FLEX(1) FLEX(1)

NAME
flex — fast lical analyzer generator

SYNOPSIS
flex [-bcdfhilnpstvwBFIL TV78+? —C[aefFmr] —ooutput —Pprefix —Ssleleton] [-—help ——\ersion]
[filename ...]

OVERVIEW
This manual describdkex, a tool for generating programs that perform pattern-matchingxn Tdeman-
ual includes both tutorial and reference sections:

Description
a krief overview of the tool

Some Simple Examples
Format Of The Input File

Paterns
the extended rgular expressions used by fle

How The Input Is Matched
the rules for determining what has been matched

Actions
how to specify what to do when a pattern is matched

The Generated Scanner
details rgarding the scanner that fgroduces;
how to control the input source

Start Conditions
introducing contet into your scanners, and
managing "mini-scanners"

Multiple Input Bufers
how to manipulate multiple input sources;wdo
scan from strings instead of files

End-of-file Rules
special rules for matching the end of the input

Miscellaneous Macros
a summary of macrosvailable to the actions

Values Available To The User
a suimmary of \alues aailable to the actions

Interfacing Wth Yacc
connecting flg scanners together with yacc parsers

Options
flex command-line options, and the "%option"
directive

Performance Considerations

Version 2.5 April 1995 1

FLEX(1) FLEX(1)

how to make your scanner go aadt as possible

Generating C++ Scanners
the (experimental) &cility for generating C++
scanner classes

Incompatibilities Vith Lex And POSIX
how flex dffers from AT&T lex and the POSIX |e
standard

Diagnostics
those error messages produced by (e scanners
it generates) whose meanings might not be apparent

Files
files used by fbe

Deficiencies / Bugs
known problems with fhe

See Also
other documentation, related tools

Author
includes contact information

DESCRIPTION
flex is a tool for generatingcannes: programs which recognizedxieal patterns in te. flex reads the
given input files, or its standard input if no file names avergifor a description of a scanner to generate.
The description is in the form of pairs ofjtéar expressions and C code, calledes. flex generates as out-
put a C source fildex.yy.c, which defines a routingylex(). This file is compiled and lirdd with the-Ifl
library to produce anxecutable. Wherthe eecutable is run, it analyzes its input for occurrences of the
regular expressions. Whenver it finds one, it @ecutes the corresponding C code.

SOME SIMPLE EXAMPLES
First some simplexamples to get the flar of how one usedlex. The following flex input specifies a scan-
ner which wheneer it encounters the string "username" will replace it with the adegin name:

%%
username printf(%s", getlogin());

By default, ary text not matched by #lex scanner is copied to the output, so the rfecebf this scanner is
to copy its input file to its output with each occurrence of "usernamgéreded. Irthis input, there is just
one rule. "username” is thpatternand the "printf" is theaction. The "%%" marks the lggnning of the
rules.

Heres another simple xxample:
int num_lines = 0, num_chars = 0;
%%
\n ++num_lines#+num_chars;

++num_chars;

%%

Version 2.5 April 1995 2

FLEX(1) FLEX(1)

main()

{

yylex();

printf("# of lines = %d, # of chars = %d\n",
num_lines, num_chars);

}

This scanner counts the number of characters and the number of lines in its input (it produces no output
other than the final report on the countsjhe first line declares v globals, "num_lines" and
"num_chars", which are accessible both ingiglex() and in themain() routine declared after the second
"%%". Thereare tvo rules, one which matches awime ("\n") and increments both the line count and the
character count, and one which matcheg @raracter other than awkne (indicated by the "." gular
expression).

A somewhat more complicatedkample:
[* scanner for a tpPascal-lile language */
%{
/* need this for the call to atof() belot/
#include <math.h>

9%}

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%
{DIGIT}+ {
printf("An integer: %s (%d)\n", yyte,

atoi(yytext));
}

{DIGIT}H"."{DIGIT}* {
printf("A float: %s (%g)\n", yytet,
atof(yytext));

if|then|bgin|end|procedure|function {
printf("A keyword: %s\n", yytat);
}

{ID} printf("An identifier: %s\n", yytgt);
" printf("An operator: %s\n", yybe);
""I'N\n]*}* /* eat up one-line comments */
[\t\n]+ /* eat up whitespace */

printf("Unrecognized character: %s\n", yxté;
%%

main(agc, agv)

Version 2.5 April 1995 3

FLEX(1) FLEX(1)

int amgc;
char **agv;
{
++amgy, --argc; /* skip oser program name */
if (argc>0)
yyin = fopen(agv[0], "r");
else
yyin = stdin;
yylex();
}

This is the bginnings of a simple scanner for a language R&scal. ltidentifies diferent types ofokens
and reports on what it has seen.

The details of thisyample will be &plained in the follaving sections.

FORMAT OF THE INPUT FILE
Theflex input file consists of three sections, separated by a line witBofstn it:

definitions
%%
rules
%%
user code

The definitionssection contains declarations of simpmedefinitions to simplify the scanner specifica-
tion, and declarations atart conditionswhich are gplained in a later section.

Name definitions hae the form:
name definition

The "name" is a wrd bginning with a letter or an underscore ('_’) falled by zero or more letters, digits,

' ', or -’ (dash). The definition is ta&n to bgin at the first non-white-space character foitgy the name
and continuing to the end of the lin€he definition can subsequently be referred to using "{name}", which
will expand to "(definition)".For example,

DIGIT [0-9]
ID [a-z][a-z0-9]*

defines "DIGIT" to be a gular expression which matches a single digit, and "ID" to begalee epres-
sion which matches a letter foled by zero-emore letters-odigits. Asubsequent reference to

{DIGIT}+"."{DIGIT}*
is identical to
([0-9)+"."([0-9])*

and matches one-onore digits follaved by a ".f ollowed by zero-emore digits.

Therulessection of thdlex input contains a series of rules of the form:
pattern action

where the pattern must be unindented and the action ngistdrethe same line.

Version 2.5 April 1995 4

FLEX(1) FLEX(1)

See belw for a further description of patterns and actions.

Finally, the user code section is simply copiedldr.yy.c verbatim. Itis used for companion routines
which call or are called by the scann@&he presence of this section is optional; if it is missing, the second
%% in the input file may be skipped, too.

In the definitions and rules sectionsy amdentedtext or text enclosed i?6{ and%]} is copied erbatim to
the output (with the %{}s removed). The%({}' s must appear unindented on lines by theneslv

In the rules section, grindented or %f{} t&t appearing before the first rule may be used to dectaie v
ables which are local to the scanning routine and (after the declarations) code which ixeoutesl e
wheneer the scanning routine is entere@ther indented or %f{} t& in the rule section is still copied to

the output, bt its meaning is not well-defined and it may well cause compile-time errors (this feature is
present foPOSIXcompliance; see belofor other such features).

In the definitions section @ not in the rules section), an unindented comment (i.e., a lgierneg with
"/*") is also copied erbatim to the output up to thexté*/".

PATTERNS
The patterns in the input are written using aieleded set of gular expressions. Thesare:

X match the character 'x’
any character (byte)>eept navline

[xyz] a"character class"; in this case, the pattern
matches either an 'x’, a’y’, ora 'z’

[abj-0Z] a"character class" with a range in it; matches
an’a’, a’b’, ary letter from ’j’ through 'o’,
ora’z

[(A-Z] a'"negaed character class", i.e.,yatharacter
but those in the clasdn this case, an
character EXCEPT an uppercase letter

[A-Z\n] any character EXCEPT an uppercase letter or

a rewline
rx zeroor more r5, where r is anregular expression
r+ oneor more r§
r? zeroor one 15 (that is, "an optional r")

r{2,5} anywhere from tvo to five r's

r{2,} twoormorers

r{4} exactly4rs

{name} theexpansion of the "name" definition

(see abwe)
"[xyz]\"foo"
the literal string: [xyz]"foo
\X if Xisan'a’,’b’,’f",’'n,'r,'t,or'v,

then the ANSI-C interpretation of \x.
Otherwise, a literal X’ (used to escape
operators such as ™)

\0 aNUL character (ASCII code 0)

\123 thecharacter with octalalue 123

\x2a thecharacter with headecimal alue 2a

n matchan r; parentheses are usedvernde
precedence (see balp

rs theregular expression r follaved by the
regular xpression s; called "concatenation’

Version 2.5 April 1995 5

FLEX(1) FLEX(1)

rls eithemanrorans

r/s anr but only if it is followed by an s.The
text matched by s is included when determining
whether this rule is the "longest match",
but is then returned to the input before
the action is xecuted. Sdhe action only
sees the t&¢ matched by.r This type
of pattern is called trailing contg.

(There are some combinations of r/s that fle
cannot match correctly; see notes in the
Deficiencies / Bugs section beloegading
"dangerous trailing corn#'.)

r anr, but only at the bginning of a line (i.e.,
which just starting to scan, or right after a
newline has been scanned).

r$ anr, but only at the end of a line (i.e., just

before a n&line). Equvalent to "rAn".

Note that fl&’s notion of "navline" is exactly
whatever the C compiler used to compilexle
interprets '\n’ as; in particulaon some DOS
systems you must either filter ous\in the
input yourself, or gplicitly use rAr\n for "r$".

<s>r anr, but only in start condition s (see
below for discussion of start conditions)
<sl1,s2,s3>r
same, ht in ary of start conditions s1,
s2, or s3
<*>r anrin any dart condition, gen an exclusive me.

<<EOF>> arend-of-file
<sl,s2><<EOF>>
an end-of-file when in start condition s1 or s2

Note that inside of a character class, afjutar expression operators lose their special meaniugp
escape (') and the character class operators, ’-’, ']', and, at tjiarbeg of the class, ™.

The rgular pressions listed ale ae grouped according to precedence, from highest precedence at the
top to lavest at the bottomThose grouped togetherdeejual precedence-or example,

foo|bar*
is the same as
(foo)|(ba(r*))
since the "*’ operator has higher precedence than concatenation, and concatenation higher than alternation

(). This pattern therefore matchegherthe string "foo"or the string "ba" follved by zero-emore r5.
To match "foo" or zero-emore "bar"s, use:

Version 2.5 April 1995 6

FLEX(1) FLEX(1)

foo|(bar)*
and to match zero-anore "foo"'s-or"bar"'s:

(foo|bar)*

In addition to characters and ranges of characters, character classes can also contain charaqierselass
sions. These are>@ressions enclosed insifteand:] delimiters (which themseds must appear between
the ’[and 'T' of the character class; other elements may occur inside the character classheowlid
expressions are:

[:alnum:] [:alpha:] [:blank:]
[:entrl:] [:digit:] [:graph:]
[:lower:] [:print:] [:punct:]
[:space:] [:upper:] [:xdigit:]

These gpressions all designate a set of charactersaquot to the corresponding standards®XX func-
tion. For example,[:alnum:] designates those characters for whginum() returns true - i.e., gralpha-
betic or numeric.Some systems ddrprovide isblank(), so flex defineg[:blank:] as a blank or a tab

For example, the follaving character classes are all eglént:

[[:alnum:]]

[[:alpha:][:digit:]]
[[:alpha:]0-9]
[a-zA-Z0-9]

If your scanner is case-insengdtithe —i flag), then:upper:] and[:lower:] are equident to[:alpha:].

Some notes on patterns:

- A negaed character class such as tkareple "["A-Z]" abwe will match a rewline unless "\n" (or
an equialent escape sequence) is one of the charactpligidy present in the rgated character
class (e.g., "['(A-Z\n]"). This is unlike how mary other rgyular expression tools treat gaed char
acter classes,ub unfortunately the inconsistgnés historically entrenched Matching nevlines
means that a pattern & "]* can match the entire input unless thsraiother quote in the input.

- A rule can hae & most one instance of trailing comtgthe '/’ operator or the '$’ operator)The
start condition, ", and "<<EOF>>" patterns can only occur at tlggnbéng of a pattern, and, as
well as with '/ and '$’, cannot be grouped inside parenthegeS” which does not occur at the
beginning of a rule or a '$’ which does not occur at the end of a rule loses its special properties
and is treated as a normal character

The following are illggd:

foo/bar$
<scl>foo<sc2>bar

Note that the first of these, can be written "foo/bar\n".

The following will result in '$’ or "™’ being treated as a normal character:

foo|(bar$)
foo|"bar

If what's wanted is a "foo" or a bdollowed-by-a-n@/line, the follaving could be used (the spe-
cial ’|' action is &plained belw):

Version 2.5 April 1995 7

FLEX(1) FLEX(1)

foo |
bar$ /*action goes here */

A similar trick will work for matching a foo or a bat-the-bginning-of-a-line.

HOW THE INPUT IS MATCHED
When the generated scanner is run, it analyzes its input looking for strings which nyat€tapatterns.
If it finds more than one match, it &k the one matching the moskttéfor trailing contat rules, this
includes the length of the trailing partea though it will then be returned to the inputj.it finds two or
more matches of the same length, the rule listed first ifieshimput file is chosen.

Once the match is determined, thetteorresponding to the match (called tbken)is made wailable in
the global character pointgytext, and its length in the global irgeryyleng. Theactioncorresponding to
the matched pattern is thexeeuted (a more detailed description of actions fedp and then the remain-
ing input is scanned for another match.

If no match is found, then thiefault ruleis executed: the net character in the input is considered matched
and copied to the standard outpilihus, the simplest dgl flex input is:

%%

which generates a scanner that simply copies its input (one character at a time) to its output.

Note thatyytext can be defined in twdifferent ways: either as a charactawinteror as a characterray.
You can control which definitioiex uses by including one of the special diregti%pointer or %array

in the first (definitions) section of your fléenput. Thedefault is%pointer, unless you use thé lex com-
patibility option, in which casgytext will be an array The adantage of usin§opointer is substantially
faster scanning and naitber overflow when matching ery lage tolens (unless you run out of dynamic
memory). Thalisadantage is that you are restricted imtyour actions can modifyytext (see the ne
section), and calls to thenput() function destrgs the present contents ywjftext, which can be a consider
able porting headache when viray between dferentlex versions.

The adwantage oPoarray is that you can then modifyytext to your hears content, and calls tanput()
do not destrp yytext (see bela). Furthermoreexsting lex programs sometimes acceggext externally
using declarations of the form:

extern char yytet[];
This definition is erroneous when used witpointer, but correct for%array .

%array definesyytext to be an array of YLMAX characters, which dadilts to a dirly large \alue. You
can change the size by simply #define’MgLMAX to a diferent \alue in the first section of youiex
input. As mentioned abee, with %pointer yytext grovs dynamically to accommodate dar tolens.
While this means you¥opointer scanner can accommodatery lage tolens (such as matching entire
blocks of comments), bear in mind that each time the scanner mustygsizeit also must rescan the
entire tolen from the bginning, so matching such teks can pnee dow. yytext presently doesot
dynamically grav if a call to unput() results in too much % being pushed back; instead, a run-time error
results.

Also note that you cannot u$garray with C++ scanner classes (tbe+ option; see belg).

ACTIONS
Each pattern in a rule has a corresponding action, which cary laebétrary C statementThe pattern ends
at the first non-escaped whitespace character; the remainder of the line is itslattieraction is empty
then when the pattern is matched the inpuémois simply discardedror example, here is the specification
for a program which deletes all occurrences of "zap me" from its input:

%%
"zap me"

(It will copy all other characters in the input to the output sincg ti# be matched by the dadilt rule.)

Version 2.5 April 1995 8

FLEX(1) FLEX(1)

Here is a program which compresses multiple blanks and talrs woa single blank, and tiws avay
whitespace found at the end of a line:

%%
[\]+ putchar() ;
[\f]+$ /% ignore this tokn */

If the action contains a '{’, then the action spans till the balancing '} is found, and the action may cross
multiple lines. flex knows about C strings and comments arahivbe fooled by braces found within them,

but also allavs actions to kgin with %{ and will consider the action to be all thattep to the net %}
(regardless of ordinary braces inside the action).

An action consisting solely of aeitical bar ('|') means "same as the action for thd nde." See belw
for an illustration.

Actions can include arbitrary C code, includiregur n statements to return alue to whateer routine
calledyylex(). Each timeyylex() is called it continues processing évis from where it last left béntil it
either reaches the end of the file regutes a return.

Actions are free to modifyytext except for lengthening it (adding characters to its end--these vet o
write later characters in the input streanihis havever does not apply when usirfgarray (see abwe);
in that caseyytext may be freely modified in grway.

Actions are free to modifyyleng except thg should not do so if the action also includes usgyofhore()
(see belw).

There are a number of special direesiwhich can be included within an action:
- ECHO copies yytat to the scannes’autput.

- BEGIN followed by the name of a start condition places the scanner in the corresponding start
condition (see belw).

- REJECT directs the scanner to proceed on to the "second best" rule which matched the input (or a
prefix of the input). The rule is chosen as describeda® "How the Input is Matched”, and
yytext andyyleng set up appropriatelylt may either be one which matched as mucth & the
originally chosen rule Ut came later in théex input file, or one which matched lesxtte For
example, the follaving will both count the wrds in the input and call the routine special() when-
eve "frob" is seen:

int word_count = 0;
%%

frob special)REJECT
["\t\n]+ ++word_count;

Without theREJECT, ary "frob™s in the input vould not be counted asonds, since the scanner
normally executes only one action per @k MultipleREJECT s are allaved, each one finding
the net best choice to the currently agimle. For example, when the folleing scanner scans
the tolen "abcd", it will write "abcdabcaba" to the output:

%%

a |

ab |

abc |

abcd ECHOREJECT

.\n /*eat up ap unmatched character */

(The first three rules share the foustittion since thg use the special ’|' action.REJECT is a

Version 2.5 April 1995 9

FLEX(1) FLEX(1)

particularly epensve feature in terms of scanner performance; if it is usethyrof the scannes’
actions it will slav down all of the scannes’ matching. FurthermoreREJECT cannot be used
with the-Cf or -CF options (see belo).

Note also that unli& the other special actionREJECT is abrand; code immediately follwing
it in the action willnotbe eecuted.

- yymore() tells the scanner that thexté¢ime it matches a rule, the correspondingetokhould be
appendednto the currentalue ofyytext rather than replacing itFor example, gven the input
"megakliudge" the follaving will write "megamegakludge” to the output:

%%
mega ECHO; yymore();
kludge ECHO;

First "mega" is matched and echoed to the outptihen "kludge" is matchedub the prgious
"mega" is still hanging around at the diening ofyytext so theECHO for the "kludge" rule will
actually write "megakludge".

Two notes rgarding use ofyymore(). First, yymore() depends on thealue ofyylengcorrectly reflecting
the size of the current tek, so you must not modifyylengif you are usingzymore(). Second, the pres-
ence ofyymore() in the scannes’ action entails a minor performance penalty in the scasmastching
speed.

- yyless(n)returns all lnt the firstn characters of the current &k back to the input stream, where
they will be rescanned when the scanner looks for thx¢ match. yytext andyyleng are adjusted
appropriately (e.gyyleng will now be equal ton). For example, on the input "foobar" the fol-
lowing will write out "foobarbar":

%%
foobar ECHOyyless(3);
[a-z]+ ECHO;

An argument of 0 toyylesswill cause the entire current input string to be scannathadJnless
you've changed he the scanner will subsequently process its input (UBEEGIN, for example),
this will result in an endless loop.

Note thatyylessis a macro and can only be used in theiftgut file, not from other source files.

- unput(c) puts the charactaer back onto the input streanit will be the net character scanned.
The following action will tale the current tokn and cause it to be rescanned enclosed in parenthe-
ses.

L
inti;
[* Copy yytext because unput() trashes &/
char *yycopy = strdup(yytext);
unput(’)");
for(i=yyleng-1;i>=0; --i)
unput(yycop(i]);
unput((");
free(yycopy);
}

Note that since eaalnput() puts the gien character back at thiegginning of the input stream,
pushing back strings must be done back-to-front.

An important potential problem when usiagput() is that if you are usingopointer (the de#ult), a call
to unput() destoysthe contents ofytext, starting with its rightmost character androlgring one character

Version 2.5 April 1995 10

FLEX(1) FLEX(1)

to the left with each calllf you need the alue of yytet presered after a call tanput() (as in the abee
example), you must either first cpjpt elsewhere, or bild your scanner usingparray instead (see Ho
The Input Is Matched).

Finally, note that you cannot put baBIOF to attempt to mark the input stream with an end-of-file.

- input() reads the né character from the input strearfor example, the follaving is one vay to
eat up C comments:

%%

n/*n {
register int c;
for(;;)

{
while ((c =input()) 1= "* &&
c!=EOF)
; [* eat up tat of comment */

if(c=="")
{
while ((c = input()) =="*")

if(c==")
break; /*found the end */

}

if (c == EOF)
{
error("EOF in comment");
break;
}
}
}

(Note that if the scanner is compiled us®@g+, theninput() is instead referred to gginput(), in
order to @aoid a name clash with tHe++ stream by the name ofput.)

- YY_FLUSH_BUFFER flushes the scannerinternal liffer so that the ne time the scanner
attempts to match a tek, it will first refill the luffer usingYY_INPUT (see The Generated Scan-
ner, below). This action is a special case of the more gengsalflush_hkuffer() function,
described belw in the section Multiple Input Bédrs.

- yyterminate() can be used in lieu of a return statement in an actiderminates the scanner and
returns a 0 to the scanreraller, indicating "all done".By default, yyterminate() is also called
when an end-of-file is encountereldlis a macro and may be redefined.

THE GENERATED SCANNER
The output offlex is the filelex.yy.c, which contains the scanning routipg@ex(), a number of tables used
by it for matching tokns, and a number of auxiliary routines and madBysdefault, yylex() is declared as
follows:

int yylex()
{

... various definitions and the actions in here ...

}

Version 2.5 April 1995 11

FLEX(1) FLEX(1)

(If your ervironment supports function prototypes, then it will be "int y¢ieoid)".) This definition may
be changed by defining the "YY_DECL" macteor example, you could use:

#define YY_DECL float lescan(a, b)) float a, b;

to give the scanning routine the nargscan,returning a float, and taking oafloats as guments. Note
that if you gve aguments to the scanning routine using a K&R-style/non-prototyped function declaration,
you must terminate the definition with a semi-colon (;).

Whenever yylex() is called, it scans tans from the global input fikgyin (which defults to stdin).It con-
tinues until it either reaches an end-of-file (at which point it returns ahee\0) or one of its actions
executes aeturn statement.

If the scanner reaches an end-of-file, subsequent calls are undefined unlegyinithqrointed at a e
input file (in which case scanning continues from that fileyjyoestart() is called. yyrestart() takes one
argument, aFILE * pointer (which can be nil, if youe £t upYY_INPUT to scan from a source other
thanyyin), and initializesyyin for scanning from that fileEssentially there is no d&rence between just
assigningyyinto a nav input file or usingyyrestart() to do so; the latter isvailable for compatibility with
previous \ersions offlex, and because it can be used to switch input files in the middle of scatnaag.
also be used to thnoaway the current input tffer, by calling it with an agument ofyyin; but better is to
useYY_FLUSH_BUFFER (see abee). Notethatyyrestart() doesnot reset the start condition 1dlI-
TIAL (see Start Conditions, b&i.

If yylex() stops scanning due taeeuting areturn statement in one of the actions, the scanner may then be
called agin and it will resume scanning where it left. of

By default (and for purposes offefiency), the scanner uses block-reads rather than siggxé) calls to
read characters frogyin. The nature of hw it gets its input can be controlled by defining ¥ _INPUT
macro. YY_INPUTS alling sequence is "YY_INPUT(,result,max_size)". Itaction is to place up to
max_sizecharacters in the character artay and return in the inger \ariableresult either the number of
characters read or the constant YY_NULL (0 on Unix systems) to indicate B@Fdeéult YY_INPUT
reads from the global file-pointer "yyin".

A sample definition of YY_INPUT (in the definitions section of the input file):

%{
#define YY_INPUT (lnf,result,max_size) \
{\
int ¢ = getchar(); \
result = (c == EOF) ? YY_NULL : (0] = c, 1); \
}
96}

This definition will change the input processing to occur one character at a time.

When the scanner reges an end-of-file indication from YY_INPUT It then checks thgywrap() func-
tion. If yywrap() returns &lse (zero), then it is assumed that the function has gone ahead angysetaip
point to another input file, and scanning continuég.returns true (non-zero), then the scanner terminates,
returning O to its callerNote that in either case, the start condition remains unchanged; inatoegert to
INITIAL.

If you do not supply yourwen version ofyywrap(), then you must either usoption noyywrap (in
which case the scanner bebsaa thoughyywrap() returned 1), or you must link withlfl to obtain the
default version of the routine, whichwaéys returns 1.

Three routines arevailable for scanning from in-memoryufiers rather than filesyy_scan_string(),
yy_scan_bytes()andyy scan_luffer(). See the discussion of them belin the section Multiple Input
Buffers.

The scanner writes itSCHO output to theyyoutglobal (defult, stdout), which may be redefined by the

Version 2.5 April 1995 12

FLEX(1) FLEX(1)

user simply by assigning it to some otRértE pointer

START CONDITIONS
flex provides a mechanism for conditionally aeting rules. Any rule whose pattern is preég with
"<sc>" will only be actre when the scanner is in the start condition named 'Baexample,

<STRING>["* { /* eat up the string body ... */

will be actve anly when the scanner is in the "STRING" start condition, and

<INITIAL,STRING,QUOTE>\. {/* handle an escape ... */

will be actve anly when the current start condition is either "INITIAL", "STRING", ortJQTE".

Start conditions are declared in the definitions (first) section of the input using unindenteddinesge
with either%s or %x followed by a list of namesThe former declareimclusivestart conditions, the latter
exclusivestart conditions.A start condition is actiated using theBEGIN action. Untilthe next BEGIN
action is gecuted, rules with the gén gart condition will be actie and rules with other start conditions
will be inactve. If the start condition isnclusive then rules with no start conditions at all will also be
actve. Ifitisexclusive thenonlyrules qualified with the start condition will be aeti A set of rules con-
tingent on the samexelusive gart condition describe a scanner which is independentyobfatihe other
rules in theflex input. Becausef this, exclusive gart conditions mad it easy to specify "mini-scanners"
which scan portions of the input that are syntacticalfigdiht from the rest (e.g., comments).

If the distinction between inclug and exclusive dart conditions is still a little ague, here a smple
example illustrating the connection between the.twheset of rules:

%s example
%%

<example>foo do_something();
bar something_else();
is equiaent to

%x example
%%

<example>foo do_something();
<INITIAL,example>bar something_else();

Without the<INITIAL,example> qualifier, the bar pattern in the seconckample wouldn't be ective (.e.,
couldnt match) when in start conditicexample. If we just usedkexample>to qualify bar, though, then it
would only be actie in exampleand not inINITIAL, while in the first gample its active in both, because
in the first @ample theexamplestartion condition is amclusive(%s) start condition.

Also note that the special start-condition speci§i&® matches eery start condition. Thus, the abee
example could also va been written;

%x example
%%

Version 2.5 April 1995 13

FLEX(1) FLEX(1)

<example>foo do_something();

<*>par something_else();

The deéult rule (toECHO ary unmatched character) remains @etin gart conditions.lIt is equialent to:

<*>|[\n ECHO;

BEGIN(O) returns to the original state where only the rules with no start conditions ae ddtis state
can also be referred to as the start-condition "INITIAL"B&GIN(INITIAL) is equialent toBEGIN(O).
(The parentheses around the start condition name are not requisré bonsidered good style.)

BEGIN actions can also bewgh as indented code at the dianing of the rules sectiorf-or example, the
following will cause the scanner to enter the "SPECIAL" start condition whepgdex() is called and the
global \ariableenter_specialis true:

int enter_special;

%x SPECIAL
%%
if (enter_special)
BEGIN(SPECIAL);

<SPECIAL>blahblahblah
...more rules follv...

To illustrate the uses of start conditions, here is a scanner whicidgsdwo different interpretations of a
string like "123.456". Bydefault it will treat it as three taas, the intger "123", a dot (), and the intger
"456". Butif the string is preceded earlier in the line by the stringp@et-floats” it will treat it as a single
token, the floating-point number 123.456:

%{

#include <math.h>
00}

%s pect

%%
expect-floats BEGIN (epect);

<expect>[0-9]+"."[0-9]+ {
printf("found a float, = %f\n",
atof(yytext));

<expect>\n {
/* that's the end of the line, so
*we reed another %gect-number"”
* before well recognize ayp more
* numbers
*/
BEGIN(INITIAL);
}

[0-9]+ {
printf("found an intger, = %d\n",

Version 2.5 April 1995 14

FLEX(1) FLEX(1)

atoi(yytext));
}

printf("found a dot\n");

Here is a scanner which recognizes (and discards) C comments while maintaining a count of the current
input line.

%x comment
%%
intline_num =1,

e BEGIN(comment);

<comment>["*\n]* [* eat agthing thats ot a '*’ */
<comment>"*"+["*\n]* /* eat up *'s rot followed by '/’s */
<comment>\n ++line_num;

<comment>"*"+"/" BEGIN(INITIAL);

This scanner goes to a bit of trouble to match as muwthagepossible with each rulén general, when
attempting to write a high-speed scanner try to match as much possible in each rsle, Eswiin.

Note that start-conditions names are reallygatealues and can be stored as suthus, the abee could
be extended in the follwing fashion:

%x comment foo

%%
intline_num =1,
int comment_caller;

n/*n {
comment_caller = INITIAL;
BEGIN(comment);

}

<foo>"/*" {
comment_caller = foo;
BEGIN(comment);

}

<comment>["*\n]* [* eat agthing thats ot a '*’ */
<comment>"*"+["*\n]* /* eat up *'s rot followed by '/’s */
<comment>\n ++line_num;

<comment>"*"+"/" BEGIN(comment_caller);

Furthermore, you can access the current start condition using therwvakiedYY_START macro. fer
example, the abee assignments taomment_callecould instead be written

comment_caller = YY_SART;

Flex providesYYSTATE as an alias foYY_START (since that is what'used by A&T lex).

Note that start conditions do notVeatheir avn name-space; %ss'and %x’s declare names in the same
fashion as #define!

Version 2.5 April 1995 15

FLEX(1) FLEX(1)

Finally, heres an example of hav to match C-style quoted strings usingckisive dart conditions, includ-
ing expanded escape sequenced (ot including checking for a string thato long):

%X str

%%
char string_bf[MAX_STR_CONST];
char *string_lof_ptr;

\" string_luf_ptr = string_Inf; BEGIN(str);

<str>\" { I* saw closing quote - all done */
BEGIN(INITIAL);
*string_kuf_ptr = "\0’;
[* return string constant tek type and
*value to parser
*/
}

<str>\n {
/* error - unterminated string constant */
/* generate error message */

}

<str>\[0-7}{1,3} {
/* octal escape sequence */
int result;

(void) sscanf(yytet + 1, "%0", &result);

if (result > Oxf)
[* error, constant is out-of-bounds */

*string_kuf_ptr++ = result;

}

<str>\\[0-9]+ {
/* generate error - bad escape sequence; something
*|ike \48 or \O777777
*/
}
<str>\\n *string_lif_ptr++ ="\n’;
<str>\\t *string_luf_ptr++ = "\t’;
<str>\\r *string_uf_ptr++ ="\r’;

<str>\\b *string_lif_ptr++ ="\b’;
<str>\\f *string_luf_ptr++ ="\f;

<str>\\(.|\n) *string_hbf_ptr++ = yytet[1];

<str>["\\n\"]+ {
char *yptr = yytet;

Version 2.5 April 1995 16

FLEX(1) FLEX(1)

while (*yptr)
*string_kuf_ptr++ = *yptr++;
}

Often, such as in some of theaenples abee, you wind up writing a wholeunch of rules all preceded by
the same start condition(slrlex makes this a little easier and cleaner by introducing a notion of start con-
dition scope A start condition scope is gan with:

<SCs>{

whereSCsis a list of one or more start conditionside the start condition scope/eg/ rule automati-
cally has the prefixSCs>applied to it, until 8’ which matches the initigf. So, for «kample,

<ESC>{
"\n" return’\n’;
"\ return’\r’;
"\ return’\f’;
"\0" return’\O’;

}

is equiaent to:

<ESC>"\n" returr\n’;
<ESC>"\r" return\r’;
<ESC>"\f" return'\f’;
<ESC>"\0" returri\0’;

Start condition scopes may be nested.
Three routines arevailable for manipulating stacks of start conditions:

void yy_push_state(int new_state)
pushes the current start condition onto the top of the start condition stack and switches to
new_stateas though you had us&EGIN new_state (recall that start condition names are also
integers).

void yy_pop_state()
pops the top of the stack and switches to iBEEIN.

int yy top_state()
returns the top of the stack without altering the staakitents.

The start condition stack gms dynamically and so has nail-in size limitation. If memory is ehausted,
program &ecution aborts.

To use start condition stacks, your scanner must incl@degtion stack directive (see Options belw).

MULTIPLE INPUT B UFFERS
Some scanners (such as those which support "include" files) require readingviechisput streamsAs
flex scanners do a lge amount of bffering, one cannot control where thexnaput will be read from by
simply writing aYY_INPUT which is sensitie o the scanning cormte YY_INPUT is only called when
the scanner reaches the end of iiffdy, which may be a long time after scanning a statement such as an
"include” which requires switching the input source.

To negotiate these sorts of problenilex provides a mechanism for creating and switching between multi-
ple input luffers. Aninput tuffer is created by using:

YY_BUFFER_SRATE yy create_bffer(FILE *file, int size)

Version 2.5 April 1995 17

FLEX(1) FLEX(1)

which tales aFILE pointer and a size and createquffdr associated with the\gn file and lage enough to
hold sizecharacters (when in doubt, us¥ BUF_SIZE for the size).It returns aYY_BUFFER_STATE
handle, which may then be passed to other routines (se®)béltie YY_BUFFER_STATE type is a
pointer to an opaqu&truct yy buffer_state structure, so you may safely initialize YYUBFER_SRATE
variables to((YY_BUFFER_STATE) 0) if you wish, and also refer to the opaque structure in order to cor
rectly declare inputudfers in source files other than that of your scanite that thé=ILE pointer in the

call toyy_create huffer is only used as thealue ofyyinseen byYY_INPUT; if you redefineYY_INPUT

so it no longer usegyin, then you can safely pass aRILE pointer toyy create huffer. You slect a par
ticular kuffer to scan from using:

void yy_switch_to_hffer(YY_BUFFER_STRTE new_huffer)

switches the scanner’input huffer so subsequent teks will come fromnew_tuffer. Note that
yy_switch_to_huffer() may be used by yywrap() to set things up for continued scanning, instead of open-
ing a nev file and pointing yyin at it. Note also that switching input sources via either
yy_switch_to_huffer() or yywrap() doesnotchange the start condition.

void yy_delete_bffer(YY_BUFFER_SATE huffer)

is used to reclaim the storage associated withffeh (buffer can be nil, in which case the routine does
nothing.) You can also clear the current contents afiffeb using:

void yy_flush_luffer(YY_BUFFER_SATE huffer)

This function discards thaulfer's contents, so the metime the scanner attempts to match a@tokom the
buffer, it will first fill the buffer anev usingYY_INPUT.

yy_new_hiffer() is an alias folyy_create_huffer(), provided for compatibility with the C++ use ofw
anddeletefor creating and destyong dynamic objects.

Finally, the YY_CURRENT_BUFFER macro returns &Y_BUFFER_STATE handle to the current
buffer.

Here is anxample of using these features for writing a scanner whigharels include files (the<EOF>>
feature is discussed beln

/* the "incl" state is used for picking up the name
* of an include file

*/

%x incl

%{

#define MAX_INCLUDE_DEPTH 10

YY_BUFFER_SATE include_stacklMAX_INCLUDE_DEPTH];
int include_stack_ptr = 0;

%}

%%

include BEGIN(incl);
[a-z]+ ECHO;

[(a-z\n]*\n? ECHO;
<incl>[\f]* /* eat the whitespace */

<incl>["\t\n]+ {/* got the include file name */
if (include_stack _ptr >= MAX_INCLUDE_DEPTH)

Version 2.5 April 1995 18

FLEX(1) FLEX(1)

{

fprintf(stdert "Includes nested too deeply");
exit(1);
}

include_stack[include_stack_ptr++] =
YY_CURRENT_BUFFER;

yyin = fopen(yytet, "r");

if (!yyin)
error(...);

yy_switch_to_lffer(
yy_create_bffer(yyin, YY_BUF_SIZE));

BEGIN(INITIAL);
}

<<EOF>> {
if (--include_stack ptr<0)
{

yyterminate();

}

else

{
yy_delete_bffer(YY_CURRENT_BJFFER);
yy_switch_to_lffer(
include_stack[include_stack_ptr]);
}
}

Three routines arevailable for setting up inputdifers for scanning in-memory strings instead of filad.

of them create a me input hiffer for scanning the string, and return a corresponding
YY_BUFFER_STATE handle (which you should delete wity delete luffer() when done with it).
They also switch to the ne buffer usingyy switch_to_huffer(), so the ngt call toyylex() will start scan-
ning the string.

yy_scan_string(const char *str)
scans a NUL-terminated string.

yy_scan_bytes(const char *bytes, int len)
scanden bytes (including possibly NU$) starting at locatiorbytes.

Note that both of these functions create and sceopg of the string or bytes(This may be desirable,
sinceyylex() modifies the contents of theffer it is scanning.)You can aoid the coy by using:

yy_scan_hiffer(char *base, yy_size_t size)
which scans in place theuffer starting atbase consisting ofsize bytes, the last tar bytes of
which mustbe YY_END_OF_BUFFER_CHAR (ASCIl NUL). These last te bytes are not
scanned; thus, scanning consistbade[0]throughbase[size-2]inclusive.

If you fail to set up base in this manner (i.e., fget the final tw
YY_END_OF_BUFFER_CHAR bytes), theryy scan_hffer() returns a nil pointer instead of
creating a n& input luffer.

Version 2.5 April 1995 19

FLEX(1) FLEX(1)

The typeyy_size_tis an intgral type to which you can cast an e expression reflecting the
size of the bffer.

END-OF-FILE RULES
The special rule "<<EOF>>" indicates actions which are to ntaken an end-of-file is encountered and
yywrap() returns non-zero (i.e., indicates no further files to proc@$®.action must finish by doing one
of four things:

- assigningyyinto a nav input file (in preious \ersions of flg, after doing the assignment you had
to call the special actiodY _NEW_FILE; this is no longer necessary);

- executing areturn statement;
- executing the speciatyterminate() action;
- or, switching to a ne buffer usingyy_switch_to_huffer() as shan in the @ample abue.

<<EOF>> rules may not be used with other patterny; iy only be qualified with a list of start condi-
tions. Ifan unqualified <<EOF>> rule is\wgn, it applies tall start conditions which do not alreadywha
<<EOF>> actions.To ecify an <<EOF>> rule for only the initial start condition, use

<INITIAL><<EOF>>

These rules are useful for catching thinge likclosed commentsAn example:

%X quote
%%

...other rules for dealing with quotes...

<quote><<EOF>> ({
error("unterminated quote");
yyterminate();
}
<<EOF>> {
if (*++filelist)
yyin = fopen(*filelist, "r");
else
yyterminate();

}

MISCELLANEOUS MA CROS
The macro¥Y_USER_ACTION can be defined to pve an action which isabys ececuted prior to the
matched rules action. For example, it could be #defirgt'to call a routine to covert yytext to lover-case.
WhenYY_USER_ACTION is invoked, the \ariableyy actgives the number of the matched rule (rules are
numbered starting with 1)Suppose you ant to profile har often each of your rules is matchethe fol-
lowing would do the trick:

#define YY_USER_AETION ++ctr[yy_act]
wherectr is an array to hold the counts for thefeliént rules.Note that the macryY_NUM_RULES
gives the total number of rules (including the delt rule, @en if you use-s), so a correct declaration for

ctris:

int ctr[YY_NUM_RULES];

The macroYY_USER_INIT may be defined to pvade an action which is wabys executed before the first

Version 2.5 April 1995 20

FLEX(1) FLEX(1)

scan (and before the scansdnternal initializations are donefor example, it could be used to call a rou-
tine to read in a data table or open a logging file.

The macroyy_set_interactive(is_interactive) can be used to control whether the curreriteo is consid-
eredinteractive An interactve tuffer is processed more slty, but must be used when the scanmarput
source is indeed interaeti © avoid problems due to aiting to fill buffers (see the discussion of theflag
belov). A non-zero ®lue in the macro rocation marks theudfer as interactie, a zro \alue as non-inter
active. Note that use of this macrov@rides%option always-interactive or %option never-interactive
(see Options belw). yy set_interactive() must be imoked prior to beginning to scan theuffer that is (or
is not) to be considered interaeti

The macroyy_set_bol(at_bol)can be used to control whether the currertdr's sanning contet for the
next token match is done as though at thgiheing of a line. A non-zero macro gument maks rules
anchored with

The macroYY_AT_BOL() returns true if the neé token scanned from the currentfter will have ™ rules

actve, false otherwise.

In the generated scanndne actions are allaghered in one lge switch statement and separated using
YY_BREAK, which may be redefinedBy default, it is simply a "break”, to separate each suketion
from the follaving rule's. RedefiningYY_BREAK allows, for eample, C++ users to #define
YY_BREAK to do nothing (while beingery careful thatwery rule ends with a "break” or a "return”!) to
avad sufering from unreachable statemerdmings where because a ralettion ends with "return”, the
YY_BREAK is inaccessible.

VALUES AVAILABLE T O THE USER
This section summarizes thanous \alues &ailable to the user in the rule actions.

- char *yytext holds the tet of the current toén. Itmay be modified &t not lengthened (you can-
not append characters to the end).

If the special directie %array appears in the first section of the scanner description yfert

is instead declarechar yytext[YYLMAX], whereYYLMAX is a macro definition that you can
redefine in the first section if you donike the deéult value (generally 8KB).Using %array
results in somghat slaver scanners,ut the \alue ofyytext becomes immune to calls taput()
andunput(),which potentially destipits value whernyytext is a character pointefThe opposite
of %array is %pointer, which is the dedult.

You cannot us&barray when generating C++ scanner classes-th#éag).
- int yyleng holds the length of the current &k

- FILE *yyin is the file which by deiult flex reads from.It may be redefinedub doing so only
malkes sense before scanningins or after an EOF has been encountet@hbanging it in the
midst of scanning will hae inexpected results sindeex buffers its input; usgyrestart() instead.
Once scanning terminates because an end-of-file has been seen, you cayyimsaigine ne/
input file and then call the scanneaagto continue scanning.

- void yyrestart(FILE *new_file) may be called to pointyin at the ne input file. The switch-
over to the nev file is immediate (an previously huffered-up input is lost).Note that calling
yyrestart() with yyin as an agument thus thmes avay the current input lffer and continues
scanning the same input file.

- FILE *yy out is the file to whicHECHO actions are donelt can be reassigned by the user
- YY_CURRENT_BUFFER returns aYY_BUFFER_STAT E handle to the currenulfer.

- YY_START returns an intger \alue corresponding to the current start conditi¥ou can subse-
guently use thisalue withBEGIN to return to that start condition.

INTERFACING WITHY ACC
One of the main uses f&x is as a companion to thyacc parsergeneratar yaccparsers gpect to call a
routine namedylex() to find the ngt input tolen. Theroutine is supposed to return the type of thet ne

Version 2.5 April 1995 21

FLEX(1)

FLEX(1)

token as well as putting grassociated &lue in the globayylval. To useflex with yacc,one specifies the
—d option toyaccto instruct it to generate the fijgtab.h containing definitions of all th&tok ensappear
ing in theyaccinput. Thisfile is then included in th8iex scanner For example, if one of the taans is
"TOK_NUMBER?", part of the scanner might lookéik

%{

#include "ytahh"

9%}
%%

[0-9]+

OPTIONS

yylval = atoi(yytet); return TOK_NUMBER,;

flex has the follaving options:

-b

Version 2.5

Generate backing-up informationlex.bakup. This is a list of scanner states which require back-
ing up and the input characters on whictyttle 0. By adding rules one can ren®backing-up
states. Ifall backing-up states are eliminated ar@f or —CF is used, the generated scanner will
run faster (see thep flag). Onlyusers who wish to squeezeegy last gcle out of their scanners
need vorry about this option(See the section on Performance Considerationsvelo

is a do-nothing, deprecated option included for POSIX compliance.

males the generated scanner rulég mode. Wheneer a pattern is recognized and the global
yy_flex_delug is non-zero (which is the dailt), the scanner will write tetderr a line of the
form:

--accepting rule at line 53 ("the matchexitte

The line number refers to the location of the rule in the file defining the scanner (i.e., the file that
was fed to flx). Messageare also generated when the scanner backs up, acceptsathié rdes,
reaches the end of its inpuiffer (or encounters a NUL; at this point, theotlwok the same asf

as the scanner'mncerned), or reaches an end-of-file.

specifiesast scannerNo table compression is done and stdio is bypas$kd.result is lage hut
fast. Thisoption is equialent to—Cfr (see belw).

generates a "help" summary ftédx’s options tostdoutand then xits. —? and--help are syn-
onyms for-h.

instructsflex to generate aase-insensitivecanner The case of letters\gn in theflex input pat-
terns will be ignored, and teks in the input will be matchedgaedless of caseThe matched te
given in yytext will have the presered case (i.e., it will not be folded).

turns on maximum compatibility with the originalT &T lex implementation. Notéhat this does

not mearfull compatibility Use of this option costs a considerable amount of performance, and it
cannot be used with thet, -f, -F, -Cf, or -CF options. er details on the compatibilities it pro-
vides, see the section "IncompatibilitiesthM_ex And POSIX" belav. This option also results in

the nameYY_FLEX LEX_ COMP AT being #definal in the generated scanner

is another do-nothing, deprecated option included only for POSIX compliance.

generates a performance report to std&tre report consists of commentgaeling features of
the flex input file which will cause a serious loss of performance in the resulting scahgeu
give the flag twice, you will also get commentgaealing features that lead to minor performance
losses.

Note that the use ®®EJECT, %option yylineno, and \ariable trailing contet (see the Deficien-
cies / Bugs section beld entails a substantial performance penalty; usegyofioe(), the ~

April 1995 22

FLEX(1)

Version 2.5

FLEX(1)

operatoyand the—-I flag entail minor performance penalties.

causes thdefault rule(that unmatched scanner input is echoestdout)to be suppressedf the
scanner encounters input that does not matgtofarts rules, it aborts with an errofhis option is
useful for finding holes in a scanrenile set.

instructsflex to write the scanner it generates to standard output instéexiyofc.

specifies thatiex should write tostderra summary of statistics garding the scanner it generates.
Most of the statistics are meaningless to the cdbaalser but the first line identifies theevsion

of flex (same as reported byV), and the net line the flags used when generating the scanner
including those that are on by deit.

suppresses avning messages.

instructsflex to generate batct scannerthe opposite ointeractivescanners generated by (see
belov). In general, you useB when you areertainthat your scanner will ver be used interac-
tively, and you vant to squeeze kttle more performance out of itlf your goal is instead to
squeeze out &t more performance, you shoulde using the-Cf or —CF options (discussed
below), which turn on-B automatically apway.

specifies that théast scanner table representation should be used (and stdio bypaBsediep-
resentation is about aast as the full table representat{ef), and for some sets of patterns will be
considerably smaller (and for others,gir. In general, if the pattern set contains both
"keywords" and a catch-all, "identifier" rule, such as in the set:

"case" returrTOK_CASE;
"switch" returnTOK_SWITCH;

"default” return OK_DEFAULT;
[a-z]+ returnTOK_ID;

then youre better dfusing the full table representatioff.only the "identifier" rule is present and
you then use a hash table or some such to detectyiverkls, youie better dfusing-F.

This option is equilent to—CFr (see belw). It cannot be used with+.

instructsflex to generate ainteractive scanner An interactve sanner is one that only looks
ahead to decide what tk has been matched if it absolutely musturns out that avays look-
ing one &tra character aheadyem if the scanner has already seen enougftéedisambiguate the
current tolen, is a bit &ster than only looking ahead when necessBiyt scanners that\abys
look ahead gie deadful interactie performance; for xample, when a user types amfiae, it is
not recognized as a wéne token until thg enter anothertoken, which often means typing in
another whole line.

Flex scanners dallt tointeractiveunless you use theCf or —CF table-compression options (see
belov). Thats because if youe looking for high-performance you should be using one of these
options, so if you didi, flex assumes yod'rather trade dfa hit of run-time performance for intu-
itive interactve behasior. Note also that youwannotuse -l in conjunction with—Cf or -CF.
Thus, this option is not really needed; it is on byadéffor all those cases in which it is alled.

You can force a scanner twt be interactre by using—B (see abwae).

instructsflex not to generatéline directves. Wthout this optionflex peppers the generated scan-
ner with #line directies © error messages in the actions will be correctly located with respect to
either the originaflex input file (if the errors are due to code in the input file)earyy.c (if the
errors ardlex’s fault -- you should report these sorts of errors to the email addxessbgiow).

malkesflex run intracemode. Itwill generate a lot of messagesstolerr concerning the form of
the input and the resultant non-deterministic and deterministic finite autorflais.option is
mostly for use in maintainintjex.

April 1995 23

FLEX(1)

FLEX(1)

prints the ersion number tstdoutand &its. ——versionis a synogm for —V.

instructsflex to generate a 7-bit scannee., one which can only recognized 7-bit characters in its
input. Theadwantage of using7 is that the scanner’tables can be up to half the size of those
generated using theB option (see bel@). Thedisadwantage is that such scanners often hang or
crash if their input contains an 8-bit character

Note, havever, that unless you generate your scanner using-@feor —CF table compression
options, use of7 will save aly a small amount of table space, and engdur scanner consider
ably less portableFlex’s default behaior is to generate an 8-bit scanner unless you useGlie
or —CF, in which casdlex defaults to generating 7-bit scanners unless your siteakvays config-
ured to generate 8-bit scanners (as will often be the case with non-USA Sieskan tell
whether fl& generated a 7-bit or an 8-bit scanner by inspecting the flag summary-in tlput
as described abe.

Note that if you use-Cfe or —CFe (those table compression options} blso using equélence
classes as discussed see Wwgldex still defaults to generating an 8-bit scanrsarce usually with
these compression options full 8-bit tables are not much mpensie than 7-bit tables.

instructsflex to generate an 8-bit scannee., one which can recognize 8-bit charactéiisis flag
is only needed for scanners generated usibfjor —CF, as otherwise fledefaults to generating
an 8-bit scanner gway.

See the discussion eff above for flex's default behaior and the tradeéd between 7-bit and 8-bit
scanners.

specifies that you ant flex to generate a C++ scanner clagee the section on Generating C++
Scanners belwo for details.

—ClaefFmr]

Version 2.5

controls the dgree of table compression and, more genertiyle-ofs between small scanners
and fst scanners.

—Ca ("align") instructs fl& to trade of lamger tables in the generated scanner &ster perfor

mance because the elements of the tables are better aligned for memory access and computation.
On some RISC architectures, fetching and manipulating lordgvis more dicient than with
smallersized units such as shodwls. Thisoption can double the size of the tables used by your
scanner

—Cedirectsflex to construcequivalence classese., sets of characters whichveadentical lexi-
cal properties (forxample, if the only appearance of digits in flex input is in the character
class "[0-9]" then the digits '0’, '1’, ..., '9’ will all be put in the same eglgnce class).Equiv-
alence classes usuallywgidamatic reductions in the final table/object file sizes (typicallctof
of 2-5) and are pretty cheap performance-wise (one array look-up per character scanned).

—Cf specifies that th&ull scanner tables should be generat#ek-should not compress the tables
by taking adantages of similar transition functions forfdient states.

—CF specifies that the alternatast scanner representation (described/@ahoder the—F flag)
should be usedThis option cannot be used with.

—Cm directsflex to constructmeta-equivalence classeashich are sets of equalence classes (or
characters, if equalence classes are not being used) that are commonly used toddtter
equivalence classes are often a big win when using compressed taliléiseybhavea moderate
performance impact (one ordwif" tests and one array look-up per character scanned).

—Cr causes the generated scannebypassuse of the standard 1/O library (stdio) for input.
Instead of callingr ead() or getc(), the scanner will use thread() system call, resulting in a per
formance gin which \aries from system to systemuthin general is probably gkgible unless
you are also usingCf or —CF. Using—Cr can cause strange befa if, for example, you read
from yyin using stdio prior to calling the scanner (because the scanner will misverhexeyour
previous reads left in the stdio inputffer).

April 1995 24

FLEX(1) FLEX(1)

—Cr has no d&ct if you defineYY_INPUT (see The Generated Scannenadpo

A lone-C specifies that the scanner tables should be compressedither equidlence classes
nor meta-equwialence classes should be used.

The options-Cf or —-CF and—Cm do not mak £nse together - there is no opportunity for meta-
equialence classes if the table is not being compress§#tierwise the options may be freely
mixed, and are cumulag.

The dehult setting is-Cem, which specifies thallex should generate eqaence classes and
meta-equialence classesThis setting preides the highest deee of table compressiorYou can
trade of fasterexecuting scanners at the cost ofgar tables with the follsing generally being
true:

slowest & smallest
-Cem
-Cm
-Ce
-C
-C{f,F}e
-C{f,F}
-C{f,F}a
fastest & lagest

Note that scanners with the smallest tables are usually generated and compiled #wst, craick
during derelopment you will usually &nt to use the dafilt, maximal compression.

—Cfeis often a good compromise between speed and size for production scanners.

—ooutput
directs flex to write the scanner to the fiutput instead oflex.yy.c. If you combine-o with the
-t option, then the scanner is writtendimoutbut its #line directives (see the-L option abwe)
refer to the fileoutput.

—Pprefix
changes the deiilt yy prefix used byflex for all globally visible ariable and function names to
instead beprefix. For example,—-Pfoo changes the name gftext to footext. It also changes the
name of the deult output file fromex.yy.cto lex.foo.c. Here are all of the namededted:

yy_create_bffer
yy_delete_bffer
yy_flex_delug
yy_init_buffer
yy_flush_luffer
yy_load_luffer_state
yy_switch_to_lffer
yyin

yyleng

yylex

yylineno

yyout

yyrestart

yytext

yywrap
(If you are using a C++ scanndnen onlyyywrap andyyFlexLexer are afected.) Wthin your

scanner itself, you can still refer to the globatiables and functions using eithersion of their
name; ot externally they havethe modified name.

Version 2.5 April 1995 25

FLEX(1) FLEX(1)

This option lets you easily link together multiglex programs into the samexeeutable. Note,
though, that using this option also renamgarap(), SO you nav musteither praide your avn

(appropriately named)evsion of the routine for your scanner use%option noyywrap, as link-

ing with —Ifl no longer preides one for you by dafilt.

—Sslkeleton_file
overides the defult sleleton file from whichlex constructs its scanner&ou’ll never need this
option unless you are doirfigx maintenance or delopment.

flex also preides a mechanism for controlling options within the scanner specification itself, rather than
from the flx command-line. Thiss done by includin@ooption directives in the first section of the scan-

ner specification.You can specify multiple options with a singf&option directive, and multiple directres

in the first section of your fi@nput file.

Most options are gen Smply as names, optionally preceded by therdv'no” (with no interening whites-
pace) to ngate their meaningA number are equélent to fle flags or their ngetion:

7hit -7 option
8bit -8option
align -Caoption
backup -boption
batch -Boption
c++ -+option
caseful or

case-sensite qoposite of -i (dedult)

case-insensie a
caseless -option

delug -doption

default oppositef -s option
ecs -Cepption

fast -Foption

full -f option

interactve 4 option
lex-compat -loption
meta-ecs -Croption
perf-report -poption

read -Croption
stdout -toption
verbose -voption
warn oppositeof -w option
(use "%option n@varn” for -w)
array equident to "%array"

pointer equialent to "%pointer" (defult)

Some%option’ s provide features otherwise notadable:

always-interactive
instructs fle to generate a scanner whictwal/s considers its input "interaed’. Normally, on
each ne input file the scanner callsatty() in an attempt to determine whether the scasner’
input source is interaste and thus should be read a character at a tvilben this option is used,
however, then no such call is made.

Version 2.5 April 1995 26

FLEX(1) FLEX(1)

main directs fl& to provide a defult main() program for the scannawxhich simply callsyylex(). This
option impliesnoyywrap (see belw).

never-interactive
instructs fl& to generate a scanner whichvee considers its input "interae®" (again, no call
made tdsatty()). This is the opposite @lways-interactive.

stack enables the use of start condition stacks (see Start Conditiore.abo

stdinit if set (i.e.,%option stdinit) initializesyyin andyyoutto stdinandstdout,instead of the deflt of
nil. Some eisting lex programs depend on this belma, even though it is not compliant with
ANSI C, which does not requistdinandstdoutto be compile-time constant.

yylineno
directsflex to generate a scanner that maintains the number of the current line read from its input
in the global ariableyylineno. This option is implied bfooption lex-compat.

yywrap
if unset (i.e..%option noyywrap), makes the scanner not cgywrap() upon an end-of-file, ld
simply assume that there are no more files to scan (until the useryyairdas a nev file and calls
yylex() again).
flex scans your rule actions to determine whether you usBEHIECT or yymore() features. Theeject
andyymore options are \&ilable to werride its decision as to whether you use the options, either by set-
ting them (e.g.%option r eject) to indicate the feature is indeed used, or unsetting them to indicate it actu-
ally is not used (e.g%option hoyymore).

Three options takgring-delimited \alues, diset with '=":
%option outfile="ABC"

is equialent to-oABC, and
%option prefix="XYZ"

is equialent to-PXYZ. Finally,
%option yyclass="foo"

only applies when generating a C++ scannet @ption). Itinforms flex that you hae cerived foo as a
subclass ofyyFlexLexer, so flex will place your actions in the member functifoo::yylex() instead of
yyFlexLexer::yylex(). It also generates wFlexLexer::yylex() member function that emits a run-time
error (by irvoking yyFlexLexer::LexerErr or()) if called. See Generating C++ Scanners, belfor addi-
tional information.

A number of options arevailable for lint purists who ant to suppress the appearance of unneeded rou-
tines in the generated scannéach of the follwing, if unset (e.g.%option nounput), results in the cer
responding routine not appearing in the generated scanner:

input, unput
yy_push_state, yy pop_state, yy_top_state
yy_scan_hffer, yy_scan_bytes, yy scan_string

(thoughyy push_state()and friends wn't appear agway unless you uskoption stack).

PERFORMANCE CONSIDERATIONS
The main design goal diiex is that it generate high-performance scannéirbas been optimized for deal-
ing well with lage sets of rulesAside from the décts on scanner speed of the table compressibn
options outlined abe, there are a number of options/actions whicgrdde performanceThese are, from
most &pensve © least:

Version 2.5 April 1995 27

FLEX(1)

FLEX(1)

REJECT
%option yylineno
arbitrary trailing conbet

pattern sets that require backing up
%array

%option interactie

%option alays-interactve

™ beginning-of-line operator
yymore()

with the first three all being quitexgensve and the last tw being quite cheapNote also thatinput() is
implemented as a routine call that potentially does quite a bitodk, wvhile yyless()is a quite-cheap
macro; so if just putting back sonecess tgt you scanned, usg/less().

REJECT should be woided at all costs when performance is importdhtis a particularly gpensve
option.

Getting rid of backing up is messy and often may be an enormous amouwrkdbwa complicated scan-
ner In principal, one bgins by using theb flag to generate lex.badkupfile. For example, on the input

%%
foo returnTOK_KEYWORD;
foobar returnfTOK_KEYWORD;

the file looks lile:

State #6 is non-accepting -
associated rule line numbers:
2 3
out-transitions: [0]
jam-transitions: EOF [\001-p-\177]

State #8 is non-accepting -
associated rule line numbers:

3
out-transitions: [a]
jam-transitions: EOF [\001-b-\177]

State #9 is non-accepting -
associated rule line numbers:
3
out-transitions: [r]
jam-transitions: EOF [\001-g-\177]

Compressed tablesvedys back up.

The first fev lines tell us that therg’a £anner state in which it can ek ransition on an 'o’ bit not on
ary other characterand that in that state the currently scanned tes not match grrule. Thestate
occurs when trying to match the rules found at lines 2 and 3 in the inpuf fitee scanner is in that state
and then reads something other than an 'o’, it willehta back up to find a rule which is matchedlith a
bit of headscratching one can see that this must be the datevithen it has seen "fo"When this has
happened, if arthing other than another '0’ is seen, the scanner wile a back up to simply match the
'f" (by the dedult rule).

Version 2.5 April 1995 28

FLEX(1) FLEX(1)

The comment garding State #8 indicates thesea poblem when "foob" has been scanndddeed, on
ary character other than an ’'a’, the scanner willeh@ back up to accept "foo"Similarly, the comment
for State #9 concerns when "fooba" has been scanned ardi@@s not follov.

The final comment reminds us that thersd point going to all the trouble of remimg backing up from
the rules unless we using-Cf or —CF, since theres no performance gin doing so with compressed scan-
ners.

The way to remee the backing up is to add "error" rules:

%%
foo returnTOK_KEYWORD,;
foobar returnfTOK_KEYWORD;

fooba |

foob |

fo {
[* false alarm, not really alword */
return TOK_ID;

}

Eliminating backing up among a list oéywords can also be done using a "catch-all" rule:

%%
foo returnTOK_KEYWORD,;
foobar returnfOK_KEYWORD;

[a-z]+ returnTOK_ID;

This is usually the best solution when appropriate.

Backing up messages tend to cascadith a complicated set of rulessitot uncommon to get hundreds
of messageslf one can decipher them, though, it often onlyetala dozen or so rules to eliminate the
backing up (though & easy to mak a nistalke and hare a eror rule accidentally match ald token. A
possible futurdlex feature will be to automatically add rules to eliminate backing up).

It's important to kep in mind that youain the benefits of eliminating backing up only if you eliminate
eweryinstance of backing upLeaving just one means yowam nothing.

Variable trailing context (where both the leading and trailing parts do netlefked length) entails almost
the same performance lossRISJECT (i.e., substantial)So when possible a rule ék

%%
mouse|rat/(cat|dog) run();

is better written:

%%

mouse/cat|dog run();
rat/cat|dog run();

or as
%%
mouse|rat/cat run();
mouse|rat/dog run();

Version 2.5 April 1995 29

FLEX(1) FLEX(1)

Note that here the special ’|' action does provide ary savings, and canven make things worse (see
Deficiencies / Bugs belg).

Another area where the user can increase a scarpeefdormance (and one thsitgasier to implement)
arises from thedfct that the longer the teks matched, thaster the scanner will rurThis is because with
long tokens the processing of most input charactersstgkace in the (short) inner scanning loop, and does
not often hae o go through the additional ark of setting up the scanningwetonment (e.g.yytext) for

the action.Recall the scanner for C comments:

%x comment
%%
intline_num =1,

" BEGIN(comment);

<comment>["*\n]*
<comment>"*"+["*\n]*

<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

This could be sped up by writing it as:

%x comment
%%
intline_num =1,

" BEGIN(comment);

<comment>["*\n]*

<comment>["\n]*\n ++line_num;
<comment>"*"+["*\n]*
<comment>"*"+["*\n]*\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

Now instead of each mdine requiring the processing of another action, recognizing twénes is "dis-
tributed" oser the other rules todep the matchedxeas long as possibleNote thataddingrules doesiot

slow down the scanner!The speed of the scanner is independent of the number of rules or (modulo the
considerations gen a the bginning of this section) ve complicated the rules are withgad to operators

such as ™ and ’|".

A final xample in speeding up a scanner: suppose Y te scan through a file containing identifiers and

keywords, one per line and with no othetraneous characters, and recognize all $hevkrds. Anatural
first approach is:

%%

asm |

auto |

break |

.. etc...

volatile |

while /*it's a leyword */

J\n /*it's mot a lkeyword */

To diminate the back-tracking, introduce a catch-all rule:

Version 2.5 April 1995 30

FLEX(1) FLEX(1)

%%

asm |

auto |

break |

.. etc ...

volatile |

while /*it's a leyword */

[a-z]+ |
J\n /*it's mot a lkeyword */

Now, if it's guaranteed that these'exactly one verd per line, then we can reduce the total number of
matches by a half by nmging in the recognition of mdines with that of the other teks:

%%

asm\n |

auto\n |

break\n |

.. etc ...

volatile\n |

while\n /*it's a keyword */

[a-z]+\n |
J\n /*it's not a keyword */
YW

One has to be careful here, as weehaw reintroduced backing up into the scannkr particular while
weknow that there will neer be any characters in the input stream other than letters whmes, flex cant
figure this out, and it will plan for possibly needing to back up when it has scannezhdikeKauto" and
then the net character is something other than wiliree or a letter Previously it would then just match the
"auto" rule and be doneubnaw it has no "auto” rule, only a "auto\n" rul@o diminate the possibility of
backing up, we could either duplicate all ruleg ithout final nalines, or snce we neer expect to
encounter such an input and therefore thalv it's dassified, we can introduce one more catch-all rule,
this one which doesnhinclude a neline:

%%

asm\n |

auto\n |

break\n |

.. etc...

volatile\n |

while\n /*it's a keyword */

[a-z]+\n |
[a-z]+ |
J\n /*it's mot a lkeyword */

Compiled with—Cf, this is about asafst as one can geflex scanner to go for this particular problem.

A final note:flex is slov when matching NUk, particularly when a tobn contains multiple NU&. 1t's
best to write rules which matcthort amounts of tet if it's anticipated that the & will often include
NUL's.

Another final note garding performance: as mentioned abadn the section Ha the Input is Matched,
dynamically resizingyytext to accommodate huge ks is a sk process because it presently requires
that the (huge) t@n be rescanned from thegbening. Thusf performance is vital, you should attempt to
match "lage" quantities of tet but not "huge" quantities, where the ctitoétween the tw is & about 8K

Version 2.5 April 1995 31

FLEX(1) FLEX(1)

characters/tadn.

GENERATING C++ SCANNERS
flex provides two different ways to generate scanners for use with CFhe first vay is to simply compile
a Tanner generated bex using a C++ compiler instead of a C compil&pou should not encounteryn
compilations errors (please reportyayou find to the email addressven in the Author section belg).
You can then use C++ code in your rule actions instead of C dddee that the deult input source for
your scanner remaingyin, and defult echoing is still done tgyout. Both of these remaifILE * vari-
ables and not C+streams.

You can also usé@lex to generate a C++ scanner class, using-theption (or equivalently, %option c++),
which is automatically specified if the name of the fiwecutable ends in a '+, such #isx++. When
using this option, fbe defaults to generating the scanner to theléleyy.ccinstead ofex.yy.c. The gener
ated scanner includes the headerdite/FlexLexerh, which defines the inteate to tvo C++ classes.

The first classFlexLexer, provides an abstract base class defining the general scanner classantdtf
provides the follaving member functions:

const char* YYText()
returns the te of the most recently matched &k the eqwialent of yytext.

int YYLeng()
returns the length of the most recently matchedrnpkhe equialent ofyyleng.

int lineno() const
returns the current input line number (8éeption yylineno), or 1 if %option yylineno was rot
used.

void set_delug(int flag)
sets the dalgging flag for the scannesquivalent to assigning tgy_flex_dehug (see the Options
section abee). Notethat you must bild the scanner usingoption debug to include debgging
information in it.

int debug() const
returns the current setting of the dglging flag.

Also provided are member functions egaent toyy switch_to_huffer(), yy_create hiffer() (though the
first agument is anstream* object pointer and notRILE*), yy flush_buffer(), yy_delete_huffer(), and
yyrestart() (again, the first ayument is astream* object pointer).

The second class definedgmr+/FlexLexerh is yyFlexLexer, which is denved from FlexLexer. It defines
the folloving additional member functions:

yyFlexLexer(istream* arg_yyin = 0, osteam* arg_yyout = 0)
constructs gyFlexLexer object using the gen greams for input and outputf not specified, the
streams dedult tocin andcout, respectiely.

virtual int yylex()
performs the same role yglex() does for ordinary fbe scanners: it scans the input stream, con-
suming tolens, until a rules action returns aalue. Ifyou derve a sibclassS from yyFlexLexer
and want to access the member functions aadables ofS insideyylex(), then you need to use
%option yyclass="S" to inform flex that you will be using that subclass insteagydflexLexer.
In this case, rather than generatingrlexLexer::yylex(), flex generates::yylex() (and also gen-
erates a dummyyFlexLexer::yylex() that callsyyFlexLexer::LexerErr or() if called).

virtual v oid switch_streams(isteam* new_in = 0,
ostream* new_out = O)yeassignyyin to new_in (if non-nil) andyyout to new_out(ditto), delet-
ing the preious input liffer if yyin is reassigned.

int yylex(istream* new_in, osteam* new_out =0)
first switches the input streams @aitch_streams(new_in, new_out &nd then returns thelue
of yylex().

Version 2.5 April 1995 32

FLEX(1) FLEX(1)

In addition, yyFlexLexer defines the follwing protected virtual functions which you can redefine in
derived dasses to tailor the scanner:

virtual int Lexerlnput(char* b uf, int max_size)
reads up tanax_sizecharacters intdouf and returns the number of characters rekalindicate
end-of-input, return 0 characterblote that "interactie" scanners (see theB and-I1 flags) define
the macroYY_INTERA CTIVE. If you redefineLexerinput() and need to takdfferent actions
depending on whether or not the scanner might be scanning an iméeiagtit source, you can
test for the presence of this name #ifalef.

virtual v oid LexerOutput(const char* buf, int size)
writes outsize characters from theuffer buf, which, while NUL-terminated, may also contain
"internal” NULs if the scannes rules can match x¢with NUL's in them.

virtual v oid LexerErr or(const char* msg)
reports adtal error messagelhe deéult version of this function writes the message to the stream
cerr and «its.

Note that ayyFlexLexer object contains itentire scanning stateThus you can use such objects to create
reentrant scannerou can instantiate multiple instances of the satylelexLexer class, and you can also
combine multiple C++ scanner classes together in the same program usiRgiiten discussed alie.

Finally, note that théoarray feature is not\ailable to C++ scanner classes; you must%gsinter (the
default).

Here is anxample of a simple C++ scanner:
/I An example of using the fieC++ scanner class.

%{
int mylineno = 0;
%}

string \"["\n"]+\"
ws [\t]+

alpha [A-Za-Z]

dig [0-9]

name ({alpha}|{dig}|\$)({alpha}|{dig}|[_.\-/$])*
numl [-+]?{dig}+\.?([eE][-+]?{dig}+)?

num2 [-+]?{dig}*\.{dig}+([eE][-+]?{dig}+)?
number {num1}|{num?2}

%%
{ws} /* skip blanks and tabs */

n/*n {
int c;

while((c = yyinput()) != 0)

{
if(c =="\n’)
++mylineno;

else if(c =="*")

{

Version 2.5 April 1995 33

FLEX(1) FLEX(1)

if((c = yyinput()) =="1")
break;
else
unput(c);
}
}
}

{number} cout<< "number " << YYBX() << '\n’;
\n mylineno++;

{name} cout<<"name " << YYBX() <<'\n’;
{string} cout<<"string " << YYText() <<'\n’;
%%

int main(int /* agc */, char** /* amgv */)
{
FlexLexer* lexer = new yyFlexLexer;
while(lexer->yylex() != 0)

return O;

}
If you want to create multiple (ddrent) lexer classes, you use theP flag (or theprefix= option) to
rename eacliyFlexLexer to some othekxFlexLexer. You then can includeg++/FlexLexerh> in your
other sources once pexée class, first renamingyFlexLexer as follovs:

#undef yyFlalLexer
#define yyFleLexer xxFlexLexer
#include <g++/FlgLexer.n>

#undef yyFlalLexer
#define yyFleLexer zzFlexLexer
#include <g++/FlgLexer.n>

if, for example, you use@boption pr efix="xx" for one of your scanners aBtbption pr efix="zz" for the
other

IMPORTANT: the present form of the scanning classeiperimentaland may change considerably
between major releases.

INCOMPAT IBILITIES WITH LEX AND POSIX
flex is a revrite of the AA&T Unix lex tool (the tw implementations do not shareyatode, though), with
some &tensions and incompatibilities, both of which are of concern to those who wish to write scanners
acceptable to either implementatioRlex is fully compliant with the POSIXex specification, gcept that
when using¥opointer (the deéult), a call tounput() destrys the contents ofytext, which is counter to
the POSIX specification.

In this section we discuss all of the koareas of incompatibility betweenxX|eAT&T lex, and the POSIX
specification.

flex’s =l option turns on maximum compatibility with the origindl &I lex implementation, at the cost of
a major loss in the generated scansgerformance. W rote belov which incompatibilities can bever-
come using thel option.

Version 2.5 April 1995 34

FLEX(1) FLEX(1)

flexis fully compatible witHex with the folloning exceptions:

- The undocumentel#x scanner internalariableyylineno is not supported unlesd or %option
yylineno is used.

yylineno should be maintained on a geirffer basis, rather than a pgranner (single globahvi-
able) basis.

yylineno is not part of the POSIX specification.

- Theinput() routine is not redefinable, though it may be called to read charactersirigllovhat-
evea has been matched by a rul.input() encounters an end-of-file the nornysiwrap() pro-
cessing is doneA ‘‘real” end-of-file is returned bynput() asEOF

Input is instead controlled by defining thi¥ _INPUT macro.

Theflex restriction thatnput() cannot be redefined is in accordance with the POSIX specification,
which simply does not specify amway of controlling the scannerinput other than by making an
initial assignment tgyin.

- Theunput() routine is not redefinablelhis restriction is in accordance with POSIX.

- flex scanners are not as reentranteasscanners. liparticular if you have an interactve sanner
and an interrupt handler which long-jumps out of the scarndrthe scanner is subsequently
called agin, you may get the foleing message:

fatal flex scanner internal erreiend of luffer missed

To reenter the scanndirst use

yyrestart(yyin);
Note that this call will threv away any buffered input; usually this isha problem with an interac-
tive sanner

Also note that fle C++ scanner classese reentrant, so if using C++ is an option for you, you
should use them instea®&ee "Generating C++ Scanners™ebfor details.

- output() is not supportedOutput from theeCHO macro is done to the file-pointgyout(default
stdout).

output() is not part of the POSIX specification.
- lex does not supporixelusive gart conditions (%x), though tii@re in the POSIX specification.
- When definitions arexpandedflex encloses them in parenthes#dith lex, the folloving:
NAME [A-Z][A-Z0-9]*
%%

foo{NAME}? printf("Found it\n");
%%

will not match the string "foo" because when the macroxaeded the rule is eqalent to
"foo[A-Z][A-Z0-9]*?" and the precedence is such that the '?’ is associated with "[A-Z0-9]*".
With flex, the rule will be gpanded to "foo([A-Z][A-Z0-9]*)?" and so the string "foo" will match.

Note that if the definition lggns with™ or ends with then it isnot expanded with parentheses, to
allow these operators to appear in definitions without losing their special meaBuigthe<s>, /,
and<<EOF>> operators cannot be used ifiex definition.

Using-I results in théex behaior of no parentheses around the definition.

The POSIX specification is that the definition be enclosed in parentheses.

Version 2.5 April 1995 35

FLEX(1)

FLEX(1)

Some implementations déx allow a rule’s action to bgin on a separate line, if the ridghattern
has trailing whitespace:

%%
foo|bar<space here>
{foobar_action(); }

flex does not support this feature.

Thelex %r (generate a Ratfor scanner) option is not suppoliited.not part of the POSIX speci-
fication.

After a call tounput(), yytextis undefined until the métoken is matched, unless the scannasw
built using %array. This is not the case witlex or the POSIX specificationThe —| option does
away with this incompatibility

The precedence of tHg (numeric range) operator is f#ifent. lex interprets "abc{1,3}" as "match
one, two, or three occurrences of 'abc’™, wherdlas interprets it as "match 'ab’ folleed by one,
two, or three occurrences of 'c’The latter is in agreement with the POSIX specification.

The precedence of thieoperator is dierent. lex interprets "“foolbar" as "match either 'foo’ at the
beginning of a line, or 'bar’ aywhere", whereafiex interprets it as "match either 'foo’ or 'bar’ if
they come at the tginning of a line". The latter is in agreement with the POSIX specification.

The special table-size declarations suckoassupported byex are not required bflex scanners;
flexignores them.

The name FLEX_SCANNER is #defideto scanners may be written for use with eitffiex or
lex. Scanners also includ€Y_FLEX MAJOR_VERSION and YY_FLEX MINOR_VER-
SION indicating which ersion offlex generated the scanner (foraenple, for the 2.5 release,
these defines auld be 2 and 5 respeatly).

The following flex features are not included liex or the POSIX specification:

C++ scanners

%option

start condition scopes

start condition stacks
interactve/non-interactre £anners
yy_scan_string() and friends
yyterminate()
yy_set_interactie()
yy_set_bol()

YY_AT_BOL()

<<EOF>>

<*>

YY_DECL

YY_START
YY_USER_ACTION
YY_USER_INIT

#line directves

%{}’' s aound actions
multiple actions on a line

plus almost all of the fleflags. Thdast feature in the list refers to treect that withflex you can put multi-
ple actions on the same line, separated with semi-colons, whiléewithe folloving

foo handle_foo()#+num_foos_seen;

Version 2.5

April 1995 36

FLEX(1) FLEX(1)

is (rather surprisingly) truncated to
foo handle_foo();

flex does not truncate the actioActions that are not enclosed in braces are simply terminated at the end of
the line.

DIAGNOSTICS
warning rule cannot be maktedindicates that the gén rule cannot be matched because it feioother
rules that will alvays match the samexteas it. For example, in the follwing "foo" cannot be matched
because it comes after an identifier "catch-all" rule:

[a-z]+ got_identifier();
foo got_foo();

UsingREJECT in a scanner suppresses thermng.

warning —soption given bt default rule can be matedmeans that it is possible (perhaps only in a partic-
ular start condition) that the a@efit rule (match ansingle character) is the only one that will match & par
ticular input. Since—swas gven, presumably this is not intended.

reject_used_bt_not_detected undefinemt yymoe_used_bt_not_detected undefinedThese errors can
occur at compile timeThey indicate that the scanner u®REJECT or yymore() but that flex failed to
notice the &ct, meaning thdtex scanned the first wvsections looking for occurrences of these actions and
failed to find aw, but somehw you snuck some in (via a #include file, foraeple). Uséooption r eject

or %option yymoreto indicate to flg that you really do use these features.

flex scanner jammed a scanner compiled with-s has encountered an input string whicaswt matched
by ary of its rules. This error can also occur due to internal problems.

token too lage, exceeds YYLMAXyour scanner uséarray and one of its rules matched a string longer
than theYYLMAX constant (8K bytes by daidilt). You can increase thale by #define’ingf YLMAX
in the definitions section of yoflex input.

scanner equites -8 flg to use the baracter 'x’ - Your scanner specification includes recognizing the 8-bit
characterx’ and you did not specify the -8 flag, and your scanneuttefl to 7-bit because you used the
—Cf or —CF table compression option&ee the discussion of th& flag for details.

flex scanner push-bdcoverflow -you usedunput() to push back so muchxtethat the scannes’buffer
could not hold both the pushed-backttand the current t@n in yytext. Ideally the scanner should
dynamically resize theuffer in this case, Ut at present it does not.

input tuffer overflow can't enlarge huffer because scanner uses REJEQHe scanner as working on
matching anxtremely lage tolen and needed txjgand the inputlffer. This doesrt' work with scanners
that useREJECT.

fatal flex scanner internal emr--end of liffer missed -This can occur in an scanner which is reentered
after a long-jump has jumped out (orep) the scannes’ activation frame. Before reentering the scanner
use:

yyrestart(yyin);

or, as oted abwe, switch to using the C++ scanner class.

too many start conditions in <> constructyeu listed more start conditions in a <> construct thast ¢so
you must hee listed at least one of them twice).

FILES
=Ifl library with which scanners must be letk

lex.yyc generated scanner (callestyy.c on some systems).

Version 2.5 April 1995 37

FLEX(1) FLEX(1)

lex.yycc
generated C++ scanner class, when using

<g++/Fle xLexerh>
header file defining the C++ scanner base ckeglexer, and its deried dass,yyFlexLexer.

flex.skl skeleton scannerThis file is only used wheruidding flex, not when fl& executes.

lex.badkup
backing-up information forb flag (callediex.bd on some systems).

DEFICIENCIES / BUGS

Some trailing contd patterns cannot be properly matched and generateinvg messages ("dangerous
trailing context"). Theseare patterns where the ending of the first part of the rule matchegtheibg of
the second part, such as "zx*/xy*", where the 'x* matches the 'x’ at tig;nbimg of the trailing conte.
(Note that the POSIX draft states that the teatched by such patterns is undefined.)

For some trailing contet rules, parts which are actually dot-length are not recognized as such, leading to
the abee nentioned performance los$n particular parts using '|' or {n} (such as "foo{3}") are akys
considered ariable-length.

Combining trailing contet with the special ’|' action can result fixedtrailing context being turned into
the more gpensve variabletrailing contet. For example, in the follaving:

%%
abc |
xyz/def

Use ofunput() invalidates yytat and yyleng, unless tiéarray directive a the—l option has been used.
Patern-matching of NUKs is substantially slaver than matching other characters.

Dynamic resizing of the inputulffer is slav, as it entails rescanning all thexematched sodr by the cur
rent (generally huge) tek.

Due to both bffering of input and read-ahead, you cannot intermix calls to <stdio.h> routines, such as, for
example,getchar(), with flex rules and epect it to vork. Callinput() instead.

The total table entries listed by the flag excludes the number of table entries needed to determine what
rule has been matched@he number of entries is equal to the number o Bfates if the scanner does not
useREJECT, and somehat greater than the number of states if it does.

REJECT cannot be used with the or —F options.

Theflex internal algorithms need documentation.

SEE ALSO

lex(1), yacc(l), sed(1) vek(1).

John Leine, Tony Mason, and Doug Bwmn, Lex & Yacc, O’Reilly and AssociatesBe sure to get the 2nd
edition.

M. E. Lesk and E. SchmidtEX — Lexical Analyzer Genator

Alfred Aho, Ravi Sethi and Jdifey Ullman, Compiles: Principles, €hniques and dols, Addison-Wesley
(1986). Describethe pattern-matching techniques usedl&y(deterministic finite automata).

AUTHOR

Vern Paxson, with the help of mgndeas and much inspiration fronaivJacobsonOriginal version by Jef
Poskanzer The fast table representation is a partial implementation of a design donanbya®obson.
The implementation as done by Kvin Gong and ¥rn Raxson.

Thanks to the manflex beta-testers, feedbasis, and contriltors, especially Francois Pinard, Gakee-
dom, Robert Abramatz, Stan Adermann,€fry Allen, Darid Barker-Plummer John Basrai, Neal Beek,
Nelson H.FBeebe, benson@odi.com, Karl BerPgter A. Bigot, Simon Blanchard,gith Bostic, Frederic

Version 2.5 April 1995 38

FLEX(1) FLEX(1)

Brehm, lan Brockbank, Kin Cho, Nick ChristophBrian ClapperJ.T. Conklin, Jason Coughlin, Bill Cox,
Nick CropperDaveCurtis, Scott Daid Daniels, Chris G. Demetriou, Theo Deraadt, &idonahue, Chuck
Doucette, ®dm Epperly Leo Eskin, Chris &ylor, Chris Flatters, Jon dfrest, Jdfey Friedl, Joe Gayda,
Kaveh R. Ghazi, Wblfgang Glunz, Eric Goldman, Christopher M. Gould, Ulrich Grepel, Peer Griebel, Jan
Hajic, Charles Hemphill, NOB Hideo, Jarkk Hietaniemi, Scott Hofmann, Jefionig, Dana Hudes, Eric
Hughes, John Interrante, Ceriel Jacobs, Michafelmeann, Sakari Jaleara, Jefey R. Jones, Henry
Juengst, Klaus Kaempf, Jonathan I. Kamemsrehce O Kane, Amir Katzek@len.hilco.com, kvin B.
Kenny, Seve Kirsch, Wnfried Koenig, Marq Kle, Ronald Lamprecht, GgeLee, Rohan Lenard, Craig
Leres, John Léne, Stee Liddle, Daiid Loffredo, Mike Long, Mohamed el LozyBrian Madsen, Malte,
Joe Marshall, Bengt Martensson, Chris Metcalf, & dlewburn, Jim Megering, R. Alexander Milawski,
Erik Naggum, G.TNicol, Landon Noll, James NordpbMarc Nozell, Richard Ohnemus, KarsteshRle,
Sven Ranne, Roland Pesch,alter Pelissero, Gaumond Pierre, Esmond Pitt, Jef PoskaoeeRahmeh,
Jarmo Raiha, Frederic RaimbaulgtARankin, Rick Richardson,ekin Rodgers, Kai Uwe Rommel, Jim
Roskind, Alberto Santini, Andreas Schef@r

