Introductory 4.4BSD I1PC PSD:20-1

An Introductory 4.4BSD
I nter process Communication Tutorial

Stuart Sechrest

Computer Science Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley

ABSTRACT

Berkeley UNIXT 4.4BSD ofers s&eral choices for interprocess communicatiofo ad the pro-
grammer indeveloping programs which are comprised of cooperating processes, firemtifchoices are
discussed and a series aample programs are presentethese programs demonstrate in a simpdg w
the use of pipes, soetfpairs, sockts and the use of datagram and stream communicatfaintent of this
document is to present aMfaimple example programs, not to describe the making system in full.

1. Goals

Facilities for interprocess communication (IPC) and reeking were a major addition to UNIX in
the Berleley UNIX 4.2BSD releaseThese &cilities required major additions and some changes to the sys-
tem interbce. Thebasic idea of this inteste is to mai IPC similar to file 1/0.In UNIX a process has a
set of I/O descriptors, from which one reads and to which one wEkescriptors may refer to normal files,
to devices (including terminals), or to communication chann@lse use of a descriptor has three phases:
its creation, its use for reading and writing, and its destructBynusing descriptors to write files, rather
than simply naming the tget file in the write call, oneains a surprising amount of fibility. Often, the
program that creates a descriptor will beedd#nt from the program that uses the descripfor example
the shell can create a descriptor for the output of the ‘IS’ command that will cause the listing to appear in a
file rather than on a terminaRipes are another form of descriptor thatehkeen used in UNIX for some
time. Pipesllow one-way data transmission from one process to another; th@rtveesses and the pipe
must be set up by a common ancestor

The use of descriptors is not the only communication exterpreided by UNIX. The signal mech-
anism sends a ymamount of information from one process to anathEne signaled process reees only
the signal type, not the identity of the sendmd the number of possible signals is smdlhe signal
semantics limit the fiability of the signaling mechanism as a means of interprocess communication.

The identification of IPC with I/O is quite longstanding in UNIX and haseatguite successful At
first, havever, IPC was limited to processes communicating within a single machitith Berleley UNIX
4.2BSD this gpanded to include IPC between machin€his expansion has necessitated some change in
the way that descriptors are createdidditionally, new possibilities for the meaning of read and writeda
been admitted Originally the meanings, or semantics, of these terms va@g $§imple. When you wrote
something it vas delered. Wheryou read something, you were bleckuntil the data anéd. Otherpos-
sibilities eist, howvever. One can write without full assurance of detly if one can check later to catch
occasional dilures. Messagesan be kpt as discrete units or nged into a streamOne can ask to read,

T UNIX is a trademark of A&T Bell Laboratories.

PSD:20-2 Introductory 4.4BSD IPC

but insist on not witing if nothing is immediatelyvailable. Thesenew possibilities are allved in the
Berkeley UNIX IPC interface.

Thus Berleley UNIX 4.4BSD ofers seeral choices for IPC.This paper presents simplgaenples
that illustrate some of the choiceBhe reader is presumed to eniliar with the C programming language
[Kernighan & Ritchie 1978], Wi not necessarily with the system calls of the UNIX system or with pro-
cesses and interprocess communicatibhe paper ndgews the notion of a process and the types of com-
munication that are supported by Beldy UNIX 4.4BSD. A series of @amples are presented that create
processes that communicate with one anotfibe programs shwo different ways of establishing channels
of communication.Finally, the calls that actually transfer data andewed. 10 dearly present he com-
munication can takgace, the xkample programs va been cleared of athing that might be construed as
useful work. They can, therefore, seevas nodels for the programmer trying to construct programs which
are comprised of cooperating processes.

2. Processes

A program is both a sequence of statements and a rougho# referring to the computation that
occurs when the compiled statements are Auorocess can be thought of as a single line of control in a
program. Mostprograms gecute some statements, go throughwa feops, branch inarious directions
and then endThese are single process programsograms can also Y& a wint where control splits into
two independent lines, an action calledking. In UNIX these lines can mer join aguin. A call to the
system routindork(), causes a process to split in thiayw The result of this call is that twindependent
processes will be runningxecuting exactly the same codeMemory \alues will be the same for aldles
set before the fork,ut, subsequentlyeach \ersion will be able to change only thaelwe of its evn copy of
each wariable. Initially the only diference between the dwill be the \alue returned byork(). The par
ent will receve a pocess id for the child, the child will regeia 2ro. Callsto fork(), therefore, typically
precede, or are included in, an if-statement.

A process viwss the rest of the system through asgte table of descriptorsThe descriptors can rep-
resent open files or soels (sockts are communication objects that will be discussedwWelBescriptors
are referred to by their indenumbers in the tableThe first three descriptors are often wmoby special
names, stdin, stdout andstderr. These are the standard input, output and .eftdren a process forks, its
descriptor table is copied to the chil@hus, if the parend’ dandard input is being tak from a terminal
(devices are also treated as files in UNIX), the childput will be talen from the same terminalWhoever
reads first will get the inputlf, before forking, the parent changes its standard input so that it is reading
from a nev file, the child will tale its input from the ne file. Itis also possible to takinput from a soodt,
rather than from a file.

3. Pipes

Most users of UNIX kne that thg can pipe the output of a progranprogl” to the input of
another “prog2;” by typing the commandprogl | prog2”” This is called‘piping” the output of one pro-
gram to another because the mechanism used to transfer the output is called/hpipé¢he user types a
command, the command is read by the shell, which decidesdchexecute it. If the command is simple,
for example,“progl,” the shell forks a process, whickeeutes the program, progl, and then di€be
shell waits for this termination and then prompts for th&tremmmand.If the command is a compound
command,‘progl | prog2,” the shell creates mprocesses connected by a pipe. One process runs the pro-
gram, progl, the other runs progPhe pipe is an I/O mechanism withdwends, or sockts. Datathat is
written into one soakt can be read from the other

Since a program specifies its input and output only by the descriptor table indices, which appear as
variables or constants, the input source and output destination can be changed without changingfthe te
the program.lt is in this way that the shell is able to set up pipB&fore eecuting progl, the process can
close whateer is & stdout and replace it with one end of a pip8imilarly, the process that willxecute
prog2 can substitute the opposite end of the pipstdor.

Introductory 4.4BSD I1PC PSD:20-3

#i ncl ude <stdio. h>
#defi ne DATA "Bright star, would | were steadfast as thou art . . ."

/
This program creates a pipe, then forks. The child communicates to the
parent over the pipe. Notice that a pipe is a one-way comunications
device. | can wite to the output socket (sockets[1l], the second socket
of the array returned by pipe()) and read fromthe input socket
(sockets[0]), but not vice versa.

/

E o I I

mai n()

{
i nt sockets[2], child,

/* Create a pipe */

i f (pipe(sockets) < 0) {
perror("openi ng stream socket pair");
exit(10);

}

if ((child = fork()) == -1)
perror("fork");

else if (child) {
char buf[1024];

/* This is still the parent. It reads the child s nessage. */

cl ose(sockets[1]);

if (read(sockets[0], buf, 1024) < 0)
perror ("readi ng nmessage");

printf("-->%\n", buf);

cl ose(sockets[0]);

} else {

/* This is the child. It wites a nmessage to its parent. */

cl ose(sockets[0]);

if (wite(sockets[1l], DATA, sizeof (DATA)) < 0)
perror("witing nmessage");

cl ose(sockets[1]);

Figure 1 Use of a pipe

Let us nev examine a program that creates a pipe for communication between its child and itself
(Figure 1). A pipe is created by a parent process, which then foeen a process forks, the parent’
descriptor table is copied into the chdd’

In Figure 1, the parent process rasla call to the system routipge(). This routine creates a pipe
and places descriptors for the seiskfor the tw ends of the pipe in the processkscriptor table Pipe() is
passed an array into which it places the xndembers of the soeékts it created.The two ends are not
equialent. Thesoclet whose indeis returned in the M word of the array is opened for reading only
while the sockt in the high end is opened only for writingihis corresponds to thadt that the standard
input is the first descriptor of a processkscriptor table and the standard output is the secéiftgr

PSD:20-4 Introductory 4.4BSD IPC

creating the pipe, the parent creates the child with which it will share the pipe by talkif)g Figure 2
illustrates the ééct of a fork. The parent processtiescriptor table points to both ends of the pipéter
the fork, both parerg’and child's descriptor tables point to the pip@he child can then use the pipe to
send a message to the parent.

Just what is a pipet is a one-vay communication mechanism, with one end opened for reading and
the other end for writingTherefore, parent and child need to agree on whigh t& turn the pipe, from
parent to child or the otheray around.Using the same pipe for communication both from parent to child
and from child to parent euld be possible (since both processeshaferences to both ends)tbery
complicated. Ifthe parent and child are toveaa tvo-way cowersation, the parent createsotpipes, one
for use in each direction(ln accordance with their plans, both parent and child inxtbeple abwe dose
the soclkt that thg will not use. It is not required that unused descriptors be closeit lis good prac-
tice.) A pipe is also atream communication mechanism; that is, all messages sent through the pipe are

Paent

O

() <——rpIPE)~

Paent Child

QO O

|

() <—— piPE)=

Figure 2 Sharing a pipe between parent and child

Introductory 4.4BSD I1PC PSD:20-5

placed in order and reliably detred. Wherthe reader asks for a certain number of bytes from this stream,
he is gven as mary bytes as arewailable, up to the amount of the request. Note that these bytes m@y ha
come from the same call twrite() or from se&eral calls towrite() which were concatenated.

4. Socketpairs

Berkeley UNIX 4.4BSD pravides a slight generalization of pipe&.pipe is a pair of connected sock-
ets for one-\@my stream communicatiorOne may obtain a pair of connected siskfor two-way stream
communication by calling the routirscketpair(). The program in Figure 3 callbcketpair() to create
such a connectionThe program uses the link for communication in both directi®isce socktpairs are
an «tension of pipes, their use resembles that of pipégure 4 illustrates the result of a fork follmg a
call to socketpair ().

Socketpair() takes as ayuments a specification of a domain, a style of communication, and a proto-
col. Theseare the parameters stio in the @ample. Domaingnd protocols will be discussed in thexne
section. Brieflya cdomain is a space of names that may be bound tetsoakd implies certain other con-
ventions. Currentlysocketpairs hae mly been implemented for one domain, called the UNIX domain.
The UNIX domain uses UNIX path names for naming stgk Itonly allovs communication between
soclets on the same machine.

Note that the header filessys/socket.h> and<systypes.h>. are required in this progranThe con-
stants AF_UNIX and SOCK_STREAM are defined <sys/socket.h>, which in turn requires the file
<sys/types.h> for some of its definitions.

5. Domains and Protocols

Pipes and sodtpairs are a simple solution for communicating between a parent and child or between
child processesWhat if we wanted to hee rocesses that kia o common ancestor with whom to set up
communication? Neithestandard UNIX pipes nor soetpairs are the answer here, since both mechanisms
require a common ancestor to set up the communicatdawould like to havetwo processes separately
create soosts and then va messages sent between thehis is often the case when piding or using a
service in the systemThis is also the case when the communicating processes are on separate machines.
In Berkeley UNIX 4.4BSD one can create imtiual soclets, gie hem names and send messages between
them.

Soclets created by di#rent programs use names to refer to one another; names generally must be
translated into addresses for uséhe space from which an address iswdras referred to as domain.
There are seral domains for soakts. Wwo that will be used in thexamples here are the UNIX domain
(or AF_UNIX, for Address Brmat UNIX) and the Internet domain (or AF_INETYNIX domain IPC is
an perimental &cility in 4.2BSD and 4.3BSDIn the UNIX domain, a soek is given a path name within
the file system name spaca.file system node is created for the sicknd other processes may then refer
to the sockt by gving the proper pathnameUNIX domain names, therefore, allocommunication
between aptwo processes thatavk in the same file systenT.he Internet domain is the UNIX implemen-
tation of the [ARPA Internet standard protocols IP/TCP/UDRddresses in the Internet domain consist of
a machine netwrk address and an identifying numhbeled a port.Internet domain names alocommu-
nication between machines.

Communication follaes some particular'style” Currently communication is either through a
stream or by datagram. Stream communication impliesvgeal things. Communication tads place across
a onnection between twsckets. Thecommunication is reliable, errree, and, as in pipes, no message
boundaries aredpt. Reading from a stream may result in reading the data sent from owerar cals to
write() or only part of the data from a single call, if there is not enough room for the entire message, or if
not all the data from a lge message has been transferréde protocol implementing such a style will
retransmit messages regs with errors. It will also return error messages if one tries to send a message
after the connection has been leok Datagrantommunication does not use connectioBsch message
is addressed inddually. If the address is correct, it will generally be ree@j although this is not guaran-
teed. Oftendatagrams are used for requests that require a response from the retipientesponse

PSD:20-6 Introductory 4.4BSD IPC

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <stdio. h>

#defi ne DATAL "In Xanadu, did Kublai Khan . . ."
#defi ne DATA2 "A stately pl easure donme decree . "
/
This program creates a pair of connected sockets then forks and
conmuni cates over them This is very simlar to conmunication with pipes,
however, socketpairs are two-way comunications objects. Therefore | can
send nmessages in both directions.
/

E o S I

mai n()

{
i nt sockets[2], child,
char buf[1024];

i f (socketpair(AF_UN X, SOCK _STREAM 0, sockets) < 0) {
perror("openi ng stream socket pair");
exit(1l);

}

if ((child = fork()) == -1)
perror("fork");
else if (child) { /* This is the parent. */
cl ose(sockets[0]);
if (read(sockets[1], buf, 1024, 0) < 0)
perror("readi ng stream nessage");
printf("-->%\n", buf);
if (wite(sockets[1l], DATA2, sizeof (DATA2)) < 0)
perror("witing stream nessage");
cl ose(sockets[1]);
} else { /[* This is the child. */
cl ose(sockets[1]);
if (wite(sockets[0], DATAl, sizeof (DATAl)) < 0)
perror("witing stream nessage");
if (read(sockets[0], buf, 1024, 0) < 0)
perror("readi ng stream nessage");
printf("-->%\n", buf);
cl ose(sockets[0]);

Figure 3 Use of a soaktpair

Introductory 4.4BSD I1PC PSD:20-7

Paent

Paent Child

O= - O=
Figure 4 Sharing a soaitpair between parent and child

arrives in areasonable amount of time, the request is repedtee.individual datagrams will bedpt sepa-
rate when thgare read, that is, message boundaries are peskerv

The diference in performance between the tstyles of communication is generally less important
than the diference in semanticsThe performanceain that one might find in using datagrams must be
weighed aginst the increased compity of the program, which must noconcern itself with lost or out of
order messagedf lost messages may simply be ignored, the quantity dicrafay be a consideration.
The expense of setting up a connection is best justified by frequent use of the conngittaenthe perfer
mance of a protocol changes as it is tuned fdemiht situations, it is best to seek the most up-to-date
information when making choices for a program in which performance is crucial.

A protocol is a set of rules, data formats andventions that rgulate the transfer of data between
participants in the communicatiotn general, there is one protocol for each sbtpe (stream, datagram,
etc.) within each domainThe code that implements a protocekks track of the names that are bound to
soclets, sets up connections andransfers data between setk perhaps sending the data across a net-
work. This code also &eps track of the names that are bound to etsckitis possible for seeral

PSD:20-8 Introductory 4.4BSD IPC

protocols, difering only in law levd details, to implement the same style of communication within a partic-
ular domain. Although it is possible to select which protocol should be used, for nearly all uses it-is suf
cient to request the dailt protocol. This has been done in all of theaenple programs.

One specifies the domain, style and protocol of aetaghken it is created-or example, in Figure 5a
the call tosocket() causes the creation of a datagram sbwkth the dedult protocol in the UNIX domain.

6. Datagramsin the UNIX Domain

Let us nav look at tw programs that create sak separatelyThe programs in Figures 5a and 5b
use datagram communication rather than a streBime. structure used to name UNIX domain sisks
defined in the filecsys/un.h>. The definition has also been included in thanaple for clarity

Each program creates a sethkvith a call tosocket(). These soakts are in the UNIX domainOnce
a name has been decided upon it is attached to &sbgkhe system catind(). The program in Figure 5a
uses the namésbcket”, which it binds to its soat. Thisname will appear in theavking directory of the
program. Theoutines in Figure 5b use its satlonly for sending messages.does not create a name for
the soclet because no other process has to refer to it.

Names in the UNIX domain are path naméeske file path names tlygamay be either absolute (e.g.
“ /dev/imaginary’) or relative (e.g. ‘socket”). Becausethese names are used to wallprocesses to ren-
dezwus, relatre path names can pose fiifilties and should be used with caMhen a name is bound
into the name space, a file (inode) is allocated in the file sydfetime inode is not deallocated, the name
will continue to &ist even after the bound soe&k is closed.This can cause subsequent runs of a program to
find that a name is uwmalable, and can cause directories to fill up with these objett®e names are
removed by calling unlink() or using theem(1) command.Names in the UNIX domain are only used for
rendezous. Thg are not used for message defiy once a connection is establishetherefore, in con-
trast with the Internet domain, unbound seiskneed not be (and are not) automaticalgrgeddresses
when thg are connected.

There is no established means of communicating names to interested parties.example, the
program in Figure 5b gets the name of the sbt& which it will send its message through its command
line aguments. Onca line of communication has been created, one can send the names of additional, per
haps ne, sockets wer the link. Facilities will have o be kuilt that will male the distritution of names less
of a problem than it nais.

7. Datagramsin theInternet Domain

The examples in Figure 6a and 6b arry close to the pwous xample &cept that the soé@t is in
the Internet domainThe structure of Internet domain addresses is defined in thenéitmet/in.h>. Inter
net addresses specify a host address (a 32-bit number) andesydstit, or port, on that machin&hese
ports are managed by the system routines that implement a particular pratotike UNIX domain
names, Internet soek names are not entered into the file system and, therefoyedah®t have © be
unlinked after the so@k has been closedhen a message must be sent between machines it is sent to the
protocol routine on the destination machine, which interprets the address to determine to wiicthsock
message should be dadied. Seeral different protocols may be aati n the same machinept in gen-
eral, thg will not communicate with one anotheAs a esult, diferent protocols are alleed to use the
same port numbersThus, implicitly an Internet address is a triple including a protocol as well as the port
and machine addres#n association is a temporary or permanent specification of a pair of communicating
soclets. Anassociation is thus identified by the tupl@etocol, local machine address, local port, remote
machine address, remote port>. An association may be transient when using datagranettke associa-
tion actually eists during asend operation.

The protocol for a soekt is chosen when the satkis created.The local machine address for a
soclet can be anvalid network address of the machine, if it has more than one, or it can be the wildcard
value INADDR_ANY. The wildcard walue is used in the program in Figure 6aa machine has seral
network addresses, it is ity that messages sent toyaf the addresses should be delable to a soalt.

This will be the case if the wildcaréle has been choseNote that gen if the wildcard alue is chosen,

Introductory 4.4BSD I1PC PSD:20-9

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <sys/un. h>

/
In the included file <sys/un.h> a sockaddr_un is defined as foll ows
struct sockaddr _un {

short sun_famly;

char sun_pat h[108];

E o I I

b
/

#i ncl ude <stdi o. h>
#defi ne NAME "socket"
/-k

* This programcreates a UNl X donai n dat agram socket, binds a nane to it,
* then reads fromthe socket.

*/
mai n()
{

i nt sock, |ength;

struct sockaddr _un nane;

char buf[1024];

/* Create socket fromwhich to read. */

sock = socket (AF_UNI X, SOCK_DGRAM 0);

if (sock < 0) {
perror ("openi ng dat agram socket");
exit(l);

}

/* Create nanme. */

nane. sun_famly = AF_UNI X;

st rcpy(nane. sun_pat h, NANE)

i f (bind(sock, &nane, sizeof(struct sockaddr_un))) {
perror("bindi ng nane to datagram socket");
exit(l);

}

printf("socket -->%\n", NAME)

/* Read fromthe socket */

if (read(sock, buf, 1024) < 0)
perror("recei ving datagram packet");

printf("-->%\n", buf);

cl ose(sock);

unl i nk(NAMVE)

Figure 5aReading UNIX domain datagrams

PSD:20-10 Introductory 4.4BSD IPC

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <sys/un. h>
#i ncl ude <stdio. h>

#defi ne DATA "The sea is calmtonight, the tide is full . . ."

/-k
* Here | send a datagramto a receiver whose name | get fromthe comrand
* line argunents. The formof the command line is udgransend pat hnane
*/

mai n(argc, argv)
int argc;
char *argv[];

{
i nt sock;
struct sockaddr _un nane;
/* Create socket on which to send. */
sock = socket (AF_UNI X, SOCK _DGRAM 0);
if (sock < 0) {
perror ("openi ng dat agram socket");
exit(1l);
}
/* Construct name of socket to send to. */
nane. sun_famly = AF_UNI X;
strcpy(nane. sun_path, argv[1]);
/* Send nessage. */
i f (sendto(sock, DATA, sizeof (DATA), O,
&nane, sizeof (struct sockaddr_un)) < 0) {
perror("sendi ng dat agram nmessage");
}
cl ose(sock);
}

Figure 5b Sending a UNIX domain datagrams

Introductory 4.4BSD I1PC PSD:20-11

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <stdio. h>

/
In the included file <netinet/in.h> a sockaddr_in is defined as foll ows:
struct sockaddr _in {

short sin_famly;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

b

Thi s program creates a datagram socket, binds a nanme to it, then reads
fromthe socket.

/

mai n()

{

E I S R T T R S N

i nt sock, |ength;
struct sockaddr i n nane;
char buf[1024];

/* Create socket fromwhich to read. */

sock = socket (AF_I NET, SOCK _DGRAM O0);

if (sock < 0) {
perror ("openi ng dat agram socket");
exit(1l);

}

/* Create name with wldcards. */

nane.sin_famly = AF_I NET;

name. si n_addr.s_addr = | NADDR_ANY;

nane.sin_port = 0;

i f (bind(sock, &nane, sizeof(nane))) {
perror ("bi ndi ng dat agram socket");
exit(l);

}

/* Find assigned port value and print it out. */

| ength = sizeof (nane);

i f (getsocknane(sock, &nane, & ength)) {
perror("getting socket name");
exit(l);

}

printf("Socket has port #%\n", ntohs(nane.sin_port));

/* Read fromthe socket */

if (read(sock, buf, 1024) < 0)
perror("recei ving datagram packet");

printf("-->%\n", buf);

cl ose(sock);

Figure 6aReading Internet domain datagrams

PSD:20-12 Introductory 4.4BSD IPC

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>
#i ncl ude <net db. h>
#i ncl ude <stdi o. h>

#defi ne DATA "The sea is calmtonight, the tide is full . . ."

/

b T

Here | send a datagramto a receiver whose name | get fromthe conmmand
line arguments. The form of the command |line is dgranmsend hostnane
port number

mai n(argc, argv)

int argc;
char *argv[];

i nt sock;
struct sockaddr i n nane;
struct hostent *hp, *gethostbynane();

/* Create socket on which to send. */
sock = socket (AF_I NET, SOCK _DGRAM O0);
if (sock < 0) {
perror ("openi ng dat agram socket");
exit(1l);

~

E o S I

Construct name, with no wldcards, of the socket to send to.
CGet nost byname() returns a structure including the network address
of the specified host. The port number is taken fromthe comrand
l'ine.
/
hp = gethost byname(argv[1]);
if (hp == 0) {
fprintf(stderr, "%: unknown hostO, argv[1l]);
exit(2);
}
bcopy(hp->h_addr, &nane.sin_addr, hp->h_Iength);
nane.sin_famly = AF_I NET;
nane.sin_port = htons(atoi(argv[2]));
/* Send nessage. */
i f (sendto(sock, DATA, sizeof (DATA), 0, &name, sizeof(nanme)) < 0)
perror("sendi ng dat agram nmessage");
cl ose(sock);

Figure 6b Sending an Internet domain datagram

a program sending messages to the namedesaulist specify aalid network addressOne can be willing

to receve from “anywhere’ but one cannot send a messagaywhere? T he program in Figure 6b is
given the destination host name as a command ligeraent. ® determine a netark address to which it
can send the message, it looks up the host address by thegetiiogbbyname(). The returned structure

Introductory 4.4BSD I1PC PSD:20-13

includes the host’ retwork address, which is copied into the structure specifying the destination of the
message.

The port number can be thought of as the number of a mailbox, into which the protocol plaxzes one
messages. Certaidaemons, déring certain adertised services, ka resened or ‘well-known” port
numbers. Thes@ll in the range from 1 to 1023Higher numbers arevailable to general usersOnly
seners need to ask for a particular numbene system will assign an unused port number when an address
is bound to a soek. Thismay happen when axgicit bind call is made with a port number of 0, or when
a connect or send is performed on an unbound setk Notethat port numbers are not automatically
reported back to the usehfter calling bind(), asking for port 0, one may cajetsockname() to discaver
what port vas actually assignedihe routinegetsockname() will not work for names in the UNIX domain.

The format of the so@t address is specified in part by standards within the Internet dofftaén.
specification includes the order of the bytes in the addi®ssause machines thf in the internal repre-
sentation the ordinarily use to represent imgfers, printing out the port number as returnedgétgock-
name() may result in a misinterpretatioffo print out the numbeiit is necessary to use the routinhs()
(for network to host: short) to corvert the number from the nebsk representation to the hastepresenta-
tion. Onsome machines, such as 68000-based machines, this is a null ope@atiarthers, such as
VA Xes, this results in a apping of bytes.Another routine ®ists to comert a short intger from the host
format to the netark format, callechtons(); similar routines &ist for long intgers. ©r further informa-
tion, refer to the entry fdwyteorder in section 3 of the manual.

8. Connections

To =nd data between stream setsk(haing communication style SOCK_STREAM), the setsk
must be connectedrigures 7a and 7b siwawo programs that create such a connecti®he program in
7a is relatiely simple. To initiate a connection, this program simply creates a streanetsdbkn calls
connect(), specifying the address of the setko which it wishes its soek connected Provided that the
target sockt eists and is prepared to handle a connection, connection will be complete, and the program
can b@in to send messagedlessages will be dekred in order without message boundaries, as with
pipes. Theconnection is desty@d when either soek is closed (or soon thereaftet).a process persists in
sending messages after the connection is closed, a SIGPIPE signal is sent to the process by the operating
system. Unlesexplicit action is takn to handle the signal (see the manual pagsdoal or sigvec), the
process will terminate and the shell will print the messageken pip€.

Forming a connection is asymmetrical; one process, such as the program in Figure 7a, requests a con-
nection with a particular soek the other process accepts connection requBstsere a connection can be
accepted a soek must be created and an address bound fithis situation is illustrated in the top half of
Figure 8. Process 2 has created a sicknd bound a port number to Rrocess 1 has created an unnamed
soclet. Theaddress bound to process &cket is then made kmn to process 1 and, perhaps toesal
other potential communicants as well.there are seeral possible communicants, this one sickight
receve eveaal requests for connectionés a result, a ne socket is created for each connectiofhis nev
soclet is the endpoint for communication within this process for this connecficcbnnection may be
destrged by closing the corresponding setk

The program in Figure 7b is a rathevial example of a seer. It creates a soa to which it binds a
name, which it then advtises. (Inthis case it prints out the satknumbe) Theprogram then calls
ten() for this soclet. Sincesereral clients may attempt to connect more or less simultanea@gleue of
pending connections is maintained in the system address spiata() marks the soat as willing to
accept connections and initializes the queWhen a connection is requested, it is listed in the qu#ue.
the queue is full, an error status may be returned to the requébtemaximum length of this queue is
specified by the secondgamment oflisten(); the maximum length is limited by the systef@nce the listen
call has been completed, the program enters an infinite [ageach pass through the loop, & mennec-
tion is accepted and remal from the queue, and, hence, avrscket for the connection is createtdhe
bottom half of Figure 8 shes the result of Process 1 connecting with the namedesofrocess 2, and
Process 2 accepting the connectidiiter the connection is created, the service, in this case printing out the

PSD:20-14 Introductory 4.4BSD IPC

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>
#i ncl ude <net db. h>
#i ncl ude <stdi o. h>

#defi ne DATA "Half a | eague, half a league . . ."

/
This program creates a socket and initiates a connection with the socket
given in the conmand |line. One nmessage is sent over the connection and
then the socket is closed, ending the connection. The form of the command
line is streammite hostnane portnumnber

/

E o S I

mai n(argc, argv)
int argc;
char *argv[];

{

i nt sock;

struct sockaddr _in server;

struct hostent *hp, *gethostbynane();

char buf[1024];

/* Create socket */

sock = socket (AF_I NET, SOCK_STREAM 0);

if (sock < 0) {
perror ("openi ng stream socket");
exit(l);

}

/* Connect socket using nane specified by command |ine. */

server.sin_famly = AF_| NET;

hp = gethost byname(argv[1]);

if (hp == 0) {
fprintf(stderr, "%: unknown hostO, argv[1l]);
exit(2);

}

bcopy(hp->h_addr, &server.sin_addr, hp->h_Iength);

server.sin_port = htons(atoi(argv[2]));

i f (connect(sock, &server, sizeof(server)) < 0) {
perror("connecting stream socket");
exit(l);

}

if (wite(sock, DATA, sizeof(DATA)) < 0)
perror("witing on stream socket");

cl ose(sock);

}

Figure 7alnitiating an Internet domain stream connection

Introductory 4.4BSD I1PC PSD:20-15

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>
#i ncl ude <net db. h>

#i ncl ude <stdi o. h>
#define TRUE 1

/
This program creates a socket and then begins an infinite |oop. Each tine
through the I oop it accepts a connection and prints out nessages fromit.
VWhen the connection breaks, or a term nation nessage cones through, the
program accepts a new connecti on.

/

E o S I

mai n()
{
i nt sock, |ength;
struct sockaddr _in server;
i nt megsock;
char buf[1024];
int rval
int i;

/* Create socket */

sock = socket (AF_I NET, SOCK_STREAM 0);

if (sock < 0) {
perror ("openi ng stream socket");
exit(1l);

}

/* Nanme socket using wildcards */

server.sin_famly = AF_| NET;

server.sin_addr.s_addr = | NADDR_ANY;

server.sin_port = 0;

i f (bind(sock, &server, sizeof(server))) {
perror ("bindi ng stream socket");
exit(l);

}

/* Find out assigned port number and print it out */

| ength = sizeof (server);

i f (getsocknane(sock, &server, & ength)) {
perror("getting socket name");
exit(l);

}

printf("Socket has port #%\n", ntohs(server.sin_port));

/* Start accepting connections */
listen(sock, 5);
do {
msgsock = accept(sock, 0, 0);
if (msgsock == -1)
perror("accept");
el se do {
bzero(buf, sizeof (buf));

PSD:20-16 Introductory 4.4BSD IPC

if ((rval = read(msgsock, buf, 1024)) < 0)
perror("readi ng stream nessage");
i = 0;
if (rval == 0)
printf("Endi ng connection\n");
el se
printf("-->%\n", buf);
} while (rval 1= 0);
cl ose(msgsock) ;
} while (TRUE)

/-k
* Since this programhas an infinite |oop, the socket "sock" is
* never explicitly closed. However, all sockets will be closed
* automatically when a process is killed or term nates nornally.
*/

Figure 7b Accepting an Internet domain stream connection

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <sys/tine. h>
#i ncl ude <netinet/in.h>
#i ncl ude <netdb. h>

#i ncl ude <stdio. h>
#define TRUE 1

/-k
* This program uses select() to check that soneone is trying to connect
* before calling accept().
*/

mai n()
{
i nt sock, |ength;
struct sockaddr _in server;
i nt msgsock;
char buf[1024];
int rval
fd_set ready;
struct tineval to;

/* Create socket */
sock = socket (AF_I NET, SOCK_STREAM 0);
if (sock < 0) {
perror ("openi ng stream socket");
exit(1l);
}
/* Nanme socket using wildcards */
server.sin_famly = AF_| NET;
server.sin_addr.s_addr = | NADDR_ANY;
server.sin_port = 0;
i f (bind(sock, &server, sizeof(server))) {

Introductory 4.4BSD I1PC PSD:20-17

perror ("bindi ng stream socket");
exit(1l);
}
/* Find out assigned port number and print it out */
l ength = sizeof (server);
i f (getsocknane(sock, &server, & ength)) {
perror("getting socket name");
exit(1l);
}
printf("Socket has port #%l\n", ntohs(server.sin_port));

/* Start accepting connections */
listen(sock, 5);
do {
FD ZERQ(&r eady) ;
FD _SET(sock, &ready);
to.tv_sec = 5;
if (select(sock + 1, &ready, 0, 0, &o0) < 0) {
perror("select");
conti nue;
}
if (FD_I SSET(sock, &ready)) {
msgsock = accept (sock, (struct sockaddr *)0, (int *)0);

if (msgsock == -1)
perror("accept");
el se do {

bzero(buf, sizeof (buf));
if ((rval = read(msgsock, buf, 1024)) < 0)
perror("readi ng stream nessage");
else if (rval == 0)
printf("Endi ng connection\n");
el se
printf("-->%\n", buf);
} while (rval > 0);
cl ose(msgsock) ;
} else
printf("Do sonething el se\n");
} while (TRUE)

Figure 7c Using select() to check for pending connections

PSD:20-18 Introductory 4.4BSD IPC

Process 1 Process 2

Process 1 Process 2

Introductory 4.4BSD I1PC PSD:20-19

scope of this paper

9. Reads, Writes, Recvs, €etc.

UNIX 4.4BSD has seral system calls for reading and writing informatiofhe simplest calls are
read() andwrite(). Write() takes as gguments the indeof a descriptor a pointer to a bffer containing the
data and the size of the dafBhe descriptor may indicate either a file or a connectecesot€onnected’
can mean either a connected stream eto¢ks described in Section 8) or a datagrametdck which a
connect() call has pruided a dedult destination (see theonnect() manual page).Read() also taks a
descriptor that indicates either a file or a sbck\rite() requires a connected s@tlsince no destination is
specified in the parameters of the system dgdhd() can be used for either a connected or an unconnected
soclet. Thesecalls are, therefore, quite fible and may be used to write applications that require no
assumptions about the source of their input or the destination of their oUitjare are ariations orread()
andwrite() that allov the source and destination of the input and output to wseabseparate uffers,
while retaining the fiebility to handle both files and soets. Thesarereadv() and writev(), for read and
write vector.

It is sometimes necessary to send high priority de¢aa nnection that may ka wread lav pri-
ority data at the other endcor example, a user inteate process may be interpreting commands and send-
ing them on to another process through a stream connedtienuser integce may hee filed the stream
with as yet unprocessed requests when the user types a command to cancel all outstandingRatinsgsts.
than hae the high priority data it to be processed after thevlpriority data, it is possible to send it as
out-of-band (OOB) data. The notification of pending OOB data results in the generation of a SIGURG sig-
nal, if this signal has been enabled (see the manual paggralror sigvec). Se€Leffler 1986] for a more
complete description of the OOB mechanisiere are a pair of calls similar tead andwrite that allav
options, including sending and redeg OOB information; these areend() andrecv(). These calls are
used only with soalts; specifying a descriptor for a file will result in the return of an error stahese
calls also allav peeking at data in a streamlhat is, thg allow a process to read data without reving the
data from the streanOne use of thisakcility is to read ahead in a stream to determine the size of the ne
item to be readWhen not using these options, these callefze same functions asad() andwrite().

To nd datagrams, one must bewakal to specify the destinatiomhe callsendto() takes a destina-
tion address as angament and is therefore used for sending datagrdmes.callrecvfrom() is often used
to read datagrams, since this call returns the address of the, $endsravailable, along with the datalf
the identity of the sender does not maibae may useead() or recv().

Finally, there are a pair of calls that allache sending and recéng of messages from multiple
buffers, when the address of the recipient must be specifiegse aresendmsg() andrecvmsg(). These
calls are actually quite general and/éather uses, including, in the UNIX domain, the transmission of a
file descriptor from one process to another

The \arious options for reading and writing are whan Figure 10, together with their parameters.
The parameters for each system call reflect tHerdifices in function of the @ifrent calls. In the exam-
ples gien in this paperthe callsread() andwrite() have keen used whewer possible.

10. Choices

This paper has presentexbenples of some of the forms of communication supported byeRgrk
UNIX 4.4BSD. These hee been presented in an order chosen for ease of present#tisnuseful to
review these options emphasizing tleetors that makeach attractie.

Pipes hae the adantage of portabilityin that the are supported in all UNIX system&hey aso are
relatively simple to use.Socletpairs share this simplicity andveathe additional adantage of allwing
bidirectional communicationThe major shortcoming of these mechanisms is thgtrédguire communi-
cating processes to be descendants of a common prddessdo not allow intermachine communication.

The two communication domains, UNIX and Internet, allprocesses with no common ancestor to
communicate. Othe two, only the Internet domain alld communication between maching@his males

PSD:20-20

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<sys/types. h>
<sys/socket . h>
<sys/un. h>
<stdi 0. h>

#def i ne DATA "Half a | eague,

/
Thi s program connects to the socket
one |line nessage to that socket.
ustreamwite pathnane

/

mai n(argc, argv)

int argc;
char *argv[];

b T

i nt sock;
struct sockaddr _un server;
char buf[1024];

/* Create socket */
sock =
if (sock < 0) {

hal f a | eague

Introductory 4.4BSD IPC

naned in the command |ine and sends a

The formof the command line is

socket (AF_UNI X, SOCK_STREAM 0);

perror ("openi ng stream socket");

exit(1l);
}
/* Connect socket
server.sun_famly = AF_UN X;
strcpy(server.sun_path,

i f (connect(sock, &server,
cl ose(sock);

argv[1]);

usi ng nanme specified by conmand |ine. */

si zeof (struct sockaddr_un)) < 0) {

perror("connecting stream socket");

exit(l);

if (wite(sock, DATA, sizeof(DATA)) < 0)
perror("witing on stream socket");

Figure 9alnitiating a UNIX domain stream connection

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<sys/types. h>
<sys/socket . h>
<sys/un. h>
<stdi 0. h>

#defi ne NAME "socket"
/-k

* This program creates a socket
* After printing the socket’s nane it

* loop it accepts a connection and prints out

in the UNI X domain and binds a nane to it.

begins a |l oop. Each tinme through the
messages fromit. Wen the

Introductory 4.4BSD I1PC PSD:20-21

* connection breaks, or a termnation nessage cones through, the program
* accepts a new connection.

*/

mai n()

{

i nt sock, nsgsock, rval
struct sockaddr _un server;
char buf[1024];

/*

Create socket */

sock = socket (AF_UNI X, SOCK_STREAM 0);

i f

}
/*

(sock < 0) {
perror ("openi ng stream socket");
exit(1l);

Nane socket using file system name */

server.sun_famly = AF_UN X;
strcpy(server.sun_path, NAME)

i f

}

(bind(sock, &server, sizeof(struct sockaddr_un))) {
perror ("bindi ng stream socket");
exit(1l);

printf("Socket has name %s\n", server.sun_path);

/*

Start accepting connections */

listen(sock, 5);

for

~

E o I I

*

*/

(:3) A
msgsock = accept(sock, 0, 0);
if (msgsock == -1)
perror("accept");
el se do {
bzero(buf, sizeof (buf));
if ((rval = read(msgsock, buf, 1024)) < 0)
perror("readi ng stream nessage");
else if (rval == 0)
printf("Endi ng connection\n");
el se
printf("-->%\n", buf);
} while (rval > 0);
cl ose(msgsock) ;
The followi ng statenents are not executed, because they foll ow an
infinite |l oop. However, nost ordinary progranms will not run
forever. In the UNIX domain it is necessary to tell the file
systemthat one is through using NAVE. In nbst prograns one uses
the call unlink() as below. Since the user will have to kill this
program it will be necessary to renove the nane by a comand from
the shell.

cl ose(sock);
unl i nk(NAMVE)

Figure 9b Accepting a UNIX domain stream connection

PSD:20-22 Introductory 4.4BSD IPC

/-k

* The variabl e descriptor may be the descriptor of either a file
* or of a socket.

*/

cc = read(descriptor, buf, nbytes)

int cc, descriptor; char *buf; int nbytes;

/-k
* An iovec can include several source buffers.
*/
cc = readv(descriptor, iov, iovcnt)
int cc, descriptor; struct iovec *iov; int iovcnt;

cc = wite(descriptor, buf, nbytes)
int cc, descriptor; char *buf; int nbytes;

cc = witev(descriptor, iovec, ioveclen)
int cc, descriptor; struct iovec *iovec; int ioveclen;

/-k

* The variable '*sock’’ nust be the descriptor of a socket.
* Flags may include M5G OOB and M5G_PEEK.

*/

cc = send(sock, msg, len, flags)

int cc, sock; char *nsg; int len, flags;

cc = sendto(sock, msg, len, flags, to, tolen)
int cc, sock; char *nsg; int len, flags;
struct sockaddr *to; int tolen;

cc = sendnsg(sock, msg, flags)
int cc, sock; struct msghdr nsg[]; int flags;

cc = recv(sock, buf, len, flags)
int cc, sock; char *buf; int len, flags;

cc = recvfronm(sock, buf, len, flags, from from en)
int cc, sock; char *buf; int len, flags;
struct sockaddr *from int *from en;

cc = recvnsg(sock, msg, flags)
int cc, socket; struct nsghdr nmsg[]; int flags;

Figure 10 Varieties of read and write commands

the Internet domain a necessary choice for processes running on separate machines.

The choice between datagrams and stream communication is best made by carefully considering the
semantic and performance requirements of the applicaBtnmeams can be both adhtageous and disad-
vantageous. Ondisadwantage is that a process is only afal a limited number of open streams, as there
are usually only 64 entriesailable in the open descriptor tabl&his can cause problems if a single serv
must talk with a lage number of clientsAnother is that for deliering a short message the stream setup
and teardan time can be unnecessarily longleighed aginst this are the reliabilitydilt into the streams.

This will often be the deciding€tor in fivar of streams.

Introductory 4.4BSD I1PC PSD:20-23

11. What to do Next

Many of the ekamples presented here can sess models for multiprocess programs and for pro-
grams distribted across seral machines.In developing a n& multiprocess program, it is often easiest to
first write the code to create the processes and communication pétirsthis code is dalgged, the code
specific to the application can be added.

An introduction to the UNIX system and programming using UNIX system calls can be found in
[Kernighan and P&1984]. Furthedocumentation of the Begkey UNIX 4.4BSD IPC mechanisms can be
found in [Lefler et al. 1986].More detailed information about particular calls and protocols i€ged in
sections 2, 3 and 4 of the UNIX Programmédvianual [CSRG 1986]In particular the follaving manual
pages are relant:

creating and naming soefs sockt(2), bind(2)

establishing connections listen(2), accept(2), connect(2)
transferring data read(2), write(2), send(2), recv(2)
addresses inet(4F)

protocols tcp(4Pdp(4P).

Acknowledgements

| would like to thank Sam Ldfer and Mile Karels for their help in understanding the IPC
mechanisms and all the people whose commemns hedped in writing and impnang this re-
port.

This work was sponsored by the Defense Adwed Research Projects Agen®oD),
ARPA Order No. 4031, monitored by the W Electronics Systems Command under contract
No. NO0039-C-0235The viavs and conclusions contained in this document are those of the au-

