RCS—A System ér Version Control

Wadter F. Tichy

Department of Computer Sciences
Purdue Uniersity
West Lafayette, Indiana 47907

ABSTRET

An important problem in program d#@opment and maintenance isrgion control,
i.e., the task of &eping a softare system consisting of mawersions and configurations
well organized. TheRevision Control System (RCS) is a softse tool that assists with
that task. RCS manages vesions of tet documents, in particular source programs, doc-
umentation, and test dat#.automates the storing, retra, logging and identification of
revisions, and it preides selection mechanisms for composing configuratiortss
paper introduces basiession control concepts and discusses the practicersion con-
trol using RCS.For conserving space, RCS stores deltas, i.efergifices between suc-
cessve revisions. Seeral delta storage methods are discusddshge statistics sthothat
RCSS5s celta storage method is space and tinfecieht. Thepaper concludes with a
detailed surgy d version control tools.

Keywords: configuration management, history managemeeatsion control, rgsions,
deltas.

1996/08/12

RCS—A System ér Version Control

Wadter F. Tichy

Department of Computer Sciences
Purdue Uniersity
West Lafayette, Indiana 47907

1. Introduction

Version control is the task ofeleping softwre systems consisting of nyaversions and configura-
tions well oganized. TheRevision Control System (RCS) is a set of UNIX commands that assist with that
task.

RCS’ primary function is to managevision gioups A revision group is a set of te documents,
calledrevisions that eolved from each otherA new revision is created by manually editing axisting
one. RCSorganizes the reisions into an ancestral tre@he initial revision is the root of the tree, and the
tree edges indicate from whichvigion a gven one eolved. Besidesnanaging indiidual revision groups,
RCS p{(\yides flxible selection functions for composing configuratio®®CS may be combined with
MAKE ~, resulting in a paverful package forersion control.

RCS also ders facilities for meging updates with customer modifications, for distidldl softvare
development, and for automatic identificatioidentification is the ‘stamping’ of wésions and configura-
tions with unique mases. Thesenarkers are akin to serial numbers, telling safitey maintainers unam-
biguously which configuration is before them.

RCS is designed for both production angberimental evironments. Inproduction ewironments,
access controls detect update conflicts angepteoverlapping changesin experimental ewironments,
where strong controls are counterprodegtit is possible to loosen the controls.

Although RCS was originally intended for programs, it is useful foy text that is reised frequently
and whose preous revisions must be presexd. RCShas been applied successfully to store the source
text for drawings, VLSI layouts, documentation, specifications, test data, form letters and articles.

This paper discusses the practice efsion control using RCSt also introduces basievsion con-
trol concepts, useful for clarifying current practice and designing similar syskReasion groups of indi-
vidual components are treated in thextnthree sections, and thetensions to configurations follo
Because of its size, a segvd version control tools appears at the end of the paper

2. Getting started with RCS
Suppose a i file f.c is to be placed under control of RCBwvoking the check-in command

ci f.c

creates a me revision group with the contents @t as the initial reision (numbered 1.1) and stores the
group into the fild.c,v. Unless told otherwise, the command deléteslt also asks for a description of the
group. Thedescription should state the common purpose of @bBioms in the group, and becomes part of
the groups documentation. Allater check-in commands will ask for a log entwhich should summarize
the changes madégThe first reision is assigned a d&ilt log message, which just records thet that it is
the initial revision.)

An earlier \ersion of this paper &s published isoftwae—Pactice & Experiencd5, 7 (July 1985), 637-654.

Files ending inv are calledRCS fileqv stands fowersions); the others are callednking files. To
get back the warking filef.c in the preious exkample, &ecute the check-out command:

co fc

This commanddracts the latest vésion from the reision groupf.c,vand writes it intd.c. The filef.c can
now be alited and, when finished, chexkback in wittci:

ci f.c
Ci assigns number 1.2 to thewneevision. If ci complains with the message
ci error: no lok st by <laggin>

then the system administrator has decided to configure RCS for a produgifonraent by enabling the
‘strict locking feature’. If this feature is enabled, all RCS files are initialized such that check-in operations
require a lock on the pr®us revision (the one from which the current onslged). Lockingprevents
overlapping modifications if seral people wrk on the same filelf locking is required, the xesion
should hae keen locled during the check-out by using the optidn

co -l fc

Of course it is too late mofor the check-out with locking, becausehas already been changed; checking
out the file agin would overwrite the modifications(To prevent accidental werwrites, co senses the pres-
ence of a wrking file and asks whether the user really intendediéonoite it. The oserwriting check-out

is sometimes useful for backing up to thevpas revision.) To be &ble to proceed with the check-in in the
present case, firskecute

rcs -l f.c

This command retroaegly locks the latest rgsion, unless someone else ledkt in the meantimeln this
case, the te programmers imolved hae © negotiate whose modifications should ¢égfrecedence.

If an RCS file is puate, i.e., if only the wner of the file is ¥pected to deposit vesions into it, the
strict locking feature is unnecessary and may be disaltfestrict locking is disabled, thewmer of the
RCS file need not lva a bck for check-in.For safety reasons, all others still ddurning strict locking of
and on is done with the commands:

rcs -U f.c and rcs -L f.c
These commands enable or disable the strict locking feature for each RCS Vilduaiyi The system
administrator only decides whether strict locking is enabled initially

To reduce the clutter in amking directory dl RCS files can be nwed to a sibdirectory with the
nameRCS RCS commands look first into that directory for RCS fila.the commands presented abo
work with theRCSsubdirectory without change.t

It may be undesirable thatdeletes the wrking file. For instance, sometimes on@wld like o save
the current reision, hut continue editing.nvoking

ci -l f.c

checks irf.c as usual, bt performs an additional check-out with locking afterds. Thusthe working file
does not disappear after the check-8imilarly, the option—u does a check-in follwed by a check-out
without locking. This option is useful if the file is needed for compilation after the checBaith options
update the identification magks in the wrking file (see belw).

Besides the operatiomsandco, RCS prwides the folloving commands:

ident extract identification marrs

T Pairs of RCS and wrking files can actually be specified in ays: a) both are gén, b) only the wrking
file is given, c) only the RCS file is gén. If a pair is given, both files may hee abitrary path prefigs; RCS
commands pair them up intelligently

rcs change RCS file attriltes
rcsclean remove inchanged wrking files (optional)
rcsdiff compare reisions

rcsfreeze record a configuration (optional)
rcsmege memge revisions
rlog read log messages and other information in RCS files

A synopsis of these commands appears in the Appendix.

2.1. Automatic Identification

RCS can stamp source and object code with special identification strings, similar to product and
serial numbersTo dbtain such identification, place the mark

Id

into the tet of a revision, for instance inside a commenithe check-out operation will replace this mark
with a string of the form

$Id: filename evsionnumber date time author state kec$

This string need ner be touched, becausm keeps it up to date automaticallyfo propagte the markr
into object code, simply put it into a literal character strilmgC, this is done as foles:

static dar rcsid[] = "$I1d$";

The commanddentextracts such masks from aw file, in particular from object codddenthelps to find
out which reisions of which modules were used in gegiprogram. lItreturns a complete and unambigu-
ous component list, from which a gopf the program can be reconstructédhis facility is invaluable for
program maintenance.

There are seral additional identification maeks, one for each component of $Idghe marler
Log

has a similar functionlt accumulates the log messages that are requested during chdtkig).one can
maintain the complete history of avigion directly inside it, by enclosing it in a commefigure 1 is an
edited \ersion of a log contained invision 4.1 of the fileci.c. The log appears at thediening of the file,
and males it easy to determine what the recent modifications were.

/*
*$log: ci.cv$
* Revision 4.1 1983/05/10 17:03:06wvft
* Added option —d and -vend updated assignment of date, etc. i delta.
* Added handling of detlt branches.
*
* Revision 3.9 1983/02/15 15:25:44vft
* Added call todstcopy() to copy remainder of RCS file.
*
* Revision 3.8 1983/01/14 15:34:05vft
* Added ignoring of interrupts while weRCS file is renamed;
* avoids deletion of RCS files by interrupts.
*
* Revision 3.7 1982/12/10 16:09:2Qvft
* Corrected checking of return code fromfdif
* An RCS file nav inherits its mode during the first ci from thenking file,
* except that write permission is rexrenl.
*
Figure 1. Log entries produced by the markLog.

Since rgisions are stored in the form of @ifences, each log message iggitally stored once, indepen-
dent of the number of vesions presentThus, the Log maek incurs ngligible space werhead.

3. TheRCS Revision Tree

RCS arranges vésions in an ancestral tred@heci command hilds this tree; the auxiliary command
rcs prunes it. The tree has a rootvision, normally numbered 1.1, and successgvisions are numbered
1.2, 1.3, etc.The first field of a n@sion number is called thelease numbeand the second one thevel
number Unless gien explicitly, the ci command assigns aweevision number by incrementing thevéd
number of the prgous revision. Therelease number must be incrementeplieitly, using the-r option
of ci. Assuming there arevisions 1.1, 1.2, and 1.3 in the RCS file f.¢he command

ci —r2.1 fc or ci —-r2 f.c

assigns the number 2.1 to them@vision. Latercheck-ins without ther option will assign the numbers
2.2, 2.3, and so ornThe release number should be incremented only at major transition points indhe de
opment, for instance when ameelease of a softare product has been completed.

3.1. Whenare branches needed?

A young reision tree is slender: It consists of only one branch, called the tiskhe tree ages,
side branches may fornBranches are needed in the fallng 4 situations.
Tempotary fixes
Suppose a tree has Yigons grouped in 2 releases, as illustrated in Figuri@eision 1.3, the last
one of release 1, is in operation at customer sites, while release 2 iserdawiopment.

11 1.2 13 2.1 22 t---»

Figure 2. A slender reision tree.
Now imagine a customer requesting a fix of a problemvisien 1.3, although actual @gopment
has meed on to release 2.RCS does not permit arxtea revision to be spliced in between 1.3 and
2.1, since that auld not reflect the actual éidopment history Instead, create a branch atiseon
1.3, and check in the fix on that branchhe first branch starting at 1.3 has number 1.3.1, and the
revisions on that branch are numbered 1.3.1.1, 1.3.1.2Téte double numbering is needed towallo
for another branch at 1.3, say 1.3Revisions on the second brancltomid be numbered 1.3.2.1,
1.3.2.2, and so orThe followving steps create branch 1.3.1 and addien 1.3.1.1:

co -r1.3 fc ——ched out revision 1.3
edit fc —change it
ci -r1.3.1 fc —ched it in on branch 1.3.1

This sequence of commands transforms the tree of Figure 2 into the one in Filjote 8hat it may
be necessary to incorporate thefeténces between 1.3 and 1.3.1.1 into\asien at level 2. The
operationrcsmege automates this process (see the Appendix).

11 1.2 13 21 22 L---»

\ 1311 }F---»

Figure 3. A revision tree with one side branch

Distributed deelopment and customer modifications
Assume a situation as in Figure 2, whengsien 1.3 is in operation at\&al customer sites, while

release 2 is in delopment. Customesites should use RCS to store the disted softvare. Hav-
eva, customer modifications should not be placed on the same branch as theitdistsiburce;
instead, thg should be placed on a side brancWhen the net software distrilution arrives, it
should be appended to the trunk of the cust@®meCS file, and the customer can then geethe
local modifications back into the weelease. Irthe abee example, a customes’RCS file would
contain the folling tree, assuming that the customer has vedegévision 1.3, added his local mod-
ifications as reision 1.3.1.1, then recsid revision 2.4, and meged 2.4 and 1.3.1.1, resulting in
2.4.1.1.

13 2.4

1311 2411

Figure 4. A customers revision tree with local modifications.

This approach is actually practiced in the CSNET project, wheeeaseinversities and a compgn
cooperate in desloping a national computer netwk.

Parallel development
Sometimes it is desirable txm@ore an alternate design or afédient implementation technique in
parallel with the main line delopment. Sucldevelopment should be carried out on a side branch.
The eperimental changes may later bewabinto the main line, or abandoned.

Conflicting updates
A common occurrence is that one programmer has eldeclt a reision, tut cannot complete the
assignment for some reasom the meantime, another person must perform another modification
immediately In that case, the second person should check-out the sais@memodify it, and
check it in on a side branch, for later giag.

Every node in a ng@sion tree consists of the follong attributes: a reision numbera check-in date
and time, the autha@’identification, a log entrya gate and the actualx®e All these attribtes are deter
mined at the time the vision is checkd in. The state attrilte indicates the status of avisgon. Itis set
automatically to ‘®perimental’ during check-inA revision can later be promoted to a higher status, for
example ‘stable’ or ‘releasedThe set of states is useéefined.

3.2. Reisions are represented as deltas

For conserving space, RCS storesis®ns in the form of deltas, i.e., asfdiences between e
sions. Theuser interhce completely hides thiadt.

A delta is a sequence of edit commands that transforms one string into afitheleltas empied
by RCS are line-based, which means that the only edit command&dlire insertion and deletion of
lines. Ifasingle character in a line is changed, the edit scripts consider the entire line ch@hgquto-
gram diff~ produces a small, line-based delta between pairsxbffites. A charactebased edit script
would talke much longer to compute, ancdbwld not be significantly shorter

Using deltas is a classical space-time trafdel@itas reduce the space consumed ificrease access
time. Hawever, a \ersion control tool should impose as little delay as possible on programixeessie
delays discourage the use d@rsion controls, or induce programmers toetdkortcuts that compromise
system intgrity. To gain reasonablyafst access time for both editing and compiling, RCS arranges deltas
in the folloving way. The most recent wsion on the trunk is stored intacAll other revisions on the
trunk are stored asverse deltas.A revese delta describes Wwao go backward in the deelopment his-
tory: it produces the desiredvision if applied to the successor of thatiseon. Thisimplementation has
the adantage thatxdraction of the latest wsion is a simple andaét coy operation. Addinga rew revi-
sion to the trunk is als@sét:ci simply adds the we revision intact, replaces the pieus revision with a
reverse delta, anddeps the rest of the old deltaBhus,ci requires the computation of only oneandelta.

Branches need special treatmefihe nave lution would be to store complete copies for the tips of
all branches.Clearly, this approach wuld cost too much spacdnstead, RCS usef®rward deltas for
branches. Rgenerating a rg@sion on a side branch proceeds as fedlo First,extract the latest késion on
the trunk; second)yapply reverse deltas until the fork vesion for the branch is obtained; thirdgpply for-
ward deltas until the desired branchviston is reachedFigure 5 illustrates a tree with one side branch.
Triangles pointing to the left and right represererge and fonard deltas, respegtly.

SN

Figure 5. A revision tree with reerse and fonard deltas.

Although implementingdst check-out for the latest trunkvisgton, this arrangement has the disad-
vantage that generation of othewistons tales time proportional to the number of deltas appliEd:
example, rgenerating the branch tip in Figure 5 requires application efditas (including the initial
one). Sincausage statistics shothat the latest trunk vésion is the one that is retvied in 95 per cent of
all cases (see the section on usage statistics), biasing check-out tave of that revision results in sig-
nificant saings. Havever, careful implementation of the delta application process is necessarywtdepro
low retrieval overhead for other sgsions, in particular for branch tips.

There are seral techniques for delta applicatioithe nave me is to pass each delta to a general-
purpose tet editor A prototype of RCS woked the UNIX editored both for applying deltas and for
expanding the identification magks. Althougheasy to implement, performancesvpooy owing to the
high start-up costs andaess generality ofd An intermediate ersion of RCS used a special-purpose,
stream-oriented editorThis technique reduced the cost of applying a delta to the cost of checking out the
latest trunk reision. Thereason for this bekér is that each delta applicatiorvoives a complete pass
over the preceding résion.

However, there is a much better algorithrlote that the deltas are line oriented and that most of the
work of a stream editor uolves coging unchanged lines from onevigion to the net. A faster algorithm
avads unnecessary cging of character strings by usingpgece table A piece table is a one-dimensional
array specifying hav a gven revision is ‘pieced together’ from lines in the RCS filBuppose piece table
PTr represents kasionr. Then PTr[i] contains the starting position of linef revisionr. Application of
the net delta transforms piece tali into PTr+1. For instance, a delete command rewsoa ®ries of
entries from the piece tablén insertion command insertswentries, meing the entries follwing the
insertion point further den the array The inserted entries point to thettéines in the deltaThus, no I/O
is involved cept for reading the delta itseliVhen all deltas he keen applied to the piece table, a
sequential pass through the table looks up each line in the RCS file and copies it to the output file, updating
identification markrs at the same timeOf course, the RCS file must permit random access, since the
copied lines are scattered throughout that fitggure 6 illustrates an RCS file with dwevisions and the

corresponding piece tables.

Figure 6 is ot available

Figure 6. An RCS file and its piece tables

The piece table approach has the property that the time for applying a single delta is roughly deter
mined by the size of the delta, and not by the size of thsion. For example, if a delta is 10 per cent of
the size of a mgsion, then applying it tads only 10 per cent of the time to generate the latest truigiome
(The stream editor auld tale 100 per cent.)

There is an important alternmagi for representing deltas thafexdts performanceSCCS?, a [recur
sor of RCS, usesiterleaveddeltas. Afile containing interleaed deltas is partitioned into blocks of lines.
Each block has a header that specifies to whigkiom(s) the block belongsThe blocks are sorted out in
such aay that a single pasy@ the file can pick up all the lines belonging to eegirevision. Thusthe
regeneration time for all xésions is the same: all headers must be inspected, and the associated blocks
either copied or skippedAs the number of rgsions increases, the cost of retimg ary revision is much
higher than the cost of checking out the latest trumisign with reverse deltas.A detailed comparison of
SCCSs interleaved deltas and RCS’revase deltas can be found in ReferenceThis reference considers
the \ersion of RCS with the stream editor anljhe piece table method immes performance furtherso
that RCS is avays faster than SCCSxeept if 10 or more deltas are applied.

Additional speed-up for both delta methods can be obtained by caching the most recently generated
revision, as has been implemented in D ith caching, access time to frequently usedsiens can
approach normal file access time, at the cost of some additional space.

4. Locking: A Controversial Issue

The locking mechanism for RCSaw dificult to design. The problem and its solution are first pre-
sented in their ‘pure’ form, follwed by a discussion of the complications caused by ‘reddixconsidera-
tions.

RCS must preent two or more persons from depositing competing changes of the sasisemne
Suppose tw programmers check outvision 2.4 and modify it.Programmer A checks in avision before
programmer B.Unfortunately programmer B has not seefs Ahanges, so thefett is that A changes are
covered up by BS deposit. As changes are not lost since aligons are ssd, but they are confined to a
single reision.t

This conflict is preented in RCS by locking.Wheneer someone intends to edit avision (as
opposed to reading or compiling it), theiston should be cheekl out and loakd, using the-l option on
co. On subsequent check-imj tests the lock and then rewes it. At most one programmer at a time may
lock a particular résion, and only this programmer may check in the succeedumgjae. Thuswhile a
revision is locled, it is the eclusive responsibility of the loar.

An important maxim for softare tools lilke RCS is that thg must not stand in the ay of making
progress with a projecfThis consideration leads toveeal wealenings of the locking mechanisrirst of
all, even if a revision is locled, it can still be cheekl out. This is necessary if other people wish to compile

T Note that this problem is entirely fifent from the atomicity problemAtomicity means that concurrent
update operations on the same RCS file cannot be permitted, because that may result in inconsistent data.
Atomic updates are essential (and implemented in R@8}dnot sole the conflict discussed here.

or inspect the loakd revision while the ngt one is in preparationThe only operations tlyecannot do are

to lock the rgision or to check in the succeeding or&econdly check-in operations on other branches in

the RCS file are still possible; the locking of onéigien does not &éct ary other revision. Thirdly revi-

sions are occasionally loe# for a long period of time because a programmer is absent or otherwise unable
to complete the assignmerif.another programmer has to neat pessing change, there are the failog

three alternaties for making progress: a) find out who is holding the lock and ask that person to release it;
b) check out the lo@d revision, modify it, check it in on a branch, and gethe changes later; c) break

the lock. Breaking a lock lezes a hghly visible trace, namely an electronic mail message that is sent auto-
matically to the holder of the lock, recording the beraénd a commentary requested from hifus,
breaking locks is tolerated under certain circumstanegsyiti not go unnoticed.Experience has stm

that the automatic mail message attaches a high enough stigma to lock breaking, such that programmers
break locks only in real enggncies, or when a coerker resigns and leas locked revisions behind.

If an RCS file is puiate, i.e., when a programmewns an RCS file and does naject ayone else
to perform check-in operations, locking is an unnecessary nuishntlds case, the ‘strict locking feature’
discussed earlier may be disabledvited that file protection is set such that only thaer may write the
RCS file. This has the &ct that only the wner can check-in wsions, and that no lock is needed for
doing so.

As added protection, each RCS file contains an access list that specifies the users wsoutey e
update operationslf an access list is emptgnly normal UNIX file protection appliesThus, the access
list is useful for restricting the set of people whowd otherwise hae ypdate permissionJust as with
locking, the access list has ndeet on read-only operations suchcas This approach is consistent with
the UNIX philosoply of openness, which conttiltes to a produaté oftware deelopment emironment.

5. Configuration Management

The preceding sections describedviRCS deals with nésions of indvidual components; this sec-
tion discusses ho to handle configurationsA configuration is a set of vesions, where each vision
comes from a diérent reision group, and the vesions are selected according to a certain criterfear.
example, in order toudld a functioning compiletthe ‘right’ revisions from the scannghe parserthe opti-
mizer and the code generator must be combifdsS, in conjunction with MAKE, prades a number of
facilities to efect a smooth selection.

5.1. RCSSelection Functions

Default selection
During development, the usual selection criterion is to choose the latéstore of all components.
Thecocommand maks this selection by dafilt. For example, the command

co *Vv

retrieves the latest reision on the defult branch of each RCS file in the current directofe
default branch is usually the trunkytomay be set to be a side bran8ide branches as @eilts are
needed in distrilted softvare deelopment, as discussed in the section on the R@Sioa tree.

Release based selection
Specifying a release or branch number selects the latgsiorein that release or branchror
instance,

co —-r2 *v

retrieves the latest reision with release number 2 from each RCS fildis selection is camnient if
a release has been completed anebld@ment has meed on to the next release.

State and author based selection
If the highest leel number within a gien release number is not the desired one, the stateugdtrib
can help.For example,

co -r2 —-sReleased *,v

retrieves the latest reision with release number 2 whose state atteilis ‘Released’ Of course, the
state attrimte has to be set appropriatelging theci or rcs commands. Anothealternatve is ©
select a reision by its authqrusing the-w option.

Date based selection
Revisions may also be selected by daBuppose a release of an entire systeas wompleted and
current on March 4, at 1:00 p.m. local timehen the command

co —d'March 4 1:00 pm [T’ *v

checks out all the components of that release, independent of the numbé&engl option specifies
a ‘cutoff date’, i.e., the rgsion selected has a check-in date that is closesutmdi after the date
given.

Name based selection
The most pwerful selection function is based on assigning symbolic namesvisiores and
branches. Itarge systems, a single release number or date is rimienuifto collect the appropriate
revisions from all groupsFor example, suppose one wishes to combine release 2 of one subsystem
and release 15 of anotheviost likely, the creation dates of those releasefeddlso. Thus, a single
revision number or date passed to toecommand will not siice to select the right vesions. Sym-
bolic revision numbers sobrthis problem.Each RCS file may contain a set of symbolic names that
are mapped to numericvision numbers.For example, assume the symbéB is bound to release
number 2 in files,v, and to revision number 15.9 ihv. Then the single command

co -rvV3 s,v tv

retrieves the latest reision of release 2 from,v, and revision 15.9 fromt,v. In a large system with
mary modules, checking out all vsions with one command greatly simplifies configuration man-
agement.

Judicious use of symbolicvision numbers helps with genizing lage configurations.A special
commandycsfreeze assigns a symbolic vésion number to a selectedrigion in every RCS file. Rcsfeeze
effectively freezes a configurationThe assigned symbolicwision number selects all components of the
configuration. Ifnecessarysymbolic numbers mayven be intermixed with numeric onesThus,V3.5in
the abwe example would select réision 2.5 ins,vand branch 15.9.5 inwv.

The options-r, —s, -w and—-d may be combinedIf a branch is gien, the latest résion on that
branch satisfying all conditions is retrégl; otherwise, the dafilt branch is used.

5.2. CombiningMAKE and RCS

MAKE1 is a program that processes configuratiolisis driven by configuration specifications
recorded in a special file, called a ‘Mdike’. MAKE avads redundant processing steps by comparing cre-
ation dates of source and processed objdets.example, when instructed to compile all modules of a
given gystem, it only recompiles those source modules that were changed sinaetbgrocessed last.

MAKE has been xended with an auto-cheslt feature for RCS.*When a certain file to be pro-
cessed is not present, MAKE attempts a check-out operdfisuccessful, MAKE performs the required
processing, and then deletes the ckdciut file to conseevpace. Theselection parameters discussed
abore @an be passed to MAKE either as parameters, or directly embedded in teléMaldAKE has also
been &tended to search the subdirectory naiR&S5for needed files, rather than just the curreatking
directory Howeve, if a working file is present, MAKE totally ignores the corresponding RCS file and uses
the working file. (In newer ersions of MAKE distribted by A'&T and others, auto-checkt can be
achieved with the rule DERULT, instead of a speciakiension of MAKE. However, a fle checled out by
the rule DERULT will not be deleted after processiiRcsclearcan be used for that purpose.)

* This auto-cheabut extension is wailable only in some ersions of MAKE, e.g. GNU MAKE.

-10-

With auto-chectiut, RCS/MAKE can ééct a selection rule especially tuned for multi-person soft-
ware development and maintenancen these situations, programmers should obtain configurations that
consist of the nésions thg havepersonally cheatd out plus the latest cheskin revision of all other rei-
sion groups.This schema can be set up as foo

Each programmer chooses arking directory and places into it a symbolic link, narR&iS to the
directory containing the relant RCS files. The symbolic link mag&s sure thato andci operations need
only specify the wrking files, and that the Makile need not be changedhe programmer then checks
out the needed files and modifies theifMMAKE is invoked, it composes configurations by selecting those
revisions that are cheekl out, and the rest from the subdirect®@S The latter selection may be con-
trolled by a symbolic rgsion number or anof the other selection criteridf there are seeral program-
mers editing in separateovking directories, theare insulated from each othgrthanges until checking in
their modifications.

Similarly, a maintainer can recreate an older configuration by startingoti im an empty wrking
directory During the initial MAKE irvocation, all r@isions are selected from RCS file&s the maintainer
checks out files and modifies them, avneonfiguration is gradually wlt up. Every time MAKE is
invoked, it substitutes the modifiedvisions into the configuration being manipulated.

A final application of RCS is to use it for storing Méles. Reision groups of Mafiles represent
multiple versions of configurationsWheneer a cnfiguration is baselined or distuted, the best approach
is to unambiguously fix the configuration with a symbolidsien number by callingcsfreeze to embed
that symbol into the MaKile, and to check in the Makle (using the same symbolicvigion number).
With this approach, old configurations can lgereerated easily and reliably

6. UsageStatistics

The folloving usage statistics were collected oo tEC VAX-11/780 computers of the Purdue
Computer Science DepartmerBoth machines are mainly used for research purpo$kss, the data
reflect an evironment in which the majority of projectsvisive prototyping and adanced softare deel-
opment, ot relatvely little long-term maintenance.

For the first eperiment, theci and co operations were instrumented to log the number of baakw
and forvard deltas appliedThe data were collected during a 13 month period from Dec. 1982 to Dec.
1983. Able | summarizes the results.

Operation ‘otal Total deltas| Mean deltas| Operations Branch
operations applied applied with>1 delta | operations
co 7867 9320 1.18 509 (6%) | 203 (3%)
Ci 3468 2207 0.64 85 (2%)| 75 (2%)
ci&co 11335 11527 1.02 504 (5%) | 278 (2%)

Table I. Statistics forcoandci operations.

The first tw lines shav statistics for check-out and check-in; the third linevegdhe combination.
Recall thatci performs an implicit check-out to obtain aviston for computing the deltaln all measures
presented, the most recentiston (stored intact) counts as one delfdae number of deltas applied repre-
sents the number of passes necessdrgre the first ‘pass’ is a cpipg step.

Note that the check-out operation ieeuted more than twice as frequently as the check-in opera-
tion. Thefourth column gies the mean number of deltas applied in all three caBesci, the mean num-
ber of deltas applied is less than ofide reasons are that the initial check-in requires no delta at all, and
that the only timeci requires more than one delta is for branch@éslumn 5 shws the actual number of
operations that applied more than one deltae last column indicates that branches were not used often.

The last three columns demonstrate that the most recent trigiomels by fir the most frequently
accessed. df RCS, check-out of thisvision is a simple copoperation, which is the absolute minimum
given the copy-semantics o€o. Access to older wésions and branches is more common in non-academic
ervironments, yeten if access to older deltas were an order of magnitude more frequent, the combined
avaage number of deltas appliedwd still be belav 1.2. SinceRCS is &ster than SCCS until up to 10
delta applications, werse deltas are clearly the method of choice.

-11-

The second»periment, conducted in March of 1984yadlved sureying the &isting RCS files on
our two machines. Thegoal was to determine the mean number ofigiens per RCS file, as well as the
space consumed by thermable Il shavs the results(Tables | and Il were produced atfdient times and
are unrelated.)

Total RCS Total Mean Mean size of| Mean size of| Overhead
files revisions | reisions RCHiles reszisions
All files 8033 11133 1.39 6156 5585 1.10
Files with 1477 4578 3.10 8074 6041 1.34
> 2 deltas

Table Il. Statistics for RCS files.

The mean number ofvisions per RCS file is 1.39Columns 5 and 6 skothe mean sizes (in bytes)
of an RCS file and of the latestiigon of each RCS file, respeady. The ‘overhead’ column contains the
ratio of the mean sizesAssuming that all iasions in an RCS file are approximately the same size, this
ratio gives a neasure of the space consumed by #imeevisions.

In our sample, wer 80 per cent of the RCS files contained only a singlésten. Thereason is that
our systems programmers routinely check in all source files on the utistnilbapes, wen though thg may
never touch them agin. To get a better indication of Romuch space sings are possible with deltas, all
measures with those files that contained 2 or matisioas were recomputeddnly for those files is RCS
necessary As hown in the second line, theverage number of késions for those files is 3.10, with an
overhead of 1.34.This means that thexga 2.10 deltas require 34 per certra space, or 16 per cent per
extra revision. Rochkind measured the space consumed by SCCS, and reportedrageaof 5 reisionﬁs
per group and anverhead of 1.37 (or about 9 per cent pgtra resision). In a later paperGlasse
obsened an merage of 7 reisions per group in a single, ¢gr project, bt provided no @erhead figure.In
his paper on DSEE Leblang reported that delta storage combined with blank compression results in an
overhead of a mere 1-2 per cent perisimn. Sincdeading blanks accounted for about 20 per cent of the
suneyed Riscal programs, awision group with 5-10 membersas smaller than a single cleatteopy.

The aboe dosenations demonstrate clearly that the space neededtfar revisions is small.With
delta storage, the luxury okkping multiple réisions online is certainly ffrdable. Infact, introducing a
system with delta storage may reduce storage requirements, because programmerseotieck-sg
copies apway. Since back-up copies are stored much mofieiehtly with deltas, introducing a system
such as RCS may actually free a considerable amount of space.

7. Survey of Version Control Tools

The need to éep back-up copies of sofive arose when programs and data were no longer stored on
paper media, Ut were entered from terminals and stored on digkck-up copies are desirable for reliabil-
ity, and maly modern editors automatically sa a kack-up copg for every file touched. This stratgy is
vauable for short-term back-upsytonot suitable for long-termevsion control, since arxisting back-up
copy is overwritten whenger the corresponding file is edited.

Tape archies ae suitable for long-term, fhihe storage.If all changed files are dumped on a back-up
tape once per dagld revisions remain accessiblédowever, tape archies ae unsatisdctory for \ersion
control in sgeral ways. Firstbacking up the file systenv@y 24 hours does not capture intermediateé re
sions. Secondlythe old reisions are not online, and accessing them is tedious and time-consuming.
particular it is impractical to compare @eral old revisions of a group, because that may require mounting
and searching seral tapes. Tape archies ae important &il-safe tools in thewent of catastrophic disk
failures or accidental deletionsytthey are ill-suited for ersion control.Corversely, version control tools
do not olviate the need for tape arebs.

A natural technique fordeping seeral old revisions online is to ner delete a file. Editing a file
simply creates a mefile with the same nameybwith a diferent sequence numbeFhis technique, \ail-
able as an option in DEEVMS operating system, turns out to be inadequatedmian control.First, it
is prohibitvely expensve in terms of storage costs, especially since no data compression techniques are
employed. Secondlyindiscriminately storingvery change produces too marevisions, and programmers

-12-

have dfficulties distinguishing themThe proliferation of reisions forces programmers to spend much
time on finding and deleting useless fildirdly, most of the support functions &docking, logging, rei-
sion selection, and identification described in this paper arevaitzide.

An alternatve gproach is to separate editing fromvisgon control. The user may repeatedly edit a
given revision, until freezing it with anlicit command. Once a reision is frozen, it is stored perma-
nently and can no longer be modifigdih RCS, freezing a wesions is done witlei.) Editinga frozen rei-
sion implicitly creates a me one, which can agn be changed repeatedly until it is frozen itsdlhis
approach sas exactly those reisions _}hat the user copsiders importgnt, amepk the nug1ber ofvisions
manageable. IBM CLEAR/CASTER', AT&T's $C83, CMU’s DC™ and DECs CMS”, are examples
of version control systems using this approaChEAR/CASTER maintains a data base of programs, spec-
ifications, documentation and messages, using ddlmgoal is to preide control @er the deelopment
process from a managementwpmint. SCCSstores multiple nésions of source # in an ancestral tree,
records a log entry for eachvigion, prvides access control, and hagifities for uniquely identifying
each rgision. An efficient delta technique reduces the space consumed by e@brrggroup. SDC is
much simpler than SCCS because it stores not more tlrarewisions. Havever, it maintains a complete
log for all old revisions, some of which may be on back-up tap#1S, like SCCS, manages tree-structured
revision groups, bt offers no identification mechanism.

Tools for dealing with configurations are still in a state of I®CCS, SDC and CMS can be com-
bined with MAKE or MAKE-like programs. Sincéexible selection rules are missing from all these tools,
it is sometimes diicult to specify precisely which vesion of each group should be passed to MAKE for
building a desired configuratioriThe Xerox Cedar system provides a ‘System Modeller’ that can celol
a oonfiguration from an arbitrary set of moduleistons. Therevisions of a module are only distinguished
by creation time, and there is no tool for managing gro@usce the selection rules are primgithe Sys-
tem Modeller appears to be somit tedious to useApollo’s DSEE" is a sophisticated softwe engineer
ing ervironment. Itmanages rgsion groups in a ay similar to SCCS and CMSConfigurations arethlt
using ‘configuration threads’A configuration thread states whictvigon of each group named in a con-
figuration should be choser configuration thread may contain dynamic specifiers (e.g., ‘choosevihe re
sions | am currently erking on, and the most recenvistons otherwise’), which are bound automatically
at kuild time. It also praides a notification mechanism for alerting maintainers about the neediiid reb
system after a change.

RCS is based on a general model for describing meiion/multi-configuration systerws The
model describes systems using AND/OR graphs, where AND nodes represent configurations, and OR
nodes represenevsion groups.The model gies rise to a suit of selection rules for composing configura-
tions, almost all of which are implemented in RCIhe revisions selected by RCS are passed to MAKE
for configuration bilding. Revision group management is modelled after SCRES retains SCCShest
features, bt offers a significantly simpler user intack, flaible selection rules, adequate mtation with
MAKE and improved identification. Adetailed comparison of RCS and SCCS appears in Reference 4.

An important componsnt of all vision control systems is a program for computing del&SCS
and RCS use the progradhiff=, which first computes the longest common substring ofrevisions, and
then produces the delta from that substrifipe delta is simply an edit script consisting of deletion and
insertion commands that generate onésien from the other

A delta based on a longest common substring is not necessarily minimal, because it does not tak
adwantage of crossing block mes. Crossindlock moves aise if two or more blocks of lines (e.g., proce-
dures) appear in a fifent order in tw revisions. Anedit script denﬂ from a longest common substring
first deletes the shorter of thedwlocks, and then reinserts iHeckel™ proposed an algorithm for detect-
ing block maes, hut since the algorithm is based on heuristics, there are conditions under which the gener
ated delta isdr from minimal. DSEE uses this algorithm combined with blank compression, apparently
with satishctory werall results. A new dgorithm that is guaranteed to produce a minimal delta based on
block moves gppears in Reference 12 future release of RCS will use this algorithm.

AdknowledgmentsMary people hae relped mak RCS a success by contuifed criticisms, sugges-
tions, corrections, andzen whole nev commands (including manual page3he list of people is too long
to be reproduced hereytomy sincere thanks for their help and goodwill goes to all of them.

-13-

Appendix: Synopsis of RCS Operations

ci — check in revisions
Ci stores the contents of aking file into the corresponding RCS file as amevision. If the RCS
file doesnt exist, ci creates it.Ci removes the working file, unless one of the options or - is pre-
sent. for each check-ingi asks for a commentary describing the changes veladithe preious
revision.

Ci assigns the xésion number gien by the —r option; if that option is missing, it degs the number
from the lock held by the user; if there is no lock and locking is not strictcrements the number
of the latest résion on the trunk A side branch can only be started bykcitly specifying its num-
ber with the-r option during check-in.

Ci also determines whether thevigton to be chedd in is diferent from the pnéous one, and asks
whether to proceed if nofThis facility simplifies check-in operations for ¢gr systems, because one
need not remember which files were changed.

The option—k searches the chegtt in file for identification magks containing the attritbes reision
number check-in date, author and state, and assigns these tovitrevison rather than computing
them. Thisoption is useful for softare distrilution: Recipients of distrilted softvare using RCS
should check in updates with thé option. Thiscorvention guarantees thatuision numbers,
check-in dates, etc., are the same at all sites.

co — check out revisions
Corretrieves revisions according to wésion numberdate, author and state atuites. Iteither places
the revision into the werking file, or prints it on the standard outp@o always expands the identifi-
cation markrs.

ident— extract identification mark ers
Identextracts the identification magks expanded byco from ary file and prints them.

rcs — change RCS file attributes
Rcsis an administratie gperation that changes access lists, locks, unlocks, breaks locks, toggles the
strict-locking feature, sets state atiid's and symbolic wésion numbers, changes the description,
and deletes xésions. Arevision can only be deleted if it is not the fork of a side branch.

rcsclean— clean working dir ectory
Rcscleamremores working files that were cheel out loit never changed.*

rcsdiff — compare revisions
Rcsdif compares tw revisions and prints their dérence, using the UNIX todliff. One of the rei-
sions compared may be chedkout. This command is useful for finding out about changes.

rcsfreeze- freeze a configuration
Rcsfeezeassigns the same symboliwiggon number to a gen revision in all RCS files.This com-
mand is useful for accurately recording a configuration.*

rcsmege— merge revisions
Rcsmege meiges tw revisions, revl and reV2, with respect to a common ancestdx 3-way file
comparison determines thegseents of lines that are (a) the same in all thressioms, or (b) the
same in 2 résions, or (c) diferent in all three.For all segments of type (b) whemevl is the difer-
ing revision, the sgment inrevl replaces the correspondinggegent ofrev2. Type (c) indicates an
overlapping change, is flagged as an erand requires user integntion to select the correct alterna-
tive.

rlog — read log messages
Rlog prints the log messages and other information in an RCS file.

* Thercscleanandrcsfreezecommands are optional and are netagk installed.

-14-

References

1. FeldmansStuart I., “Male—A Program for Maintaining Computer Prograin&oftwae—Pactice &
Experience9, 3, pp. 255-265 (March 1979).

2. Hunt,James Wand Mcllroy, M. D., “An Algorithm for Differential File Comparisoh41, Comput-
ing Science &chnical Report, Bell Laboratories (June 1976).

3. RochkindMarc J., “The Source Code Control SystelBEE Transactions on SoftwarEngineering
SE-1, 4, pp. 364-370 (Dec. 1975).

4. Tichy, Walter F, “Design, Implementation, and &wation of a Résion Control System” irPro-
ceedings of the 6th International Cordace on SoftwarEngineering pp. 58-67, LM, IEEE, IPS,
NBS (September 1982).

5. Leblang,David B. and Chase, Robert, PComputerAided Software Engineering in a Distiitbed
Workstation Emironment; SIGPLAN Notices19, 5, pp. 104-112 (May 1984). Proceedings of the
ACM SIGSOFT/SIGPLAN Softwre Engineering Symposium on Practical SafevD&elopment
Environments..

6. GlasserAlan L., “The Ewlution of a Source Code Control Systéi@pftwae Engineering Notes3,

5, pp. 122-125 (Ne 1978). Proceedings of the So#five Quality and Assurancedfshop.

7. Brown, H.B., “The Clear/Caster Systémato Confeence on SoftwarEngineering Rome(1970).

8. HabermannA. Nico, A Sftware Development Contl System Technical Report, Carmgge-Mellon
University, Department of Computer Science (Jan. 1979).

9. DEC, Code Mangement System, Digital Equipment Corporation (1982). Document
No. EA-23134-82.

10. LampsonButler W, and Schmidt, Eric E., “Practical Use of a Polymorphic Applieatianguage” in
Proceedings of the 10th Symposium on Principles ofrBmming Languges, pp. 237-255, &M
(January 1983).

11. Tichy, Walter F, “A Data Model for Programming Support\Eonments and its Application” in
Automated ®ols for Information System Design andvB®pmented. Hans-Jochen Schneider and
Anthory |I. Wasserman, North-Holland Publishing Compalimsterdam (1982).

12. Heclel, Paul, “A Technique for Isolating Diérences Between FilésCommunications of theGM,
21, 4, pp. 264-268 (April 1978).

13. Tichy, Walter F, “The String-to-String Correction Problem with Block ¥s; ACM Transactions

on Computer Systeni, 4, pp. 309-321 (No 1984).

