
FLEX(1) FLEX(1)

NAME
flex − fast lexical analyzer generator

SYNOPSIS
flex [−bcdfhilnpstvwBFIL TV78+? −C[aefFmr] −ooutput −Pprefix −Sskeleton] [−−help −−version]
[filename ...]

OVERVIEW
This manual describesflex, a tool for generating programs that perform pattern-matching on text. Theman-
ual includes both tutorial and reference sections:

Description
a brief overview of the tool

Some Simple Examples

Format Of The Input File

Patterns
the extended regular expressions used by flex

How The Input Is Matched
the rules for determining what has been matched

Actions
how to specify what to do when a pattern is matched

The Generated Scanner
details regarding the scanner that flex produces;
how to control the input source

Start Conditions
introducing context into your scanners, and
managing "mini-scanners"

Multiple Input Buffers
how to manipulate multiple input sources; how to
scan from strings instead of files

End-of-file Rules
special rules for matching the end of the input

Miscellaneous Macros
a summary of macros available to the actions

Values Available To The User
a summary of values available to the actions

Interfacing With Yacc
connecting flex scanners together with yacc parsers

Options
flex command-line options, and the "%option"
directive

Performance Considerations

Version 2.5 April 1995 1

FLEX(1) FLEX(1)

how to make your scanner go as fast as possible

Generating C++ Scanners
the (experimental) facility for generating C++
scanner classes

Incompatibilities With Lex And POSIX
how flex differs from AT&T lex and the POSIX lex
standard

Diagnostics
those error messages produced by flex (or scanners
it generates) whose meanings might not be apparent

Files
files used by flex

Deficiencies / Bugs
known problems with flex

See Also
other documentation, related tools

Author
includes contact information

DESCRIPTION
flex is a tool for generatingscanners: programs which recognized lexical patterns in text. flex reads the
given input files, or its standard input if no file names are given, for a description of a scanner to generate.
The description is in the form of pairs of regular expressions and C code, calledrules. flex generates as out-
put a C source file,lex.yy.c, which defines a routineyylex(). This file is compiled and linked with the−lfl
library to produce an executable. Whenthe executable is run, it analyzes its input for occurrences of the
regular expressions. Whenever it finds one, it executes the corresponding C code.

SOME SIMPLE EXAMPLES
First some simple examples to get the flavor of how one usesflex. The following flex input specifies a scan-
ner which whenever it encounters the string "username" will replace it with the user’s login name:

%%
username printf("%s", getlogin());

By default, any text not matched by aflex scanner is copied to the output, so the net effect of this scanner is
to copy its input file to its output with each occurrence of "username" expanded. Inthis input, there is just
one rule. "username" is thepatternand the "printf" is theaction. The "%%" marks the beginning of the
rules.

Here’s another simple example:

int num_lines = 0, num_chars = 0;

%%
\n ++num_lines;++num_chars;
. ++num_chars;

%%

Version 2.5 April 1995 2

FLEX(1) FLEX(1)

main()
{
yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

This scanner counts the number of characters and the number of lines in its input (it produces no output
other than the final report on the counts).The first line declares two globals, "num_lines" and
"num_chars", which are accessible both insideyylex() and in themain() routine declared after the second
"%%". Thereare two rules, one which matches a newline ("\n") and increments both the line count and the
character count, and one which matches any character other than a newline (indicated by the "." regular
expression).

A somewhat more complicated example:

/* scanner for a toy Pascal-like language */

%{
/* need this for the call to atof() below */
#include <math.h>
%}

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,

atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[ˆ}\n]*"}" /* eat up one-line comments */

[\t\n]+ /* eat up whitespace */

. printf("Unrecognized character: %s\n", yytext);

%%

main(argc, argv)

Version 2.5 April 1995 3

FLEX(1) FLEX(1)

int argc;
char **argv;

{
++argv, --argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();
}

This is the beginnings of a simple scanner for a language like Pascal. Itidentifies different types oftokens
and reports on what it has seen.

The details of this example will be explained in the following sections.

FORMAT OF THE INPUT FILE
Theflex input file consists of three sections, separated by a line with just%% in it:

definitions
%%
rules
%%
user code

The definitionssection contains declarations of simplenamedefinitions to simplify the scanner specifica-
tion, and declarations ofstart conditions,which are explained in a later section.

Name definitions have the form:

name definition

The "name" is a word beginning with a letter or an underscore (’_’) followed by zero or more letters, digits,
’_’, or ’-’ (dash). The definition is taken to begin at the first non-white-space character following the name
and continuing to the end of the line.The definition can subsequently be referred to using "{name}", which
will expand to "(definition)".For example,

DIGIT [0-9]
ID [a-z][a-z0-9]*

defines "DIGIT" to be a regular expression which matches a single digit, and "ID" to be a regular expres-
sion which matches a letter followed by zero-or-more letters-or-digits. Asubsequent reference to

{DIGIT}+"."{DIGIT}*

is identical to

([0-9])+"."([0-9])*

and matches one-or-more digits followed by a ’.’ f ollowed by zero-or-more digits.

Therulessection of theflex input contains a series of rules of the form:

pattern action

where the pattern must be unindented and the action must begin on the same line.

Version 2.5 April 1995 4

FLEX(1) FLEX(1)

See below for a further description of patterns and actions.

Finally, the user code section is simply copied tolex.yy.c verbatim. It is used for companion routines
which call or are called by the scanner. The presence of this section is optional; if it is missing, the second
%% in the input file may be skipped, too.

In the definitions and rules sections, any indentedtext or text enclosed in%{ and%} is copied verbatim to
the output (with the %{}’s removed). The%{}’ s must appear unindented on lines by themselves.

In the rules section, any indented or %{} text appearing before the first rule may be used to declare vari-
ables which are local to the scanning routine and (after the declarations) code which is to be executed
whenever the scanning routine is entered.Other indented or %{} text in the rule section is still copied to
the output, but its meaning is not well-defined and it may well cause compile-time errors (this feature is
present forPOSIXcompliance; see below for other such features).

In the definitions section (but not in the rules section), an unindented comment (i.e., a line beginning with
"/*") is also copied verbatim to the output up to the next "*/".

PATTERNS
The patterns in the input are written using an extended set of regular expressions. Theseare:

x match the character ’x’
. any character (byte) except newline
[xyz] a "character class"; in this case, the pattern

matches either an ’x’, a ’y’, or a ’z’
[abj-oZ] a"character class" with a range in it; matches

an ’a’, a ’b’, any letter from ’j’ through ’o’,
or a ’Z’

[ˆA-Z] a "negated character class", i.e., any character
but those in the class.In this case, any
character EXCEPT an uppercase letter.

[ˆA-Z\n] any character EXCEPT an uppercase letter or
a newline

r* zeroor more r’s, where r is any regular expression
r+ oneor more r’s
r? zeroor one r’s (that is, "an optional r")
r{2,5} anywhere from two to five r’s
r{2,} tw o or more r’s
r{4} exactly 4 r’s
{name} theexpansion of the "name" definition

(see above)
"[xyz]\"foo"

the literal string: [xyz]"foo
\X if X is an ’a’, ’b’, ’f ’, ’n’, ’ r’, ’ t’, or ’v’,

then the ANSI-C interpretation of \x.
Otherwise, a literal ’X’ (used to escape
operators such as ’*’)

\0 aNUL character (ASCII code 0)
\123 thecharacter with octal value 123
\x2a thecharacter with hexadecimal value 2a
(r) matchan r; parentheses are used to override

precedence (see below)

rs theregular expression r followed by the
regular expression s; called "concatenation"

Version 2.5 April 1995 5

FLEX(1) FLEX(1)

r|s eitheran r or an s

r/s anr but only if it is followed by an s.The
text matched by s is included when determining
whether this rule is the "longest match",
but is then returned to the input before
the action is executed. Sothe action only
sees the text matched by r. This type
of pattern is called trailing context".
(There are some combinations of r/s that flex
cannot match correctly; see notes in the
Deficiencies / Bugs section below reg arding
"dangerous trailing context".)

ˆr anr, but only at the beginning of a line (i.e.,
which just starting to scan, or right after a
newline has been scanned).

r$ anr, but only at the end of a line (i.e., just
before a newline). Equivalent to "r/\n".

Note that flex’s notion of "newline" is exactly
whatever the C compiler used to compile flex
interprets ’\n’ as; in particular, on some DOS
systems you must either filter out \r’s in the
input yourself, or explicitly use r/\r\n for "r$".

<s>r anr, but only in start condition s (see
below for discussion of start conditions)

<s1,s2,s3>r
same, but in any of start conditions s1,
s2, or s3

<*>r anr in any start condition, even an exclusive one.

<<EOF>> anend-of-file
<s1,s2><<EOF>>

an end-of-file when in start condition s1 or s2

Note that inside of a character class, all regular expression operators lose their special meaning except
escape (’\’) and the character class operators, ’-’, ’]’, and, at the beginning of the class, ’ˆ’.

The regular expressions listed above are grouped according to precedence, from highest precedence at the
top to lowest at the bottom.Those grouped together have equal precedence.For example,

foo|bar*

is the same as

(foo)|(ba(r*))

since the ’*’ operator has higher precedence than concatenation, and concatenation higher than alternation
(’|’). This pattern therefore matcheseither the string "foo"or the string "ba" followed by zero-or-more r’s.
To match "foo" or zero-or-more "bar"’s, use:

Version 2.5 April 1995 6

FLEX(1) FLEX(1)

foo|(bar)*

and to match zero-or-more "foo"’s-or-"bar"’s:

(foo|bar)*

In addition to characters and ranges of characters, character classes can also contain character classexpres-
sions. These are expressions enclosed inside[: and :] delimiters (which themselves must appear between
the ’[’ and ’]’ of the character class; other elements may occur inside the character class, too).The valid
expressions are:

[:alnum:] [:alpha:] [:blank:]
[:cntrl:] [:digit:] [:graph:]
[:lower:] [:print:] [:punct:]
[:space:] [:upper:] [:xdigit:]

These expressions all designate a set of characters equivalent to the corresponding standard CisXXX func-
tion. For example,[:alnum:] designates those characters for whichisalnum() returns true - i.e., any alpha-
betic or numeric.Some systems don’t provide isblank(), so flex defines[:blank:] as a blank or a tab.

For example, the following character classes are all equivalent:

[[:alnum:]]
[[:alpha:][:digit:]]
[[:alpha:]0-9]
[a-zA-Z0-9]

If your scanner is case-insensitive (the−i flag), then[:upper:] and[:lower:] are equivalent to[:alpha:].

Some notes on patterns:

- A negated character class such as the example "[ˆA-Z]" above will match a newline unless "\n" (or
an equivalent escape sequence) is one of the characters explicitly present in the negated character
class (e.g., "[ˆA-Z\n]").This is unlike how many other regular expression tools treat negated char-
acter classes, but unfortunately the inconsistency is historically entrenched.Matching newlines
means that a pattern like [̂ "]* can match the entire input unless there’s another quote in the input.

- A rule can have at most one instance of trailing context (the ’/’ operator or the ’$’ operator).The
start condition, ’ˆ’, and "<<EOF>>" patterns can only occur at the beginning of a pattern, and, as
well as with ’/’ and ’$’, cannot be grouped inside parentheses.A ’ ˆ’ which does not occur at the
beginning of a rule or a ’$’ which does not occur at the end of a rule loses its special properties
and is treated as a normal character.

The following are illegal:

foo/bar$
<sc1>foo<sc2>bar

Note that the first of these, can be written "foo/bar\n".

The following will result in ’$’ or ’ˆ’ being treated as a normal character:

foo|(bar$)
foo|ˆbar

If what’s wanted is a "foo" or a bar-followed-by-a-newline, the following could be used (the spe-
cial ’|’ action is explained below):

Version 2.5 April 1995 7

FLEX(1) FLEX(1)

foo |
bar$ /*action goes here */

A similar trick will work for matching a foo or a bar-at-the-beginning-of-a-line.

HOW THE INPUT IS MA TCHED
When the generated scanner is run, it analyzes its input looking for strings which match any of i ts patterns.
If it finds more than one match, it takes the one matching the most text (for trailing context rules, this
includes the length of the trailing part, even though it will then be returned to the input).If it finds two or
more matches of the same length, the rule listed first in theflex input file is chosen.

Once the match is determined, the text corresponding to the match (called thetoken) is made available in
the global character pointeryytext, and its length in the global integeryyleng. Theactioncorresponding to
the matched pattern is then executed (a more detailed description of actions follows), and then the remain-
ing input is scanned for another match.

If no match is found, then thedefault ruleis executed: the next character in the input is considered matched
and copied to the standard output.Thus, the simplest legal flex input is:

%%

which generates a scanner that simply copies its input (one character at a time) to its output.

Note thatyytext can be defined in two different ways: either as a characterpointeror as a characterarray.
You can control which definitionflex uses by including one of the special directives %pointer or %array
in the first (definitions) section of your flex input. Thedefault is%pointer, unless you use the-l lex com-
patibility option, in which caseyytext will be an array. The advantage of using%pointer is substantially
faster scanning and no buffer overflow when matching very large tokens (unless you run out of dynamic
memory). Thedisadvantage is that you are restricted in how your actions can modifyyytext (see the next
section), and calls to theunput() function destroys the present contents ofyytext, which can be a consider-
able porting headache when moving between differentlex versions.

The advantage of%array is that you can then modifyyytext to your heart’s content, and calls tounput()
do not destroy yytext (see below). Furthermore,existing lex programs sometimes accessyytext externally
using declarations of the form:

extern char yytext[];
This definition is erroneous when used with%pointer, but correct for%array .

%array definesyytext to be an array ofYYLMAX characters, which defaults to a fairly large value. You
can change the size by simply #define’ingYYLMAX to a different value in the first section of yourflex
input. As mentioned above, with %pointer yytext grows dynamically to accommodate large tokens.
While this means your%pointer scanner can accommodate very large tokens (such as matching entire
blocks of comments), bear in mind that each time the scanner must resizeyytext it also must rescan the
entire token from the beginning, so matching such tokens can prove slow. yytext presently doesnot
dynamically grow if a call to unput() results in too much text being pushed back; instead, a run-time error
results.

Also note that you cannot use%array with C++ scanner classes (thec++ option; see below).

ACTIONS
Each pattern in a rule has a corresponding action, which can be any arbitrary C statement.The pattern ends
at the first non-escaped whitespace character; the remainder of the line is its action.If the action is empty,
then when the pattern is matched the input token is simply discarded.For example, here is the specification
for a program which deletes all occurrences of "zap me" from its input:

%%
"zap me"

(It will copy all other characters in the input to the output since they will be matched by the default rule.)

Version 2.5 April 1995 8

FLEX(1) FLEX(1)

Here is a program which compresses multiple blanks and tabs down to a single blank, and throws away
whitespace found at the end of a line:

%%
[\t]+ putchar(’ ’) ;
[\t]+$ /* ignore this token */

If the action contains a ’{’, then the action spans till the balancing ’}’ is found, and the action may cross
multiple lines. flex knows about C strings and comments and won’t be fooled by braces found within them,
but also allows actions to begin with %{ and will consider the action to be all the text up to the next %}
(regardless of ordinary braces inside the action).

An action consisting solely of a vertical bar (’|’) means "same as the action for the next rule." See below
for an illustration.

Actions can include arbitrary C code, includingretur n statements to return a value to whatever routine
calledyylex(). Each timeyylex() is called it continues processing tokens from where it last left off until it
either reaches the end of the file or executes a return.

Actions are free to modifyyytext except for lengthening it (adding characters to its end--these will over-
write later characters in the input stream).This however does not apply when using%array (see above);
in that case,yytext may be freely modified in any way.

Actions are free to modifyyyleng except they should not do so if the action also includes use ofyymore()
(see below).

There are a number of special directives which can be included within an action:

- ECHO copies yytext to the scanner’s output.

- BEGIN followed by the name of a start condition places the scanner in the corresponding start
condition (see below).

- REJECT directs the scanner to proceed on to the "second best" rule which matched the input (or a
prefix of the input).The rule is chosen as described above in "How the Input is Matched", and
yytext andyyleng set up appropriately. It may either be one which matched as much text as the
originally chosen rule but came later in theflex input file, or one which matched less text. For
example, the following will both count the words in the input and call the routine special() when-
ev er "frob" is seen:

int word_count = 0;
%%

frob special();REJECT;
[ˆ \t\n]+ ++word_count;

Without theREJECT, any "frob"’s in the input would not be counted as words, since the scanner
normally executes only one action per token. MultipleREJECT’s are allowed, each one finding
the next best choice to the currently active rule. For example, when the following scanner scans
the token "abcd", it will write "abcdabcaba" to the output:

%%
a |
ab |
abc |
abcd ECHO;REJECT;
.|\n /* eat up any unmatched character */

(The first three rules share the fourth’s action since they use the special ’|’ action.)REJECT is a

Version 2.5 April 1995 9

FLEX(1) FLEX(1)

particularly expensive feature in terms of scanner performance; if it is used inanyof the scanner’s
actions it will slow down all of the scanner’s matching. Furthermore,REJECT cannot be used
with the-Cf or -CF options (see below).

Note also that unlike the other special actions,REJECT is abranch; code immediately following
it in the action willnotbe executed.

- yymore() tells the scanner that the next time it matches a rule, the corresponding token should be
appendedonto the current value ofyytext rather than replacing it.For example, given the input
"mega-kludge" the following will write "mega-mega-kludge" to the output:

%%
mega- ECHO; yymore();
kludge ECHO;

First "mega-" is matched and echoed to the output.Then "kludge" is matched, but the previous
"mega-" is still hanging around at the beginning ofyytext so theECHO for the "kludge" rule will
actually write "mega-kludge".

Tw o notes regarding use ofyymore(). First, yymore() depends on the value ofyylengcorrectly reflecting
the size of the current token, so you must not modifyyylengif you are usingyymore(). Second, the pres-
ence ofyymore() in the scanner’s action entails a minor performance penalty in the scanner’s matching
speed.

- yyless(n)returns all but the firstn characters of the current token back to the input stream, where
they will be rescanned when the scanner looks for the next match. yytext andyyleng are adjusted
appropriately (e.g.,yyleng will now be equal ton). For example, on the input "foobar" the fol-
lowing will write out "foobarbar":

%%
foobar ECHO;yyless(3);
[a-z]+ ECHO;

An argument of 0 toyylesswill cause the entire current input string to be scanned again. Unless
you’ve changed how the scanner will subsequently process its input (usingBEGIN, for example),
this will result in an endless loop.

Note thatyylessis a macro and can only be used in the flex input file, not from other source files.

- unput(c) puts the characterc back onto the input stream.It will be the next character scanned.
The following action will take the current token and cause it to be rescanned enclosed in parenthe-
ses.

{
int i;
/* Copy yytext because unput() trashes yytext */
char *yycopy = strdup(yytext);
unput(’)’);
for (i = yyleng - 1; i >= 0; --i)

unput(yycopy[i]);
unput(’(’);
free(yycopy);
}

Note that since eachunput() puts the given character back at thebeginning of the input stream,
pushing back strings must be done back-to-front.

An important potential problem when usingunput() is that if you are using%pointer (the default), a call
to unput() destroysthe contents ofyytext, starting with its rightmost character and devouring one character

Version 2.5 April 1995 10

FLEX(1) FLEX(1)

to the left with each call.If you need the value of yytext preserved after a call tounput() (as in the above
example), you must either first copy it elsewhere, or build your scanner using%array instead (see How
The Input Is Matched).

Finally, note that you cannot put backEOF to attempt to mark the input stream with an end-of-file.

- input() reads the next character from the input stream.For example, the following is one way to
eat up C comments:

%%
"/*" {

register int c;

for (; ;)
{
while ((c = input()) != ’*’ &&

c != EOF)
; /* eat up text of comment */

if (c == ’*’)
{
while ((c = input()) == ’*’)

;
if (c == ’/’)

break; /*found the end */
}

if (c == EOF)
{
error("EOF in comment");
break;
}

}
}

(Note that if the scanner is compiled usingC++, theninput() is instead referred to asyyinput(), in
order to avoid a name clash with theC++ stream by the name ofinput.)

- YY_FLUSH_BUFFER flushes the scanner’s internal buffer so that the next time the scanner
attempts to match a token, it will first refill the buffer usingYY_INPUT (see The Generated Scan-
ner, below). This action is a special case of the more generalyy_flush_buffer() function,
described below in the section Multiple Input Buffers.

- yyterminate() can be used in lieu of a return statement in an action.It terminates the scanner and
returns a 0 to the scanner’s caller, indicating "all done".By default, yyterminate() is also called
when an end-of-file is encountered.It is a macro and may be redefined.

THE GENERATED SCANNER
The output offlex is the filelex.yy.c, which contains the scanning routineyylex(), a number of tables used
by it for matching tokens, and a number of auxiliary routines and macros.By default,yylex() is declared as
follows:

int yylex()
{
... various definitions and the actions in here ...
}

Version 2.5 April 1995 11

FLEX(1) FLEX(1)

(If your environment supports function prototypes, then it will be "int yylex(void)".) This definition may
be changed by defining the "YY_DECL" macro.For example, you could use:

#define YY_DECL float lexscan(a, b) float a, b;

to give the scanning routine the namelexscan,returning a float, and taking two floats as arguments. Note
that if you give arguments to the scanning routine using a K&R-style/non-prototyped function declaration,
you must terminate the definition with a semi-colon (;).

Whenever yylex() is called, it scans tokens from the global input fileyyin (which defaults to stdin).It con-
tinues until it either reaches an end-of-file (at which point it returns the value 0) or one of its actions
executes areturn statement.

If the scanner reaches an end-of-file, subsequent calls are undefined unless eitheryyin is pointed at a new
input file (in which case scanning continues from that file), oryyrestart() is called. yyrestart() takes one
argument, aFILE * pointer (which can be nil, if you’ve set upYY_INPUT to scan from a source other
thanyyin), and initializesyyin for scanning from that file.Essentially there is no difference between just
assigningyyin to a new input file or usingyyrestart() to do so; the latter is available for compatibility with
previous versions offlex, and because it can be used to switch input files in the middle of scanning.It can
also be used to throw away the current input buffer, by calling it with an argument ofyyin; but better is to
useYY_FLUSH_BUFFER (see above). Note that yyrestart() doesnot reset the start condition toINI-
TIAL (see Start Conditions, below).

If yylex() stops scanning due to executing areturn statement in one of the actions, the scanner may then be
called again and it will resume scanning where it left off.

By default (and for purposes of efficiency), the scanner uses block-reads rather than simplegetc() calls to
read characters fromyyin. The nature of how it gets its input can be controlled by defining theYY_INPUT
macro. YY_INPUT’s calling sequence is "YY_INPUT(buf,result,max_size)". Itsaction is to place up to
max_sizecharacters in the character arraybuf and return in the integer variableresult either the number of
characters read or the constant YY_NULL (0 on Unix systems) to indicate EOF. The default YY_INPUT
reads from the global file-pointer "yyin".

A sample definition of YY_INPUT (in the definitions section of the input file):

%{
#define YY_INPUT(buf,result,max_size) \

{ \
int c = getchar(); \
result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \
}

%}

This definition will change the input processing to occur one character at a time.

When the scanner receives an end-of-file indication from YY_INPUT, it then checks theyywrap() func-
tion. If yywrap() returns false (zero), then it is assumed that the function has gone ahead and set upyyin to
point to another input file, and scanning continues.If it returns true (non-zero), then the scanner terminates,
returning 0 to its caller. Note that in either case, the start condition remains unchanged; it doesnot revert to
INITIAL.

If you do not supply your own version ofyywrap(), then you must either use%option noyywrap (in
which case the scanner behaves as thoughyywrap() returned 1), or you must link with−lfl to obtain the
default version of the routine, which always returns 1.

Three routines are available for scanning from in-memory buffers rather than files:yy_scan_string(),
yy_scan_bytes(),andyy_scan_buffer(). See the discussion of them below in the section Multiple Input
Buffers.

The scanner writes itsECHO output to theyyoutglobal (default, stdout), which may be redefined by the

Version 2.5 April 1995 12

FLEX(1) FLEX(1)

user simply by assigning it to some otherFILE pointer.

START CONDITIONS
flex provides a mechanism for conditionally activating rules. Any rule whose pattern is prefixed with
"<sc>" will only be active when the scanner is in the start condition named "sc".For example,

<STRING>[ˆ"]* { /* eat up the string body ... */
...
}

will be active only when the scanner is in the "STRING" start condition, and

<INITIAL,STRING,QUOTE>\. { /* handle an escape ... */
...
}

will be active only when the current start condition is either "INITIAL", "STRING", or "QUOTE".

Start conditions are declared in the definitions (first) section of the input using unindented lines beginning
with either%s or %x followed by a list of names.The former declaresinclusivestart conditions, the latter
exclusivestart conditions.A start condition is activated using theBEGIN action. Until the next BEGIN
action is executed, rules with the given start condition will be active and rules with other start conditions
will be inactive. If the start condition isinclusive, then rules with no start conditions at all will also be
active. If i t is exclusive, thenonly rules qualified with the start condition will be active. A set of rules con-
tingent on the same exclusive start condition describe a scanner which is independent of any of the other
rules in theflex input. Becauseof this, exclusive start conditions make it easy to specify "mini-scanners"
which scan portions of the input that are syntactically different from the rest (e.g., comments).

If the distinction between inclusive and exclusive start conditions is still a little vague, here’s a simple
example illustrating the connection between the two. Theset of rules:

%s example
%%

<example>foo do_something();

bar something_else();

is equivalent to

%x example
%%

<example>foo do_something();

<INITIAL,example>bar something_else();

Without the<INITIAL,example> qualifier, thebar pattern in the second example wouldn’t be active (i.e.,
couldn’t match) when in start conditionexample. If we just used<example>to qualifybar, though, then it
would only be active in exampleand not inINITIAL, while in the first example it’s active in both, because
in the first example theexamplestartion condition is aninclusive(%s) start condition.

Also note that the special start-condition specifier<*> matches every start condition. Thus, the above
example could also have been written;

%x example
%%

Version 2.5 April 1995 13

FLEX(1) FLEX(1)

<example>foo do_something();

<*>bar something_else();

The default rule (toECHO any unmatched character) remains active in start conditions.It is equivalent to:

<*>.|\n ECHO;

BEGIN(0) returns to the original state where only the rules with no start conditions are active. This state
can also be referred to as the start-condition "INITIAL", soBEGIN(INITIAL) is equivalent toBEGIN(0).
(The parentheses around the start condition name are not required but are considered good style.)

BEGIN actions can also be given as indented code at the beginning of the rules section.For example, the
following will cause the scanner to enter the "SPECIAL" start condition whenever yylex() is called and the
global variableenter_specialis true:

int enter_special;

%x SPECIAL
%%

if (enter_special)
BEGIN(SPECIAL);

<SPECIAL>blahblahblah
...more rules follow...

To illustrate the uses of start conditions, here is a scanner which provides two different interpretations of a
string like "123.456". Bydefault it will treat it as three tokens, the integer "123", a dot (’.’), and the integer
"456". But if the string is preceded earlier in the line by the string "expect-floats" it will treat it as a single
token, the floating-point number 123.456:

%{
#include <math.h>
%}
%s expect

%%
expect-floats BEGIN(expect);

<expect>[0-9]+"."[0-9]+ {
printf("found a float, = %f\n",

atof(yytext));
}

<expect>\n {
/* that’s the end of the line, so
* we need another "expect-number"
* before we’ll recognize any more
* numbers
*/
BEGIN(INITIAL);
}

[0-9]+ {
printf("found an integer, = %d\n",

Version 2.5 April 1995 14

FLEX(1) FLEX(1)

atoi(yytext));
}

"." printf("found a dot\n");

Here is a scanner which recognizes (and discards) C comments while maintaining a count of the current
input line.

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[ˆ*\n]* /* eat anything that’s not a ’*’ */
<comment>"*"+[ˆ*/\n]* /* eat up ’*’s not followed by ’/’s */
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

This scanner goes to a bit of trouble to match as much text as possible with each rule.In general, when
attempting to write a high-speed scanner try to match as much possible in each rule, as it’s a big win.

Note that start-conditions names are really integer values and can be stored as such.Thus, the above could
be extended in the following fashion:

%x comment foo
%%

int line_num = 1;
int comment_caller;

"/*" {
comment_caller = INITIAL;
BEGIN(comment);
}

...

<foo>"/*" {
comment_caller = foo;
BEGIN(comment);
}

<comment>[ˆ*\n]* /* eat anything that’s not a ’*’ */
<comment>"*"+[ˆ*/\n]* /* eat up ’*’s not followed by ’/’s */
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(comment_caller);

Furthermore, you can access the current start condition using the integer-valuedYY_START macro. For
example, the above assignments tocomment_callercould instead be written

comment_caller = YY_START;

Flex providesYYSTATE as an alias forYY_START (since that is what’s used by AT&T lex).

Note that start conditions do not have their own name-space; %s’s and %x’s declare names in the same
fashion as #define’s.

Version 2.5 April 1995 15

FLEX(1) FLEX(1)

Finally, here’s an example of how to match C-style quoted strings using exclusive start conditions, includ-
ing expanded escape sequences (but not including checking for a string that’s too long):

%x str

%%
char string_buf[MAX_STR_CONST];
char *string_buf_ptr;

\" string_buf_ptr = string_buf; BEGIN(str);

<str>\" { /* saw closing quote - all done */
BEGIN(INITIAL);
*string_buf_ptr = ’\0’;
/* return string constant token type and
* value to parser
*/
}

<str>\n {
/* error - unterminated string constant */
/* generate error message */
}

<str>\\[0-7]{1,3} {
/* octal escape sequence */
int result;

(void) sscanf(yytext + 1, "%o", &result);

if (result > 0xff)
/* error, constant is out-of-bounds */

*string_buf_ptr++ = result;
}

<str>\\[0-9]+ {
/* generate error - bad escape sequence; something
* l ike ’\48’ or ’\0777777’
*/
}

<str>\\n *string_buf_ptr++ = ’\n’;
<str>\\t *string_buf_ptr++ = ’\t’;
<str>\\r *string_buf_ptr++ = ’\r’;
<str>\\b *string_buf_ptr++ = ’\b’;
<str>\\f *string_buf_ptr++ = ’\f’;

<str>\\(.|\n) *string_buf_ptr++ = yytext[1];

<str>[ˆ\\\n\"]+ {
char *yptr = yytext;

Version 2.5 April 1995 16

FLEX(1) FLEX(1)

while (*yptr)
*string_buf_ptr++ = *yptr++;

}

Often, such as in some of the examples above, you wind up writing a whole bunch of rules all preceded by
the same start condition(s).Flex makes this a little easier and cleaner by introducing a notion of start con-
dition scope. A start condition scope is begun with:

<SCs>{

whereSCsis a list of one or more start conditions.Inside the start condition scope, every rule automati-
cally has the prefix<SCs>applied to it, until a’}’ which matches the initial’{’. So, for example,

<ESC>{
"\\n" return’\n’;
"\\r" return’\r’;
"\\f" return ’\f ’;
"\\0" return’\0’;

}

is equivalent to:

<ESC>"\\n" return’\n’;
<ESC>"\\r" return’\r’;
<ESC>"\\f" return’\f ’;
<ESC>"\\0" return’\0’;

Start condition scopes may be nested.

Three routines are available for manipulating stacks of start conditions:

void yy_push_state(int new_state)
pushes the current start condition onto the top of the start condition stack and switches to
new_stateas though you had usedBEGIN new_state(recall that start condition names are also
integers).

void yy_pop_state()
pops the top of the stack and switches to it viaBEGIN.

int yy_top_state()
returns the top of the stack without altering the stack’s contents.

The start condition stack grows dynamically and so has no built-in size limitation. If memory is exhausted,
program execution aborts.

To use start condition stacks, your scanner must include a%option stack directive (see Options below).

MULTIPLE INPUT B UFFERS
Some scanners (such as those which support "include" files) require reading from several input streams.As
flex scanners do a large amount of buffering, one cannot control where the next input will be read from by
simply writing aYY_INPUT which is sensitive to the scanning context. YY_INPUT is only called when
the scanner reaches the end of its buffer, which may be a long time after scanning a statement such as an
"include" which requires switching the input source.

To negotiate these sorts of problems,flex provides a mechanism for creating and switching between multi-
ple input buffers. Aninput buffer is created by using:

YY_BUFFER_STATE yy_create_buffer(FILE *file, int size)

Version 2.5 April 1995 17

FLEX(1) FLEX(1)

which takes aFILE pointer and a size and creates a buffer associated with the given file and large enough to
hold sizecharacters (when in doubt, useYY_BUF_SIZE for the size).It returns aYY_BUFFER_STATE
handle, which may then be passed to other routines (see below). The YY_BUFFER_STATE type is a
pointer to an opaquestruct yy_buffer_state structure, so you may safely initialize YY_BUFFER_STATE
variables to((YY_BUFFER_STATE) 0) if you wish, and also refer to the opaque structure in order to cor-
rectly declare input buffers in source files other than that of your scanner. Note that theFILE pointer in the
call toyy_create_buffer is only used as the value ofyyin seen byYY_INPUT; if you redefineYY_INPUT
so it no longer usesyyin, then you can safely pass a nilFILE pointer toyy_create_buffer. You select a par-
ticular buffer to scan from using:

void yy_switch_to_buffer(YY_BUFFER_STATE new_buffer)

switches the scanner’s input buffer so subsequent tokens will come fromnew_buffer. Note that
yy_switch_to_buffer() may be used by yywrap() to set things up for continued scanning, instead of open-
ing a new file and pointing yyin at it. Note also that switching input sources via either
yy_switch_to_buffer() or yywrap() doesnotchange the start condition.

void yy_delete_buffer(YY_BUFFER_STATE buffer)

is used to reclaim the storage associated with a buffer. (buffer can be nil, in which case the routine does
nothing.) You can also clear the current contents of a buffer using:

void yy_flush_buffer(YY_BUFFER_STATE buffer)

This function discards the buffer’s contents, so the next time the scanner attempts to match a token from the
buffer, it will first fill the buffer anew usingYY_INPUT.

yy_new_buffer() is an alias foryy_create_buffer(), provided for compatibility with the C++ use ofnew
anddeletefor creating and destroying dynamic objects.

Finally, the YY_CURRENT_BUFFER macro returns aYY_BUFFER_STATE handle to the current
buffer.

Here is an example of using these features for writing a scanner which expands include files (the<<EOF>>
feature is discussed below):

/* the "incl" state is used for picking up the name
* of an include file
*/
%x incl

%{
#define MAX_INCLUDE_DEPTH 10
YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];
int include_stack_ptr = 0;
%}

%%
include BEGIN(incl);

[a-z]+ ECHO;
[ˆa-z\n]*\n? ECHO;

<incl>[\t]* /* eat the whitespace */
<incl>[ˆ \t\n]+ { / * got the include file name */

if (include_stack_ptr >= MAX_INCLUDE_DEPTH)

Version 2.5 April 1995 18

FLEX(1) FLEX(1)

{
fprintf(stderr, "Includes nested too deeply");
exit(1);
}

include_stack[include_stack_ptr++] =
YY_CURRENT_BUFFER;

yyin = fopen(yytext, "r");

if (! yyin)
error(...);

yy_switch_to_buffer(
yy_create_buffer(yyin, YY_BUF_SIZE));

BEGIN(INITIAL);
}

<<EOF>> {
if (--include_stack_ptr < 0)

{
yyterminate();
}

else
{
yy_delete_buffer(YY_CURRENT_BUFFER);
yy_switch_to_buffer(

include_stack[include_stack_ptr]);
}

}

Three routines are available for setting up input buffers for scanning in-memory strings instead of files.All
of them create a new input buffer for scanning the string, and return a corresponding
YY_BUFFER_STATE handle (which you should delete withyy_delete_buffer() when done with it).
They also switch to the new buffer usingyy_switch_to_buffer(), so the next call toyylex() will start scan-
ning the string.

yy_scan_string(const char *str)
scans a NUL-terminated string.

yy_scan_bytes(const char *bytes, int len)
scanslenbytes (including possibly NUL’s) starting at locationbytes.

Note that both of these functions create and scan acopy of the string or bytes.(This may be desirable,
sinceyylex() modifies the contents of the buffer it is scanning.)You can avoid the copy by using:

yy_scan_buffer(char *base, yy_size_t size)
which scans in place the buffer starting atbase, consisting ofsizebytes, the last two bytes of
which must be YY_END_OF_BUFFER_CHAR (ASCII NUL). These last two bytes are not
scanned; thus, scanning consists ofbase[0]throughbase[size-2],inclusive.

If you fail to set up base in this manner (i.e., forget the final two
YY_END_OF_BUFFER_CHAR bytes), thenyy_scan_buffer() returns a nil pointer instead of
creating a new input buffer.

Version 2.5 April 1995 19

FLEX(1) FLEX(1)

The typeyy_size_tis an integral type to which you can cast an integer expression reflecting the
size of the buffer.

END-OF-FILE R ULES
The special rule "<<EOF>>" indicates actions which are to be taken when an end-of-file is encountered and
yywrap() returns non-zero (i.e., indicates no further files to process).The action must finish by doing one
of four things:

- assigningyyin to a new input file (in previous versions of flex, after doing the assignment you had
to call the special actionYY_NEW_FILE; this is no longer necessary);

- executing areturn statement;

- executing the specialyyterminate() action;

- or, switching to a new buffer usingyy_switch_to_buffer() as shown in the example above.

<<EOF>> rules may not be used with other patterns; they may only be qualified with a list of start condi-
tions. If an unqualified <<EOF>> rule is given, it applies toall start conditions which do not already have
<<EOF>> actions.To specify an <<EOF>> rule for only the initial start condition, use

<INITIAL><<EOF>>

These rules are useful for catching things like unclosed comments.An example:

%x quote
%%

...other rules for dealing with quotes...

<quote><<EOF>> {
error("unterminated quote");
yyterminate();
}

<<EOF>> {
if (*++filelist)

yyin = fopen(*filelist, "r");
else

yyterminate();
}

MISCELLANEOUS MA CROS
The macroYY_USER_ACTION can be defined to provide an action which is always executed prior to the
matched rule’s action. For example, it could be #define’d to call a routine to convert yytext to lower-case.
WhenYY_USER_ACTION is invoked, the variableyy_actgives the number of the matched rule (rules are
numbered starting with 1).Suppose you want to profile how often each of your rules is matched.The fol-
lowing would do the trick:

#define YY_USER_ACTION ++ctr[yy_act]

wherectr is an array to hold the counts for the different rules.Note that the macroYY_NUM_RULES
gives the total number of rules (including the default rule, even if you use−s), so a correct declaration for
ctr is:

int ctr[YY_NUM_RULES];

The macroYY_USER_INIT may be defined to provide an action which is always executed before the first

Version 2.5 April 1995 20

FLEX(1) FLEX(1)

scan (and before the scanner’s internal initializations are done).For example, it could be used to call a rou-
tine to read in a data table or open a logging file.

The macroyy_set_interactive(is_interactive) can be used to control whether the current buffer is consid-
eredinteractive. An interactive buffer is processed more slowly, but must be used when the scanner’s input
source is indeed interactive to avoid problems due to waiting to fill buffers (see the discussion of the−I flag
below). A non-zero value in the macro invocation marks the buffer as interactive, a zero value as non-inter-
active. Note that use of this macro overrides%option always-interactive or %option never- interactive
(see Options below). yy_set_interactive() must be invoked prior to beginning to scan the buffer that is (or
is not) to be considered interactive.

The macroyy_set_bol(at_bol)can be used to control whether the current buffer’s scanning context for the
next token match is done as though at the beginning of a line. A non-zero macro argument makes rules
anchored with

The macroYY_AT_BOL() returns true if the next token scanned from the current buffer will have ’ˆ’ rules
active, false otherwise.

In the generated scanner, the actions are all gathered in one large switch statement and separated using
YY_BREAK, which may be redefined.By default, it is simply a "break", to separate each rule’s action
from the following rule’s. RedefiningYY_BREAK allows, for example, C++ users to #define
YY_BREAK to do nothing (while being very careful that every rule ends with a "break" or a "return"!) to
avoid suffering from unreachable statement warnings where because a rule’s action ends with "return", the
YY_BREAK is inaccessible.

VALUES AVAILABLE T O THE USER
This section summarizes the various values available to the user in the rule actions.

- char *yytext holds the text of the current token. Itmay be modified but not lengthened (you can-
not append characters to the end).

If the special directive %array appears in the first section of the scanner description, thenyytext
is instead declaredchar yytext[YYLMAX], whereYYLMAX is a macro definition that you can
redefine in the first section if you don’t like the default value (generally 8KB).Using %array
results in somewhat slower scanners, but the value ofyytext becomes immune to calls toinput()
andunput(),which potentially destroy its value whenyytext is a character pointer. The opposite
of %array is %pointer, which is the default.

You cannot use%array when generating C++ scanner classes (the−+ flag).

- int yyleng holds the length of the current token.

- FILE *yyin is the file which by default flex reads from.It may be redefined but doing so only
makes sense before scanning begins or after an EOF has been encountered.Changing it in the
midst of scanning will have unexpected results sinceflex buffers its input; useyyrestart() instead.
Once scanning terminates because an end-of-file has been seen, you can assignyyin at the new
input file and then call the scanner again to continue scanning.

- void yyrestart(FILE *new_file) may be called to pointyyin at the new input file. The switch-
over to the new file is immediate (any previously buffered-up input is lost).Note that calling
yyrestart() with yyin as an argument thus throws away the current input buffer and continues
scanning the same input file.

- FILE *yy out is the file to whichECHO actions are done.It can be reassigned by the user.

- YY_CURRENT_BUFFER returns aYY_BUFFER_STATE handle to the current buffer.

- YY_START returns an integer value corresponding to the current start condition.You can subse-
quently use this value withBEGIN to return to that start condition.

INTERFACING WITH Y ACC
One of the main uses offlex is as a companion to theyaccparser-generator. yaccparsers expect to call a
routine namedyylex() to find the next input token. Theroutine is supposed to return the type of the next

Version 2.5 April 1995 21

FLEX(1) FLEX(1)

token as well as putting any associated value in the globalyylval. To useflex with yacc,one specifies the
−d option toyaccto instruct it to generate the filey.tab.h containing definitions of all the%tok ensappear-
ing in theyacc input. Thisfile is then included in theflex scanner. For example, if one of the tokens is
"TOK_NUMBER", part of the scanner might look like:

%{
#include "y.tab.h"
%}

%%

[0-9]+ yylval = atoi(yytext); return TOK_NUMBER;

OPTIONS
flex has the following options:

−b Generate backing-up information tolex.backup. This is a list of scanner states which require back-
ing up and the input characters on which they do so. By adding rules one can remove backing-up
states. Ifall backing-up states are eliminated and−Cf or −CF is used, the generated scanner will
run faster (see the−p flag). Onlyusers who wish to squeeze every last cycle out of their scanners
need worry about this option.(See the section on Performance Considerations below.)

−c is a do-nothing, deprecated option included for POSIX compliance.

−d makes the generated scanner run indebug mode. Whenever a pattern is recognized and the global
yy_flex_debug is non-zero (which is the default), the scanner will write tostderr a line of the
form:

--accepting rule at line 53 ("the matched text")

The line number refers to the location of the rule in the file defining the scanner (i.e., the file that
was fed to flex). Messagesare also generated when the scanner backs up, accepts the default rule,
reaches the end of its input buffer (or encounters a NUL; at this point, the two look the same as far
as the scanner’s concerned), or reaches an end-of-file.

−f specifiesfast scanner. No table compression is done and stdio is bypassed.The result is large but
fast. Thisoption is equivalent to−Cfr (see below).

−h generates a "help" summary offlex’s options tostdoutand then exits. −? and −−help are syn-
onyms for−h.

−i instructsflex to generate acase-insensitivescanner. The case of letters given in theflex input pat-
terns will be ignored, and tokens in the input will be matched regardless of case.The matched text
given in yytext will have the preserved case (i.e., it will not be folded).

−l turns on maximum compatibility with the original AT&T lex implementation. Notethat this does
not meanfull compatibility. Use of this option costs a considerable amount of performance, and it
cannot be used with the−+, -f, -F, -Cf, or -CF options. For details on the compatibilities it pro-
vides, see the section "Incompatibilities With Lex And POSIX" below. This option also results in
the nameYY_FLEX_LEX_COMP AT being #define’d in the generated scanner.

−n is another do-nothing, deprecated option included only for POSIX compliance.

−p generates a performance report to stderr. The report consists of comments regarding features of
the flex input file which will cause a serious loss of performance in the resulting scanner. If you
give the flag twice, you will also get comments regarding features that lead to minor performance
losses.

Note that the use ofREJECT, %option yylineno, and variable trailing context (see the Deficien-
cies / Bugs section below) entails a substantial performance penalty; use ofyymore(), the ˆ

Version 2.5 April 1995 22

FLEX(1) FLEX(1)

operator, and the−I flag entail minor performance penalties.

−s causes thedefault rule(that unmatched scanner input is echoed tostdout)to be suppressed.If the
scanner encounters input that does not match any of i ts rules, it aborts with an error. This option is
useful for finding holes in a scanner’s rule set.

−t instructsflex to write the scanner it generates to standard output instead oflex.yy.c.

−v specifies thatflex should write tostderra summary of statistics regarding the scanner it generates.
Most of the statistics are meaningless to the casualflex user, but the first line identifies the version
of flex (same as reported by−V), and the next line the flags used when generating the scanner,
including those that are on by default.

−w suppresses warning messages.

−B instructsflex to generate abatch scanner, the opposite ofinteractivescanners generated by−I (see
below). In general, you use−B when you arecertain that your scanner will never be used interac-
tively, and you want to squeeze alittle more performance out of it.If your goal is instead to
squeeze out alot more performance, you shouldbe using the−Cf or −CF options (discussed
below), which turn on−B automatically anyway.

−F specifies that thefastscanner table representation should be used (and stdio bypassed).This rep-
resentation is about as fast as the full table representation(-f), and for some sets of patterns will be
considerably smaller (and for others, larger). In general, if the pattern set contains both
"keywords" and a catch-all, "identifier" rule, such as in the set:

"case" returnTOK_CASE;
"switch" returnTOK_SWITCH;
...
"default" return TOK_DEFAULT ;
[a-z]+ returnTOK_ID;

then you’re better off using the full table representation.If only the "identifier" rule is present and
you then use a hash table or some such to detect the keywords, you’re better off using-F.

This option is equivalent to−CFr (see below). It cannot be used with−+.

−I instructsflex to generate aninteractive scanner. An interactive scanner is one that only looks
ahead to decide what token has been matched if it absolutely must.It turns out that always look-
ing one extra character ahead, even if the scanner has already seen enough text to disambiguate the
current token, is a bit faster than only looking ahead when necessary. But scanners that always
look ahead give dreadful interactive performance; for example, when a user types a newline, it is
not recognized as a newline token until they enter another token, which often means typing in
another whole line.

Flex scanners default to interactiveunless you use the−Cf or −CF table-compression options (see
below). That’s because if you’re looking for high-performance you should be using one of these
options, so if you didn’t, flex assumes you’d rather trade off a bit of run-time performance for intu-
itive interactive behavior. Note also that youcannot use −I in conjunction with−Cf or −CF.
Thus, this option is not really needed; it is on by default for all those cases in which it is allowed.

You can force a scanner tonotbe interactive by using−B (see above).

−L instructsflex not to generate#line directives. Without this option,flex peppers the generated scan-
ner with #line directives so error messages in the actions will be correctly located with respect to
either the originalflex input file (if the errors are due to code in the input file), orlex.yy.c (if the
errors areflex’s fault -- you should report these sorts of errors to the email address given below).

−T makesflex run in tracemode. Itwill generate a lot of messages tostderr concerning the form of
the input and the resultant non-deterministic and deterministic finite automata.This option is
mostly for use in maintainingflex.

Version 2.5 April 1995 23

FLEX(1) FLEX(1)

−V prints the version number tostdoutand exits. −−version is a synonym for −V.

−7 instructsflex to generate a 7-bit scanner, i.e., one which can only recognized 7-bit characters in its
input. Theadvantage of using−7 is that the scanner’s tables can be up to half the size of those
generated using the−8 option (see below). Thedisadvantage is that such scanners often hang or
crash if their input contains an 8-bit character.

Note, however, that unless you generate your scanner using the−Cf or −CF table compression
options, use of−7 will save only a small amount of table space, and make your scanner consider-
ably less portable.Flex’s default behavior is to generate an 8-bit scanner unless you use the−Cf
or −CF, in which caseflex defaults to generating 7-bit scanners unless your site was always config-
ured to generate 8-bit scanners (as will often be the case with non-USA sites).You can tell
whether flex generated a 7-bit or an 8-bit scanner by inspecting the flag summary in the−v output
as described above.

Note that if you use−Cfe or −CFe (those table compression options, but also using equivalence
classes as discussed see below), flex still defaults to generating an 8-bit scanner, since usually with
these compression options full 8-bit tables are not much more expensive than 7-bit tables.

−8 instructsflex to generate an 8-bit scanner, i.e., one which can recognize 8-bit characters.This flag
is only needed for scanners generated using−Cf or −CF, as otherwise flex defaults to generating
an 8-bit scanner anyway.

See the discussion of−7 above for flex’s default behavior and the tradeoffs between 7-bit and 8-bit
scanners.

−+ specifies that you want flex to generate a C++ scanner class.See the section on Generating C++
Scanners below for details.

−C[aefFmr]
controls the degree of table compression and, more generally, trade-offs between small scanners
and fast scanners.

−Ca ("align") instructs flex to trade off larger tables in the generated scanner for faster perfor-
mance because the elements of the tables are better aligned for memory access and computation.
On some RISC architectures, fetching and manipulating longwords is more efficient than with
smaller-sized units such as shortwords. Thisoption can double the size of the tables used by your
scanner.

−Ce directsflex to constructequivalence classes,i.e., sets of characters which have identical lexi-
cal properties (for example, if the only appearance of digits in theflex input is in the character
class "[0-9]" then the digits ’0’, ’1’, ..., ’9’ will all be put in the same equivalence class).Equiv-
alence classes usually give dramatic reductions in the final table/object file sizes (typically a factor
of 2-5) and are pretty cheap performance-wise (one array look-up per character scanned).

−Cf specifies that thefull scanner tables should be generated -flex should not compress the tables
by taking advantages of similar transition functions for different states.

−CF specifies that the alternate fast scanner representation (described above under the−F flag)
should be used.This option cannot be used with−+.

−Cm directsflex to constructmeta-equivalence classes,which are sets of equivalence classes (or
characters, if equivalence classes are not being used) that are commonly used together. Meta-
equivalence classes are often a big win when using compressed tables, but they hav ea moderate
performance impact (one or two "if" tests and one array look-up per character scanned).

−Cr causes the generated scanner tobypassuse of the standard I/O library (stdio) for input.
Instead of callingfr ead()or getc(), the scanner will use theread() system call, resulting in a per-
formance gain which varies from system to system, but in general is probably negligible unless
you are also using−Cf or −CF. Using −Cr can cause strange behavior if, for example, you read
from yyin using stdio prior to calling the scanner (because the scanner will miss whatever text your
previous reads left in the stdio input buffer).

Version 2.5 April 1995 24

FLEX(1) FLEX(1)

−Cr has no effect if you defineYY_INPUT (see The Generated Scanner above).

A lone−C specifies that the scanner tables should be compressed but neither equivalence classes
nor meta-equivalence classes should be used.

The options−Cf or −CF and−Cm do not make sense together - there is no opportunity for meta-
equivalence classes if the table is not being compressed.Otherwise the options may be freely
mixed, and are cumulative.

The default setting is−Cem, which specifies thatflex should generate equivalence classes and
meta-equivalence classes.This setting provides the highest degree of table compression.You can
trade off faster-executing scanners at the cost of larger tables with the following generally being
true:

slowest & smallest
-Cem
-Cm
-Ce
-C
-C{f,F}e
-C{f,F}
-C{f,F}a

fastest & largest

Note that scanners with the smallest tables are usually generated and compiled the quickest, so
during development you will usually want to use the default, maximal compression.

−Cfe is often a good compromise between speed and size for production scanners.

−ooutput
directs flex to write the scanner to the fileoutput instead oflex.yy.c. If you combine−o with the
−t option, then the scanner is written tostdoutbut its #line directives (see the−L option above)
refer to the fileoutput.

−Pprefix
changes the default yy prefix used byflex for all globally visible variable and function names to
instead beprefix. For example,−Pfoo changes the name ofyytext to footext. It also changes the
name of the default output file fromlex.yy.c to lex.foo.c. Here are all of the names affected:

yy_create_buffer
yy_delete_buffer
yy_flex_debug
yy_init_buffer
yy_flush_buffer
yy_load_buffer_state
yy_switch_to_buffer
yyin
yyleng
yylex
yylineno
yyout
yyrestart
yytext
yywrap

(If you are using a C++ scanner, then onlyyywrap andyyFlexLexer are affected.) Within your
scanner itself, you can still refer to the global variables and functions using either version of their
name; but externally, they hav ethe modified name.

Version 2.5 April 1995 25

FLEX(1) FLEX(1)

This option lets you easily link together multipleflex programs into the same executable. Note,
though, that using this option also renamesyywrap(), so you now musteither provide your own
(appropriately named) version of the routine for your scanner, or use%option noyywrap, as link-
ing with −lfl no longer provides one for you by default.

−Sskeleton_file
overrides the default skeleton file from whichflex constructs its scanners.You’ll never need this
option unless you are doingflex maintenance or development.

flex also provides a mechanism for controlling options within the scanner specification itself, rather than
from the flex command-line. Thisis done by including%option directives in the first section of the scan-
ner specification.You can specify multiple options with a single%option directive, and multiple directives
in the first section of your flex input file.

Most options are given simply as names, optionally preceded by the word "no" (with no intervening whites-
pace) to negate their meaning.A number are equivalent to flex flags or their negation:

7bit -7option
8bit -8option
align -Caoption
backup -boption
batch -Boption
c++ -+option

caseful or
case-sensitive opposite of -i (default)

case-insensitive or
caseless -ioption

debug -doption
default oppositeof -s option
ecs -Ceoption
fast -Foption
full -f option
interactive -I option
lex-compat -loption
meta-ecs -Cmoption
perf-report -poption
read -Croption
stdout -toption
verbose -voption
warn oppositeof -w option

(use "%option nowarn" for -w)

array equivalent to "%array"
pointer equivalent to "%pointer" (default)

Some%option’ s provide features otherwise not available:

always-interactive
instructs flex to generate a scanner which always considers its input "interactive". Normally, on
each new input file the scanner callsisatty() in an attempt to determine whether the scanner’s
input source is interactive and thus should be read a character at a time.When this option is used,
however, then no such call is made.

Version 2.5 April 1995 26

FLEX(1) FLEX(1)

main directs flex to provide a default main() program for the scanner, which simply callsyylex(). This
option impliesnoyywrap (see below).

never- interactive
instructs flex to generate a scanner which never considers its input "interactive" (again, no call
made toisatty()). This is the opposite ofalways-interactive.

stack enables the use of start condition stacks (see Start Conditions above).

stdinit if set (i.e.,%option stdinit) initializesyyin andyyoutto stdinandstdout,instead of the default of
nil. Some existing lex programs depend on this behavior, even though it is not compliant with
ANSI C, which does not requirestdinandstdoutto be compile-time constant.

yylineno
directsflex to generate a scanner that maintains the number of the current line read from its input
in the global variableyylineno. This option is implied by%option lex-compat.

yywrap
if unset (i.e.,%option noyywrap), makes the scanner not callyywrap() upon an end-of-file, but
simply assume that there are no more files to scan (until the user pointsyyin at a new file and calls
yylex() again).

flex scans your rule actions to determine whether you use theREJECT or yymore() features. Thereject
andyymore options are available to override its decision as to whether you use the options, either by set-
ting them (e.g.,%option r eject) to indicate the feature is indeed used, or unsetting them to indicate it actu-
ally is not used (e.g.,%option noyymore).

Three options take string-delimited values, offset with ’=’:

%option outfile="ABC"

is equivalent to-oABC, and

%option prefix="XYZ"

is equivalent to-PXYZ. Finally,

%option yyclass="foo"

only applies when generating a C++ scanner (−+ option). It informs flex that you have derived foo as a
subclass ofyyFlexLexer, so flex will place your actions in the member functionfoo::yylex() instead of
yyFlexLexer::yylex(). It also generates ayyFlexLexer::yylex() member function that emits a run-time
error (by invoking yyFlexLexer::LexerErr or()) if called. See Generating C++ Scanners, below, for addi-
tional information.

A number of options are available for lint purists who want to suppress the appearance of unneeded rou-
tines in the generated scanner. Each of the following, if unset (e.g.,%option nounput), results in the cor-
responding routine not appearing in the generated scanner:

input, unput
yy_push_state, yy_pop_state, yy_top_state
yy_scan_buffer, yy_scan_bytes, yy_scan_string

(thoughyy_push_state()and friends won’t appear anyway unless you use%option stack).

PERFORMANCE CONSIDERATIONS
The main design goal offlex is that it generate high-performance scanners.It has been optimized for deal-
ing well with large sets of rules.Aside from the effects on scanner speed of the table compression−C
options outlined above, there are a number of options/actions which degrade performance.These are, from
most expensive to least:

Version 2.5 April 1995 27

FLEX(1) FLEX(1)

REJECT
%option yylineno
arbitrary trailing context

pattern sets that require backing up
%array
%option interactive
%option always-interactive

’ˆ’ beginning-of-line operator
yymore()

with the first three all being quite expensive and the last two being quite cheap.Note also thatunput() is
implemented as a routine call that potentially does quite a bit of work, while yyless() is a quite-cheap
macro; so if just putting back some excess text you scanned, useyyless().

REJECT should be avoided at all costs when performance is important.It is a particularly expensive
option.

Getting rid of backing up is messy and often may be an enormous amount of work for a complicated scan-
ner. In principal, one begins by using the−b flag to generate alex.backupfile. For example, on the input

%%
foo returnTOK_KEYWORD;
foobar returnTOK_KEYWORD;

the file looks like:

State #6 is non-accepting -
associated rule line numbers:

2 3
out-transitions: [o]
jam-transitions: EOF [\001-np-\177]

State #8 is non-accepting -
associated rule line numbers:

3
out-transitions: [a]
jam-transitions: EOF [\001-‘b-\177]

State #9 is non-accepting -
associated rule line numbers:

3
out-transitions: [r]
jam-transitions: EOF [\001-qs-\177]

Compressed tables always back up.

The first few lines tell us that there’s a scanner state in which it can make a transition on an ’o’ but not on
any other character, and that in that state the currently scanned text does not match any rule. Thestate
occurs when trying to match the rules found at lines 2 and 3 in the input file.If the scanner is in that state
and then reads something other than an ’o’, it will have to back up to find a rule which is matched.With a
bit of headscratching one can see that this must be the state it’s in when it has seen "fo".When this has
happened, if anything other than another ’o’ is seen, the scanner will have to back up to simply match the
’f ’ (by the default rule).

Version 2.5 April 1995 28

FLEX(1) FLEX(1)

The comment regarding State #8 indicates there’s a problem when "foob" has been scanned.Indeed, on
any character other than an ’a’, the scanner will have to back up to accept "foo".Similarly, the comment
for State #9 concerns when "fooba" has been scanned and an ’r’ does not follow.

The final comment reminds us that there’s no point going to all the trouble of removing backing up from
the rules unless we’re using−Cf or −CF, since there’s no performance gain doing so with compressed scan-
ners.

The way to remove the backing up is to add "error" rules:

%%
foo returnTOK_KEYWORD;
foobar returnTOK_KEYWORD;

fooba |
foob |
fo {

/* f alse alarm, not really a keyword */
return TOK_ID;
}

Eliminating backing up among a list of keywords can also be done using a "catch-all" rule:

%%
foo returnTOK_KEYWORD;
foobar returnTOK_KEYWORD;

[a-z]+ returnTOK_ID;

This is usually the best solution when appropriate.

Backing up messages tend to cascade.With a complicated set of rules it’s not uncommon to get hundreds
of messages.If one can decipher them, though, it often only takes a dozen or so rules to eliminate the
backing up (though it’s easy to make a mistake and have an error rule accidentally match a valid token. A
possible futureflex feature will be to automatically add rules to eliminate backing up).

It’s important to keep in mind that you gain the benefits of eliminating backing up only if you eliminate
every instance of backing up.Leaving just one means you gain nothing.

Variable trailing context (where both the leading and trailing parts do not have a fixed length) entails almost
the same performance loss asREJECT (i.e., substantial).So when possible a rule like:

%%
mouse|rat/(cat|dog) run();

is better written:

%%
mouse/cat|dog run();
rat/cat|dog run();

or as

%%
mouse|rat/cat run();
mouse|rat/dog run();

Version 2.5 April 1995 29

FLEX(1) FLEX(1)

Note that here the special ’|’ action doesnot provide any savings, and can even make things worse (see
Deficiencies / Bugs below).

Another area where the user can increase a scanner’s performance (and one that’s easier to implement)
arises from the fact that the longer the tokens matched, the faster the scanner will run.This is because with
long tokens the processing of most input characters takes place in the (short) inner scanning loop, and does
not often have to go through the additional work of setting up the scanning environment (e.g.,yytext) for
the action.Recall the scanner for C comments:

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[ˆ*\n]*
<comment>"*"+[ˆ*/\n]*
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

This could be sped up by writing it as:

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[ˆ*\n]*
<comment>[ˆ*\n]*\n ++line_num;
<comment>"*"+[ˆ*/\n]*
<comment>"*"+[ˆ*/\n]*\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

Now instead of each newline requiring the processing of another action, recognizing the newlines is "dis-
tributed" over the other rules to keep the matched text as long as possible.Note thataddingrules doesnot
slow down the scanner!The speed of the scanner is independent of the number of rules or (modulo the
considerations given at the beginning of this section) how complicated the rules are with regard to operators
such as ’*’ and ’|’.

A final example in speeding up a scanner: suppose you want to scan through a file containing identifiers and
keywords, one per line and with no other extraneous characters, and recognize all the keywords. Anatural
first approach is:

%%
asm |
auto |
break |
... etc ...
volatile |
while /* it’s a keyword */

.|\n /* it’s not a keyword */

To eliminate the back-tracking, introduce a catch-all rule:

Version 2.5 April 1995 30

FLEX(1) FLEX(1)

%%
asm |
auto |
break |
... etc ...
volatile |
while /* it’s a keyword */

[a-z]+ |
.|\n /* it’s not a keyword */

Now, if i t’s guaranteed that there’s exactly one word per line, then we can reduce the total number of
matches by a half by merging in the recognition of newlines with that of the other tokens:

%%
asm\n |
auto\n |
break\n |
... etc ...
volatile\n |
while\n /* it’s a keyword */

[a-z]+\n |
.|\n /* it’s not a keyword */

One has to be careful here, as we have now reintroduced backing up into the scanner. In particular, while
weknow that there will never be any characters in the input stream other than letters or newlines,flex can’t
figure this out, and it will plan for possibly needing to back up when it has scanned a token like "auto" and
then the next character is something other than a newline or a letter. Previously it would then just match the
"auto" rule and be done, but now it has no "auto" rule, only a "auto\n" rule.To eliminate the possibility of
backing up, we could either duplicate all rules but without final newlines, or, since we never expect to
encounter such an input and therefore don’t how it’s classified, we can introduce one more catch-all rule,
this one which doesn’t include a newline:

%%
asm\n |
auto\n |
break\n |
... etc ...
volatile\n |
while\n /* it’s a keyword */

[a-z]+\n |
[a-z]+ |
.|\n /* it’s not a keyword */

Compiled with−Cf, this is about as fast as one can get aflex scanner to go for this particular problem.

A final note:flex is slow when matching NUL’s, particularly when a token contains multiple NUL’s. It’s
best to write rules which matchshort amounts of text if it’ s anticipated that the text will often include
NUL’s.

Another final note regarding performance: as mentioned above in the section How the Input is Matched,
dynamically resizingyytext to accommodate huge tokens is a slow process because it presently requires
that the (huge) token be rescanned from the beginning. Thusif performance is vital, you should attempt to
match "large" quantities of text but not "huge" quantities, where the cutoff between the two is at about 8K

Version 2.5 April 1995 31

FLEX(1) FLEX(1)

characters/token.

GENERATING C++ SCANNERS
flex provides two different ways to generate scanners for use with C++.The first way is to simply compile
a scanner generated byflex using a C++ compiler instead of a C compiler. You should not encounter any
compilations errors (please report any you find to the email address given in the Author section below).
You can then use C++ code in your rule actions instead of C code.Note that the default input source for
your scanner remainsyyin, and default echoing is still done toyyout. Both of these remainFILE * vari-
ables and not C++streams.

You can also useflex to generate a C++ scanner class, using the−+ option (or, equivalently, %option c++),
which is automatically specified if the name of the flex executable ends in a ’+’, such asflex++. When
using this option, flex defaults to generating the scanner to the filelex.yy.cc instead oflex.yy.c. The gener-
ated scanner includes the header fileg++/FlexLexer.h,which defines the interface to two C++ classes.

The first class,FlexLexer, provides an abstract base class defining the general scanner class interface. It
provides the following member functions:

const char* YYText()
returns the text of the most recently matched token, the equivalent ofyytext.

int YYLeng()
returns the length of the most recently matched token, the equivalent ofyyleng.

int lineno() const
returns the current input line number (see%option yylineno), or 1 if %option yylineno was not
used.

void set_debug(int flag)
sets the debugging flag for the scanner, equivalent to assigning toyy_flex_debug (see the Options
section above). Notethat you must build the scanner using%option debug to include debugging
information in it.

int debug() const
returns the current setting of the debugging flag.

Also provided are member functions equivalent toyy_switch_to_buffer(), yy_create_buffer() (though the
first argument is anistream* object pointer and not aFILE*), yy_flush_buffer(), yy_delete_buffer(), and
yyrestart() (again, the first argument is aistream* object pointer).

The second class defined ing++/FlexLexer.h is yyFlexLexer, which is derived from FlexLexer. It defines
the following additional member functions:

yyFlexLexer(istream* arg_yyin = 0, ostream* arg_yyout = 0)
constructs ayyFlexLexer object using the given streams for input and output.If not specified, the
streams default tocin andcout, respectively.

virtual int yylex()
performs the same role isyylex() does for ordinary flex scanners: it scans the input stream, con-
suming tokens, until a rule’s action returns a value. If you derive a subclassS from yyFlexLexer
and want to access the member functions and variables ofS insideyylex(), then you need to use
%option yyclass="S" to inform flex that you will be using that subclass instead ofyyFlexLexer.
In this case, rather than generatingyyFlexLexer::yylex(), flex generatesS::yylex() (and also gen-
erates a dummyyyFlexLexer::yylex() that callsyyFlexLexer::LexerErr or() if called).

virtual v oid switch_streams(istream* new_in = 0,
ostream* new_out = 0)reassignsyyin to new_in (if non-nil) andyyout to new_out(ditto), delet-
ing the previous input buffer if yyin is reassigned.

int yylex(istream* new_in, ostream* new_out = 0)
first switches the input streams viaswitch_streams(new_in, new_out)and then returns the value
of yylex().

Version 2.5 April 1995 32

FLEX(1) FLEX(1)

In addition, yyFlexLexer defines the following protected virtual functions which you can redefine in
derived classes to tailor the scanner:

virtual int LexerInput(char* b uf, int max_size)
reads up tomax_sizecharacters intobuf and returns the number of characters read.To indicate
end-of-input, return 0 characters.Note that "interactive" scanners (see the−B and−I flags) define
the macroYY_INTERA CTIVE. If you redefineLexerInput() and need to take different actions
depending on whether or not the scanner might be scanning an interactive input source, you can
test for the presence of this name via#ifdef.

virtual v oid LexerOutput(const char* buf, int size)
writes outsize characters from the buffer buf, which, while NUL-terminated, may also contain
"internal" NUL’s if the scanner’s rules can match text with NUL’s in them.

virtual v oid LexerErr or(const char* msg)
reports a fatal error message.The default version of this function writes the message to the stream
cerr and exits.

Note that ayyFlexLexer object contains itsentire scanning state.Thus you can use such objects to create
reentrant scanners.You can instantiate multiple instances of the sameyyFlexLexer class, and you can also
combine multiple C++ scanner classes together in the same program using the−P option discussed above.

Finally, note that the%array feature is not available to C++ scanner classes; you must use%pointer (the
default).

Here is an example of a simple C++ scanner:

// An example of using the flex C++ scanner class.

%{
int mylineno = 0;
%}

string \"[ˆ\n"]+\"

ws [\t]+

alpha [A-Za-z]
dig [0-9]
name ({alpha}|{dig}|\$)({alpha}|{dig}|[_.\-/$])*
num1 [-+]?{dig}+\.?([eE][-+]?{dig}+)?
num2 [-+]?{dig}*\.{dig}+([eE][-+]?{dig}+)?
number {num1}|{num2}

%%

{ws} /* skip blanks and tabs */

"/*" {
int c;

while((c = yyinput()) != 0)
{
if(c == ’\n’)

++mylineno;

else if(c == ’*’)
{

Version 2.5 April 1995 33

FLEX(1) FLEX(1)

if((c = yyinput()) == ’/’)
break;

else
unput(c);

}
}

}

{number} cout<< "number " << YYText() << ’\n’;

\n mylineno++;

{name} cout<< "name " << YYText() << ’\n’;

{string} cout << "string " << YYText() << ’\n’;

%%

int main(int /* argc */, char** /* argv */)
{
FlexLexer* lexer = new yyFlexLexer;
while(lexer->yylex() != 0)

;
return 0;
}

If you want to create multiple (different) lexer classes, you use the−P flag (or theprefix= option) to
rename eachyyFlexLexer to some otherxxFlexLexer. You then can include<g++/FlexLexer.h> in your
other sources once per lexer class, first renamingyyFlexLexer as follows:

#undef yyFlexLexer
#define yyFlexLexer xxFlexLexer
#include <g++/FlexLexer.h>

#undef yyFlexLexer
#define yyFlexLexer zzFlexLexer
#include <g++/FlexLexer.h>

if, for example, you used%option pr efix="xx" for one of your scanners and%option pr efix="zz" for the
other.

IMPORTANT: the present form of the scanning class isexperimental and may change considerably
between major releases.

INCOMPATIBILITIES WITH LEX AND POSIX
flex is a rewrite of the AT&T Unix lex tool (the two implementations do not share any code, though), with
some extensions and incompatibilities, both of which are of concern to those who wish to write scanners
acceptable to either implementation.Flex is fully compliant with the POSIXlex specification, except that
when using%pointer (the default), a call tounput() destroys the contents ofyytext, which is counter to
the POSIX specification.

In this section we discuss all of the known areas of incompatibility between flex, AT&T lex, and the POSIX
specification.

flex’s −l option turns on maximum compatibility with the original AT&T lex implementation, at the cost of
a major loss in the generated scanner’s performance. We note below which incompatibilities can be over-
come using the−l option.

Version 2.5 April 1995 34

FLEX(1) FLEX(1)

flex is fully compatible withlex with the following exceptions:

- The undocumentedlex scanner internal variableyylineno is not supported unless−l or %option
yylineno is used.

yylineno should be maintained on a per-buffer basis, rather than a per-scanner (single global vari-
able) basis.

yylineno is not part of the POSIX specification.

- The input() routine is not redefinable, though it may be called to read characters following what-
ev er has been matched by a rule.If input() encounters an end-of-file the normalyywrap() pro-
cessing is done.A ‘ ‘real’’ end-of-file is returned byinput() asEOF.

Input is instead controlled by defining theYY_INPUT macro.

Theflex restriction thatinput() cannot be redefined is in accordance with the POSIX specification,
which simply does not specify any way of controlling the scanner’s input other than by making an
initial assignment toyyin.

- Theunput() routine is not redefinable.This restriction is in accordance with POSIX.

- flex scanners are not as reentrant aslex scanners. Inparticular, if you have an interactive scanner
and an interrupt handler which long-jumps out of the scanner, and the scanner is subsequently
called again, you may get the following message:

fatal flex scanner internal error--end of buffer missed

To reenter the scanner, first use

yyrestart(yyin);

Note that this call will throw away any buffered input; usually this isn’t a problem with an interac-
tive scanner.

Also note that flex C++ scanner classesare reentrant, so if using C++ is an option for you, you
should use them instead.See "Generating C++ Scanners" above for details.

- output() is not supported.Output from theECHO macro is done to the file-pointeryyout(default
stdout).

output() is not part of the POSIX specification.

- lex does not support exclusive start conditions (%x), though they are in the POSIX specification.

- When definitions are expanded,flex encloses them in parentheses.With lex, the following:

NAME [A-Z][A-Z0-9]*
%%
foo{NAME}? printf("Found it\n");
%%

will not match the string "foo" because when the macro is expanded the rule is equivalent to
"foo[A-Z][A-Z0-9]*?" and the precedence is such that the ’?’ is associated with "[A-Z0-9]*".
With flex, the rule will be expanded to "foo([A-Z][A-Z0-9]*)?" and so the string "foo" will match.

Note that if the definition begins withˆ or ends with$ then it isnot expanded with parentheses, to
allow these operators to appear in definitions without losing their special meanings.But the<s>, /,
and<<EOF>> operators cannot be used in aflex definition.

Using−l results in thelex behavior of no parentheses around the definition.

The POSIX specification is that the definition be enclosed in parentheses.

Version 2.5 April 1995 35

FLEX(1) FLEX(1)

- Some implementations oflex allow a rule’s action to begin on a separate line, if the rule’s pattern
has trailing whitespace:

%%
foo|bar<space here>
{ f oobar_action(); }

flex does not support this feature.

- The lex %r (generate a Ratfor scanner) option is not supported.It is not part of the POSIX speci-
fication.

- After a call tounput(), yytext is undefined until the next token is matched, unless the scanner was
built using %array . This is not the case withlex or the POSIX specification.The−l option does
aw ay with this incompatibility.

- The precedence of the{} (numeric range) operator is different. lex interprets "abc{1,3}" as "match
one, two, or three occurrences of ’abc’", whereasflex interprets it as "match ’ab’ followed by one,
two, or three occurrences of ’c’".The latter is in agreement with the POSIX specification.

- The precedence of theˆ operator is different. lex interprets "ˆfoo|bar" as "match either ’foo’ at the
beginning of a line, or ’bar’ anywhere", whereasflex interprets it as "match either ’foo’ or ’bar’ if
they come at the beginning of a line".The latter is in agreement with the POSIX specification.

- The special table-size declarations such as%a supported bylex are not required byflex scanners;
flex ignores them.

- The name FLEX_SCANNER is #define’d so scanners may be written for use with eitherflex or
lex. Scanners also includeYY_FLEX_MAJOR_VERSION and YY_FLEX_MINOR_VER-
SION indicating which version offlex generated the scanner (for example, for the 2.5 release,
these defines would be 2 and 5 respectively).

The following flex features are not included inlex or the POSIX specification:

C++ scanners
%option
start condition scopes
start condition stacks
interactive/non-interactive scanners
yy_scan_string() and friends
yyterminate()
yy_set_interactive()
yy_set_bol()
YY_AT_BOL()
<<EOF>>
<*>
YY_DECL
YY_START
YY_USER_ACTION
YY_USER_INIT
#line directives
%{}’ s around actions
multiple actions on a line

plus almost all of the flex flags. Thelast feature in the list refers to the fact that withflex you can put multi-
ple actions on the same line, separated with semi-colons, while withlex, the following

foo handle_foo();++num_foos_seen;

Version 2.5 April 1995 36

FLEX(1) FLEX(1)

is (rather surprisingly) truncated to

foo handle_foo();

flex does not truncate the action.Actions that are not enclosed in braces are simply terminated at the end of
the line.

DIAGNOSTICS
warning, rule cannot be matched indicates that the given rule cannot be matched because it follows other
rules that will always match the same text as it. For example, in the following "foo" cannot be matched
because it comes after an identifier "catch-all" rule:

[a-z]+ got_identifier();
foo got_foo();

UsingREJECT in a scanner suppresses this warning.

warning, −soption given but default rule can be matchedmeans that it is possible (perhaps only in a partic-
ular start condition) that the default rule (match any single character) is the only one that will match a par-
ticular input. Since−swas giv en, presumably this is not intended.

reject_used_but_not_detected undefinedor yymore_used_but_not_detected undefined -These errors can
occur at compile time.They indicate that the scanner usesREJECT or yymore() but that flex failed to
notice the fact, meaning thatflex scanned the first two sections looking for occurrences of these actions and
failed to find any, but somehow you snuck some in (via a #include file, for example). Use%option r eject
or %option yymore to indicate to flex that you really do use these features.

flex scanner jammed -a scanner compiled with−s has encountered an input string which wasn’t matched
by any of i ts rules.This error can also occur due to internal problems.

token too large, exceeds YYLMAX -your scanner uses%array and one of its rules matched a string longer
than theYYLMAX constant (8K bytes by default). You can increase the value by #define’ingYYLMAX
in the definitions section of yourflex input.

scanner requires −8 flag to use the character ’x’ - Your scanner specification includes recognizing the 8-bit
character’x’ and you did not specify the −8 flag, and your scanner defaulted to 7-bit because you used the
−Cf or −CF table compression options.See the discussion of the−7 flag for details.

flex scanner push-back overflow -you usedunput() to push back so much text that the scanner’s buffer
could not hold both the pushed-back text and the current token in yytext. Ideally the scanner should
dynamically resize the buffer in this case, but at present it does not.

input buffer overflow, can’t enlarge buffer because scanner uses REJECT -the scanner was working on
matching an extremely large token and needed to expand the input buffer. This doesn’t work with scanners
that useREJECT.

fatal flex scanner internal error--end of buffer missed -This can occur in an scanner which is reentered
after a long-jump has jumped out (or over) the scanner’s activation frame. Before reentering the scanner,
use:

yyrestart(yyin);

or, as noted above, switch to using the C++ scanner class.

too many start conditions in <> construct! -you listed more start conditions in a <> construct than exist (so
you must have listed at least one of them twice).

FILES
−lfl library with which scanners must be linked.

lex.yy.c generated scanner (calledlexyy.c on some systems).

Version 2.5 April 1995 37

FLEX(1) FLEX(1)

lex.yy.cc
generated C++ scanner class, when using-+.

<g++/Fle xLexer.h>
header file defining the C++ scanner base class,FlexLexer, and its derived class,yyFlexLexer.

flex.skl skeleton scanner. This file is only used when building flex, not when flex executes.

lex.backup
backing-up information for−b flag (calledlex.bck on some systems).

DEFICIENCIES / B UGS
Some trailing context patterns cannot be properly matched and generate warning messages ("dangerous
trailing context"). Theseare patterns where the ending of the first part of the rule matches the beginning of
the second part, such as "zx*/xy*", where the ’x*’ matches the ’x’ at the beginning of the trailing context.
(Note that the POSIX draft states that the text matched by such patterns is undefined.)

For some trailing context rules, parts which are actually fixed-length are not recognized as such, leading to
the above mentioned performance loss.In particular, parts using ’|’ or {n} (such as "foo{3}") are always
considered variable-length.

Combining trailing context with the special ’|’ action can result infixed trailing context being turned into
the more expensivevariabletrailing context. For example, in the following:

%%
abc |
xyz/def

Use ofunput() invalidates yytext and yyleng, unless the%array directive or the−l option has been used.

Pattern-matching of NUL’s is substantially slower than matching other characters.

Dynamic resizing of the input buffer is slow, as it entails rescanning all the text matched so far by the cur-
rent (generally huge) token.

Due to both buffering of input and read-ahead, you cannot intermix calls to <stdio.h> routines, such as, for
example,getchar(),with flex rules and expect it to work. Call input() instead.

The total table entries listed by the−v flag excludes the number of table entries needed to determine what
rule has been matched.The number of entries is equal to the number of DFA states if the scanner does not
useREJECT, and somewhat greater than the number of states if it does.

REJECT cannot be used with the−f or −F options.

Theflex internal algorithms need documentation.

SEE ALSO
lex(1), yacc(1), sed(1), awk(1).

John Levine, Tony Mason, and Doug Brown, Lex & Yacc,O’Reilly and Associates.Be sure to get the 2nd
edition.

M. E. Lesk and E. Schmidt,LEX − Lexical Analyzer Generator

Alfred Aho, Ravi Sethi and Jeffrey Ullman, Compilers: Principles, Techniques and Tools,Addison-Wesley
(1986). Describesthe pattern-matching techniques used byflex (deterministic finite automata).

AUTHOR
Vern Paxson, with the help of many ideas and much inspiration from Van Jacobson.Original version by Jef
Poskanzer. The fast table representation is a partial implementation of a design done by Van Jacobson.
The implementation was done by Kevin Gong and Vern Paxson.

Thanks to the many flex beta-testers, feedbackers, and contributors, especially Francois Pinard, Casey Lee-
dom, Robert Abramovitz, Stan Adermann, Terry Allen, David Barker-Plummer, John Basrai, Neal Becker,
Nelson H.F. Beebe, benson@odi.com, Karl Berry, Peter A. Bigot, Simon Blanchard, Keith Bostic, Frederic

Version 2.5 April 1995 38

FLEX(1) FLEX(1)

Brehm, Ian Brockbank, Kin Cho, Nick Christopher, Brian Clapper, J.T. Conklin, Jason Coughlin, Bill Cox,
Nick Cropper, Dav eCurtis, Scott David Daniels, Chris G. Demetriou, Theo Deraadt, Mike Donahue, Chuck
Doucette, Tom Epperly, Leo Eskin, Chris Faylor, Chris Flatters, Jon Forrest, Jeffrey Friedl, Joe Gayda,
Kaveh R. Ghazi, Wolfgang Glunz, Eric Goldman, Christopher M. Gould, Ulrich Grepel, Peer Griebel, Jan
Hajic, Charles Hemphill, NORO Hideo, Jarkko Hietaniemi, Scott Hofmann, Jeff Honig, Dana Hudes, Eric
Hughes, John Interrante, Ceriel Jacobs, Michal Jaegermann, Sakari Jalovaara, Jeffrey R. Jones, Henry
Juengst, Klaus Kaempf, Jonathan I. Kamens, Terrence O Kane, Amir Katz, ken@ken.hilco.com, Kevin B.
Kenny, Steve Kirsch, Winfried Koenig, Marq Kole, Ronald Lamprecht, Greg Lee, Rohan Lenard, Craig
Leres, John Levine, Steve Liddle, David Loffredo, Mike Long, Mohamed el Lozy, Brian Madsen, Malte,
Joe Marshall, Bengt Martensson, Chris Metcalf, Luke Mewburn, Jim Meyering, R. Alexander Milowski,
Erik Naggum, G.T. Nicol, Landon Noll, James Nordby, Marc Nozell, Richard Ohnemus, Karsten Pahnke,
Sven Panne, Roland Pesch, Walter Pelissero, Gaumond Pierre, Esmond Pitt, Jef Poskanzer, Joe Rahmeh,
Jarmo Raiha, Frederic Raimbault, Pat Rankin, Rick Richardson, Kevin Rodgers, Kai Uwe Rommel, Jim
Roskind, Alberto Santini, Andreas Scherer, D

