gprof — A Call Graph Execution Profiler PSD:18-1

gprof: a Call Graph Execution Profiler*
by Susan L. Graham Peter B. Kessler Marshall K. McKusick

Computer Science Bision Electrical Engineering and Computer Science Departmenefdity of Cali-
fornia, Berleley Berkeley, California 94720

Abstract

Large compl& programs are composed of nyasmall routines that implement abstractions for the
routines that call themTo be useful, an gecution profiler must attrilite execution time in a \ay that is
significant for the logical structure of a program as well as forxtside decomposition.This data must
then be displayed to the user in aenent and informatie way. The gprof profiler accounts for the run-
ning time of called routines in the running time of the routines that call tAdm.design and use of this
profiler is described.

1. Programs to be Pofiled

Software research gimtonments normally include mgrarge programs both foproduction use and
for experimental inestigation. Theseprograms are typically modulain accordance with generally
accepted principles of good program desi@iten the consist of numerous small routines that implement
various abstractionsSometimes such Ige programs are written by one programmer who has understood
the requirements for these abstractions, and has programmed them appropfiatelfrequently the pro-
gram has had multiple authors and hagved orer time, changing the demands placed on the implementa-
tion of the abstractions without changing the implementation itgétfally, the program may be assembled
from a library of abstraction implementations xa@ined by the programmer

Once a lage program is»ecutable, it is often desirable to increase its speed, especially if small por
tions of the program are found to dominate ¥ecation time. The purpose of thgprof profiling tool is to
help the userwaluate alternatie implementations of abstraction8Ve devdoped this tool in response to
our eforts to imprave a @de generator we were writing [Graham82].

The gprof design taks adantage of thedktt that the programs to be measured age)astructured
and hierarchical We provide a profile in which thexecution time for a set of routines that implement an
abstraction is collected and chad to that abstractionThe profile can be used to compare and assess the
costs of arious implementations.

The profiler can be lirdd into a program without special planning by the programifiee oserhead
for usinggprof is low; both in terms of addedkecution time and in theolume of profiling information
recorded.

2. Types of Pofiling

There are seral different uses for program profiles, and each may requiferefift information
from the profiles, or diérent presentation of the informatioWe dstinguish two broad catgories of pro-
files: those that present counts of statement or routigeations, and those that display timing informa-
tion about statements or routineSounts are typically presented in tigdr form, often in parallel with a
listing of the source codéeTliming information could be similarly presentedt Imore than one measure of
time might be associated with each statement or roufiioe.example, in the framegork used bygprof

This work was supported by grant MCS80-05144 from the National Sciemaedgtion.

PSD:18-2 gpof — a Call Graph Execution Piofiler

each profiled sgment would display twa times: one for the time used by thgsent itself, and another for
the time inherited from codegments it inokes.

Execution counts are used in nyadtifferent contgts. Theexact number of times a routine or state-
ment is actiated can be used to determine if an algorithm is performingmected. Cursorinspection of
such counters may shaalgorithms whose compidty is unsuited to the task at han@areful interpreta-
tion of counters can often suggest immments to acceptable algorithm®recise wamination can
uncover subtle errors in an algorithmAt this level, profiling counters are similar to deging statements
whose purpose is to slvdhe number of times a piece of codexsorited. Anothewiew of such counters
is as booleanalues. Onenay be interested that a portion of code haswed at all, for haustve test-
ing, or to check that one implementation of an abstraction completely replaceoapone.

Execution counts are not necessarily proportional to the amount of time requirestuteghe rou-
tine or statementFurther the eecution time of a routine will not be the same for all calls on the routine.
The criteria for establishingxecution time must be decidedf a routine implements an abstraction by
invoking other abstractions, the time spent in the routine will not accurately reflect the time required by the
abstraction it implementsSimilarly, if an @straction is implemented byw&eal routines the time required
by the abstraction will be disttited across those routines.

Given the ecution time of indvidual routinesgprof accounts to each routine the time spent for it
by the routines it ivokes. Thisaccounting is done by assemblingall graph with nodes that are the rou-
tines of the program and directed arcs that represent calls from call sites to roiéngstinguish among
three diferent call graphs for a prograrithe complete call graph incorporates all routines and all potential
arcs, including arcs that represent calls to functional parameters or functiadles. Thigraph con-
tains the other targraphs as subgraph$he static call graph includes all routines and all possible arcs that
are not calls to functional parameters ariables. Thalynamic call graph includes only those routines and
arcs traersed by the profiledxecution of the programThis graph need not include all routines, nor need
it include all potential arcs between the routines itecm It may, howeve, include arcs to functional
parameters orariables that the static call graph may onfihe static call graph can be determined from
the (static) program x¢ Thedynamic call graph is determined only by profiling ascation of the pro-
gram. Thecomplete call graph for a monolithic program could be determined by datarfidysis tech-
nigues. Thecomplete call graph for programs that change durkegwgion, by modifying themseds or
dynamically loading or werlaying code, may ner be determinable. Bothhe static call graph and the
dynamic call graph are used fprof, but it does not search for the complete call graph.

3. Gathering Profile Data

Routine calls or statemenkeeutions can be measured byimg a compiler augment the code at
stratgic points. The additions can be inline increments to counters [Knuth71] [Satebtd7&] [Jg79] or
calls to monitoring routines [Unix]The counter incrementverhead is lay, and is suitable for profiling
statements. Aall of the monitoring routine has anechead comparable with a call of ayutar routine,
and is therefore only suited to profiling on a routine by routine ba&smsvever, the monitoring routine
solution has certain adutages. Whawer counters are needed by the monitoring routine can be managed
by the monitoring routine itself, rather than being distield around the coddn particular a nonitoring
routine can easily be called from separately compiled progrémeddition, diferent monitoring routines
can be linkd into the program being measured to assembleretitt profiling data without ling to
change the compiler or recompile the prograive haveexploited this approach; our compilers for @r¥
tran77, and &scal can insert calls to a monitoring routine in the prologue for each routeeof the mon-
itoring routine requires no planning on part of a programmer other than to request that augmented routine
prologues be produced during compilation.

We ae interested ina@hering three pieces of information during programcetion: call counts and
execution times for each profiled routine, and the arcs of the dynamic call gragisechby this xecution
of the program.By post-processing of this data we caildthe dynamic call graph for thiseution of
the program and propatg times along the edges of this graph to atilimes for routines to the routines
that invoke them.

gprof — A Call Graph Execution Profiler PSD:18-3

Gathering of the profiling information should not greatly interfere with the running of the program.
Thus, the monitoring routine must not produce trace output each time vbkedn Thevolume of data
thus produced wuld be unmanageably tg, and the time required to record twdd oserwhelm the run-
ning time of most programsSimilarly, the monitoring routine can not do the analysis of the profiling data
(e.g. assembling the call graph, progmg times around it, diseering cycles, etc.) during program
execution. Oursolution is to gther profiling data in memory during prograreaition and to condense it
to a file as the profiled programits. Thisfile is then processed by a separate program to produce the list-
ing of the profile dataAn adwantage of this approach is that the profile data fesrakexecutions of a pro-
gram can be combined by the post-processing wgea@ profile of mayexecutions.

The &ecution time monitoring consists of three part$e first part allocates and initializes the run-
time monitoring data structures before the prograginseeecution. Thesecond part is the monitoring
routine irvoked from the prologue of each profiled routinEhe third part condenses the data structures and
writes them to a file as the program terminafBise monitoring routine is discussed in detail in the fello
ing sections.

3.1. ExecutionCounts

The gprof monitoring routine counts the number of times each profiled routine is cdlkemoni-
toring routine also records the arc in the call graph thatatedi the profiled routineThe count is associ-
ated with the arc in the call graph rather than with the rout@el counts for routines can then be deter
mined by summing the counts on arcs directed into that routine machine-dependerashion, the moni-
toring routine notes itsven return addressThis address is in the prologue of some profiled routine that is
the destination of an arc in the dynamic call grapte monitoring routine also disesrs the return
address for that routine, thus identifying the call site, or source of th& hecsource of the arc is in the
caller, and the destination is in thellee. For example, if a routine A calls a routine B, A is the calséad
B is the callee.The prologue of B will include a call to the monitoring routine that will note the arc from A
to B and either initialize or increment a counter for that arc.

One can not &brd to have the monitoring routine output tracing information as each arc is identified.
Therefore, the monitoring routine maintains a table of all the arcsveiech with counts of the numbers of
times each is tr@rsed during eecution. Thistable is accessed once per routine calicess to it must be
as fast as possible so as not terwvhelm the time required tocecute the program.

Our solution is to access the table through a hash tafdeise the call site as the primargykwith
the callee address being the seconday ISince each call site typically calls only one callee, we can
reduce (usually to one) the number of minor lookups based on the dafiether alternatie would use the
callee as the primaryely and the call site as the secondagy.kSuch an oganization has the adwtage of
associating callers with callees, at thxpense of longer lookups in the monitoring routivge ae fortu-
nate to be running in a virtual memoryvennment, and (for the sakd speed) were able to allocate
enough space for the primary hash table tornelane-to-one mapping from call site addresses to the pri-
mary hash tableThus our hash function is ¥ral to calculate and collisions occur only for call sites that
call multiple destinations (e.g. functional parameters and functi@melbles). Aone level hash function
using both call site and calleeould result in an unreasonably dar hash tableFurther the number of
dynamic call sites and callees is notwmnoduring &ecution of the profiled program.

Not all callers and callees can be identified by the monitoring rouRoetines that were compiled
without the profiling augmentations will not call the monitoring routine as part of their prologue, and thus
no arcs will be recorded whose destinations are in these roumesneed not profile all the routines in a
program. Routinethat are not profiled run at full spee@ertain routines, notablyeeption handlers, are
invoked by non-standard calling sequenceBhus the monitoring routine may kmdhe destination of an
arc (the callee), ut find it difficult or impossible to determine the source of the arc (the calléten in
these cases the apparent source of the arc is not a call siteStcllanomalous wocations are declared
“ spontaneous’

PSD:18-4 gpof — a Call Graph Execution Piofiler

3.2. ExecutionTimes

The e&ecution times for routines can batpered in at least twways. Onemethod measures the
execution time of a routine by measuring the elapsed time from routine entry to rodtingefortunately
time measurement is complicated on time-sharing systems by the time-slicing of the pragsacond
method samples thealue of the program counter at some indgrand infers xecution time from the dis-
tribution of the samples within the programhis technique is particularly suited to time-sharing systems,
where the time-slicing can senes the basis for sampling the program countidotice that, whereas the
first method could prade exact timings, the second is inherently a statistical approximation.

The sampling method need not require support from the operating syasletimat is needed is the
ability to set and respond talarm clock’ i nterrupts that run relag © program time. It is imperatve tat
the intenals be uniform since the sampling of the program counter rather than the duration of thkigmterv
the basis of the distnittion. If sampling is done too often, the interruptions to sample the program counter
will overwhelm the running of the profiled prograr®n the other hand, the program must run for enough
sampled interals that the distrilition of the samples accurately represents the disivibb of time for the
execution of the programAs with routine call tracing, the monitoring routine can ndoraf to output
information for each program counter sample.our computing erironment, the operating system can
provide a histogram of the location of the program counter at the end of each clock tick (1/60th of a second)
in which a program runsThe histogram is assembled in memory as the program fihms. facility is
enabled by our monitoring routinde have adjusted the granularity of the histogram so that program
counter alues map one-to-one onto the histograife make the simplifying assumption that all calls to a
specific routine require the same amount of timexeowe. Thisassumption may disguise that some calls
(or worse, some call sites)vedys irvoke a putine such that itsxecution is fster (or slwer) than the er-
age time for that routine.

When the profiled program terminates, the arc table and the histogram of program counter samples is
written to a file. The arc table is condensed to consist of the source and destination addresses of the arc and
the count of the number of times the am@sviraersed by this xecution of the programThe recorded his-
togram consists of counters of the number of times the program couwagdiouwnd to be in each of the
ranges ceered by the histogramThe ranges themsads are summarized as akr and upper bound and a
step size.

4. Post Processing

Having gathered the arcs of the call graph and timing information foixecugon of the program,
we are interested in attribing the time for each routine to the routines that calé kuild a dynamic call
graph with arcs from caller to callee, and pragiegime from descendants to ancestors by topologically
sorting the call graphTime propagtion is performed from the lees o the call graph ward the roots,
according to the order assigned by a topological numbering algorifhmtopological numbering ensures
that all edges in the graph go from higher numbered node#¢o lmimbered nodesAn example is gren
in Figure 1.If we propagte time from nodes in the order assigned by the algoritkeoyon time can be
propagted from descendants to ancestors after a singkrdsd of each arc in the call grapkach parent
receves me fraction of a child’ time. Thustime is chaged to the caller in addition to being ofped to
the callee.

Let C, be the number of calls to some routieeand C{, be the number of calls from a calleto a
calleee. Since we are assuming each call to a routineddke werage amount of time for all calls to that
routine, the caller is accountable f0f/C, of the time spent by the calleket the S, be theselftime of a
routine,e. The selftime of a routine can be determined from the timing informatitmeged during pro-
filed program recution. Thetotal time, T,, we wish to account to a routirte is then gven by the recur
rence equation:

.
T, =S+ 2 Tex %
r CALLS e Ce

wherer CALLS e is a relation shwaing all routinese called by a routing. This relation is easily

gprof — A Call Graph Execution Profiler PSD:18-5

Topological ordering
Figure 1.

awailable from the call graph.

However, if the execution contains recung alls, the call graph haydes that cannot be topologi-
cally sorted.In these cases, we dis@p strongly-connected components in the call graph, treat each such
component as a single node, and then sort the resulting gidmbse a ariation of T&rjans grongly-con-
nected components algorithm that disas strongly-connected components as it is assigning topological
order numbers [@rjan72].

Time propagtion within strongly connected components is a problEon.example, a self-recung
routine (a trial cycle in the call graph) is accountable for all the time it uses in all its reeunstantia-
tions. Inour scheme, this time should be shared among its call graph paféetsrcs from a routine to
itself are of interest, Wi do not participate in time propatipn. Thughe simple equation for time propag
tion does not wrk within strongly connected componenfEme is not propaated from one member of a
cycle to anothersnce, by definition, this wolves propagting time from a routine to itselfln addition,
children of one member of y@de must be considered children of all members of yokec Similarly par-
ents of one member of thgate must inherit all members of thgate as descendantét is for these rea-
sons that we collapse connected componedts. solution collects all members of ycte togethersum-
ming the time and call counts for all membe#dl calls into the gcle are made to share the total time of
the g/cle, and all descendants of theele propagte time into theycle as a wholeCalls among the mem-
bers of the gcle do not propagte a time, though thg are listed in the call graph profile.

Figure 2 shavs a modified &rsion of the call graph of Figure 1, in which the nodes labelled 3 and 7
in Figure 1 are mutually recuvsi The topologically sorted graph after thecke is collapsed is gén in
Figure 3.

Since the technique described ebanly collects the dynamic call graph, and the program typically
does not call eery routine on eachxecution, diferent ececutions can introduce didrent gcles in the
dynamic call graphSince gcles often hee a ggnificant efect on time propagtion, it is desirable to incer
porate the static call graph so thgtles will have the same membersgadless of hav the program runs.

The static call graph can be constructed from the souxteft¢he program.However, discovering
the static call graph from the sourcetteould require tvo moderately dificult steps: finding the source
text for the program (which may not beadable), and scanning and parsing that,tevhich may be in an
one of seeral languages.

In our programming system, the static calling information is also contained irethéable ersion
of the program, which we alreadyusaavailable, and which is in language-independent foil@ne can
examine the instructions in the object program, looking for calls to routines, and note which routines can be
called. Thistechnique allws us to add arcs to those already in the dynamic call giéphstatically dis-
covered arc already»ésts in the dynamic call graph, no action is requirSthatically discwered arcs that

PSD:18-6 gpof — a Call Graph Execution Piofiler

o o
o

NS

Cycle to be collapsed.
Figure 2.

Topological numbering afterycle collapsing.
Figure 3.

do not &ist in the dynamic call graph are added to the graph withverged count of zeroThus thg are

never responsible for antime propagtion. Havever, they may afect the structure of the graplsince

they may complete strongly connected components, the static call graph construction is done before topo-
logical ordering.

5. DataPresentation

The data is presented to the user in tifferent formats.The first presentation simply lists the rou-
tines without rgard to the amount of time their descendants Ud®e second presentation incorporates the
call graph of the program.

5.1. TheFlat Profile

The flat profile consists of a list of all the routines that are called duxsmytén of the program,
with the count of the number of times yhare called and the number of seconds xdcation time for
which the are themselgs accountableThe routines are listed in decreasing orderxatetion time. A
list of the routines that are ver called during gecution of the program is alswailable to \erify that noth-
ing important is omitted by thisxecution. Theflat profile gves a qlick overview of the routines that are
used, and shes the routines that are themsedwresponsible for Ige fractions of thexecution time. In
practice, this profile usually stws that no single function isrerwhelmingly responsible for the total time
of the program.Notice that for this profile, the inddual times sum to the totakecution time.

gprof — A Call Graph Execution Profiler PSD:18-7

5.2. TheCall Graph Profile

Ideally, we would like to print the call graph of the programytbwe are limited by the twvdimen-
sional nature of our output dees. W cannot assume that a call graph is plaaad esen if it is, that we
can print a planarersion of it. Instead, we choose to list each routine, together with information about the
routines that are its direct parents and childr€his listing presents a windointo the call graphBased
on our &perience, both parent information and child information is important, and shoulitabla
without searching through the output.

The major entries of the call graph profile are the entries from the flat profile, augmented by the time
propa@ted to each routine from its descendariisis profile is sorted by the sum of the time for the rou-
tine itself plus the time inherited from its descendaiitse profile shavs which of the higher &l routines
spend lage portions of the totalkecution time in the routines that theall. For each routine, we siwthe
amount of time passed by each child to the routine, which includes time for the child itself and for the
descendants of the child (and thus the descendants of the roMtkaelso shav the percentage these times
represent of the total time accounted to the ch8dnilarly, the parents of each routine are listed, along
with time, and percentage of total routine time, preped to each one.

Cycles are handled as single entitidie g/cle as a whole is s as though it were a single rou-
tine, except that members of thgale are listed in place of the childreAlthough the number of calls of
each member from within theyde are shen, they do not affect time propagtion. Whena dild is a
member of aycle, the time shon is the appropriate fraction of the time for the wholele Self-recur
sive routines hae teir calls brokn davn into calls from the outside and self-recuesialls. Onlythe out-
side calls dkct the propagtion of time.

The folloving example is a typical fragment of a call graph.

G Corerd)
Comnie)
CORNCORNCD

The entry in the call graph profile listing for thisaenple is shen in Figure 4.

called/total parents

index %time self descendants called+self name index
called/total children

0.20 1.20 4/10 CALLER1 [7]

0.30 1.80 6/10 CALLER2 [1]

[2] 415 0.50 3.00 10+4 EXAMPLE [2]

1.50 1.00 20/40 SUB1<cyclel> [4]

0.00 0.50 1/5 SUB2 [9]

0.00 0.00 0/5 SUB3 [11]

Profile entry foEXAMPLE.
Figure 4.

PSD:18-8 gpof — a Call Graph Execution Piofiler

The entry is for routin€EXAMPLE, which has the Caller routines as its parents, and the Sub routines
as its children.The reader shouldglep in mind that all information is\gn with respect to EXAMPLE. The
index in the first column shas thatEXAMPLE is the second entry in the profile listindhe EXAMPLE
routine is called ten times, four times BALLER1, and six times byCALLER2. Consequently 40% of
EXAMPLE's time is propagted toCALLER1, and 60% OfEXAMPLE’s time is propagted toCALLER2.

The self and descendant fields of the parents $he amount of self and descendant tEXAMPLE prop-
agates to them (it not the time used by the parents directidpte thatEXAMPLE calls itself recursiely

four times. The routineEXAMPLE calls routineSUB1 twenty times,SUB2 once, and ner calls SUB3
SinceSUB2is called a total of fig imes, 20% of its self and descendant time is prafeahtoEXAMPLE’S
descendant time fieldBecausesUB1is a member ofycle 1, the self and descendant times and call count
fraction are those for the/cle as a wholeSince gcle 1 is called a total of forty times (not counting calls
among members of theyae), it propagtes 50% of theycle’s ®If and descendant time EXAMPLE's
descendant time field=inally each name is folleed by an indethat shavs where on the listing to find the
entry for that routine.

6. Usingthe Profiles

The profiler is a useful tool for impring a set of routines that implement an abstractibican be
helpful in identifying poorly coded routines, and weleating the ne algorithms and code that replace
them. Tking full adwantage of the profiler requires a carefghmination of the call graph profile, and a
thorough knawledge of the abstractions underlying the program.

The easiest optimization that can be performed is a small change to a control construct or data struc-
ture that imprees the running time of the programAn obvious starting point is a routine that is called
mary times. r example, suppose an output routine is the only parent of a routine that formats tHé data.
this format routine isxg@anded inline in the output routine, theadhead of a function call and return can be
saved for each datum that needs to be formatted.

The dravback to inline gpansion is that the data abstractions in the program may become less
parameterized, hence less clearly defin€de profiling will also become less useful since the loss of rou-
tines will male its output more granulafor example, if the symbol table functiontobkup”, ‘‘insert”,
and ‘delete’ are all meged into a single parameterized routine, it will be impossible to determine the costs

of ary one of these indidual functions from the profile.

Further potential for optimization lies in routines that implement data abstractions whosgettal e
tion time is long.For example, a lookup routine might be called onlya fames, lut use an indicient lin-
ear search algorithm, that might be replaced with a binary seAtghnately the disceoery that a rehash-
ing function is being calledxeessiely, can lead to a diérent hash function or a tgr hash tablelf the
data abstraction function cannot easily be speeded up, it may dr@agizous to cache its results, and elim-
inate the need to rerun it for identical inputese and other ideas for program inyeroent are discussed
in [Bentley81].

This tool is best used in an itekagtigoproach: profiling the program, eliminating one bottleneck, then
finding some other part of the program thagibs to dominate»ecution time. For instance, we h& wsed
gprof on itself; eliminating, r&riting, and inline &panding routines, until reading data files (hardly getar
for optimization!) represents the dominatingcfor in its &ecution time.

Certain types of programs are not easily analyzedjprpf. They are typified by programs that
exhibit a lage dgree of recursion, such as recuestescent compilersThe problem is that most of the
major routines are grouped into a single monolitgidez Asin the symbol table abstraction that is placed
in one routine, it is impossible to distinguish which members ofytble @re responsible for theegution
time. Unfortunatelythere are no easy modifications to these programs tha tmak amenable to analy-
sis.

A completely diferent use of the profiler is to analyze the contral fd an unfamiliar program.If
you receve a pogram from another user that you need to modify in some smagllitis dten unclear
where the changes need to be masg.running the program on anample and then usirgprof, you can
get a viev of the structure of the program.

gprof — A Call Graph Execution Profiler PSD:18-9

Consider anxample in which you need to change the output format of the progfanpurposes of
this example suppose that the call graph of the output portion of the program has thinfpfityucture:

Initially you look through theprof output for the system calWRITE”. The format routine you will need

to change is probably among the parents of tWITE” procedure. Thaext step is to look at the profile
entry for each of parents dWRITE”, in this xkample either' FORMAT1” or “FORMAT2" , to determine

which one to changeEach format routine will hee ane or more parents, in thixample ‘CALC1",
“CALC2", and “CALC3". By inspecting the source code for each of these routines you can determine
which format routine generates the output that you wish to mo@ifice thegprof entry shavs all the
potential calls to the format routine you intend to change, you can determine if your modifications will
affect output that should be left alond.you desire to change the output G ALC2”, but not ‘CALC3",

then formatting routiné FORMAT2" needs to be split into twseparate routines, one of which implements
the nev format. You can then retget just the call by CALC2” that needs the meformat. Itshould be

noted that the static call information is particularly useful here since the test case you run probably will not
exgcise the entire program.

7. Conclusions

We havecreated a profiler that aids in thealeiation of modular programs-or each routine in the
program, the profile shws the &tent to which that routine helps suppaatious abstractions, andvdhat
routine uses other abstractionBhe profile accurately assesses the cost of routines ateld tf the pro-
gram decompositionThe profiler is easily used, and can be compiled into the program withpptian
planning by the programmeit adds only five to thirty percent recution overhead to the program being
profiled, produces no additional output until after the program finishes, and &ftle program to be mea-
sured in its actual eronment. Finallythe profiler runs on a time-sharing system using only the normal
services praided by the operating system and compilers.

8. References

[Bentley81]
Bentley, J L., “Writing Efficient Codé€’, Department of Computer Science, CajieeMellon Unver-
sity, Pittsburgh, Pennsylania, CMU-CS-81-116, 1981.

[Graham82]
Graham, S. L., HenpR. R., Schulman, R. A.;/An Experiment in &ble Driven Code Generatiofy’
SIGPLAN '82 Symposium on Compiler Construction, June, 1982.

[Joy79]
Joy, W. N., Graham, S. L., Haje C. B. “Berkeley Pascal Uses Manual’, Version 1.1, Computer
Science Dirision Uniersity of California, Berkley, CA. April 1979.

[Knuth71]
Knuth, D. E. ‘An empirical study of FORRAN programs, Software - Practice and Experience, 1,
105-133. 1971

PSD:18-10 gpof — a Call Graph Execution Pofiler

[Satterthvaite72]
Satterthvaite, E. ‘Debugging Tools for High Leel Language§’ Software - Practice and Experience,
2,197-217,1972

[Tarjan72]
Tarjan, R. E., ‘Depth first search and linear graph algorithr§ AM J. Computing 1:2, 146-160,
1972.

[Unix]
Unix Programmes Manual, ‘prof command; section 1, Bell Laboratories, Murray Hill, NJ. Jan-
uary 1979.

