PMake — A Tutorial

Adam de Boor

Berkeley Softworks
2150 Shattuck ¥e, Penthouse
Berkeley, CA 94704
adam@bswiu.net
...Juunet!bsw!adam

1. Introduction

PMale is a pogram for creating other programs, oyting else you can think of for it to ddhe basic
idea behind PMakis that, for ay given system, be it a program or a document or wiexteghere will be
some files that depend on the state of other files (on whgnviére last modified). PMaktakes these
dependencies, which you must spedifyd uses them touild whatever it is you want it to uild.

PMale is dmost fully-compatible with Mak, with which you may already barhiliar. PMake’s most
important feature is its ability to runvaeal different jobs at once, making the creation of systems consider
ably faster It also has a great deal more functionality than &akhroughout the ¢, whene&er something
is mentioned that is an importantfdifence between PMakend Male (.e. somethinghat will cause a
malefile to il if you dont do something about it), or is simply important, it will be flagged with a little
vote—sign in the left magin, like this:
This tutorial is diided into three main sections corresponding to basic, intermediate antadPMak
usage. If you already kmoMake well, you will only need to skim chapter 2 (there are some aspects of
PMale that | consider basic to its use that didixist in Make). Thingsin chapter 3 maklife much easier
while those in chapter 4 are strictly for those whovkmdhat theg are doing. Chapter 5 has definitions for
the jagon | use and chapter 6 contains possible solutions to the problems presented throughout the tutorial.

2. TheBasics of PMale

PMale takes as input a file that tells a) which files depend on which other files to be complete and b) what
to do about files that arout-of-date’ T his file is knevn as a‘makefile” and is usually kpt in the top-

most directory of the system to beilb While you can call the mafile arything you vant, PMale will

look for Makefile andmakefile (in that order) in the current directory if you dbtell it otherwise.

To gecify a diferent makfile, use thef flag (e.g.“ pmake -f program.mk ").

A makefile has four dferent types of lines in it:
« File dependengcspecifications
» Creation commands
» Variable assignments
» Comments, include statements and conditional direxti

Any line may be continuedver multiple lines by ending it with a backslasffthe backslash, folleing
newline and aw initial whitespace on the folldng line are compressed into a single space before the input
line is xamined by PMad.

Permission to use, cgpmodify, and distritute this softwre and its documentation foryapurpose and without
fee is hereby granted, pided that the ab@ mpyright notice appears in all copie¥he Uniersity of Califor
nia, Berleley Softworks, and Adam de Boor mako representations about the suitability of this safevfor
ary purpose. lis provided "as is" withoutxgress or implied arranty

PSD:12-2 PMa& — A Tutorial

2.1. Dependency.ines

As mentioned in the introduction, inyasystem, there are dependencies between the files thatunake
system. Br instance, in a program made up ofesal C source files and one header file, the C files will
need to be re-compiled should the header file be changed Bocument of seral chapters and one
macro file, the chapters will need to be reprocessed/ibithe macros change§hese are dependencies
and are specified by means of depengéines in the madfile.

On a dependenrdine, there are tgets and sources, separated by a one-@icharacter operatoiThe tar
gets ‘depend’ on the sources and are usually created from th&nmy number of tagets and sources may
be specified on a dependgiime. All the tagets in the line are made to depend on all the soufiGegets
and sources need not be actual fileg,dsery source must be either an actual file or anothgetan the
malefile. If you run out of room, use a backslash at the end of the line to continue ontrttbeene

Any file may be a tget and ay file may be a sourceubthe relationship between theayor hovever

mary) is determined by théoperator’ that separates thenThree types of operatorsist: one specifies

that the datedness of agat is determined by the state of its sources, while another specifies other files (the
sources) that need to be dealt with before thgetaran be re-created. The third operatorery wimilar to

the first, with the additional condition that thegetris out-of-date if it has no sources. These operations are
represented by the colon, theckamation point and the double-colon, respehti and are mutually xclu-

sive. Their exact semantics are as folle:

If a colon is used, a tget on the line is considered to bmut-of-date’ (and in need of creation) if
* any of the sources has been modified more recently than tied,tar
* the taget doesrt’exist.

Under this operation, steps will be éakto re-create the gt only if it is found to be out-of-date by
using these tevrules.

! If an exclamation point is used, the g&t will alays be re-createdubthis will not happen until all
of its sources hee een @amined and re-created, if necessary

If a double-colon is used, a gt is out-of-date if:

* any df the sources has been modified more recently than tied,tar
« the taget doesri'exist, or

« the taget has no sources.

If the taget is out-of-date according to these rules, it will be re-creatéis operator also does
something else to the tgats, It I'll go into that in the nd section (‘Shell Commandg).

Enough verds, nev for an g&le. Bke that C program | mentioned earli@ay there are three C files
(a.c , b.c andc.c) each of which includes the fildefs.h . The dependencies between the files could
then be rpressed as folles:

program : a.ob.oc.o
a.ob.oc.o . defs.h

a.o . ac

b.o : b.c

c.0 : c.c

You may be vondering at this point, whegeo , b.o andc.o came in and wihthey depend ordefs.h

and the C files dot’' The reason is quite simplerogram cannot be made by linking together .c files — it
must be made from .o files. lawise, if you changeefs.h , itisnt the .c files that need to be re-created,
it's the .o files.If you think of dependencies in these terms — which filegéta) need to be created from
which files (sources) — you shouldvearo problems.

An important thing to notice about the aboxample, is that all the .o files appear agets on more than
one line. This is perfectly all right: the ¢ggt is made to depend on all the sources mentioned on all the
dependenglines. E.g.a.0 depends on bottiefs.h anda.c .

PMake — A Tutorial PSD:12-3

nore—The-order-of the-dependsgnlines in the madfile is important: the first tget on the first dependgntine
in the malefile will be the one that gets made if you d@ay otherwise.That's why program comes first

in the kample makfile, abwe.

Both tagets and sources may contain the standard C-Shell wildcard charfc¢clers (?, [, and]), but
the non-curly-brace ones may only appear in the final component (the file portion) of#teotasource.
The characters mean the follmg things:

{} These enclose a comma-separated list of options and cause the patterxpegmbedonce for each
element of the list. Eachxpansion contains a f#frent element. & example, src/{whif-
fle,beep,fish}.c expands to the three ards src/whiffle.c , src/beep.c , and
srcffish.c . These braces may be nested and, artlik other wildcard characters, the resulting
words need not be actual files. All other wildcard charactersxg@nded using the files thatist
when PMak is darted.

* This matches zero or more characters gfsmt. src/*.c will expand to the same threewls as
above & long assrc contains those three files (and no other files that ertd)in

? Matches ap single character

1 This is knavn as a character class and contains either a list of single characters, or a series of charac-
ter rangesd-z , for exkample means all characters between a and z), or both. It matghsagia
character contained in the list. E.pA-Za-z] will match all letters, whilg0123456789] will
match all numbers.

2.2. ShellCommands

“Isn’t that nic€) y ou say to yourself,but how are files actually ‘re-creatédis he likes to spell it?’ The
re-creation is accomplished by commands you place in thefileakThesecommands are passed to the
Bourne shell (better kmen as “/bin/sh”) to be eecuted and arexpected to do what'recessary to update
the taget file (PMale doesnt actually check to see if the tgat was created. It just assumes itiere).

Shell commands in a melkle look a lot lilke dhell commands you auld type at a terminal, with one impor
tant exception: each command in a nedile mustbe preceded by at least one.tab

Each taget has associated with it a shell script made up of one or more of these shell commands. The cre-
ation script for a tagret should immediately folle the dependendine for that taget. While ag given tar-
get may appear on more than one dependiéne, only one of these dependgitimes may be folleed by

NOTE a aeation script, unless the “::’ operatoasvused on the dependgtiae.

If the double-colon was used, each dependgtine for the taget may be folleved by a shell script. That
script will only be &ecuted if the taget on the associated dependgliree is out-of-date with respect to the
sources on that line, according to the ruleavegarlier I'll give you a good xample of this later on.

To expand on the earlier makle, you might add commands as felk

program : a.ob.oc.o
cc a.0 b.o c.0 —o program

a.ob.oc.o . defs.h

a.o : o ac
cc-ca.c

b.o : b.c
cc —-cb.c

c.0 : c.c
cc-cc.c

Something you should remember when writing a efisk is, the commands will bexecuted if thetarget
on the dependegdine is out-of-date, not the sourcds. this kample, the commandcc —c a.c " wiill
be ecuted ifa.o is out-of-date. Because of the *:’ operatibis means that shouldc or defs.h have
been modified more recently tharo , the command will bexecuted .0 will be considered out-of-
date).

PSD:12-4 PMa& — A Tutorial

Remember ho | said the only diference between a mefile shell command and agrdar shell command
was the leading tab? | lied. There is anothexywn which makfile commands diér from regular ones.
The first two characters after the initial whitespace are treated speclétlyey are ary combination of ‘@’
and ‘', they cause PMa& to do different things.

In most cases, shell commands are printed befoyéréhactually gecuted. This is to &ep you informed of
what’s going on. If an ‘@’ appears, h@ver, this echoing is suppressed. In the case &fcdno command,

say ‘echo Linking index ,itwould be rather silly to see
echo Linking index
Linking index
so PMale dlows you to place an ‘@’ before the commar@gcho Linking index ") to prevent the
command from being printed.
The other special character is the ‘-'. In case you tiimw, shell commands finish with a certaiexit

status. T his status is madevalable by the operating system to whageprogram irvoked the command.
Normally this status will be 0 ifwerything went ok and non-zero if something went wrorg. this reason,
PMale will consider an error to lva accurred if one of the shells itviokes returns a non-zero status.
When it detects an errdPMake’s usual action is to abort whae it's doing and it with a non-zero sta-
tus itself (ay other tagets that were being created will continue being madenbthing ne will be
started. PMa& will exit after the last job finishes)This behaior can be altered, eever, by placing a ‘-’
at the front of a command' tfmv index index.old "), certain command-line gmments, or doing
other things, to be detailed latén such a case, the non-zero status is simply ignored and &> kéaips

norechugging along.

Because all the commands areegito a sngle shell to gecute, such things as setting shakiables,
changing directories, etc., lastyoad the command in which there found. This also ales shell com-
pound commands (l&for loops) to be entered in a natural manr@nce this could cause problems for
some makfiles that depend on each command bekeglged by a single shell, PMalas a-B flag (it
stands for backards-compatible) that forces each command to endo a eparate shell. It also does

vore— several other things, all of which | discourage sinceythee nav old-fashioned. . ..

A tamget's dhell script is fed to the shell on its (the shglinput stream.This means that gn.commands,
such agi that need to get input from the terminadnit work right — theg’ll get the shelB input, some-
thing they probably won't find to their liking. A simple ay around this is to @& a ®mmand lile this:

ci $(SRCS) < /deviity

This would force the program’input to come from the terminal. If you cado this for some reason, your
only other alternatie is to use PMak in its fullest compatibility mode. S&ompatibility in chapter 4.

2.3. Variables

PMale, like Make before it, has the ability to ga text in variables to be recalled later at your warence.
Variables in PMak ae used much li& variables in the shell and, by tradition, consist of all ugase let-
ters (you dort’haveto use all uppecase lettersin fact theres nothing to stop you from calling aaxiable
@ &$%$ Just tradition). Mriables are assigned-to using lines of the form

VARIABLE = value

appended-to by
VARIABLE += value

conditionally assigned-to (if theaviable isnt already defined) by
VARIABLE ?= value

and assigned-to withxpansion (i.e. thealue is &panded (see bel) before being assigned to thariv
able—useful for placing aalue at the bginning of a ariable, or other things) by

PMake — A Tutorial PSD:12-5

VARIABLE := value

Any whitespace beforealueis stripped df When appending, a space is placed between theabld and
the stuf being appended.

The final vay a \ariable may be assigned to is using
VARIABLE != shell-command

In this caseshell-commanchas all its ariables gpanded (see bel) and is passed fofo a dell to

execute. The output of the shell is then placed in theable. Aty newlines (other than the final one) are
replaced by spaces before the assignment is made. This is typically used to find the current directory via a
line like:

CWD I= pwd

Note: this is intended to be used teeeute commands that produce small amounts of output ‘{@agl’).
The implementation is less than intelligent and wilelikfreeze if you eecute something that produces
thousands of bytes of output (8 Kb is the limit on yniNIX systems).

The alue of a ariable may be retried by enclosing the &riable name in parentheses or curly braces and
preceeding the whole thing with a dollar sign.

For example, to set theaviable CFLAGS to the string ~I/sprite/src/lib/libc —O ,” you would
place a line

CFLAGS = -l/sprite/src/lib/libc —O

in the malfile and use the aovd $(CFLAGS) wherever you would like the string
vore— —lIsprite/src/lib/libc O to appearThis is called ariable epansion.

Unlike Make, PMale will not expand a wariable unless it ks the wariable aists. E.qg. if you hae a${i}

in a shell command and youugarot assigned aalue to the ariablei (the empty string is considered a
value, by the way), where Mak would hare substituted the empty string, PMaknill leave the ${i}
alone. D keep PMak from substituting for aariable it knavs, precede the dollar sign with another dollar
sign. (e.gto passp{HOME} to the shell, us&${HOME}). Thiscauses PMak in efect, to expand the$
macro, which gpands to a singl®. For compatibility Make’s gyle of variable epansion will be used if
you invoke PMake with ary of the compatibility flags{V, -B or -M. The -V flag alters just theariable
expansion).

There are tw different times at whichariable &pansion occurs: When parsing a depengdme, the
expansion occurs immediately upon reading the line. yf\ariable used on a dependgrime is unde-
fined, PMale will print a message andi¢ Variables in shell commands argpanded when the command
is executed. \ariables used inside anothariable are xpanded whener the outer ariable is gpanded
(the xpansion of an innerariable has no &fct on the outerariable. l.e. if the outerariable is used on a
dependengline and in a shell command, and the inramiable changesalue between when the depen-
deng line is read and the shell commandsceited, tvo different \alues will be substituted for the outer
variable).

Variables come in four flaors, though the are all xpanded the same and all look about the samey. &rke
(in order of &panding scope):

* Local ariables.

* Command-line ariables.

* Global variables.

* Environment ariables.

The classification ofariables doeshmatter much, xcept that the classes are searched from the top (local)
to the bottom (erironment) when looking up aaviable. The first one found wins.

PMake — A Tutorial PSD:12-7

.MAKEFLAGS
All the relevant flags with which PMak was irvoked. This does not include such things-és
or variable assignments. Am for compatibility this value is stored in the MFL@S \ariable
as well.

Two other \ariables, “INCLUDES” and “.LIBS,” are corered in the section on specialdats in chapter
3.

Global ariables may be deleted using lines of the form:
#undef variable

The # must be the first character on the line. Note that this may only be done on giohlles.

2.3.4. Ewironment Variables

Environment \ariables are passed by the shell thawked PMake and are gren by PMake to each shell it
invokes. The are expanded lile any ather ariable, lut they cannot be altered in gway:

One special erronment \ariable, PMAKEis examined by PMa& for command-line flags,aviable assign-
ments, etc., it shouldabys use. This ariable is gamined before the actualgaments to PMak ae. In
addition, all flags gien to PMake, either through theMAKEvariable or on the command line, are placed in
this ervironment \ariable and xported to each shell PMakxecutes. Thus recuns? invocations of PMak
automatically recee the same flags as the top-most one.

Using all these ariables, you can compress the samplegfilekevzen more:

OBJS = a.ob.oc.0
program . $(OBJS)

cc $(.ALLSRC) -0 $(.TARGET)
$(OBJS) : defs.h
a.o ;o ac

cc-ca.c
b.o : b.c

cc —-cb.c
c.0 : c.c

cc—-cc.c

2.4. Comments

Comments in a mafile start with a ‘# character andtend to the end of the line. Thenay appear anr
where you vant them, rcept in a shell command (though the shell will treat it as a comment, too). If, for
some reason, you need to use the ‘#' iragable or on a dependgnkine, put a backslash in front of it.
PMale will compress the tevinto a single ‘#' (Note: this ishtrue if PMale is gperating in full-compati-
bility mode).

wore— 2.5, Rarallelism
PMale was specifically designed to re-createesal taigets at once, when possibleourdo not hee o do

arything special to cause this to happen (unless RMals configured to not act in parallel, in which case
you will have o make use of the-L and-J flags (see beiw)), but you do hae o be careful at times.

There are seral problems you are lély to encounteiOne is that some makiles (and programs) are writ-
ten in such a @y that it is impossible for twtargets to be made at once. The progsatn , for example,
always modifies the filestrings andx.c . There is no wy to change it. Thus you cannot rurotef
them at once without something being trashed. Simjldfyu have ommands in the madile that alvays
send output to the same file, you will not be able toematre than one tget at once unless you change
the file you use. du can, for instance, add$&$$ to the end of the file name to tack on the process ID of
the shell gecuting the command (ea®$ expands to a singl8, thus gving you the shell ariable$$).
Since only one shell is used for all the commands,llygat the same file name for each command in the
script.

PSD:12-8 PMa& — A Tutorial

The other problem comes from improperly-specified dependencies dnktdrin Male because of its
sequential, depth-firstay of xamining them. While | dob'want to go into depth on twoPMake works
(look in chapter 4 if youe interested), | will w&rn you that files in tev different ‘levels” of the depen-
deng tree may bexamined in a dferent order in PMak than thg were in Male. For example, gven the
malkefile

a : bec
b o d

PMale will examine the tagets in the ordec, d, b, a. If the malefile’s author expected PMa& to abort
before making: if an error occurred while making, or if b needed toxst beforec was made, s/he will
be sorely disappointed. The dependencies are incomplete, since in both thesewasksdepend orb.

So watch out.

Another problem you mayate is that, while PMakis st up to handle the output from multiple jobs in a
graceful ishion, the same is not so for inpitthas no vay to rgulate input to dferent jobs, so if you use
the redirection fromidev/tty | mentioned earlieryou must be careful not to runavef the jobs at once.

2.6. Writing and Dehugging a Makefile

Now you knav most of whats in a makefile, what do you do x&? There are tw choices: (1) use one of
the uncommonly-ailable malefile generators or (2) write youwa malefile (I leave aut the third choice
of ignoring PMale and doing &erything by hand as being yend the bounds of common sense).

When ficed with the writing of a mafile, it is usually best to start from first principles: just wdratyou
trying to do? What do youant the maéfile finally to produce?

To begn with a somerhat traditional gample, lets say you need to write a melle to create a program,
expr , that tales standard infixx@ressions and ceerts them to prefix form (for no readily apparent rea-
son). You've got three source files, in C, that nealp the programmain.c , parse.c , and output.c
Harking back to my pithadvice about dependepntines, you write the first line of the file:

expr : main.o parse.o output.o

because you remembexpr is made fromo files, not.c files. Similarly for theo files you produce the
lines:

main.o : main.c
parse.o : parse.c
output.o : output.c

main.o parse.o output.o : defs.h

Great. Yu've row got the dependencies specified. What you ne&d isaommands. These commands,
remembermust produce the tget on the dependentine, usually by using the sources yailisted. You
remember about locahviables? Good, so it should come to you as no surprise when you write

expr : main.o parse.o output.o
cc -0 $(. TARGET) $(.ALLSRC)

Why use the wriables? If your program gns to produce postfixxpressions too (which, of course,
requires a name change omowit is one fever place you ha change the file. &u cannot do this for the
object files, hwever, because thedepend on their corresponding source fdesl defs.h , thus if you
said

cc -¢ $(.ALLSRC)
you'd get (formain.o):
cc -c main.c defs.h

which is wrong. So you round out the reéile with these lines:

PMake — A Tutorial PSD:12-9

main.o : main.c
cc -C main.c

parse.o : parse.c
CcC -C parse.c

output.o : output.c

CC -Cc output.c

The malefile is nav complete and will, indct, create the program yowamt it to without unnecessary com-
pilations or &cessve typing on your part. There aredvthings wrong with it, havever (aside from it being
altogether too long, somethindl Bddress in chapter 3):

1) Thestring “main.o parse.o output.o " i s repeated twice, necessitatingotwhanges when
you add postfix (you were planning on that, wergou?). This is in direct violation of de Bosr’
First Rule of writing makfiles:

Anything that needs to be written radinan once should be placed in a variable

| cannot emphasize this enough as beieiy vmportant to the maintenance of a efdk and its pro-
gram.

2) Thereis no way to alter the wy compilations are performed short of editing the efilkand making
the change in all places. This igleand violates de Boas’Second Rule, which folles directly from
the first:

Any flags or pograms used inside a mafile should be placed in a variable soythreay be
changed, tempaarily or permanentlywith the geatest ease

The malefile should more properly read:

OBJS = main.o parse.o output.o
expr : $(OBJS)
$(CC) $(CFLAGS) -0 $(.TARGET) $(.ALLSRC)
main.o : main.c
$(CC) $(CFLAGS) -¢ main.c
parse.o : parse.c
$(CC) $(CFLAGS) -c parse.c
output.o : output.c
$(CC) $(CFLAGS) -c output.c
$(OBJS) : defs.h

Alternatively, if you like the idea of dynamic sources mentioned in section 2.3.1, you could write it lik
this:

OBJS = main.o parse.o output.o
expr : $(OBJS)

$(CC) $(CFLAGS) -0 $(.TARGET) $(.ALLSRC)
$(OBJS) . $(.PREFIX).c defs.h

$(CC) $(CFLAGS) -¢ $(.PREFIX).C

These tw rules and kamples lead to de BosrFrst Corollary:
Variables ae your friends.

Once yowre written the makfile comes the sometimesf{ditilt task of making sure the darn thingnks.
Your most helpful tool to maksaure the maéfile is at least syntactically correct is theflag, which allevs
you to see if PMakwill choke on the malefile. The second thing then flag lets you do is see what PMak
would do without it actually doing it, thus you can raakre the right commandsowuld be &ecuted were
you to gve FMake its head.

When you find your madfile isnt behasing as you hoped, the first question that comes to mind (after
“What time is it, apway?’) is “Why not?” | n answering this, tw flags will sere you well: “-d m " and

“-p 2 .” The first causes PMako tell you as it ®&amines each tget in the madfile and indicate whit

is deciding whateer it is deciding. You can then use the information printed for otheyets to see where

PSD:12-10 PMad— A Tutorial

you went wrong. The-“p 2 ” flag malkes PMalk rint out its internal state when it is done, alilog you

to see that you fgot to male that one chapter depend on that file of macros you just gat aevsion of.

The output from‘“p 2 " i s intended to resemble closely a real afd&, ut with additional information
provided and with griables gpanded in those commands PMaktually printed or recuted.

Something to be especially careful about is circular dependerieigs.

a b
b o cd
d oa

In this case, because ofvhd@Make works, c is the only thing PMa& will examine, because anda will
effectively fall off the edge of the umérse, making it impossible tokamineb (or them, for that matter).
PMale will tell you (if run in its normal mode) all the @ets ivolved in aly cycle it looked at (i.e. if you
have wo ¢ycles in the graph (naughtyaughty), lot only try to mak a fget in one of them, PMakwill
only tell you about that one.o¥’ll have © try to male the other to find the seconglote). When run as
Make, it will only print the first taget in the gcle.

2.7. Invoking PMake

PMale comes with a wide ariety of flags to choose fronThey may appear in anorder, interspersed with
command-line ariable assignments anddats to createThe flags are as foles:

—d what
This causes PMa&kio spew out delugging information that may pve wseful to you. If you camfig-
ure out wly PMake is doing what its doing, you might try using this flag. Thehat parameter is a

string of single characters that tell PMakhat aspects you are interested in. Most of what | describe

will make little sense to you, unless yoga’'dealt with Male before. Just remember where this table is
and come back to it as you read dine characters and the informationytipeoduce are as folles:

a Archive arching and caching.
c Conditional e/aluation.
d The searching and caching of directories.

j Various snhippets of information related to the running of the multiple shells. Not particularly

interesting.

m The making of each tget: what taget is being xamined; when it w&s last modified; whether
it is out-of-date; etc.

Malkefile parsing.

©

Remote &ecution.

-

s The application of sfik-transformation rules. (See chapter 3)
t The maintenance of the list of gets.
v Variable assignment.

Of these all, thenands letters will be most useful to youf the —d is the final agument or the gu-
ment from which it wuld get thesedy letters (see belofor a note about which gument vould be
used) bgins with a—, dl of these debgging flags will be set, resulting in massemounts of output.

—f malefile
Specify a ma&file to read dferent from the standard mefiles (Makefile or makefile). If
malefile is “~'’, PMake wses the standard input. This is useful for making quick and dirty
malefiles. . .

—h Prints out a summary of thanous flags PMakaccepts. It can also be used to find out whad! lef
concurreng was compiled into theersion of PMak you are using (look atJ and—-L) and various
other information on he PMake was configured.

—-i If you give tis flag, PMak will ignore non-zero status returned byyanf its shells. It like dacing
a ‘=’ before all the commands in the nedile.

PMake — A Tutorial PSD:12-11

-k

This is similar to—i in that it allavs PMale to continue when it sees an errbut unlike —i, where
PMale aontinues blithely as if nothing went wrongk causes it to recognize the error and only con-
tinue work on those things that dandepend on the tget, either directly or indirectly (through
depending on something that depends on it), whose creation returned thdleertc is for “keep
going’...

PMalke has the ability to lock a directory aigpst other peoplexecuting it in the same directory (by
means of a file calledLOCK.make” that it creates and checks for in the directory). This is a Good
Thing because tavpeople doing the same thing in the same place can be disastrous for the final prod-
uct (too mag cooks and all that)Whether this locking is the dailt is up to your system adminis-
trator. If locking is on,~l will turn it off, and vice ersa. Note that this locking will not went you
from invoking PMale twice in the same place — if yowa the lock file, PMa& will warn you
about it lut continue to xecute.

—m directory

Tells PMalke another place to search for included refilles via the <...> styleSeveral -m options
can be gien to form a search patHhf this construct is used the deilt system madfile search path is
completely werridden. D be explained in chapter 3, section 3.2.

This flag tells PMa& ot to execute the commands needed to update the out-of-dgetdan the
malkefile. RatherPMake will simply print the commands it euld hare exeuted and xt. This is
particularly useful for checking the correctness of aefikk If PMale doesnt do what you &pect it
to, it's a gpod chance the mefle is wrong.

—p number

-V

—X

This causes PMa&kto print its input in a reasonable form, though not necessarily one thatw
make immediate sense to yome lut me. Thenumberis a bitwise-or of 1 and 2 where 1 means it
should print the input before doingyaprocessing and 2 says it should print it afteergthing has
been re-created. Thup 3 would print it twice—once before processing and once after (you might
find the diference between the oninteresting). This is mostly useful to meytlyou may find it
informative in some bizarre circumstances.

If you give PMake this flag, it will not try to re-create gthing. It will just see if apthing is out-of-
date andt non-zero if so.

When PMak darts up, it reads a dailt malefile that tells it what sort of systemsitn and gies it
some idea of what to do if you doreéll it anything. I'll tell you about it in chapter 3. If youg this
flag, PMale won't read the defult malefile.

This causes PMakio not print commands before Wiee executed. It is the equélent of putting an
‘@’ before eyery command in the mafile.

Rather than try to re-create aget, PMale will simply *‘touch” it so as to make it appear up-to-date.
If the taget didnt exist before, it will when PMak finishes, bt if the taget did &ist, it will appear
to have bkeen updated.

This is a mied-compatibility flag intended to mimic the Systemarsion of Male. It is the same as
giving —B, and -V as well as turning 6fdirectory locking. Bmets can still be created in parallel,
however. This is the mode PMakwill enter if it is invoked @ther as “smake” or **vmake” .

This tells PMak it's ok to export jobs to other machines, if fiee available. It is used when running
in Make mode, as xporting in this mode tends to meakiings run slaer than if the commands were
just executed locally

Forces PMak o be s backwards-compatible with Mak e possible while still being itself.This
includes:

» Executing one shell per shell command

» Expanding awthing that looks een vaguely like a \ariable, with the empty string replacingyan
variable PMale doesnt know.

» Refusing to allav you to escape a ‘# with a backslash.

PSD:12-12 PMad— A Tutorial

» Permitting undefined ariables on dependentines and conditionals (see b&)o Normally this
causes PMakto abort.

—C This nullifies ay and all compatibility mode flags you mayveagven or implied up to the time the
—C is encountered. It is useful mostly in a refile that you wrote for PMakio avoid bad things
happening when someone runs Pklak “make” or has things set in the @winonment that tell it to
be compatible.-C is not placed in thePMAKEervironment \ariable or the. MAKEFLAGS or
MFLAGSjlobal ariables.

-D variable
Allows you to define aariable to hae “1” as its value. Thevariable is a global ariable, not a com-
mand-line wariable. This is useful mostly for people who are used to the C compmlenants and
those using conditionals, whicHlIget into in section 4.3

—I directory
Tells PMalke another place to search for included refilles. Yet another thing to bexplained in
chapter 3 (section 3.2, to be precise).

—-J number
Gives the absolute maximum number ofgets to create at once on both local and remote machines.

-L number
This specifies the maximum number ofgets to create on the local machine at once. This may be 0,
though you should beawy of doing this, as PMakmay hang until a remote machine becomesil-a
able, if one is notwailable when it is started.

-M This is the flag that puides absolute, complete, full compatibility with MaMt still allovs you to
use all loit a fev of the features of PMak tut it is non-parallel. This is the mode PMadters if you
call it “make.”

—-P When creating tagets in parallel, seral shells are>ecuting at once, eachamting to write its wn
two cent’s-worth to the screenThis output must be captured by PMak some way in order to pre-
vent the screen from being filled witlaage wen more indecipherable than you usually see. Pdak
has tvwo ways of doing this, one of which prides for much cleaner output and a clear separation
between the output of ddrent jobs, the other of which pides a more immediate response so one
can tell what is really happpening. The former is done by notifying you when the creationggfta tar
starts, capturing the output and transferring it to the screen all at once when the job finishes. The lat-
ter is done by catching the output of the shell (and its children)#fetibg it until an entire line is
receved, then printing that line preceded by an indication of which job produced the output. Since |
prefer this second method, it is the one used byultefThe first method will be used if yowegithe
—P flag to PMale.

-V As mentioned before, theV flag tells PMak b use Male's gyle of expanding \ariables, substitut-
ing the empty string for grvariable it does’know.

-W There are seral times when PMakwill print a message at you that is only aming, i.e. it can
continue to wrk in spite of your haing done something silly (such asdotten a leading tab for a
shell command). Sometimes you are welb@g of silly things you ha done and wuld like PMake
to stop bothering you. This flag tells it to shut up aboythamg non-atal.

—X This flag causes PMako not attempt to xeport ary jobs to another machine.

Several flags may follav a sngle ‘='. Those flags that requiregarments ta& them from successe param-
eters. E.g.

pmake -fDnl server.mk DEBUG /chip2/X/server/include
will cause PMak to readserver.mk as the input maiile, define the ariableDEBUGas a global ari-
able and look for included mefles in the directorychip2/X/server/include

2.8. Summary
A makefile is made of four types of lines:

PMake — A Tutorial PSD:12-13

» Dependenglines

» Creation commands

» Variable assignments

« Comments, include statements and conditional direxti

A dependengline is a list of one or more gets, an operator:(*, *:: ', or ‘'!'’), and a list of zero or more
sources. Sources may contain wildcards and certain ladables.

A creation command is agalar shell command preceded by a tabaddition, if the first tvo characters
after the tab (and other whitespace) are a combinatio@of “- ', PMake will cause the command to not
be printed (if the character i€) or errors from it to be ignored (if *). A blank line, dependegdine or
variable assignment terminates a creation script. There may be only one creation script fogetwlithar
a‘'or‘l’ operator

Variables are places to storexte They may be unconditionally assigned-to using the Operator
appended-to using the=’ operator conditionally (if the \ariable is undefined) assigned-to with tRe"
operatoyr and assigned-to withariable &pansion with the:= ' operator The output of a shell command
may be assigned to anable using thel= ’ operator Variables may bexpanded (their alue inserted) by
enclosing their name in parentheses or curly braces, prceeded by a dollaA gigilar sign may be
escaped with another dollar sigrariables are notxpanded if PMa& doesnt know about them. There are
seven local variables:. TARGET, .ALLSRC, .OODATE .PREFIX , .IMPSRC, .ARCHIVE, and .MEM-
BER Four of them (TARGET, .PREFIX , .ARCHIVE, and .MEMBER may be used to specifidynamic
sources. V ariables are good. Kmothem. Lave them. Live them.

Dehugging of makfiles is best accomplished using thre —d m, and —p 2flags.

2.9. Exerises

TBA

3. Short-cutsand Other Nice Things

Based on what Ve bld you so &r, you may hae gotten the impression that PMals just a vay of storing
awa/ commands and making sure you dofdrget to compile something. Good. Tlsajlist what it is.
However, the ways Ive described hee been inelgant, at best, and painful, atorst. Thischapter contains
things that mak the writing of makfiles easier and the nefites themseles shorter and easier to modify
(and, occasionallysmpler). In this chapterl assume you are somvbat more &miliar with Sprite (or
UNIX, if that's what youte using) than | did in chapter 2, just so yeuwn your toes.So without further
ado...

3.1. Transformation Rules

As you knav, a fie’'s name consists of twparts: a base name, whiclveg osme hint as to the contents of
the file, and a stik, which usually indicates the format of the fil@ver the years, asNnIX® has deel-
oped, naming comntions, with rgad to sufixes, hae dso deseloped that hee become almost as incon-
trovertible as Lav. E.g. a file ending inc is assumed to contain C source code; one with guffix is
assumed to be a compiled, relocatable object file that may el linto ag program; a file with ams
suffix is usually a tet file to be processed bydif with the -ms macro package, and so @me of the best
aspects of both Ma&kand PMale comes from their understanding ofvinthe sufix of a file pertains to its
contents and their ability to do things with a file basedysateits sufix. This ability comes from some-
thing knavn as a transformation rule. A transformation rule specifiegsthahange a file with one ¥
into a file with another sfik.

A transformation rule looks much &ka cependeng line, except the taget is made of tav known sufixes
stuck togetherSuffixes are made kmm to PMale by placing them as sources on a depengéime whose
target is the special tiget.SUFFIXES . E.g.

PSD:12-14 PMad— A Tutorial

.SUFFIXES . .0.C
.C.0 .
$(CC) $(CFLAGS) -c $(.IMPSRC)

The creation script attached to thegtdris used to transform a file with the firstfisufin this case,c) into

a file with the second sfit (here,.o). Inaddition, the taget inherits whateer attributes hae keen applied

to the transformation ruleThe simple rule gien above sys that to transform a C source file into an object
file, you compile it usingc with the—c flag. Thisrule is talken straight from the system nedite. Mary
transformation rules (and $ixfes) are defined there, and | refer you to it for maesmples (type‘ pmake

-h " to find out where it is).

There are sgral things to note about the transformation ruiegigbove:

1) The.IMPSRC variable. Thisvariable is set to theimplied source’ (the file from which the
target is being created; the one with the firsfisyfwhich, in this case, is the .c file.

2) TheCFLAGSvariable. Almost all of the transformation rules in the systemefilakare set up
using \ariables that you can alter in your maéile to tailor the rule to your needs. In this case,
if you want all your C files to be compiled with theg flag, to preide information fordbx ,
you would set theCFLAGSvariable to containg (**CFLAGS =-g ") and PMale would tale
care of the rest.

To gve you a quick gample, the madfile in 2.3.4 could be changed to this:

OBJS = a.obh.oc.0
program . $(OBJS)
$(CC) -0 $(.TARGET) $(.ALLSRC)
$(OBJS) : defs.h
The transformation rule layeabove &kes the place of the 6 lines
a.o : o ac
cc-ca.c
b.o b
cc-ch.c
c.0 . Cc.cC
cc-c c.c

Now you may be wndering about the dependgrietween theo and.c files — it's ot mentioned ay
where in the n@ makefile. This is because it ismeeded: one of the fetts of applying a transformation
rule is the taget comes to depend on the implied source. $hdty it's called the impliedsource

For a nore detailed xeample. Say you ha a nakefile like this:

a.out : a.ob.o

$(CC) $(.ALLSRC)

and a directory set up kkhis:

total 4
-rwW-rw-r-- 1 deboor 34 Sep 7 00:43 Makefile
-rwW-rw-r-- 1 deboor 119 Oct 3 19:39a.c
-rwW-rw-r-- 1 deboor 201 Sep 7 00:43a.0
-rwW-rw-r-- 1 deboor 69 Sep 7 00:43b.c

While just typing “‘pmake” will do the right thing, it5 much more informatie o type *pmake -d s
This will shav you what PMak is up to &s it processes the files. In this case, PMpgints the follaving:

1 This is also somehat cleaner think, than the dynamic source solution presented in 2.6

PMake — A Tutorial PSD:12-15

Suff_FindDeps (a.out)
using existing source a.o
applying .0 -> .out to "a.0"
Suff_FindDeps (a.0)
trying a.c...got it
applying .c -> .0 to "a.c"
Suff_FindDeps (b.o)
trying b.c...got it
applying .c -> .0 to "b.c"
Suff_FindDeps (a.c)
trying a.y...not there
trying a.l...not there
trying a.c,v...not there
trying a.y,v...not there
trying a.l,v...not there
Suff_FindDeps (b.c)
trying b.y...not there
trying b.l...not there
trying b.c,v...not there
trying b.y,v...not there
trying b.l,v...not there

---a.0 ---
cc - ac
---b.o ---

cc -c bc
--- a.out ---
cca.ob.o

Suff_FindDeps is the name of a function in PMalhat is called to check for implied sources for a tar
get using transformation rule§.he transformations it tries are, naturally enough, limited to the ones that
have been defined (a transformation may be defined multiple times, byahe only the most recent
one will be used). du will notice, havever, that there is a definite order to thefsuds that are tried. This
order is set by the relag positions of the stfikes on theSUFFIXES line — the earlier a sfik appears,

the earlier it is chedd as the source of a transformation. Once faxsudis been defined, the onhyawto
change its position in the pecking order is to reendl the sufixes (by haing a.SUFFIXES dependengc

line with no sources) and redefine them in the order yamt.vPrgiously-defined transformation rules will

be automatically redefined as thefsu#s thg invdve ae re-entered.)

Another vay to afect the search order is to neate dependercexplicit. In the abwe example,a.out
depends om.0 andb.o . Since a transformationxests from.o to.out , PMake uses that, as indicated
by the ‘using existing source a.o " message.

The search for a transformation starts from théixsof the taget and continues through all the defined
transformations, in the order dictated by thdisufnking, until an gisting file with the same base (the-tar
get name minus the dixfand aiy leading directories) is found. At that point, one or more transformation
rules will have been found to change the onasting file into the taget.

For example, ignoring what'in the system maiile for nav, say you hae a nakefile like this:

PSD:12-16 PMad— A Tutorial

.SUFFIXES : .out.o.c.y.l
d.c :

lex $(.IMPSRC)

mv lex.yy.c $(.TARGET)

y.c :
yacc $(.IMPSRC)
mv y.tab.c $(.TARGET)
.C.0 :
cc -¢ $(.IMPSRC)
.0.out :
cc -0 $(.TARGET) $(.IMPSRC)
and the single filgve.l . If you were to type' pmake -rd ms jive.out ,” you would get the fol-

lowing output forjive.out

Suff_FindDeps (jive.out)
trying jive.o...not there
trying jive.c...not there
trying jive.y...not there
trying jive.l...got it
applying .I -> .c to "jive.l"
applying .c -> .o to "jive.c"
applying .o -> .out to "jive.o"

and this is wii: PMale darts with the tagetjive.out | figures out its sfik (.out) and looks for things

it can transform to aout file. In this case, it only find® , s0 it looks for the filgive.o . It fails to find

it, so it looks for transformations into.a file. Again it has only one choicec . So it looks forjive.c

and, as you kna, fails to find it. At this point it has twchoices: it can create the file from either ay

file or a.l file. Since.y came first on theSUFFIXES line, it checks fofive.y first, but cant find it,

so it looks forjive.l and, lo and behold, there it i&t this point, it has defined a transformation path as
follows:.I - .c - .0 - .out and applies the transformation rules accordingty completeness, and
to give you a better idea of what PMalkctually did with this three-step transformation, this is what RMak
printed for the rest of the process:

Suff_FindDeps (jive.o)

using existing source jive.c

applying .c -> .o to "jive.c"
Suff_FindDeps (jive.c)

using existing source jive.l

applying .I -> .c to "jive.l"
Suff_FindDeps (jive.l)
Examining jive.l...modified 17:16:01 Oct 4, 1987...up-to-date
Examining jive.c...non-existent...out-of-date
--- jive.c ---
lex jive.l
... m eaningless lex output deleted .
mv lex.yy.c jive.c
Examining jive.o...non-existent...out-of-date
--- jive.o ---
cC -C jive.c
Examining jive.out...non-existent...out-of-date
--- jive.out ---
CC -0 jive.out jive.o

One final question remains: what does P#&ldk with tagets that hee o known sufix? PMale smply
pretends it actually has a kmp sufix and searches for transformations accordinglge sufix it chooses
is the source for theNULL target mentioned latetn the system maile, .out is chosen as thenull

PMake — A Tutorial PSD:12-17

suffix’’ because most people use PMaddk create programs.od are, hwever, free and welcome to change
it to a sufix of your avn choosing.The null sufix is ignored, havever, when PMak is in compatibility
mode (see chapter 4).

3.2. Including Other Mak efiles
Just as for programs, it is often useful xtr&ct certain parts of a mefle into another file and just include
it in other makfiles somehw. Marny compilers allav you say something lk

#include "defs.h"

to include the contents difs.h in the source file. PMakdlows you to do the same thing for nediles,
with the added ability to usesiables in the filename#\n include directre in a makefile looks either lik
this:

#include <file>
or this
#include "file"

The diference between the ows where PMak sarches for the file: the firstay PMake will look for the
file only in the system mafile directory (or directories) (to find out what that directory g gMake the
-h flag). Thesystem madfile directory search path can beswidden via the-m option. For files in dou-
ble-quotes, the search is more comple

1) Thedirectory of the madfile thats including the file.
2) Thecurrent directory (the one in which yowaked PMake).
3) Thedirectories gien by you using-I flags, in the order in which yowagethem.
4) Directorieggiven by .PATH dependenglines (see chapter 4).
5) Thesystem maéfile directory
in that order

You are free to use PMakvariables in the filename—PMalkill expand them before searching for the file.
You must specify the searching method with either angle letactr double-quotesutsideof a \ariable
expansion. |.e. the follwing

SYSTEM = <command.mk>

#include $(SYSTEM)

won't work.

3.3. Saing Commands

There may come a time when you wilamt to sge ertain commands to beeuted when eerything else

is done. Br instance: youe making seeral different libraries at one time and yoant to create the mem-
bers in parallel. Problem isanlib is another one of those programs that tha’run more than once in
the same directory at the same time (each one creates a file_caBMDEF into which it stufs infor-
mation for the linkr to use. Wo of them running at once willverwrite each othes file and the result will

be aqarbage for both parties)o¥ might vant a vay to sae the ranlib commands til the end soytlwan be

run one after the othethus leeping them from trashing each otkdife. PMale dlows you to do this by
inserting an ellipsis ('. .”) as a @mmand between commands to be run at once and those to be tun later

So for theranlib case abee, you might do this:

PSD:12-18 PMad— A Tutorial

libl.a : $(LIBLOBJS)
rm -f $(TARGET)
ar cr $(.TARGET) $(.ALLSRC)

ranlib $(. TARGET)

lib2.a : $(LIB20BJS)
rm -f $(TARGET)
ar cr $(.TARGET) $(.ALLSRC)

ranlib $(. TARGET)
This would sae oth
ranlib $(. TARGET)

commands until the end, when yheould run one after the other (using the corredti® for the TARGET
variable, of course).

Commands seed in this manner are onlyxecuted if PMale manages to re-createeeything without an
error

3.4. Target Attrib utes

PMale dlows you to gie dtributes to tagets by means of special sources.eLéerything else PMa&
uses, these sourceggirewith a period and are made up of all upp@se letters. There aranous reasons

for using them, and | will try to gé examples for most of them. Others yliiave o find uses for your

self. Think of it as‘an exercise for the readérBy placing one (or more) of these as a source on a depen-
deng line, you are'marking the taget(s) with that attriste” T hat's just the vay | phrase it, so you kao

Any attributes gven as urces for a transformation rule are applied to thgetaof the transformation rule
when the rule is applied.

.DONTCARE
If a taget is markd with this attribte and PMa& can't figure out hw to create it, it will
ignore this &ct and assume the file isméally needed or actuallyxists and PMad just
cant find it. This may pree wong, tut the error will be noted later on, not when Pilak
tries to create the et so markd. This attribte also preents PMale from attempting to
touch the taget if it is given the-t flag.

.EXEC Thisattribute causes its shell script to beeeuted while hging no efect on tagets that
depend on it. This mals the taget into a sort of subroutineAn example. Say you &
some LISP files that need to be compiled and loaded into a LISP proceksihis, you
echo LISP commands into a file andea@ute a LISP with this file as its input whevesy-
thing’s done. Say also that youve load other files from another system before you can
compile your files and furthethat you dort want to go through the loading and dumping
unless one ofour files has changed.odr malefile might look a little bit lile this (remem-
ber, this is an educationakample, and doh'worry about theCOMPILErule, all will soon
become cleaigrasshopper):

PMake — A Tutorial PSD:12-19

.EXPORT

system : init a.fasl b.fasl c.fasl
for i in $(.ALLSRC);
do
echo -n’(load ™ >> input
echo -n ${i} >> input
echo ™)’ >> input

done
echo '(dump "$(.TARGET)")’ >> input
lisp < input
a.fasl : a.l init COMPILE
b.fasl : b.l init COMPILE
c.fasl : c.l init COMPILE
COMPILE . .USE
echo '(compile "$(.ALLSRC)")’ >> input
init : .EXEC

echo '(load-system)’ > input

.EXEC sources, domn’appear in the localariables of tagets that depend on them (nor are
they touched if PMak is gven the —t flag). Notethat all the rules, not just that feys-
tem, includeinit as a source. This is because none of the otlgatsacan be made until
init has been made, thus yhdepend on it.

This is used to mark those gats whose creation should be sent to another machine if at all
possible. This may be used by sompatation schemes if thexgortation is &pensve. You
should ask your system administrator if it is necessary

.EXPORTSAME

IGNORE

INVISIBLE

JOIN

Tells the eport system that the job should beerted to a machine of the same architecture
as the current one. Certain operations (eumpning text throughnroff) can be performed

the same on grarchitecture (CPU and operating system type), while others (e.g. compiling
a program withcc) must be performed on a machine with the same architecture. Not all
export systems will support this attite.

Gring a taget the.IGNORE attribute causes PMakto ignore errors from anof the tar
get's mmmands, as if thyeall had ‘-’ before them.

This allows you to specify one taet as a source for another without the orfiectihg the
others local \ariables. Useful if, sayou hare a nmakefile that creates wvprograms, one of
which is used to create the othar it must eist before the other is createcurcould say

progl : $(PROG10BJS) prog2 MAKEINSTALL
prog2 © $(PROG20BJS) .INVISIBLE MAKEINSTALL

whereMAKEINSTALLIs some compbe.USE rule (see belg) that depends on thaLL-
SRCuvariable containing the right things. ithout the.INVISIBLE attribute forprog2 ,

the MAKEINSTALLrule couldnt be gplied. This is not as useful as it should be, and the
semantics may change (or the whole thingwgayain the not-too-distant future.

Thisis another \ay to aoid performing some operations in parallel while permittingg

thing else to be done so. Specifically it forces thgetér shell script to be xeecuted only if

one or more of the sourcessvout-of-date. In addition, the gat's nrame, in both itsSTAR-
GETvariable and all the localariables of ay tamget that depends on it, is replaced by the
value of its.ALLSRC variable. Asan &xample, suppose you V@ a pogram that has four
libraries that compile in the same directory along with, and at the same time as, the program.
You agan have the problem wittranlib that | mentioned earlieonly this time its more

severe: you cart just put the ranlib éto the end since the program will need those libraries
before it can be re-createdolycan do something kkthis:

PSD:12-20

.MAKE

.NOEXPOR

.NOTMAIN

.PRECIOUS

SILENT

.USE

PMad— A Tutorial

program : $(OBJS) libraries
cc -0 $(. TARGET) $(.ALLSRC)

libraries : libl.alib2.alib3.a lib4.a .JOIN
ranlib $(.OODATE)

In this case, PMak will re-create the$(OBJS) as necessarydong with libl.a

lib2.a ,lib3.a andlib4.a . It will then executeranlib on ary library that vas
changed and serogram 's .ALLSRC variable to contain what'in $(OBJS) followed by
“libl.a lib2.a lib3.a lib4d.a " In case youe wondering, its called .JOIN

because it joins together fdifent threads of thérput graph’ at the taget marled with the
attribute. Anotheraspect of the .JOIN attuie is it leeps the tget from being created if
the-t flag was gven.

The .MAKE attribute marks its t@ret as being a recuvsi invocation of PMak. Thisforces
PMale to execute the script associated with thegtr (if it's aut-of-date) gen if you cave
the—n or -t flag. By doing this, you can start at the top of a system and type

pmake -n

and hae it descend the directory tree (if your nediles are set up correctly), printing what it
would hare exeuted if you hadr’included the-n flag.

If possible, PMak will attempt to e&port the creation of all tgets to another machine (this
depends on o PMake was configured). Sometimes, the creation is so simple, it is pointless
to send it to another machine. If yowgihe taget the. NOEXPORTattribute, it will be run
locally, even if you've gven PMake the-L O flag.

Normally, if you do not specify a tget to mak in any ather way, PMake will take the first
target on the first dependgntine of a makfile as the taet to create. That @et is knavn

as the ‘Main Target” and is labeled as such if you print the dependencies out usingpthe
flag. Gving a taget this attrilnte tells PMak that the taget is definitelynot the Main &r
get. Thisallows you to place tgets in an included makile and hae PMake aeate some-
thing else by defult.

WherPMalke is interrupted (you type control-C at theykoard), it will attempt to clean up
after itself by remeing ary half-made tagets. If a taget has thePRECIOUS attribute,
however, PMake will leave it alone. An additional side fct of the *::" operator is to mark
the tagets asPRECIOUS.

Marking a target with this attribte keeps its commands from being printed whery'tiee
executed, just as if thehad an ‘@’ in front of them.

Bygiving a taget this attrilnte, you turn it into PMaKs equivalent of a macro. When the
target is used as a source for anothegdtrthe other tget acquires the commands, sources
and attrilutes (&cept.USE) of the source.If the taget already has commands, thESE
target's mmmands are added to the end. If more than one .USEethadurce is gen to a
target, the rules are applied sequentially

The typical .USE rule (as | call them) will use the sources of tgettés which it is applied
(as stored in theALLSRC variable for the taget) as its ‘arguments, if you will. For
example, you probably noticed that the commands for crebtihga andlib2.a in the
example in section 3.3 wereactly the same. & can use thaJSE attribute to eliminate
the repetition, lik :

PMake — A Tutorial PSD:12-21

libl.a : $(LIB1OBJS) MAKELIB
lib2.a : $(LIB20BJS) MAKELIB
MAKELIB . .USE

rm -f $(TARGET)
ar cr $(.TARGET) $(.ALLSRC)

ranlib $(. TARGET)

Several system madfiles (not to be confused with The System bfd&) male use of these
.USE rules to makyour life easier (thgre in the dedult, system maiile directory..tale a
look). Notethat the .USE rule source itseMIAKELIB) does not appear in grof the tar
getss local \ariables. Therés no limit to the number of times | could use MAKELIB
rule. If there were more libraries, | could continue witib3.a : $(LIB3OBJS)
MAKELIB’ and so on and so forth.

3.5. Speciallargets

As there were in Mak so there are certaingats that hee pecial meaning to PMak When you use one
on a dependerdine, it is the only taget that may appear on the left-hand-side of the operAwfor the
attributes and ariables, all the special tgts bgin with a period and consist of uppeEase letters onlyl
won'’t describe them all in detail because some of them are rather coanpld’ll describe them in more
detail than yodl want in chapter 4The tagets are as follws:

.BEGIN

.DEFAULT

.END

.EXPORI

IGNORE

Any commands attached to thisdat are gecuted before arthing else is done.od can use it
for ary initialization that needs doing.

This is sort of a .USE rule for witarget (that vas used only as a source) that P®ledn't fig-
ure out ag other way to create. I8 only “sort of” a .USE rule because only the shell script
attached to theDEFAULT tamget is used. ThelMPSRC variable of a taget that inherits
.DEFAULT's commands is set to the ¢gt's avn name.

Thissenes a function similar taBEGIN , in that commands attached to it aseaited once
evaything has been re-created (so long as no errors occurred). It ales gerwetra function
of being a place on which PMalkan hang commands you puf td the end. Thus the script
for this taget will be executed before gnof the commands you ga with the *.. " .

The sources for this et are passed to thgpsrtation system compiled into PMakSome
systems will use these sources to configure theeselu should ask your system adminis-
trator about this.

Thistarget marks each of its sources with th@NORE attribute. If you dont give it any
sources, then it is likgving the-i flag when you imoke PMake — arors are ignored for all
commands.

.INCLUDES

The sources for this et are takn to be sdixes that indicate a file that can be included in a
program source file.The sufix must hae dready been declared witlSUFFIXES (see
belon). Any suffix so marled will have the directories on its search path (§2ATH, below)
placed in theINCLUDES variable, each preceded by-&aflag. This ariable can then be used
as an agument for the compiler in the normalshion. Theh suffix is already mar&d in this
way in the system ma¥ile. E.g.if you have

.SUFFIXES : .bitmap
.PATH.bitmap : lusr/local/X/lib/bitmaps
.INCLUDES : .bitmap
PMale will place “-l/usr/local/X/lib/bitmaps " in the INCLUDES variable and

you can then say

PSD:12-22 PMad— A Tutorial

cc $(.INCLUDES) -c xprogram.c

(Note: the.INCLUDES variable is not actually filled in until the entire nedite has been
read.)

INTERRUPT
When PMak is interrupted, it will &ecute the commands in the script for thisgédr if it
exists.

.LIBS Thisdoes for libraries whatNCLUDES does for include files,xeept the flag used isL, as
required by those lirdes that allev you to tell them where to find libraries. Thariable used
is.LIBS . Be foravarned that PMa& may not hae been compiled to do this if the liek on
your system doeshaccept the-L flag, though theLIBS variable will alays be defined
once the madfile has been read.

.MAIN If you didnt give a target (or tagets) to create when youvisked PMake, it will take the
sources of this tget as the tgets to create.

.MAKEFLAGS
This taget pravides a vay for you to avays specify flags for PMakwhen the madfile is
used. The flags are just asytveould be typed to the shellXeept you cart’'use shell ariables
unless thg're in the emironment), though thef and-r flags hae ro efect.

.NULL This allows you to specify what siif PMake should pretend a file has if, irmdt, it has no
known sufix. Only one suix may be so designated. The last source on the depgniiemds
the sufix that is used (you should, Wwever, only give ame sufix. . .).

.PATH If you give ources for this tget, PMale will take them as directories in which to search for
files it cannot find in the current directotf/you give ro sources, it will clear out andirecto-
ries added to the search path before. Since fhetgfof this all getery comple, I'll leave it
til chapter four to gie you a completexplanation.

.PATHsufix
This does a similar thing t®® ATH, but it does it only for files with the gen suffix. The sufix
must hae keen defined alreadiook atSearch Paths (section 4.1) for more information.

.PRECIOUS
Similar to .IGNORE, this gives the .PRECIOUS attribute to each source on the depengenc
line, unless there are no sources, in which casd”fRECIOUS attribute is gven to every tar
get in the file.

.RECURSIVE
This taget applies theMAKE attribute to all its sources. It does nothing if you dagve it
ary sources.

.SHELL PMale is mot constrained to only using the Bourne shellxecate the commands you put in
the malefile. You can tell it some other shell to use with thigear Check oufA Shell is a
Shell is a Shellsection 4.4) for more information.

SILENT Whenyou useSILENT as a taget, it applies theSILENT attribute to each of its sources. If
there are no sources on the depengéine, then it is as if youayePMale the —s flag and no
commands will be echoed.

.SUFFIXES
This is used to ge rew file sufixes for PMak to handle. Each source is a BufPMake
should recognize. If yougt a.SUFFIXES dependengline with no sources, PMalwill for -
get about all the sfikes it knev (this also nuks the null sdix). For those tagets that need to
have aiffixes defined, this is moyou do it.

In addition to these tgets, a line of the form
attribute : sources

applies thattributeto all the tagets listed asources

PMake — A Tutorial PSD:12-23

3.6. Modifying Variable Expansion

Variables need not akys be &panded erbatim. PMak defines seeral modifiers that may be applied to a
variable’s value before it isxpanded. Wu apply a modifier by placing it after thariable name with a
colon between the ty like :

${ VARIABLE modifie}

Each modifier is a single character falled by something specific to the modifier itsefbu may apply as
mary modifiers as you ant — each one is applied to the result of theiptes and is separated from the
previous by another colon.

There are sen ways to modify a ariables expansion, most of which come from the C shaliiable mod-
ification characters:

Mpattern

This is used to select only thosends (a vord is a series of characters that are neither spaces
nor tabs) that match thevgh pattern The pattern is a wildcard patterndikthat used by the
shell, where* means O or more characters of/aort; ? is ary single character[abcd]
matches aynsingle character that is either ‘a’, ‘b’, ‘c’ or ‘d’ (there may bey aamber of char
acters between the braatk);[0-9] matches ansingle character that is between ‘0’ and ‘9’
(i.e. ary digit. This form may be freely med with the other braeit form), and ‘\' is used to
escape anof the characters ™, '?’, ' or *’, lewing them as mgular characters to match
themseles in a word. For example, the system mefle <makedepend.mk> uses
“$(CFLAGS:M-[ID]*) " to extract all the-I and-D flags that wuld be passed to the C
compiler This allows it to properly locate include files and generate the correct dependencies.

Npattern

This is identical toM except it substitutes all evds that dort’'match the gien pattern.

Skeach-string/replacement-stringg]

E

Causes the first occurrence sgach-string in the \ariable to be replaced hgplacement-
string, unless theg flag is gven a the end, in which case all occurrences of the string are
replaced. The substitution is performed on eaohdwn the ariable in turn. Ifseach-string
beagins with a”, the string must match starting at thagipaing of the word. If seach-string
ends with &, the string must match to the end of therev (these tw may be combined to
force an gact match). If a backslash preceeds thesedvaracters, hwever, they lose their
special meaning. &fiable &pansion also occurs in the normashion inside both theeach-
string and thereplacement-stringexceptthat a backslash is used tovymat the epansion of a

$, not another dollar sign, as is usudlote thatseach-string is just a string, not a pattern, so
none of the usual gallarexpression/wildcard charactersveaany ecial meaning s&~ and

$. In the replacement string, tf#echaracter is replaced by tseach-string unless it is pre-
ceded by a backslaslou ae alloved to use ancharacter gcept colon or xclamation point

to separate the twdrings. This so-called delimiter character may be placed in either string by
preceeding it with a backslash.

Replaces each avd in the ariable &pansion by its last component (it&il’’). For example,
given

OBJS = ../lib/a.o b /usr/lib/libm.a

TAILS = $(OBJS:T)

the variableTAILS would expand to “a.o b libm.a

This is similar to:T , except that eery word is replaced bywerything tut the tail (the
“head’). Using the same definition ddBJS the string “$(OBJS:H) ” would epand to
“.Nib fusr/lib . Note that the final slash on the heads is rexth@nd arything with-
out a head is replaced by the empty string.

:E replaces each avd by its suix (‘‘extension’). So “$(OBJS:E) ” would gve you “.0
al

PSD:12-24 PMad— A Tutorial

R This replaces each osd by eerything hut the sufix (the ‘root” of the word).
“$(OBJS:R) " expands to*../lib/a b /usr/lib/libm

In addition, the System V style of substitution is also suppofféds looks lile:
$(VARIABLE seach-string=replacement

It must be the last modifier in the chain. The search is anchored at the end obehctowenly sdixes or
whole words may be replaced.

3.7. More on Debugging

3.8. More Exercises

(3.1) You've oot a set programs, each of which is created fromwits @assembly-language source file (suf-
fix .asm). Eachprogram can be assembled int@tversions, one with errarthecking code assem-
bled in and one without. ot could assemble them into files withfeiient sufixes (eobj and
.obj , for instance), bt your linker only understands files that end.atbj . To top it all of, the
final executablesmusthave the sufix .exe . How can you still use transformation rules to raak
your life easier (Hint: assume the eratrecking ersions hee ec tacked onto their prefix)?

(3.2) Assumefor a moment or tw, you want to perform a sort ofindirection” by placing the name of a
variable into another one, then yowamt to get the alue of the first by>panding the second some-
how. Unfortunately PMake doesnt allow constructs lile

$($(FOO0))

What do you do? Hint: no furthearable gpansion is performed after modifiers are applied, thus if
you cause a $ to occur in thepansion, thag what will be in the result.

4. PMake for Gods

This chapter is deted to thosedcilities in PMale that allav you to do a great deal in a nedike with \ery
little work, as well as do some things you couldig in Make without a great deal of evk (and perhaps
the use of other programs). The problem with these featuresy imtfs¢ be handled with care, or you will
end up with a mess.

Once more, | assume a greatnfliarity with UNix or Sprite than | did in the prsus two chapters.

4.1. Seach Paths

PMale aipports the dispersal of files into multiple directories bywalig you to specify places to look for
sources withPATH tagets in the madfile. The directories you g a ources for these gets mak wp a
“search path.Only those files usedxelusively as sources are actually sought on a search path, the
assumption being that whing listed as a tget in the ma&file can be created by the refile and thus
should be in the current directory

There are tw types of search paths in PMakone is used for all types of files (including included erak
files) and is specified with a plalRATH target (e.g.“ .PATH : RCS "), while the other is specific to a
certain type of file, as indicated by the 8lauffix. A specific search path is indicated by immediately fol-
lowing the.PATH with the sufix of the file. For instance

.PATH.h : [sprite/lib/include /sprite/att/lib/include
would tell PMalke t© look in the directories /sprite/lib/include and
[sprite/att/lib/include for ary files whose stif is .h .

The current directory isabkys consulted first to see if a filgists. Only if it cannot be found there are the
directories in the specific search path, fakal by those in the general search path, consulted.

A search path is also used whetpanding wildcard characters. If the pattern has a recognizalffite muf
it, the path for that stik will be used for the xpansion. Otherwise the defit search path is empyied.

PMake — A Tutorial PSD:12-25

When a file is found in some directory other than the current one, all lxgables that wuld have @n-
tained the taget's rame (ALLSRC, and .IMPSRC) will instead contain the path to the file, as found by
PMale. Thusf you have a fle ../lib/mumble.c and a makfile

.PATH.c : b
mumble . mumble.c
$(CC) -0 $(.TARGET) $(.ALLSRC)

the command>ecuted to createnumble would be ‘cc -0 mumble ../lib/mumble.c 7 (As an
aside, the command in this casetistrictly necessarysnce it will be found using transformation rules if it
isn’t given. This is becauseut is the null suix by defwlt and a transformationxists from.c to.out .
Just thought H throw that in.)

If a file exists in two directories on the same search path, the file in the first directory on the path will be the
one PMak wses. So if you hee a hrge system spread/er mary directories, it vould behowe you to fol-
low a raming cowrention that aoids such conflicts.

Something you should kaoabout the vay search paths are implemented is that each directory is read, and
its contents cachedxactly once — when it is first encountered — sg elmanges to the directories while
PMale is running will not be noted when searching for implicit sources, nor will tieefound when
PMale dtempts to disceer when the file vas last modified, unless the filasvcreated in the current direc-
tory. While people hee suggested that PMaksould read the directories each time, mpexience sug-
gests that the caching seldom causes problems. In addition, not caching the direcisi¢sirslis dan
enormously because of PMa& d@tempts to apply transformation rules through ngistent files — the
number of &tra file-system searches is truly staggering, especially ifyrfilms without suixes are used

and the null sdi isn’t changed fromout .

4.2. Archives and Libraries

UNIX and Sprite allev you to mege files into an arché wsing thear command. Furtheif the files are
relocatable object files, you can manlib on the archie and get yourself a library that you can link into
ary program you vant. The main problem with arefes is they double the space you need to store the
archied files, since there’ae coyy in the archie and one cop out by itself. The problem with libraries is
you usually think of them adm rather thanusr/lib/libm.a and the linler thinks thg're out-of-
date if you so much as look at them.

PMale olves the problem with archas by alowing you to tell it to gamine the files in the aralgs (so
you can remee the indiidual files without haing to regenerate them later) oThandle the problem with
libraries, PMak adds an additional ay of deciding if a library is out-of-date:

« Ifthe table of contents is older than the libyanis missing, the library is out-of-date.

A library is aly target that looks lik “—l name” or that ends in a sfik that was marlkd as a library using
the.LIBS tamet. .a is so markd in the system mekle.

Members of an arcte ae specified as'archive(membefr member..])”. Thus “’libdix.a(win-
dow.0) " specifies the filavindow.o in the archielibdix.a . You may also use wildcards to specify
the members of the arefel Just remember that most the wildcard characters will onlydisting files.

A file that is a member of an archiis treated speciallyif the file doesr’exist, kut it is in the archie, the
modification time recorded in the arebiis used for the file when determining if the file is out-of-date.
When figuring out hw to make an archived member taget (not the file itself, it the file in the archie —
thearchive(membey target), special care is tak with the transformation rules, as folg

 archive(lmembeyis made to depend amember

» The transformation from thmembe’s suffix to thearchive's suffix is applied to tharchive(membey tar-
get.

» Thearchive(membe)'s .TARGET variable is set to the name of theembeiif membeiis actually a tar
get, or the path to the member fileriembeiis only a source.

» The.ARCHIVE variable for thearchive(membey target is set to the name of thechive.

PSD:12-26 PMad— A Tutorial

» The .MEMBERvariable is set to the actual string inside the parentheses. In most cases, this will be the
same as thef ARGET variable.

» Thearchive(membey's pdace in the local ariables of the taets that depend on it is &kby the alue of
its . TARGET variable.

Thus, a program library could be created with the ¥alhg malefile:

.0.a
rm -f $(TARGET:T)

OBJS = objl.0 0bj2.0 obj3.0

libprog.a : libprog.a($(OBJS))

ar cru $(.TARGET) $(.OODATE)
ranlib $(. TARGET)

This will cause the three object files to be compiled (if the corresponding source files were modified after
the object file arif that doesrt’ exist, the archied object file), the out-of-date ones ansdd in
libprog.a , atable of contents placed in the akehend the naly-archived object files to be remad.

All this is used in themakelib.mk system maéfile to create a single library with ease. This @fidd
looks like this:

PMake — A Tutorial PSD:12-27

Rules for making libraries. The object files that make up the library are
r emoved once they are archived.

To meke several libararies in parallel, you should define the variable
"'many_libraries". This will serialize the invocations of ranlib.

To use, do something like this:

OBJECTS = <files in the library>

f ish.a: fish.a($(OBJECTS)) MAKELIB

H O O OHF OH OH OH O H H OH OH R R

#ifndef _MAKELIB_MK
_MAKELIB_MK =

#include <po.mk>
.po.a.o.a

rm -f $(MEMBER)
ARFLAGS ?=crl

#
Re-archive the out-of-date members and recreate the library’s table of
contents using ranlib. If many_libraries is defined, put the ranlib off
t il the end so many libraries can be made at once.
#
MAKELIB : .USE .PRECIOUS
ar $(ARFLAGS) $(.TARGET) $(.OODATE)
#ifndef no_ranlib
i fdef many_libraries

endif many_libraries
ranlib $(. TARGET)
#endif no_ranlib

#endif _MAKELIB_MK

4.3. Onthe Condition...

Like the C compiler before it, PMakdlows you to configure the mafile, based on the currentvaon-
ment, using conditional statements. A conditional lookes thks:

#if boolean &pression

lines

#elif another booleanygpression
more lines

#else

still more lines

#endif

They may be nested to a maximum depth of 30 and may ocywheane (&cept in a comment, of course).

PSD:12-28 PMad— A Tutorial

The “#” must the 'ery first character on the line.

Eachboolean gpressionis made up of terms that look éikunction calls, the standard C boolean operators
&&, || ,and!, and the standard relational operaters != , >, >=, <, and <=, with == and!= being wer-
loaded to aller string comparisons as wel&& represents logical ANO] is logical OR and is logical
NOT. The arithmetic and string operators dgirecedence @ al three of these operators, while NO
takes precedencever AND, which tales precedencever OR. Thisprecedence may bevaridden with
parentheses, and axpeession may be parenthesized to your heestitent. Eactierm looks lile a @ll on

one of four functions:

malke The syntax isnake(target) wheretarget is a taget in the mafile. This is true if the gén tar-
get was specified on the command line, or as the source AN target (note that the
sources forMAIN are only used if no tgets were gien on the command line).

defined Thesyntax isdefined(variable) and is true ifvariable is defined. Certainariables are
defined in the system metile that identify the system on which PMaik being run.

exists Thesyntax isexists(file) and is true if the file can be found on the global search path (i.e.
that defined byPATH tamgets, not byPATHsufix tamgets).

empty Thissyntax is much li the others, xcept the string inside the parentheses is of the same form
as you weould put between parentheses whepamding a &riable, complete with modifiers and
eveaything. The function returns true if the resulting string is emptyTRCGan undefinedari-
able in this conte will cause at the ery least a wrning message about a malformed condi-
tional, and at the arst will cause the process to stop once it has read thefirraki you want
to check for a ariable being defined or emptyse the gpression “Idefined(var) | |
empty(var) " as the definition of|| will prevent theempty() from being ®auated and
causing an erroiif the \ariable is undefined). This can be used to see driahle contains a
given word, for example:

#if lempty(var:-Mword)
The arithmetic and string operators may only be used to tesaline of a @riable. The lefthand side must
contain the ariable gpansion, while the righthand side contains either a string, enclosed in double-quotes,

or a numberThe standard C numeric ogmtions (e&cept for specifying an octal number) apply to both
sides. E.g.

#if $(0S) == 4.3
#if $(MACHINE) == "sun3"

#if $(LOAD_ADDR) < 0xc000

are allalid conditionals. In addition, the numerialve of a ariable can be tested as a boolean aswstlo
#if $(LOAD)

would see ifLOADcontains a non-zeraale and
#if 1$(LOAD)

would test iflLOADcontains a zeroalue.

In addition to the baré#if ,’ there are other forms that apply one of the firgt fwnctions to each term.
They are as follavs:

ifdef defined
ifndef ldefined
ifmake make
ifnmake Imake

There are also th&else if” f orms:elif , elifdef |, elifndef , elifmake , andelifnmake

PMake — A Tutorial PSD:12-29

For instance, if you wish to create dwersions of a program, one of which is optimized (the production
version) and the other of which is for degging (has symbols for dbx), youveaiwo choices: you can cre-
ate two makefiles, one of which uses theg flag for the compilation, while the other uses #t@flag, or

you can use another ¢gat (call itdebug) to create the dalg version. The construct belowill take care

of this for you. | hae dso made it so defining thexableDEBUGsay withpmake -D DEBUG) will also
cause the delg \version to be made.

#if defined(DEBUG) || make(debug)

CFLAGS += -g
#else

CFLAGS += -0
#endif

There are, of course, problems with this approach. The most glaringaaceois that if you ant to go
from making a delg wersion to making a productioression, you hee © remove dl the object files, or
you will get some optimized and some dghersions in the same program. Another aamee is you hae

to be careful not to maktwo tamgets that ‘tonflict” because of some conditionals in the efdk. For

instance

#if make(print)

FORMATTER =ditroff -Plaser_printer
#endif

#if make(draft)

FORMATTER =nroff -Pdot_matrix_printer
#endif

would wreak haok if you tried ‘pmake draft print ” since you vould use the same formatter for
each taget. As | said, this all gets somleat complicated.

4.4. AShell is a Shell is a Shell

In normal operation, the Bourne Shell (bettenknas ‘sh”) is used to gecute the commands to re-create
targets. PMak dso allons you to specify a diérent shell for it to use whernxeeuting these commands.
There are seeral things PMak nmust knav about the shell you wish to use. These things are specified as
the sources for th&HELL target by leyword, as follavs:

path=path
PMake reeds to kne@ where the shell actually resides, so it caecate it. If you specify this and
nothing else, PMak will use the last component of the path and look in its table of the shells it
knows and use the specification it finds, iffadse this if you just @nt to use a dérent \ersion of
the Bourne or C Shell (yes, PMaknows hav to use the C Shell too).

name=name
This is the name by which the shell is to bewnolt is a single wrd and, if no otherdywords are
specified (other thapath), it is the name by which PMaleatempts to find a specification for it (as
mentioned abee). You can use this if you euld just rather use the C Shell than the Bourne Shell
(**.SHELL: name=csh " will do it).

quiet=echo-of command
As mentioned before, PMakectually controls whether commands are printed by introducing com-
mands into the shedl'input stream. Thiségword, and the nd two, control what those commands
are. Thequiet keyword is the command used to turn echoinfy ©ince it is turned &f echoing is
expected to remain biintil the echo-on command isvgn.

echo=edi0-on command
The command PMaksdhould give o turn echoing back on ag.

filter=printed e®o-of command
Many shells will echo the echo-béommand when it is gen. This leyword tells PMale in what for
mat the shell actually prints the echd-cdbmmand. Wheneer PMake ses this string in the shall
output, it will delete it and anfollowing whitespace, up to and including thexneewline. See the

PSD:12-30 PMad— A Tutorial

example at the end of this section for more details.

echoFlaglag to turn edoing on
Unless a taget has been magkl .SILENT , PMake wants to start the shell running with echoing on.
To do this, it passes this flag to the shell as one of garaents. If either this or the xteflag b@ins
with a ‘~’, the flags will be passed to the shell as separgterants. Otherwise, the awwill be con-
catenated (if theare used at the same time, of course).

errFlag=flag to turn error chedking on
Likewise, unless a tget is markd.IGNORE, PMake wishes errocchecking to be on from theexy
start. D this end, it will pass this flag to the shell as aguarent. The same rules for an initial ‘-’
apply as for thechoFlag

check=command to turn eor chedking on
Just as for echo-control, erroontrol is achieed by inserting commands into the shelinput
stream. This is the command to ragke shell check for errors. It also sesvanother purpose if the
shell doesit’ have errorcontrol as commandsubl’'ll get into that in a minute. Aain, once error
checking has been turned on, itXpected to remain on until it is turned afain.

ignore=command to turn eor chedking of
This is the command PMakses to turn error checkingfoft has another use if the shell doesit
errorcontrol, lut I'll tell you about that.. now.

hasErrCtl=yes or no
This tales a alue that is eitheyes or no. Now you might think that thexéstence of theheckand
ignore keywords would be enough to tell PMakif the shell can do errarontrol, tut youd be
wrong. IfhasErrCtl is yes, PMake uses the check and ignore commands in a straigh&fdrwan-
ner If this isno, howeve, their use is rather dérent. In this case, the check command is used as a
template, in which the strings is replaced by the command tisagbout to be recuted, to produce
a command for the shell that will echo the command toeewded. The ignore command is also
used as a template, ag with %s replaced by the command to beeseuted, to produce a command
that will execute the command to beeeuted and ignore grerror it returns. When these strings are
used as templates, you must\pde nevline(s) (“\n ") in the appropriate place(s).

The strings that follw these keywords may be enclosed in single or double quotes (the quotes will be
stripped of) and may contain the usual C backslash-characters (\wigag\r is return, \b is backspace, \
escapes a single-quote inside single-quotes, \" escapes a double-quote inside double-quotes)arNo
example.

This is actually the contents of thehx.mk> system ma&file, and causes PMalo use the Bourne Shell
in such away that each command is printed as itdecated. That is, if more than one command v@mgion

a line, each will be printed separatel§imilarly, each time the body of a loop izeeuted, the commands
within that loop will be printed, etc. The specification rune tiks:

#
This is a shell specification to have the bourne shell echo
t he commands just before executing them, rather than when it reads
t hem. Useful if you want to see how variables are being expanded, etc.
#
.SHELL : path=/bin/sh\

quiet="set -" \

echo="set -x" \

filter="+ set - "\

echoFlag=x\

errFlag=e \

hasErrCtl=yes \

check="set -e" \

ignore="set +e"

PMake — A Tutorial PSD:12-31

It tells PMale the following:

* The shell is located in the fillbin/sh . It need not tell PMak that the name of the shell $h as
PMale can figure that out for itself (&'the last component of the path).

» The command to stop echoingsist -
» The command to start echoingsist -x

* When the echo 6tommand is gecuted, the shell will print set - (The ‘+’ comes from using the
-x flag (rather than thev flag PMale usually uses)). PMakwill remove dl occurrences of this string
from the output, so you ddmotice extra commands you didinput there.

» The flag the Bourne Shell will tako gart echoing in this ay is the-x flag. The Bourne Shell will only
take its flag aguments concatenated as its firguament, so neither this nor tieerFlag specification
begins with a -.

* The flag to use to turn errohecking on from the start 1.

» The shell can turn errathecking on and f§fand the commands to do so ast +e andset -e
respectiely.

| should note that this specification is for Bourne Shells that are not part cl&eukix, as hells from

Berkeley don’t do eror control. You can get a similar ffct, havever, by changing the last three lines to be:

hasErrCtl=no \
check="echo \"+ %s\"\n" \
ignore="sh -c '%s || exit O\n"

This will cause PMak to execute the tvo commands

echo"+ comd
sh-c’ cmd || true’

for each command for which errors are to be ignored. (In case yowatering, the thing foignore
tells the shell toxecute another shell without error checking on andagd eit 0, since thg| causes the
exit0 to be eecuted only if the first commandiged non-zero, and if the first commandted zero, the
shell will also &it zero, since that'the last command itxecuted).

4.5. Compatibility

There are three (well, B) levds of backvards-compatibility hilt into PMale. Mostmalkefiles will need

none at all. Some may need a little bit afriwto operate correctly when run in parallel. Easfellencom-

passes the prous levels (e.g. —B (one shell per command) implie®) The three leels are described in
the following three sections.

4.5.1. DEFCON3 — Variable Expansion

As noted before, PMakwill not expand a wariable unless it knes of a \alue for it. This can cause prob-
lems for makfiles that gpect to lese variables undefinedxeept in special circumstances (e.g. if more
flags need to be passed to the C compiler or the output froxt préeessor should be sent to detiént
printer). If the wariables are enclosed in curly bracé${PRINTER} "), the shell will let them pass. If the
are enclosed in parentheseswheer, the shell will declare a syntax error and the enakll come to a
grinding halt.

You havetwo choices: change the mefide to define theariables (their alues can bewerridden on the
command line, since thatiwhere thg would hase keen set if you used Makaryway) or alays gve te
-V flag (this can be done with tlIAKEFLAGStamget, if you vant).

4.5.2. DEFCON2 — The Number of the Beast

Then there are the mafides that gpect certain commands, such as changing toferelift directoryto not
affect other commands in a ¢gt's aeation script. ¥u can sole this is either by going back txecuting
one shell per command (which is what # flag forces PMa& to do), which slavs the process @m a
good bit and requires you to use semicolons and escapdidexfor shell constructs, or by changing the

PSD:12-32 PMad— A Tutorial

malefile to execute the dending command(s) in a subshell (by placing the line inside parentheses); lik

install :: .MAKE
(cd src; $(.PMAKE) install)
(cd lib; $(.PMAKE) install)
(cd man; $(.PMAKE) install)

This will always execute the three mals (@en if the —n flag was given) because of the combination of the
“ " operator and theMAKE attribute. Each command will change to the proper directory to perform the
install, leaving the main shell in the directory in which it started.

4.5.3. DEFCON1 — Imitation is the Not the Highest form of Flattery

The final catgory of malefile is the one wherevery command requires input, the dependencies are incom-
pletely specified, or you simply cannot create more than ogettar a time, as mentioned earlieraddi-

tion, you may not hze the time or desire to upgrade the mfille to run smoothly with PMak If you are

the conserative ort, this is the compatibility mode for you. It is entered either bingiPMale the -M

flag (for Male), or by @ecuting PMale & “make.” In dther case, PMak performs things xactly like
Make (while still supporting most of the nicewdeatures PMak rovides). This includes:

* No parallel eecution.

» Tamets are made in thexact order specified by the mefkke. The sources for eachdat are made in
strict left-to-right orderetc.

» A single Bourne shell is used treeute each command, thus the ské$ variable is useless, changing
directories doeshwork across command lines, etc.

» If no gecial charactersxist in a command line, PMakwill break the command into avds itself and
execute the command directiyithout executing a shell first. The characters that cause RM=akxecute
adellare#, =,1,",(,).{.},;, &<,>*,?2,[,],:,8%,*,and\. You should notice that these are
all the characters that arevgn gpecial meaning by the shelix@pt’ and , which PMale deals with
all by its lonesome).

* The use of the null sfik is turned of.

4.6. TheWay Things Work

When PMak reads the makile, it parses sources andgeits into nodes in a graph. The graph is directed
only in the sense that PMalknows which vay is up. Each node contains not only links to all its parents
and children (the nodes that depend on it and those on which it depends,vagpduit also a count of
the number of its children that\edready been processed.

The most important thing to kmoabout hav PMake wses this graph is that thevtessal is breadth-first and
occurs in tvo passes.

After PMale has parsed the mafie, it begins with the nodes the user has told it to en@ither on the
command line, or via aMAIN target, or by the tget being the first in the file not labeled with theOT-
MAIN attribute) placed in a queue. It continues tcetéide node dfthe front of the queue, mark it as some-
thing that needs to be made, pass the nod&utb FindDeps (mentioned earlier) to find grimplicit
sources for the node, and place all the rodsldren that hee yet to be mar&d at the end of the queue. If
ary of the children is aUSE rule, its attrilutes are applied to the parent, then its commands are appended
to the parens list of commands and its children are Badkto its parent. The parenttnmade children
counter is then decremented (since MW8E node has been processedpu¥vill note that this alls a
.USE node to hae dildren that areUSE nodes and the rules will be applied in sequentthe node has

no children, it is placed at the end of another queue tadmired in the second pass. This process contin-
ues until the first queue is empty

At this point, all the leges o the graph are in thexamination queue. PMakemoves the node at the head
of the queue and sees if it is out-of-date. If it is, it is passed to a function thategilteethe commands
for the node asynchronouslWhen the commands & completed, all the node’parents hee teir
unmade children counter decremented and, if the counter is theryGre¢hplaced on thexamination

PMake — A Tutorial PSD:12-33

gueue. Lilewise, if the node is up-to-date. Only those parents that wereetharkthe dewnward pass are
processed in thisay. Thus PMak traverses the graph back up to the nodes the user instructed it to create.
When the gamination queue is empty and no shells are running to creatgeg RiMalk is finished.

Once all tagets hae keen processed, PMalexecutes the commands attached to #BHD target, either
explicitly or through the use of an ellipsis in a shell script. If there were no errors during the entire process
but there are still some tgets unmade (PMakkeeps a running count of Wwamary targets are left to be
made), there is aycle in the graph. PMa&kdoes a depth-first tvarsal of the graph to find all the ¢mts

that werert made and prints them out one by one.

5. Answersto Exercises

(3.1) Thisis something of a trick question, for which | apologize. The trick comes from the UNIX defini-
tion of a sufix, which PMale doesnt necessarily share.ovi will have roticed that all the sfikes
used in this tutorial (and in UNIX in general)die with a period .fns, .c , etc.). Nov, PMake’s idea
of a sufix is more like English’s: it's the characters at the end of ard. Wth this in mind, one pos-
sible solution to this problem goes as falfo

.SUFFIXES . ec.exe .exe ec.obj .obj.asm
ec.objec.exe .obj.exe :

link -0 $(. TARGET) $(.IMPSRC)
.asmec.obj :
asm -0 $(.TARGET) -DDO_ERROR_CHECKING $(.IMPSRC)
.asm.obj :
asm -0 $(.TARGET) $(.IMPSRC)

(3.2) Thetrick to this one lies in the:='’ variable-assignment operator and th®* variable-&pansion
modifier Basically what you ant is to tak the pointer ariable, so to speak, and transform it into an
invocation of the ariable at which it points.o0 might try something i

$(PTR:S/N\S(/:S/$/))

which places'$(" at the front of the &riable name and)'” at the end, thus transformingvAR”

for example, into “$(VAR) ,” which is just what we ant. Unfortunately (as you kmoif you've
tried it), since, as it says in the hint, PMadbes no further substitution on the result of a modified
expansion, thas all you get. The solution is to makse of ="’ to place that string into yet another
variable, then imoke the other ariable directly:

*PTR = $(PTR:SIN\$(/:S/$)/)

You can then usé $(*PTR) " t o your hearts montent.

6. Glossaryof Jargon
attrib ute: A property gven to a &arget that causes PMalo treat it diferently,

command script: The lines immediately folleing a dependerndine that specify commands tgeeute to
create each of the ggets on the dependenkine. Each line in the command script muggibewith a
tah

command-line \ariable: A variable defined in an gmment when PMakis first executed. Owerrides all
assignments to the samariable name in the makle.

conditional: A construct much lik that used in C that alles a makfile to be configured on the fly based
on the local evironment, or on what is being made by thabuoation of PMak.

creation script: Commands used to create ay&dr See‘¢command script.

dependency:The relationship between a source and getarThis comes in three ¥iars, as indicated by
the operator between thedat and the source. "’ ggs a sraight time-wise dependen¢if the taget
is older than the source, thedet is out-of-date), while ‘I’ prgides simply an ordering andvadys
considers the tget out-of-date. *::" is much l&":’, save it creates multiple instances of agar each
of which depends on itsam list of sources.

PSD:12-34 PMad— A Tutorial

dynamic source: This refers to a source that has a lo@aiable ivocation in it. It allavs a single depen-
deng line to specify a diérent source for each tgt on the line.

global variable: Any variable defined in a makle. Takes precedencever variables defined in the @n
ronment, it not aver command-line or localariables.

input graph: What PMale constructs from a mafile. Consists of nodes made of theyéds in the made
file, and the links between them (the dependencies). The links are directed (from souget)taridr
there may not be greycles (loops) in the graph.

local variable: A variable defined by PMakvisible only in a taget’s shell script. There are sen local
variables, not all of which are defined faregy tamet: . TARGET, .ALLSRC, .OODATE .PREFIX ,
IMPSRC, .ARCHIVE, and . MEMBER .TARGET, .PREFIX , .ARCHIVE, and . MEMBERmMay be
used on dependeyntines to creatédynamic sources.

makefile: A file that describes moa g/stem is hilt. If you dont know what it is after reading this
tutorial. . ..

modifier: A letter following a colon, used to alter W variable is gpanded. lhas no d&ct on the ari-
able itself.

operator: What separates a source from agéar(on a dependendine) and specifies the relationship
between the te. There are three: *, *:: ', and 1.

search path: A list of directories in which a file should be sought. P&akiew of the contents of directo-
ries in a search path does not change once thefiteakas been read. A file is sought on a search
path only if it is &clusively a source.

shell: A program to which commands are passed in order to creg&tdar

source: Anything to the right of an operator on a depengidime. Targets on the dependgnkine are usu-
ally created from the sources.

special taget: A target that causes PMalip do gecial things when & encountered.
suffix: The tail end of a file name. Usuallydies with a period,c or.ms, eg.

target: A word to the left of the operator on a depengdire. More generallyany file that PMak might
create. A file may be (and often is) both @¢arand a source (what it is depends ow RMake is
looking at it at the time — sort of kkihe wavéparticle duality of light, you kna).

transformation rule: A special construct in a makile that specifies loto create a file of one type from a
file of anotheras indicated by their stikes.

variable expansion: The process of substituting thalwe of a ariable for a reference to it. Expansion may
be altered by means of modifiers.

variable: A place in which to store x& that may be retrieed later Also used to define the localvémon-
ment. Conditionalsxast that test whether axiable is defined or not.

PMake — A Tutorial

2.1
2.2,
2.3.

2.3.1.
2.3.2.
2.3.3.
2.3.4.

2.4,
2.5,
2.6.
2.7,
2.8.
2.9.

3.1
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.
4.2
4.3.
4.4,
4.5,

4.5.1.
4.5.2.
4.5.3.

4.6.

Table of Contents

Introduction

TheBasics of PMak
DependencLines
ShellCommands . .
\ariables

LocaMariables
Command-lin¥ariables
GlobaMariables . .
Enironment \ariables . .
Comments

Rarallelism . . .
Writingand Deluggmg a Mabflle
Invoking PMale . .
Summary .

BExercises

Short-cutand Other N|ce Thlngs .

Transformation Rules .
IncludingOther Malefiles .
Saing Commands .

Target Attributes . .
Speciallargets . .
Modifying Variable Expan5|on .
Moreon Delugging .
MoreExercises

PMale for Gods .

Searclrahs .
Archves and Libraries .

Onthe Condition...

AShell is a Shell is a Shell
Compatibility .

DEFCONB — Variable Expansmn
DEFCON2 — The Number of the Beast. .
DEFCONL — Imitation is the Not the HighesbFm of Flattery

TheWay Things Work
Answergo Exercises
Glossanof Jagon

PSD:12-35

YU wuNOOOOONAWNR R

WD B RONDRR RN MAM®REDMNO

