An Advanced 4.4BSD Inteprocess Communication Uitorial

Samuel JLeffler

Robert S. kbry

William N. Dby
Phil Lapsley

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

Steve Miller
Chris Torek

Heterogeneous Systems Laboratory
Department of Computer Science
University of Maryland, Collge Rark
College Rark, Maryland 20742

ABSTRAT

This document prades an introduction to the interprocess communicataiif
ties included in the 4.4BSD release of the UNIX* system.

It discusses theverall model for interprocess communication and introduces the
interprocess communication primigs which have been added to the systerfihe major
ity of the document considers the use of these pviesiin devdoping applications.The

reader is ¥pected to bedmiliar with the C programming language as atiraples are
written in C.

* UNIX is a trademark of UNIX System Laboratories, lirtthe US and some other countries.

PSD:21-2 Adanced 4.4BSD IPCuforial

1. INTRODUCTION

One of the most important additions to UNIX in 4.2BSBsvinterprocess communicatiomhese &cilities
were the result of more thandwears of discussion and researdtne facilities pravided in 4.2BSD incer
porated may of the ideas from current research, while trying to maintain the UNIX philgsafgimplic-

ity and concisenessThe 4.3BSD release of Bealey UNIX improved upon some of the IPCaé€ilities
while providing an upvard-compatible intedice. 4.4BSadds support for ISO protocols and IP multicast-
ing. TheBSD interprocess communicatioacilities hae become a deifcto standard for UNIX.

UNIX has preiously been gry weak in the area of interprocess communicatfmor to the 4BSD
facilities, the only standard mechanism whichabd two processes to communicate were pipes (the mpx
files which were part of &sion 7 were@erimental). Unfortunatelyipes are ery restrictve in that the
two communicating processes must be related through a common anéestber the semantics of pipes
makes them almost impossible to maintain in a digted emironment.

Earlier attempts ataending the IPCdcilities of UNIX hare met with mixed reaction.The majority
of the problems he keen related to theaé€t that theseatilities hae keen tied to the UNIX file system,
either through naming or implementatio@onsequentlythe IPC &cilities proided in 4.2BSD were
designed as a totally independent subsystéhe BSD IPC allars processes to rendems in mag ways.
Processes may rendems through a UNIX file system-kkname space (a space where all names are path
names) as well as through a netlvname spaceln fact, nev name spaces may be added at a future time
with only minor changes visible to userBurther the communicationakilities hae been gtended to
include more than the simple byte streamvjated by a pipe.These gtensions hee resulted in a com-
pletely nev part of the system which users will need timeamiliarize themselks with. It is likely that as
more use is made of theseilities thg will be refined; only time will tell.

This document prades a high-leel description of the IPCafilities in 4.4BSD and their usédt is
designed to complement the manual pages for the IPC pemily examples of their useThe remainder
of this document is genized in four sectionsSection 2 introduces the IPC-related system calls and the
basic model of communicatiorSection 3 describes some of the supporting library routines users may find
useful in constructing distrited applicationsSection 4 is concerned with the client/sgrmodel used in
developing applications and includegamples of the te major types of semers. Sectiorb delves into
adwanced topics which sophisticated users ardyliko encounter when using the IP4eifities.

Advanced 4.4BSD |IPCukorial PSD:21-3

2. BASICS

The basic bilding block for communication is theodke. A soclet is an endpoint of communication
to which a name may d®und Each sockt in use has gypeand one or more associated procesSexk-
ets &ist within communication domainsA communication domain is an abstraction introducedutudle
common properties of processes communicating througtesockonesuch property is the scheme used to
name sockts. Fr example, in the UNIX communication domain setk are named with UNIX path
names; e.g. a soekmay be nameddev/foo”. Sockets normally rchange data only with soets in the
same domain (it may be possible to cross domain boundauitesnly if some translation process is per
formed). The4.4BSD IPC écilities support four separate communication domains: the UNIX domain, for
on-system communication; the Internet domain, which is used by processes which communicate using the
Internet standard communication protocols; the NS domain, which is used by processes which communi-
cate using the Xerox standard communication protocols*; and the ISO OSI protocols, which are not docu-
mented in this tutorial The underlying communicatiomdilities pravided by these domainsVea ggnifi-
cant influence on the internal system implementation as well as thadetéof soclt facilities aailable to
a et An example of the latter is that a s@tKoperating’ i n the UNIX domain sees a subset of the error
conditions which are possible when operating in the Internet (or NS) domain.

2.1. Soclet types

Soclets are typed according to the communication properties visible to.aRieeesses are pre-
sumed to communicate only between sslof the same type, although there is nothing thaempiecom-
munication between soets of diferent types should the underlying communication protocols support this.

Four types of soolts currently arevailable to a userA streamsoclet provides for the bidirectional,
reliable, sequenced, and unduplicated fitd data without record boundariedside from the bidirectional-
ity of data flav, a @ir of connected stream s@tk praides an intedice nearly identical to that of pipest.

A datagram soclet supports bidirectional flo of data which is not promised to be sequenced, reli-
able, or unduplicatedThat is, a process ree@ig messages on a datagram sbvakay find messages
duplicated, and, possiblin an order diferent from the order in which itag sent.An important character
istic of a datagram soekis that record boundaries in data are preskrnbDatagransoclets closely model
the facilities found in may contemporary paek switched netarks such as the Ethernet.

A raw soclet provides users access to the underlying communication protocols which suppett sock
abstractions. Thessoclets are normally datagram oriented, though theacecharacteristics are depen-
dent on the intedce preided by the protocolRaw sockets are not intended for the general uses; taee
been preided mainly for those interested inv@®ping nev communication protocols, or foragning
access to some of the more esotealities of an risting protocol. The use of na sockets is considered
in section 5.

A sequenced pé&et soclet is similar to a stream sastk with the gception that record boundaries are
presered. Thisinterface is proided only as part of the NS s@tkabstraction, and isewy important in
most serious NS applicationSequenced-paek soclets allav the user to manipulate the SPP or IDP head-
ers on a pacek or a group of paéts either by writing a prototype header along with wieatdata is to be
sent, or by specifying a dailt header to be used with all outgoing data, andvaltbe user to rece2 the
headers on incoming pasts. Theuse of these options is considered in section 5.

Another potential so@k type which has interesting properties is tel@ably deliveed messge
soclet. Thereliably delvered message soekhas similar properties to a datagram sgdiut with reliable
delivery. There is currently no support for this type of seickut a reliably delrered message protocol
similar to Xerox$ Packet Exchange Protocol (PEX) may be simulated at the usgr Iglore information
on this topic can be found in section 5.

* See Internet Tansport Potocols Xerox System Ingration Standard (XS1S)028112 for more information.
This document is almost a necessity for one trying to write NS applications.

T In the UNIX domain, in dct, the semantics are identical and, as one migigct, pipes ha& keen imple-
mented internally as simply a pair of connected streamessaick

PSD:21-4 Adanced 4.4BSD IPCuforial

2.2. Soclet creation
To aeate a soekt thesodket system call is used:

s = 9cket(domain, type, protocol);

This call requests that the system create aetdnkthe specifiedomainand of the specifietype A par

ticular protocol may also be requestdiélthe protocol is left unspecified (aale of 0), the system will

select an appropriate protocol from those protocols which comprise the communication domain and which
may be used to support the requested edotglpe. The user is returned a descriptor (a smallgetenum-

ber) which may be used in later system calls which operate ortsockhedomain is specified as one of

the manifest constants defined in the fiysisoket.h>. For the UNIX domain the constant is AF_UNIX*;

for the Internet domain AF_INETBnd for the NS domain, AF_NSThe sockt types are also defined in

this file and one of SOCK_STREAM, SOCK_DGRAM, SOCK WAor SOCK_SEQRCKET must be
specified. © create a stream soekin the Internet domain the folling call might be used:

s = ocket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream saetkbeing created with the TCP protocol ypding the underlying
communication supporiTo ceate a datagram satlkfor on-machine use the call might be:

s = ocket(AF_UNIX, SOCK_DGRAM, 0);

The deéult protocol (used when thprotocol argument to thesodket call is 0) should be correct for
most &ery situation. However, it is possible to specify a protocol other than thead#f this will be cw-
ered in section 5.

There are seral reasons a soekcall may &il. Asidefrom the rare occurrence of lack of memory
(ENOBUFS), a socét request mayafl due to a request for an unkmo protocol (EPRTONOSUPPOR),
or a request for a type of s@tlfor which there is no supporting protocol (EPFOTYPE).

2.3. Bindinglocal names

A socket is created without a namentil a name is bound to a sa@tkprocesses t1ia o way to ref-
erence it and, consequenthp messages may be reead on it. Communicatingrocesses are bound by an
association In the Internet and NS domains, an association is composed of local and foreign addresses,
and local and foreign ports, while in the UNIX domain, an association is composed of local and foreign
path names (the phraséofeign pathnamé’'means a pathname created by a foreign process, not a path-
name on a foreign systemhn most domains, associations must be uniduethe Internet domain there
may neer be duplicate <protocol, local address, local port, foreign address, foreign port> tiigx.
domain sockts need not alays be bound to a nameajtbwhen bound there mayvee be duplicate <proto-
col, local pathname, foreign pathname> tupl€he pathnames may not refer to files alreadgtig on
the system in 4.3; the situation may change in future releases.

Thebind system call allas a process to specify half of an association, <local address, local port> (or
<local pathname>), while tteonnectandacceptprimitives ae used to complete a s@tls association.

In the Internet domain, binding names to siskcan bedirly comple. Fortunatelyit is usually not
necessary to specifically bind an address and port number toet, dmtause theonnectand sendcalls
will automatically bind an appropriate address ifytlaee used with an unbound satk Theprocess of
binding names to NS soets is similar in most ays to that of binding names to Internet sisk

Thebind system call is used as folls:
bind(s, name, namelen);

The bound name is aaxiable length byte string which is interpreted by the supporting protocdigs).
interpretation may ary from communication domain to communication domain (this is one of the proper
ties which comprise thédomain’). As mentioned, in the Internet domain names contain an Internet
address and port numbedS domain names contain an NS address and port nuriibéire UNIX domain,

* The manifest constants are named AF_wieates they indicate the‘address format'to use in interpreting
names.

Advanced 4.4BSD |IPCukorial PSD:21-5

names contain a path name andamify, which is alvays AF_UNIX. If one wanted to bind the name
“ /tmp/foo” to a UNIX domain sockt, the follaving code vould be used*:

#include <sys/un.h>
struct sockaddr_un addr;

strcpy(addrsun_path, "/tmp/foo™);

addrsun_amily = AF_UNIX;

bind(s, (struct sockaddr *) &addstrlen(addrsun_path) +
sizeof (addsun_len) + sizeof (addun_amily));

Note that in determining the size of a UNIX domain address null bytes are not counted, whiglstidemh

is used.In the current implementation of UNIX domain IPC, the file name referredaddnsun_paths
created as a soekin the system file spac&he caller must, therefore, yVewrite permission in the direc-

tory whereaddrsun_pathis to reside, and this file should be deleted by the caller when it is no longer
needed. Futureersions of 4BSD may not create this file.

In binding an Internet address things become more complic@itedlactual call is similar

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

but the selection of what to place in the addr@ssequires some discussiofiVe will come back to the
problem of formulating Internet addresses in section 3 when the library routines used in name resolution
are discussed.

Binding an NS address to a setlks een more dificult, especially since the Internet library routines
do not work with NS hostnamesThe actual call is a&in similar:

#include <sys/types.h>
#include <netns/ns.h>

struct sockaddr_ns sns;

bind(s, (struct sockaddr *) &sns, sizeof (sns));

Again, discussion of what to place in'stfuct sockaddr_nswill be deferred to section 3.

2.4. Connectionestablishment

Connection establishment is usually asymmetric, with one procesdiemt” and the other a
“ sener”. The sener, when willing to ofer its adwertised services, binds a setko a well-knen address
associated with the service and then pasi‘listens” on its soclet. Itis then possible for an unrelated
process to rendeaus with the seer. The client requests services from the sefsy initiating a‘tonnec-
tion” to the serer’s cket. Onthe client side theonnectcall is used to initiate a connectioklsing the
UNIX domain, this might appear as,

struct sockaddr_un saw,
connect(s, (struct sockaddr *)&seryvstrlen(serer.sun_path) +
sizeof (serersun_amily));

while in the Internet domain,

* Note that, although the tendgrere is to call theaddr” structure ‘sun”, doing so vould cause problems if
the code werewer ported to a Sun arkstation.

PSD:21-6 Adanced 4.4BSD IPCuforial

struct sockaddr_in seav;,

connect(s, (struct sockaddr *)&servszeof (serer));
and in the NS domain,

struct sockaddr_ns semn

connect(s, (struct sockaddr *)&servszeof (serer));

whereserverin the example abwe would contain either the UNIX pathname, Internet address and port
number or NS adress and port number of the srto which the client process wishes to spdékhe

client process cket is unbound at the time of the connect call, the system will automatically select and
bind a name to the soekif necessary; c.f. section 5.%Zhis is the usual ay that local addresses are bound

to a sockt.

An error is returned if the connectioragvunsuccessful (gmame automatically bound by the sys-
tem, havever, remains). Otherwisghe sockt is associated with the servand data transfer maydie.
Some of the more common errors returned when a connection atiis\pté:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided ter@vpoint in
retrying the connection attemptyamore. Thisusually occurs because the destination hostusdo
or because problems in the netwresulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reasbmis is usually due to a sewprocess not being present at
the requested name.

ENETDOWN or EHOSTDQVN
These operational errors are returned based on status informatienedeto the client host by the
underlying communication services.

ENETUNREACH or EHOSTUNREARH
These operational errors can occur either because therketwhost is unknen (no route to the
network or host is present), or because of status information returned by intermeddaiy/ s or
switching nodes.Marny times the status returned is notfmiént to distinguish a netwk being
down from a host being da, in which case the system indicates the entirear&tis unreachable.

For the serer to recaie a dient’'s wnnection it must perform weeps after binding its soek The
first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to tligten call specifies the maximum number of outstanding connections which
may be queuedwvaiting acceptance by the servprocess; this number may be limited by the system.
Should a connection be requested while the queue is full, the connection will not be rafusaitheb the
individual messages which comprise the request will be igndfaik gives a harried serer time to mak

room in its pending connection queue while the client retries the connection relgadsthe connection

been returned with the ECONNREFUSED ertbe client vould be unable to tell if the sewwas up or

not. Asit is naw it is dill possible to get the ETIMEDOUT error back, though this is @hjik The back-

log figure supplied with the listen call is currently limited by the system to a maximum of 5 pending con-
nections on anone queue.This avoids the problem of processes hogging system resources by setting an
infinite backlog, then ignoring all connection requests.

With a sockt marled as listening, a se#wmayaccepta connection:
struct sockaddr_in from;
fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

(For the UNIX domainfrom would be declared as struct sokaddr_un and for the NS domainfrom

Advanced 4.4BSD |IPCukorial PSD:21-7

would be declared assiruct so&addr_ns but nothing diferent would need to be done aar fasfromlenis
concerned. Irthe xamples which folla, only Internet routines will be discussedd) new descriptor is
returned on receipt of a connection (along witha secket). If the serer wishes to find out who its client
is, it may supply auiffer for the client soakt’s nrame. Thevalue-result parametdromlenis initialized by
the serer to indicate hew much space is associated witbm, then modified on return to reflect the true
size of the namelf the clients rame is not of interest, the second parameter may be a null pointer

Acceptnormally blocks. That is,acceptwill not return until a connection isvalable or the system
call is interrupted by a signal to the proceBsirther there is no &y for a process to indicate it will accept
connections from only a specific in@ual, or indviduals. Itis up to the user process to consider who the
connection is from and closewlo the connection if it does not wish to speak to the prodésise serer
process w\nts to accept connections on more than oneesookwants to &oid blocking on the accept call,
there are alternatés; they will be considered in section 5.

2.5. Datatransfer

With a connection established, data magitéo flov. To send and recee data there are a number
of possible calls.With the peer entity at each end of a connection anchored, a user can send/®mrecei
message without specifying the pegis ane might &pect, in this case, then the normedd andwrite sys-
tem calls are usable,

write(s, lf, sizeof (lf));
read(s, bf, sizeof (lf));

In addition toread andwrite, the nev calls sendandrecv may be used:

send(s, bf, sizeof (luf), flags);
recv(s, loif, sizeof (lf), flags);

While sendandrecv are virtually identical taead andwrite, the etra flags agument is importantThe
flags, defined irksys/so&et.h>, may be specified as a non-zemue if one or more of the folkng is
required:

MSG_0O0OB send/reced aut of band data
MSG_PEEK lookat data without reading
MSG_DONTROUTE sendiata without routing paeis

Out of band data is a notion specific to stream eiscland one which we will not immediately consider
The option to hee data sent without routing applied to the outgoing pésks currently used only by the
routing table management process, and is alyliko be of interest to the casual us€he ability to pre-
view data is, haever, of interest. WherMSG_PEEK is specified with eecv call, ary data present is
returned to the usebut treated as stilfunread’. Thatis, the n&t read or recv call applied to the soek
will return the data preously previewed.

2.6. Discardingsockets
Once a soadt is no longer of interest, it may be discarded by applytigseto the descriptor
close(s);

If data is associated with a setkvhich promises reliable dedty (e.g. a stream soek) when a close tak
place, the system will continue to attempt to transfer the détavever, ater a firly long period of time, if
the data is still undelered, it will be discardedShould a user va ro use for ay pending data, it may
perform ashutdowron the socé&t prior to closing it.This call is of the form:

shutdavn(s, hav);

wherehowis 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or 2 if no
data is to be sent or recedl.

PSD:21-8 Adanced 4.4BSD IPCuforial

2.7. Connectionlessockets

To this point we hee been concerned mostly with s@tk which follav a mnnection oriented model.
However, there is also support for connectionless interactions typical of the datageditie$ found in
contemporary pa&k switched netarks. A datagram soak provides a symmetric intemte to data
exchange. Whileprocesses are still ity to be client and seey there is no requirement for connection
establishment. Insteadach message includes the destination address.

Datagram soas are created as befori.a particular local address is needed, iired operation
must precede the first data transmissi@therwise, the system will set the local address and/or port when
data is first sentTo nd data, theendtoprimitive is used,

sendto(s, bf, buflen, flags, (struct sockaddr *)&to, tolen);

Thes, buf, buflen and flags parameters are used as befof@eto andtolenvaues are used to indicate the
address of the intended recipient of the messaljben using an unreliable datagram irded, it is
unlikely that ag errors will be reported to the sendéiVhen information is present locally to recognize a
message that can not be deled (for instance when a neivk is unreachable), the call will return -1 and
the global alueerrnowill contain an error number

To receve messages on an unconnected datagramesdtierecvfrom primitive is provided:
recvfrom(s, bof, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once agin, thefromlenparameter is handled in alue-result &shion, initially containing the size of the
from buffer, and modified on return to indicate the actual size of the address from which the datagram w
receved.

In addition to the tw calls mentioned ah@, datagram soakts may also use tlednnectcall to asso-
ciate a soolt with a specific destination addreds.this case, andata sent on the soekwill automati-
cally be addressed to the connected et only data receed from that peer will be deléered to the user
Only one connected address is permitted for eactesatlone time; a second connect will change the des-
tination address, and a connect to a null addressil{f AF_UNSPEC) will disconnectConnect requests
on datagram soeks return immediatelyas this simply results in the system recording the peaftiress
(as compared to a stream sekwvhere a connect request initiates establishment of an end to end connec-
tion). Acceptandlistenare not used with datagram setk

While a datagram soekis connected, errors from recerndcalls may be returned asynchronously
These errors may be reported on subsequent operations on tbg eoekspecial soek option used with
getsokopt, SO_ERFOR, may be used to interratg the error statusA selectfor reading or writing will
return true when an error indication has been vedei Thenext operation will return the errpend the
error status is cleared®ther of the less important details of datagram etsclire described in section 5.

2.8. Input/Output multiplexing

One last &cility often used in desloping applications is the ability to multide/o requests among
multiple soclets and/or filesThis is done using theelectcall:

#include <sys/time.h>
#include <sys/types.h>

fd_set readmask, writemaskoeptmask;
struct timeval timeout;

select(nfds, &readmask, &writemask, ¥e=ptmask, &timeout);

Selectakes as gguments pointers to three sets, one for the set of file descriptors for which the caller wishes
to be able to read data on, one for those descriptors to which data is to be written, and one forcegrich e
tional conditions are pending; out-of-band data is the ardgm@ional condition currently implemented by

the sockt If the user is not interested in certain conditions (i.e., read, writgcept®ons), the correspond-

ing agument to theselectshould be a null pointer

Advanced 4.4BSD |IPCukorial PSD:21-9

Each set is actually a structure containing an array of longeintdt masks; the size of the array is
set by the definition FD_SETSIZE he array is be long enough to hold one bit for each of FD_SETSIZE
file descriptors.

The macros FD_SET{, &mask and FD_CLR{d, &mash have been preided for adding and
removing file descriptorfd in the setmask The set should be zeroed before use, and the macro
FD_ZERDO(&masK has been pndded to clear the sehask The parametenfdsin theselectcall specifies
the range of file descriptor§.e. one plus thealue of the lagest descriptor) to bexamined in a set.

A timeout \alue may be specified if the selection is not to last more than a predetermined period of
time. If the fields intimeoutare set to 0, the selection éskthe form of goll, returning immediately If
the last parameter is a null pointdre selection will block indefinitely* Selectnormally returns the num-
ber of file descriptors selected; if teelectcall returns due to the timeouxpering, then the &lue 0 is
returned. Iftheselectterminates because of an error or interruption, a -1 is returned with the error number
in errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors are ready to be read
from, written to, or hee exeptional conditions pendinglhe status of a file descriptor in a select mask
may be tested with theD_ISSET(fd, &maskinacro, which returns a non-zeralwe iffd is a member of
the semask and O if it is not.

To determine if there are connectionaiting on a sooét to be used with asmcceptcall, selectcan be
used, folleved by aFD_ISSET(fd, &masknacro to check for read readiness on the appropriatetsokék
FD_ISSETreturns a non-zeroalue, indicating permission to read, then a connection is pending on the
soclet.

As an &le, to read data from dwsockets,slands2as it is &ailable from each and with a one-
second timeout, the folldng code might be used:

* To be nore specific, a return tak place only when a descriptor is selectable, or when a signal isdenei
the callerinterrupting the system call.

PSD:21-10 Adanced 4.4BSD IPCukorial

#include <sys/time.h>
#include <sys/types.h>

fd_set read_template;
struct timeval wait;

for (;;) {
wait.tv_sec = 1; /* one second */
wait.tv_usec = 0;

FD_ZERO(&read_template);

FD_SET(s1, &read_template);
FD_SET(s2, &read_template);

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) Gifw
if (nb <=0) {

An ermor occurred during theselect or

theselecttimed out.

}

if (FD_ISSET(s1, &read_template)) {
Soke #1 is ready to beead fom.

}

if (FD_ISSET(s2, &read_template)) {
Soke #2 is ready to beead fom.

}
}

In 4.2, the aguments teselectwere pointers to ingers instead of pointers fd_ses. Thistype of
call will still work as long as the number of file descriptors bekagrened is less than the number of bits
in an intger; havever, the methods illustrated ab® $ould be used in all current programs.

Selectprovides a synchronous multipieg scheme.Asynchronous notification of output comple-
tion, input &ailability, and exceptional conditions is possible through use of the SIGIO and SIGURG sig-
nals described in section 5.

Advanced 4.4BSD |IPCukorial PSD:21-11

3. NETWORK LIBRAR Y ROUTINES

The discussion in section 2 indicated the possible need to locate and constrock aefivesses
when using the interprocess communicatiadilities in a distribted enironment. D ad in this task a
number of routines va been added to the standard C run-time librdnythis section we will consider the
new routines preided to manipulate netwk addressesWhile the 4.4BSD netarking facilities support
the Internet protocols and the Xerox NS protocols, most of the routines presented in this section do not
apply to the NS domainUnless otherwise stated, it should be assumed that the routines presented in this
section do not apply to the NS domain.

Locating a service on a remote host requiresyniavds of mapping before client and servmay
communicate. Aservice is assigned a name which is intended for human consumptiorithe.¢pgin
serveron host monet’ This name, and the name of the peer host, must then be translated inboknetw
addresseswvhich are not necessarily suitable for human consumptamally, the address must then used
in locating a pisicallocationandrouteto the service.The specifics of these three mappings amyliko
vary between netark architectures.For instance, it is desirable for a neik to not require hosts to be
named in such aay that their pisical location is knan by the client hostinstead, underlying services
in the netverk may discuer the actual location of the host at the time a client host wishes to communicate.
This ability to hae hosts named in a location independent manner may indeebead in connection
establishment, as a dis@ny process must takpace, lut allovs a host to be pisically mobile without
requiring it to notify its clientele of its current location.

Standard routines are pided for: mapping host names to netlvaddresses, nebrk names to net-
work numbers, protocol hames to protocol numbers, and service names to port numbers and the appropriate
protocol to use in communicating with the sarprocess.The file snetdbh> must be included when using
ary of these routines.

3.1. Hostnames
An Internet host name to address mapping is represented bystemtstructure:

struct hostenf

char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type (e.g., AF_INET) */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses, null terminated */
¥
#define h_addrh_addr_list[0] [*first address, netwk byte order */

The routinegethostbynam@N) takes an Internet host name and returt®stentstructure, while the rou-
tine gethostbyaddf3N) maps Internet host addresses intmstentstructure.

The oficial name of the host and its public aliases are returned by these routines, along with the
address type &mily) and a null terminated list ofxiable length addres&his list of addresses is required
because it is possible for a host todnaary addresses, all weng the same namelhe h_addrdefinition
is provided for backward compatibility and is defined to be the first address in the list of addresses in the
hostentstructure.

The database for these calls isvyided either by the filéetc/hostghostq5)), or by use of a name-
sener, named8). Becausef the diferences in these databases and their access protocols, the information
returned may diér. When using the host tableension of gethostbynamgonly one address will be
returned, bt all listed aliases will be included’he nameseer version may return alternate addresses, b
will not provide ary aliases other than onevgn as agument.

Unlike Internet names, NS names amgagks mapped into host addresses by the use of a standard NS
Clearinghouse servigea dstributed name and authentication sgrvThe algorithms for mapping NS

PSD:21-12 Adanced 4.4BSD IPCukorial

names to addresses via a Clearinghouse are rather complicated, and the routines are not part of the standard
libraries. Theusercontributed Courier (Xerox remote procedure call protocol) compiler contains routines

to accomplish this mapping; see the documentation xert@es proeided therein for more informatiorit

is expected that almost all sofare that has to communicate using NS will need to useatfid@iés of the

Courier compiler

An NS host address is represented by theviatig:

union ns_host {
u_char c_host[6];
u_short s_host[3];
h

union ns_net {
u_char c_net[4];
u_short s_net[2];

h

struct ns_addr {
union ns_net x_net;
union ns_host x_host;
u_short X_port;

h

The following code fragment inserts a kmo NS address intorss_addr

Advanced 4.4BSD |IPCukorial PSD:21-13

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>

u_long netnum;
struct sockaddr_ns dst;

bzero((char *)&dst, sizeof(dst));

/*

* There is no corenient way to assign a long

* integer to a‘union ns_net'at present; in

* the future, something will hopefully be pided,
* but this is the portable ay to go for na.

* The netvork number belw is the one for the NS net
* that the desired host (gyre) is on.

*/

netnum = htonl(2266);

dst.sns_addt_net = *(union ns_net *) &netnum;
dst.sns_dmily = AF_NS;

/*

*host 2.7.1.0.2a.18 == "gyre:Computer Science:UofMaryland”
*

dst.sns_addt_host.c_host[0] = 0x02;
dst.sns_addt_host.c_host[1] = 0x07;
dst.sns_addt_host.c_host[2] = 0x01;
dst.sns_addt_host.c_host[3] = 0x00;
dst.sns_addt_host.c_host[4] = 0x2a;
dst.sns_addt_host.c_host[5] = 0x18;

dst.sns_addt_port = htons(75);

3.2. Network names
As for host names, routines for mapping rertanames to numbers, and back, arevided. These
routines return aetentstructure:
/*
* Assumption here is that a netk number
*fits in 32 bits -- probably a poor one.

*/
struct netenf

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net address type */

int n_net; /* network numberhost byte order */
%

The routineggetnetbynaméN), getnetbynumbdBN), andgetnetenf3N) are the netark counterparts to
the host routines described &bo The routines éract their information fronfetc/networks

NS network numbers are determined either by asking your local Xeroxdvletddministrator (and
hardcoding the information into your code), or by querying the Clearinghouse for addidssesternet-
work router is the only process that needs to manipulateonetmumbers on a gelar basis; if a process
wishes to communicate with a machine, it should ask the Clearinghouse for that rseackiress (which
will include the net number).

PSD:21-14 Adanced 4.4BSD IPCukorial

3.3. Pmotocol names

For protocols, which are defined iletc/piotocols the protoentstructure defines the protocol-name
mapping used with the routingstprotobynamé3N), getprotobynumbgBN), andgetprotoen{3N):

struct protoen{

char *p_name; [* official protocol name */
char **p_aliases; /* alias list */
int p_proto; [* protocol number */

h

In the NS domain, protocols are indicated by the "client type" field of a IDP heldegmrotocol
database»asts; see section 5 for more information.

3.4. Sevice names

Information rgarding services is a bit more complicatelservice is &pected to reside at a specific
“ port” and emply a particular communication protocollhis view is cnsistent with the Internet domain,
but inconsistent with other nebsk architecturesFurther a rvice may reside on multiple port#. this
occurs, the higher Vel library routines will hge © be bypassed orxended. Serviceawailable are con-
tained in the fildetc/services A service mapping is described by serventstructure,

struct serent {

char *s _name; [* official service name */

char **s aliases; /* alias list */

int S_port; /* port numbey network byte order */
char *s_proto; [* protocol to use */

¥
The routinegetservbynam@N) maps service names to a sgnvstructure by specifying a service name
and, optionallya qualifying protocol. Thus the call

sp = getservbyname("telnet", (char *) 0);

returns the service specification for a telneteeunsing ay protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet seswwhich uses the TCP protocorhe routineggetservbypor3N) andgetser
ven(3N) are also pnided. Thegeservbyportroutine has an inteate similar to that prxaded by ge-
servbynamgean optional protocol name may be specified to qualify lookups.

In the NS domain, services are handled by a central dispatclhvéqar@s part of the Courier remote
procedure calldcilities. Agnin, the reader is referred to the Courier compiler documentation and to the
Xerox standard* for further details.

3.5. Miscellaneous

With the support routines described a@n Internet application program should rarelyé@ deal
directly with addressesThis allons services to be geloped as much as possible in a rataindependent
fashion. ltis clear howeve, that puging all netvork dependencies iew difficult. Solong as the user is
required to supply netwk addresses when naming services andetsdkere will avays some netark
dependengcin aprogram. Br example, the normal code included in client programs, such as the remote
login program, is of the form sha in Figure 1.(This example will be considered in more detail in section
4)

If we wanted to mal the remote login program independent of the Internet protocols and addressing
scheme we wuld be forced to add a layer of routines which mdsthe netwrk dependent aspects from
the mainstream login codd=or the current dcilities aailable in the system this does not appear to be
worthwhile.

* Courier: The Remote Bcedue Call Protocol XSIS 038112.

Advanced 4.4BSD |IPCukorial PSD:21-15

Aside from the address-related data base routines, therevaral sgher routines\ailable in the
run-time library which are of interest to userBhese are intended mostly to simplify manipulation of
names and addresseBable 1 summarizes the routines for manipulatiagiable length byte strings and
handling byte sapping of netwrk addresses andlues.

Call Synopsis

bcmp(sl, s2, n)| compare byte-strings; 0 if same, not O otherwise
bcopy(sl, s2, n)| copy n bytes from sl to s2

bzero(base, n) | zero-fill n bytes starting at base

htonl(val) corvert 32-bit quantity from host to netwk byte ordern
htons(\al) corvert 16-bit quantity from host to netwk byte order
ntohl(val) corvert 32-bit quantity from netark to host byte order
ntohs(\al) corvert 16-bit quantity from netark to host byte order

Table 1. C run-time routines.

The byte swapping routines are praed because the operating systeqpeets addresses to be sup-
plied in netvork order (aka'big-endian’ order). On“ little-endian’ architectures, such as Intel x86 and
VAX, host byte ordering is ddrent than netark byte ordering.Consequentlyprograms are sometimes
required to byte sap quantities.The library routines which return netvk addresses pvale them in net-
work order so that themay simply be copied into the structuresyided to the systemThis implies users
should encounter the byte apping problem only wheinterpretingnetwork addresseskor example, if an
Internet port is to be printed out the falimg code vould be required:

printf("port number %d\n", ntohs(sp->s_port));

On machines where unneeded these routines are defined as null macros.

PSD:21-16 Adanced 4.4BSD IPCukorial

#include <sys/types.h>
#include <sys/soak.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdln>

main(agc, agv)
int agc;
char *agv[];

struct sockaddr_in seav;,
struct serent *sp;

struct hostent *hp;

ints;

sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stders "rlogin: tcp/login: unknan service\n");
exit(1);
}
hp = gethostbyname@r[1]);
if (hp == NULL) {
fprintf(stdert "rlogin: %s: unknwn host\n", agv[1]);
exit(2);
}
bzero((char *)&serer, Szeof (serer));
bcopy(hp->h_addr(char *)&sener.sin_addrhp->h_length);
sener.sin_family = hp->h_addrtype;
sener.sin_port = sp->s_port;
s = 9cket(AF_INET, SOCK_STREAM, 0);
if (s<0){
perror(“rlogin: sockt");
exit(3);
}

/* Connect does the bind() for us */
if (connect(s, (char *)&seer, sizeof (serer)) < 0) {

perror(“rlogin: connect");
exit(5);

Figure 1. Remote login client code.

Advanced 4.4BSD |IPCukorial PSD:21-17

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing digkib applications is the client/serv
model. Inthis scheme client applications request services from arsgrvcess.This implies an asymme-
try in establishing communication between the client anceseviiich has beerxamined in section 2In
this section we will look more closely at the interactions between client aref, sex consider some of
the problems in deloping client and seer applications.

The client and seer require a well knan set of comentions before service may be rendered (and
accepted). Thiset of comentions comprises a protocol which must be implemented at both ends of a con-
nection. Dependingn the situation, the protocol may be symmetric or asymmetria. symmetric proto-
col, either side may play the master owslales. Inan asymmetric protocol, one side is immutably recog-
nized as the mastewith the other as the sla An example of a symmetric protocol is the TELNET proto-
col used in the Internet for remote terminal emulatidn.example of an asymmetric protocol is the Inter
net file transfer protocol, FTANo matter whether the specific protocol used in obtaining a service is sym-
metric or asymmetric, when accessing a service there'cdiemt process’and a ‘server process’ We
will first consider the properties of senprocesses, then client processes.

A sernver process normally listens at a well Wwmaddress for service requesiEhat is, the seer
process remains dormant until a connection is requested by asotmmection to the seev's aldress. At
such a time the segv processwakes up’ and services the client, performing whasgeappropriate actions
the client requests of it.

Alternatve £hemes which use a service srmay be used to eliminate a flock of sgrprocesses
clogging the system while remaining dormant most of the tif@. Internet serers in 4.4BSD, this
scheme has been implemented ivigid, the so called'internet supessener.” Inetdlistens at a ariety of
ports, determined at start-up by reading a configurationileen a connection is requested to a port on
which inetd is listening,inetd executes the appropriate servprogram to handle the clienWith this
method, clients are unare that an intermediary suchiagtd has played anpart in the connectionlnetd
will be described in more detail in section 5.

A similar alternatve heme is used by most Xerox servicés.general, the Courier dispatch pro-
cess (if used) accepts connections from processes requesting services of some sort orTarothient
processes request a particular <program numiaesion numberprocedure number> triplelf the dis-
patcher knars of such a program, it is started to handle the request; if not, an error is reported to the client.
In this way, only one port is required to service aganariety of diferent requestsAgain, the Courier
facilities are not wailable without the use and installation of the Courier compildre information pre-
sented in this section applies only to NS clients and services that do not use Courier

4.1. Severs

In 4.4BSD most seprs are accessed at well lnmolnternet addresses or UNIX domain namesr.
example, the remote login sems main loop is of the form shwn in Figure 2.

The first step tadn by the serr is look up its service definition:
sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stdert "rlogind: tcp/login: unknavn service\n");
exit(1);
}

The result of thgetservbynameall is used in later portions of the code to define the Internet port at which
it listens for service requests (indicated by a connection).

PSD:21-18 Adanced 4.4BSD IPCukorial

main(agc, agv)
int amgc;
char *agv[];

int f;
struct sockaddr_in from;
struct serent *sp;

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stdert "rlogind: tcp/login: unknavn service\n");
exit(1);

}

#ifndef DEBUG
/* Disassociate seer from controlling terminal */

#endﬁ“
sin.sin_port = sp->s_port; /* Restricted port -- see section 5 */
f: socket(AF_INET, SOCK_STREAM, 0);
illél(bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

}

iigten(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *) &from, &len);
if (g <0){
if (errno I= EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) {
close(f);
doit(g, &from);

}

close(q);

Figure 2. Remote login seer.

Advanced 4.4BSD |IPCukorial PSD:21-19

Step tw is to disassociate the sewfrom the controlling terminal of itsvoker:

for (i=0;i<3; ++i)
close(i);

open("/", O_RDONV);
dup2(0, 1);
dup2(0, 2);

i = open("/de/tty", O_RDWNR);
if (i >=0) {
ioctl(i, TIOCNOTTY, 0);
close(i);

}

This step is important as the serwvill likely not want to receie dgnals delered to the process group of
the controlling terminal.Note, havever, that once a seer has disassociated itself it can no longer send
reports of errors to a terminal, and must log errorsysa.

Once a semr has established a pristinevieonment, it creates a saakand bgins accepting service
requests. Théind call is required to insure the sendistens at its>@ected location.It should be noted
that the remote login seew listens at a restricted port numbeerd must therefore be run with a useiof
root. Thisconcept of a'festricted port numberis 4BSD specific, and is eered in section 5.

The main body of the loop igifly simple:
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len);
if (9<0){
if (errno '= EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) { /* Child */
close(f);
doit(g, &from);

}

close(q); [*Paent */

}

An acceptcall blocks the seer until a client requests servic&his call could return aaflure status if the

call is interrupted by a signal such as SIGCHLD (to be discussed in secti@hesgfore, the returnalue

from acceptis checled to insure a connection has actually been established, and an error report is logged
via sysla if an error has occurred.

With a connection in hand, the sernthen forks a child process anddkes the main body of the
remote login protocol processinglote hav the sockt used by the parent for queuing connection requests
is closed in the child, while the satkcreated as a result of theceptis closed in the pareniThe address
of the client is also handed tHeit routine because it requires it in authenticating clients.

4.2. Clients

The client side of the remote login servicasashan earlier in Figure 1.One can see the separate,
asymmetric roles of the client and sam¢learly in the codeThe serer is a passe antity, listening for
client connections, while the client process is arvadtitity, initiating a connection whenvaoked.

Let us consider more closely the stepeiaky the client remote login procedss in the sergr pro-
cess, the first step is to locate the service definition for a remote login:

PSD:21-20 Adanced 4.4BSD IPCukorial

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stdert "rlogin: tcp/login: unknwn service\n");
exit(1);

}

Next the destination host is loe# up with egethostbynameall:

hp = gethostbyname@r[1]);

if (hp == NULL) {
fprintf(stdert "rlogin: %s: unknan host\n", agv[1]);
exit(2);

}

With this accomplished, all that is required is to establish a connection to tke aetive requested host
and start up the remote login protocdhe addressuifer is cleared, then filled in with the Internet address
of the foreign host and the port number at which the login process resides on the foreign host:

bzero((char *)&serer, Szeof (serer));
bcopy(hp->h_addr(char *) &sener.sin_addrhp->h_length);
sener.sin_family = hp->h_addrtype;

sener.sin_port = sp->s_port;

A socket is created, and a connection initiat&bte thatconnectimplicitly performs abind call, sincesis
unbound.

s = cket(hp->h_addrtype, SOCK_STREAM, 0);

if (s<0){
perror(“rlogin: sockt");
exit(3);

}

if (connect(s, (struct sockaddr *) &serysizeof (serer)) < 0) {
perror(“rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionlesserwers

While connection-based services are the norm, some services are based on the use of datagram sock-
ets. Onejn particular is the ‘rwho’ service which preides users with status information for hosts con-
nected to a local area nei¢. Thisservice, while predicated on the abilitydmadcastinformation to all
hosts connected to a particular netky is of interest as axample usage of datagram setk

A user on ayp machine running the rwho semvmay find out the current status of a machine with the
ruptimg1) program.The output generated is illustrated in Figure 3.

Status information for each host is periodically broadcast by rwhergerecesses on each machine.
The same seer process also rewes the status information and uses it to update a datab#se database
is then interpreted to generate the status information for each$@rsers operate autonomoustpupled
only by the local netark and its broadcast capabilities.

Note that the use of broadcast for such a taskiily inefficient, as all hosts must process each mes-
sage, whether or not using an rwho sennless such a service is Baiently uniersal and is frequently
used, the xpense of periodic broadcasts outweighs the simplicity

Multicasting is an alternate © broadcasting. Settingp multicast soakts is described in Section
5.10.

Advanced 4.4BSD |IPCukorial PSD:21-21

arpa up 9:45, Susers, load 1.15, 1.39, 131
cad up 2+12:04, 8users, load 4.67, 5.13, 4.59
calder up 10:10, Ousers, load 0.27, 0.15, 0.14
dali up 2+06:28, Qsers, load 1.04, 1.20, 1.65
degas w 25+09:48, C(Qusers,load 1.49, 1.43, 141
ear up 5+00:05, Qusers, load 1.51, 1.54, 1.56
ernie dovn 0:24

es\ax dovn 17:04

ingres davn 0:26

kim up 3+09:16, 8users, load 2.03, 2.46, 3.11
matisse up 3+06:18, Qusers, load 0.03, 0.03, 0.05
medea up 3+09:39, sers, load 0.35, 0.37, 0.50
merlin dovn 19+15:37

miro up 1+07:20, Tusers, load 4.59, 3.28, 2.12
monet up 1+00:43, sers, load 0.22, 0.09, 0.07
0z dovn 16:09

statax up 2+15:57, dusers, load 1.52, 1.81, 1.86
uchvax up 934, 2users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

The rwho sergr, in a smplified form, is pictured in Figure 4There are tw sparate tasks per
formed by the seler. The first task is to act as a raegiof status information broadcast by other hosts on
the netvark. Thisjob is carried out in the main loop of the prograReckets recaied a the rwho port are
interrocated to insure theve keen sent by another rwho senprocess, then are time stamped with their
arrival time and used to update a file indicating the status of the Wdstn a host has not been heard from
for an etended period of time, the database interpretation routines assume the hast endandicate
such on the status reporfghis algorithm is prone to error as a griay be den while a host is actually
up, lut senes our current needs.

The second task performed by the seris to supply information gerding the status of its host.
This involves periodically acquiring system status information, packaging it up in a message and broadcast-
ing it on the local netark for other rwho seers to hear The supply function is triggered by a timer and
runs of a dgnal. Locatingthe system status information is savhat involved, kut uninteresting.Decid-
ing where to transmit the resultant patls somehat problematical, hvever.

Status information must be broadcast on the local ar&twior networks which do not support the
notion of broadcast another scheme must be used to simulate or replace broadoastipgssibility is to
enumerate the kmen neighbors (based on the status messagewvegdeom other rwho seers). This,
unfortunatelyrequires some bootstrapping information, for aeewill have ro idea what machines are its
neighbors until it recees gatus messages from theriherefore, if all machines on a net are freshly
booted, no machine will lva any known neighbors and thus vex receve, or send, ag status information.
This is the identical problema¢ed by the routing table management process in patipggouting status
information. Thestandard solution, unsatsitory as it may be, is to inform one or more ses\of knovn
neighbors and request that yreways communicate with these neighbotseach serer has at least one
neighbor supplied to it, status information may then pragathrough a neighbor to hosts which are not
(possibly) directly neighborsif the serer is able to support nebnks which preide a broadcast capabil-
ity, as well as those which do not, then netks with an arbitrary topology may share status information*.

It is important that softare operating in a disttitted erironment not hee any ste-dependent infer
mation compiled into it.This would require a separate gopf the serer at each host and nekmainte-
nance a sere headache4.4BSD attempts to isolate host-specific information from applications by pro-

* One must, havever, be concerned aboutlbops”. Thatis, if a host is connected to multiple netks, it will
receve datus information from itselfThis can lead to an endlessasteful, &change of information.

PSD:21-22 Adanced 4.4BSD IPCukorial

main()

{

sp = getservbyname("who", "udp");

net = getnetbyname("localnet");

sin.sin_addr = inet_maladdr(INMDDR_ANY, net);
sin.sin_port = sp->s_port;

s = ocket(AF_INET, SOCK_DGRAM, 0);

on=1,

if (setsoclopt(s, SOL_SOCKETSO_BROADCAST, &on, sizeof(on)) < 0) {
syslog(LOG_ERR, "setsookt SO_BROADCAST: %m");
exit(1);

}

bind(s, (struct sockaddr *) &sin, sizeof (sin));

signal(SIGALRM, onalrm);
onalrm();
for (;;) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), O,
(struct sockaddr *)&from, &len);
if (cc <=0) {
if (cc <0 && errno !'= EINTR)
syslog(LOG_ERR, "rwhod: recv: %m");
continue;
}
if (from.sin_port = sp->s_port) {
syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin_port));
continue;

}

if (verify(wd.wd_hostname)) {
syslog(LOG_ERR, "rwhod: malformed host name from %x",
ntohl(from.sin_adds_addr));
continue;

}
(void) sprintf(path, "%s/whod.%s" MHODIR, wd.wd_hostname);

whod = open(path, O_WBNLY | O_CREAI | O_TRUNC, 0666);
(void) time(&wd.wd_recvtime);

(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4.rwho serer.

viding system calls which return the necessary informatigkechanism ®sts, in the form of afoctl

* An example of such a system call is tghostnamé2) call which returns the host*official” name.

Advanced 4.4BSD |IPCukorial PSD:21-23

call, for finding the collection of netwks to which a host is directly connectdéurther a local netvork
broadcasting mechanism has been implemented at thetdagk Combiningthese tw features allas a
process to broadcast onyadirectly connected local netwk which supports the notion of broadcasting in a
site independent mannefhis allovs 4.4BSD to sok the problem of deciding loto propagte status
information in the case ofvho, or more generally in broadcasting: Such status information is broadcast to
connected netarks at the soek level, where the connected neivks hae keen obtained via the appropri-
ateioctl calls. Thespecifics of such broadcastings are comphewvever, and will be cavered in section 5.

PSD:21-24 Adanced 4.4BSD IPCukorial

5. ADVANCED TOPICS

A number of &cilities hae yet to be discussed-or most users of the IPC the mechanisms already
described will sufce in constructing distrited applicationsHowever, others will find the need to utilize
some of the features which we consider in this section.

5.1. Outof band data

The stream so@ht abstraction includes the notion @ut of band’ data. Outof band data is a logi-
cally independent transmission channel associated with each pair of connected stretsn Sndif band
data is deliered to the user independently of normal d&the abstraction defines that the out of band data
facilities must support the reliable dediy of at least one out of band message at a tifilis message may
contain at least one byte of data, and at least one message may be pendingtoéhie user at gnone
time. For communications protocols which support only in-band signaling (i.e. ¢featudata is dalered
in sequence with the normal data), the system normaitgcts the data from the normal data stream and
stores it separatelyThis allovs users to choose between reirgj the ugent data in order and reeigig it
out of sequence without Wiag to luffer all the interening data. It is possible to ‘peek” (via
MSG_PEEK) at out of band dat#. the soclet has a process group, a SIGURG signal is generated when
the protocol is notified of itsxéstence. Aprocess can set the process group or process id to be informed by
the SIGURG signal via the appropridtatl call, as described belofor SIGIO. If multiple soclets may
have aut of band dataveaiting delivery, a selectcall for exceptional conditions may be used to determine
those sockts with such data pendingleither the signal nor the select indicate the actualshod the out-
of-band data, it only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to indicate the point
at which the out of band dateaw/ sent.The remote login and remote shell applications use dlaiity to
propagte signals between client and sgrprocessesWhen a signal flushs gmpending output from the
remote process(es), all data up to the mark in the data stream is discarded.

To nd an out of band message the MSG_OOB flag is suppliedandar sendtocalls, while to
receve aut of band data MSG_OOB should be indicated when performiagvérom or recv call. To find
out if the read pointer is currently pointing at the mark in the data stream, the BUA®X ioctl is pro-
vided:

ioctl(s, SIOCAMARK, &yes);

If yesis a 1 on return, the reread will return data after the markdtherwise (assuming out of band data

has arwed), the net read will pravide data sent by the client prior to transmission of the out of band sig-
nal. Theroutine used in the remote login process to flush output on receipt of an interrupt or quit signal is
shavn in Figure 5.1t reads the normal data up to the mark (to discard it), then reads the out-of-band byte.

A process may also read or peek at the out-of-band data without first reading up to th&hisaik.
more dificult when the underlying protocol dedrs the ugent data in-band with the normal data, and only
sends notification of its presence ahead of time (e.g., the TCP protocol used to implement streams in the
Internet domain).With such protocols, the out-of-band byte may not yee laived when arecv is done
with the MSG_OOB flag.In that case, the call will return an error of EWLDBLOCK. Worse, there
may be enough in-band data in the inpuffdr that normal flav control prevents the peer from sending the
urgent data until the Wfer is cleared.The process must then read enough of the queued data that the
urgent data may be dedred.

Certain programs that use multiple bytes afemt data and must handle multiplgemt signals (e.g.,
telnet(1C)) need to retain the position ofgent data within the streanThis treatment is\ailable as a
soclet-level option, SO_OOBINLINE; sesetsokopt(2) for usage.With this option, the position of gent
data (the ‘tmark™) is retained, bt the ugent data immediately foles the mark within the normal data
stream returned without the MSG_OOB flageception of multiple @ent indications causes the mark to
move, but no out-of-band data are lost.

Advanced 4.4BSD |IPCukorial PSD:21-25

#include <sys/ioctl.h>
#include <sysl/file.h>

00b()
{

int out = FWRITE, mark;
char vaste[BJFSIZ];

/* flush local terminal output