spea@ifit!
operations, to control input character interpretation and editing, and output format and delays.

3.4.1.1. BErminal input

Terminals are handled according to the underlying communication characteristics such as baud rate
and required delays, and a set of safevparameters.

3.4.1.1.1. Inputmodes

A terminal is in one of three possible modesv, cbreak or cooled In raw node all input is passed
through to the reading process immediately and without interpretdtiothreak mode, the handler inter
prets input only by looking for characters that cause interrupts or outputdidrol; all other characters
are made ailable as in rv mode. Incooked mode, input is processed to\pde standard line-oriented
local editing functions, and input is presented on a line-by-line basis.

3.4.1.1.2. Interruptcharacters

Interrupt characters are interpreted by the terminal handler only in cbreak ard coolles, and
cause a softare interrupt to be sent to all processes in the process group associated with the terminal.
Interrupt charactersest to send SIGINT and SIGQT signals, and to stop a process group with the SIGT
STP signal either immediatelgr when all input up to the stop character has been read.

3.4.1.1.3. Lineediting

When the terminal is in coek mode, editing of an input line is performdgditing facilities allav
deletion of the préous character or erd, or deletion of the current input lingn addition, a special char
acter may be used to reprint the current input line after some number of editing operat®nsema
applied.

Certain other characters are interpreted specially when a process ised coo#te. The end of line
character determines the end of an input recditte end of filecharacter simulates an end of file oecur
rence on terminal inputFlow control is pravided bystop outpu@ndstart outputcontrol charactersOut-
put may be flushed with tHish outputharacter; and Eeral charactermay be used to force literal input
of the immediately follwing character in the input line.

Input characters may be echoed to the terminal gsatkereceved. Non-graphicASCII input chaf
acters may be echoed as @{gharacter printable representatidigharacter’

3.4.1.2. Brminal output

On output, the terminal handler pides some simple formatting servicéghese include camrting
the carriage return character to theoteharacter return-linefeed sequence, inserting delays after certain
standard control charactergpanding tabs, and prwling translations for upperase only terminals.

3.4.1.3. Erminal control operations

When a terminal is first opened it is initialized to a standard state and configured with a set of stan-
dard control, editing, and interrupt charactefsprocess may alter this configuration with certain control
operations, specifying parameters in a standard structure:t

T The control interdice described here is an internal irgeef only in 4.3BSD Future releases will probably use
a nodified interfice based on currently-proposed standards.

4.4BSD Architecture Manual PSD:5-39

struct ttymode {

short tt_ispeed; /* input speed */
int tt_iflags; [* input flags */
short tt_ospeed,; /* output speed */
int tt_oflags; /* output flags */

¥
and ‘special charactersare specified with th&ychars structure,

struct ttychars {

char tc_erasec; /* erase char */

char tc_killc; /* erase line */

char tc_intrc; [* interrupt */

char tc_quitc; [* quit */

char tc_startc; [* start output */

char tc_stopc; [* stop output */

char tc_eofc; /* end-of-file */

char tc_brkc; /* input delimiter (like) */
char tc_suspc; [* stop process signal */
char tc_dsuspc; /* delayed stop process signal */
char tc_rprntc; [* reprint line */

char tc_flushc; /* flush output (toggles) */
char tc_werasc; /* word erase */

char tc_Inatc; [* literal next character */

3.4.1.4. Brminal hardware support

The terminal handler ales a user to access basic hamdswelated functions; e.g. line speed, modem
control, parity and stop bits.A special signal, SIGHURs automatically sent to processes in a termgal’
process group when a carrier transition is detectéds is normally associated with a user hanging up on a
modem controlled terminal line.

3.4.2. Structured devices

Structures ddces are typified by disks and magnetic tapes,nbay represent grmrandom-access
device. Thesystem performs read-modify-write typaftering actions on block dé&es to allev them to
be read and written in a totally random accashibn lile ardinary files. File systems are normally created
in block deices.

3.4.3. Unstructured devices

Unstructured déces are those gizes which do not support block structuféamiliar unstructured
devices are ra communications lines (with no terminal handler), raster plotters, magnetic tape and disks
unfettered by bffering and permitting lare block input/output and positioning and formatting commands.

PSD:5-40 4.4BSMArchitecture Manual

3.5. Process and krnel descriptors

The status of theatilities in this section is still under discussidrhe ptracefacility of earlier UNIX
systems remains in 4.3BSIPlanned enhancement®wid allov a descriptorbased process contr@dil-

ity.

4.4BSD Architecture Manual

I. Summary of facilities

1. Kernel primiti ves
1.1. Process naming and potection

sethostid
gethostid
sethostname
gethostname
getpid

fork

exit

execve
getuid
geteuid
setreuid
getgid
geteyid
getgroups
setrgid
setgroups
getpgrp
setpgrp

1.2 Memory management
<sys/mman.h>

sbhrk
sstkt

setNIX host id

geUNIX host id

seiNIX host name

g@&INIX host name
gefprocess id
createnaw process
terminatea process
execute a diferent process
geuser id

geeffective wser id

seteal and dective wser ids
geftaccounting group id
geteffective accounting group id

gedccess group set
setreal and dective goup id's

sedccess group set
geprocess group

seprocess group

memonyanagement definitions
changelata section size
changstack section size

1.3 Signals

getpagesize
mmapt
msynct
munmapt
mprotectt
madviset
mincoret
msleept
mwakeupt

<signal.h>
sigvec

kill

killpgrp
sigblock
sigsetmask
sigpause
sigstack

1.4 Timing and statistics

<sys/time.h>
gettimeofday

T Not supported in 4.3BSD.

gehemory page size
maypages of memory
flushmodified mapped pages to filesystem
unmamemory
changprotection of pages
gie memory management advice
determineore residencof pages
sleepn a lock
vakeup process sleeping on a lock

signafiefinitions

sethandler for signal
sendsignal to process
sendsignal to process group
blockset of signals

restoset of blocked signals
wit for signals
sesoftware stack for signals

time-relatedefinitions
geturrent time and timezone

PSD:5-41

PSD:5-42

settimeofday
getitimer
setitimer
profil

1.5 Descriptors

getdtablesize
dup

dup2

close

select

fentl

wrap¥

1.6 Resouce contols

<sys/resource.h>

4.4BSMArchitecture Manual

saturrent time and timezone

readhn intenal timer

getnd set an inteal timer

profile process

descriptogference table size

duplicatelescriptor

duplicateo specified inde

closelescriptor

multipl& input/output

wrapdescriptor with

controldescriptor options

protocol

resource-relatisfinitions

getpriority getprocess priority
setpriority seprocess priority
getrusage getsource usage
getrlimit getresource limitations
setrlimit setresource limitations

1.7 System operation support

mount mount device file system
swapon addh svap device

umount umouna file system

sync flushsystem caches
reboot reboo& machine

acct specifyaccounting file

2. Systemfacilities
2.1 Generic operations

read readlata

write write data

<sys/uio.h> scattegather related definitions
readv scatteredata input

writev gathered data output
<syslioctl.h> standardontrol operations

ioctl device control operation

2.2 File system

Operations mard with a * &ist in two forms: as shen, operating on a file name, and operating on
a file descriptgrwhen the name is preceded withfa.

<sysffile.h> filesystem definitions
chdir changalirectory

chroot changeoot directory
mkdir male a drectory

rmdir remwe a drectory

open opera rew a existing file
mknod malk a pecial file
portalt male a prtal entry

T Not supported in 4.3BSD.

4.4BSD Architecture Manual

unlink
stat*
Istat
chown*
chmod*
utimes
link
symlink
readlink
rename
Iseek
truncate*
access
flock

2.3 Communications

<sys/sockt.h>
soclet

bind
getsockname
listen

accept
connect
socletpair
sendto

send
recvfrom
recv
sendmsg
recvmsg
shutdavn
getsoclopt
setsochpt

2.4 Terminals, block and character deices

2.5 Processes anddenel hooks

remae a lnk

returnstatus for a file
returnedstatus of link
changeowner

changenode
changaccess/modify times
make a tard link

male a ymbolic link

readcontents of symbolic link

changeame of file
repositionvithin file
truncatéile
determirazcessibility
locka file

standardefinitions
createsoclet
bindsoclet to name

gasbclet name
allav queuing of connections
acce@ oonnection

connecb peer sookt
creatgair of connected soeks
sendata to named soek
sendata to connected sastk

recaie cata on unconnected satk
recere data on connected saek
sengiathered data and/or rights
recee gattered data and/or rights
partiallyclose full-duple connection

getsoclet option
setsoclet option

PSD:5-43

