
gprof — A Call Graph Execution Profiler PSD:18-1

gprof: a Call Graph Execution Profiler1

by Susan L. Graham Peter B. Kessler Marshall K. McKusick

Computer Science Division Electrical Engineering and Computer Science Department University of Cali-
fornia, Berkeley Berkeley, California 94720

Abstract

Large complex programs are composed of many small routines that implement abstractions for the
routines that call them.To be useful, an execution profiler must attribute execution time in a way that is
significant for the logical structure of a program as well as for its textual decomposition.This data must
then be displayed to the user in a convenient and informative way. Thegprof profiler accounts for the run-
ning time of called routines in the running time of the routines that call them.The design and use of this
profiler is described.

1. Programs to be Profiled

Software research environments normally include many large programs both forproduction use and
for experimental investigation. Theseprograms are typically modular, in accordance with generally
accepted principles of good program design.Often they consist of numerous small routines that implement
various abstractions.Sometimes such large programs are written by one programmer who has understood
the requirements for these abstractions, and has programmed them appropriately. More frequently the pro-
gram has had multiple authors and has evolved over time, changing the demands placed on the implementa-
tion of the abstractions without changing the implementation itself.Finally, the program may be assembled
from a library of abstraction implementations unexamined by the programmer.

Once a large program is executable, it is often desirable to increase its speed, especially if small por-
tions of the program are found to dominate its execution time. The purpose of thegprof profiling tool is to
help the user evaluate alternative implementations of abstractions.We dev eloped this tool in response to
our efforts to improve a code generator we were writing [Graham82].

The gprof design takes advantage of the fact that the programs to be measured are large, structured
and hierarchical.We provide a profile in which the execution time for a set of routines that implement an
abstraction is collected and charged to that abstraction.The profile can be used to compare and assess the
costs of various implementations.

The profiler can be linked into a program without special planning by the programmer. The overhead
for usinggprof is low; both in terms of added execution time and in the volume of profiling information
recorded.

2. Types of Profiling

There are several different uses for program profiles, and each may require different information
from the profiles, or different presentation of the information.We distinguish two broad categories of pro-
files: those that present counts of statement or routine invocations, and those that display timing informa-
tion about statements or routines.Counts are typically presented in tabular form, often in parallel with a
listing of the source code.Timing information could be similarly presented; but more than one measure of
time might be associated with each statement or routine.For example, in the framework used bygprof

1This work was supported by grant MCS80-05144 from the National Science Foundation.



PSD:18-2 gprof — a Call Graph Execution Profiler

each profiled segment would display two times: one for the time used by the segment itself, and another for
the time inherited from code segments it invokes.

Execution counts are used in many different contexts. Theexact number of times a routine or state-
ment is activated can be used to determine if an algorithm is performing as expected. Cursoryinspection of
such counters may show algorithms whose complexity is unsuited to the task at hand.Careful interpreta-
tion of counters can often suggest improvements to acceptable algorithms.Precise examination can
uncover subtle errors in an algorithm.At this level, profiling counters are similar to debugging statements
whose purpose is to show the number of times a piece of code is executed. Anotherview of such counters
is as boolean values. Onemay be interested that a portion of code has executed at all, for exhaustive test-
ing, or to check that one implementation of an abstraction completely replaces a previous one.

Execution counts are not necessarily proportional to the amount of time required to execute the rou-
tine or statement.Further, the execution time of a routine will not be the same for all calls on the routine.
The criteria for establishing execution time must be decided.If a routine implements an abstraction by
invoking other abstractions, the time spent in the routine will not accurately reflect the time required by the
abstraction it implements.Similarly, if an abstraction is implemented by several routines the time required
by the abstraction will be distributed across those routines.

Given the execution time of individual routines,gprof accounts to each routine the time spent for it
by the routines it invokes. Thisaccounting is done by assembling acall graph with nodes that are the rou-
tines of the program and directed arcs that represent calls from call sites to routines.We distinguish among
three different call graphs for a program.Thecomplete call graph incorporates all routines and all potential
arcs, including arcs that represent calls to functional parameters or functional variables. Thisgraph con-
tains the other two graphs as subgraphs.Thestatic call graph includes all routines and all possible arcs that
are not calls to functional parameters or variables. Thedynamic call graph includes only those routines and
arcs traversed by the profiled execution of the program.This graph need not include all routines, nor need
it include all potential arcs between the routines it covers. It may, howev er, include arcs to functional
parameters or variables that the static call graph may omit.The static call graph can be determined from
the (static) program text. Thedynamic call graph is determined only by profiling an execution of the pro-
gram. Thecomplete call graph for a monolithic program could be determined by data flow analysis tech-
niques. Thecomplete call graph for programs that change during execution, by modifying themselves or
dynamically loading or overlaying code, may never be determinable. Boththe static call graph and the
dynamic call graph are used bygprof, but it does not search for the complete call graph.

3. GatheringProfile Data

Routine calls or statement executions can be measured by having a compiler augment the code at
strategic points. The additions can be inline increments to counters [Knuth71] [Satterthwaite72] [Joy79] or
calls to monitoring routines [Unix].The counter increment overhead is low, and is suitable for profiling
statements. Acall of the monitoring routine has an overhead comparable with a call of a regular routine,
and is therefore only suited to profiling on a routine by routine basis.However, the monitoring routine
solution has certain advantages. Whatever counters are needed by the monitoring routine can be managed
by the monitoring routine itself, rather than being distributed around the code.In particular, a monitoring
routine can easily be called from separately compiled programs.In addition, different monitoring routines
can be linked into the program being measured to assemble different profiling data without having to
change the compiler or recompile the program.We hav eexploited this approach; our compilers for C, For-
tran77, and Pascal can insert calls to a monitoring routine in the prologue for each routine.Use of the mon-
itoring routine requires no planning on part of a programmer other than to request that augmented routine
prologues be produced during compilation.

We are interested in gathering three pieces of information during program execution: call counts and
execution times for each profiled routine, and the arcs of the dynamic call graph traversed by this execution
of the program.By post-processing of this data we can build the dynamic call graph for this execution of
the program and propagate times along the edges of this graph to attribute times for routines to the routines
that invoke them.



gprof — A Call Graph Execution Profiler PSD:18-3

Gathering of the profiling information should not greatly interfere with the running of the program.
Thus, the monitoring routine must not produce trace output each time it is invoked. Thevolume of data
thus produced would be unmanageably large, and the time required to record it would overwhelm the run-
ning time of most programs.Similarly, the monitoring routine can not do the analysis of the profiling data
(e.g. assembling the call graph, propagating times around it, discovering cycles, etc.) during program
execution. Oursolution is to gather profiling data in memory during program execution and to condense it
to a file as the profiled program exits. Thisfile is then processed by a separate program to produce the list-
ing of the profile data.An advantage of this approach is that the profile data for several executions of a pro-
gram can be combined by the post-processing to provide a profile of many executions.

The execution time monitoring consists of three parts.The first part allocates and initializes the run-
time monitoring data structures before the program begins execution. Thesecond part is the monitoring
routine invoked from the prologue of each profiled routine.The third part condenses the data structures and
writes them to a file as the program terminates.The monitoring routine is discussed in detail in the follow-
ing sections.

3.1. ExecutionCounts

Thegprof monitoring routine counts the number of times each profiled routine is called.The moni-
toring routine also records the arc in the call graph that activated the profiled routine.The count is associ-
ated with the arc in the call graph rather than with the routine.Call counts for routines can then be deter-
mined by summing the counts on arcs directed into that routine.In a machine-dependent fashion, the moni-
toring routine notes its own return address.This address is in the prologue of some profiled routine that is
the destination of an arc in the dynamic call graph.The monitoring routine also discovers the return
address for that routine, thus identifying the call site, or source of the arc.The source of the arc is in the
caller, and the destination is in thecallee. For example, if a routine A calls a routine B, A is the caller, and
B is the callee.The prologue of B will include a call to the monitoring routine that will note the arc from A
to B and either initialize or increment a counter for that arc.

One can not afford to have the monitoring routine output tracing information as each arc is identified.
Therefore, the monitoring routine maintains a table of all the arcs discovered, with counts of the numbers of
times each is traversed during execution. Thistable is accessed once per routine call.Access to it must be
as fast as possible so as not to overwhelm the time required to execute the program.

Our solution is to access the table through a hash table.We use the call site as the primary key with
the callee address being the secondary key. Since each call site typically calls only one callee, we can
reduce (usually to one) the number of minor lookups based on the callee.Another alternative would use the
callee as the primary key and the call site as the secondary key. Such an organization has the advantage of
associating callers with callees, at the expense of longer lookups in the monitoring routine.We are fortu-
nate to be running in a virtual memory environment, and (for the sake of speed) were able to allocate
enough space for the primary hash table to allow a one-to-one mapping from call site addresses to the pri-
mary hash table.Thus our hash function is trivial to calculate and collisions occur only for call sites that
call multiple destinations (e.g. functional parameters and functional variables). Aone level hash function
using both call site and callee would result in an unreasonably large hash table.Further, the number of
dynamic call sites and callees is not known during execution of the profiled program.

Not all callers and callees can be identified by the monitoring routine.Routines that were compiled
without the profiling augmentations will not call the monitoring routine as part of their prologue, and thus
no arcs will be recorded whose destinations are in these routines.One need not profile all the routines in a
program. Routinesthat are not profiled run at full speed.Certain routines, notably exception handlers, are
invoked by non-standard calling sequences.Thus the monitoring routine may know the destination of an
arc (the callee), but find it difficult or impossible to determine the source of the arc (the caller).Often in
these cases the apparent source of the arc is not a call site at all.Such anomalous invocations are declared
‘‘ spontaneous’’.



PSD:18-4 gprof — a Call Graph Execution Profiler

3.2. ExecutionTimes

The execution times for routines can be gathered in at least two ways. Onemethod measures the
execution time of a routine by measuring the elapsed time from routine entry to routine exit. Unfortunately,
time measurement is complicated on time-sharing systems by the time-slicing of the program.A second
method samples the value of the program counter at some interval, and infers execution time from the dis-
tribution of the samples within the program.This technique is particularly suited to time-sharing systems,
where the time-slicing can serve as the basis for sampling the program counter. Notice that, whereas the
first method could provide exact timings, the second is inherently a statistical approximation.

The sampling method need not require support from the operating system:all that is needed is the
ability to set and respond to ‘‘alarm clock’’ i nterrupts that run relative to program time.It is imperative that
the intervals be uniform since the sampling of the program counter rather than the duration of the interval is
the basis of the distribution. If sampling is done too often, the interruptions to sample the program counter
will overwhelm the running of the profiled program.On the other hand, the program must run for enough
sampled intervals that the distribution of the samples accurately represents the distribution of time for the
execution of the program.As with routine call tracing, the monitoring routine can not afford to output
information for each program counter sample.In our computing environment, the operating system can
provide a histogram of the location of the program counter at the end of each clock tick (1/60th of a second)
in which a program runs.The histogram is assembled in memory as the program runs.This facility is
enabled by our monitoring routine.We hav e adjusted the granularity of the histogram so that program
counter values map one-to-one onto the histogram.We make the simplifying assumption that all calls to a
specific routine require the same amount of time to execute. Thisassumption may disguise that some calls
(or worse, some call sites) always invoke a routine such that its execution is faster (or slower) than the aver-
age time for that routine.

When the profiled program terminates, the arc table and the histogram of program counter samples is
written to a file.The arc table is condensed to consist of the source and destination addresses of the arc and
the count of the number of times the arc was traversed by this execution of the program.The recorded his-
togram consists of counters of the number of times the program counter was found to be in each of the
ranges covered by the histogram.The ranges themselves are summarized as a lower and upper bound and a
step size.

4. Post Processing

Having gathered the arcs of the call graph and timing information for an execution of the program,
we are interested in attributing the time for each routine to the routines that call it.We build a dynamic call
graph with arcs from caller to callee, and propagate time from descendants to ancestors by topologically
sorting the call graph.Time propagation is performed from the leaves of the call graph toward the roots,
according to the order assigned by a topological numbering algorithm.The topological numbering ensures
that all edges in the graph go from higher numbered nodes to lower numbered nodes.An example is given
in Figure 1. If we propagate time from nodes in the order assigned by the algorithm, execution time can be
propagated from descendants to ancestors after a single traversal of each arc in the call graph.Each parent
receives some fraction of a child’s time. Thustime is charged to the caller in addition to being charged to
the callee.

Let Ce be the number of calls to some routine,e, and Cr
e be the number of calls from a callerr to a

calleee. Since we are assuming each call to a routine takes the average amount of time for all calls to that
routine, the caller is accountable forCr

e/Ce of the time spent by the callee.Let theSe be theselftime of a
routine,e. The selftime of a routine can be determined from the timing information gathered during pro-
filed program execution. Thetotal time,Tr , we wish to account to a routiner, is then given by the recur-
rence equation:

Tr = Sr +
r CALLS e

Σ Te ×
Cr

e

Ce

where r CALLS e is a relation showing all routinese called by a routiner. This relation is easily



gprof — A Call Graph Execution Profiler PSD:18-5

8 9

3 7

2 5 6

1 4

Topological ordering
Figure 1.

available from the call graph.

However, if the execution contains recursive calls, the call graph has cycles that cannot be topologi-
cally sorted. In these cases, we discover strongly-connected components in the call graph, treat each such
component as a single node, and then sort the resulting graph.We use a variation of Tarjan’s strongly-con-
nected components algorithm that discovers strongly-connected components as it is assigning topological
order numbers [Tarjan72].

Time propagation within strongly connected components is a problem.For example, a self-recursive
routine (a trivial cycle in the call graph) is accountable for all the time it uses in all its recursive instantia-
tions. Inour scheme, this time should be shared among its call graph parents.The arcs from a routine to
itself are of interest, but do not participate in time propagation. Thusthe simple equation for time propaga-
tion does not work within strongly connected components.Time is not propagated from one member of a
cycle to another, since, by definition, this involves propagating time from a routine to itself.In addition,
children of one member of a cycle must be considered children of all members of the cycle. Similarly, par-
ents of one member of the cycle must inherit all members of the cycle as descendants.It is for these rea-
sons that we collapse connected components.Our solution collects all members of a cycle together, sum-
ming the time and call counts for all members.All calls into the cycle are made to share the total time of
the cycle, and all descendants of the cycle propagate time into the cycle as a whole.Calls among the mem-
bers of the cycle do not propagate any time, though they are listed in the call graph profile.

Figure 2 shows a modified version of the call graph of Figure 1, in which the nodes labelled 3 and 7
in Figure 1 are mutually recursive. The topologically sorted graph after the cycle is collapsed is given in
Figure 3.

Since the technique described above only collects the dynamic call graph, and the program typically
does not call every routine on each execution, different executions can introduce different cycles in the
dynamic call graph.Since cycles often have a significant effect on time propagation, it is desirable to incor-
porate the static call graph so that cycles will have the same members regardless of how the program runs.

The static call graph can be constructed from the source text of the program.However, discovering
the static call graph from the source text would require two moderately difficult steps: finding the source
text for the program (which may not be available), and scanning and parsing that text, which may be in any
one of several languages.

In our programming system, the static calling information is also contained in the executable version
of the program, which we already have available, and which is in language-independent form.One can
examine the instructions in the object program, looking for calls to routines, and note which routines can be
called. Thistechnique allows us to add arcs to those already in the dynamic call graph.If a statically dis-
covered arc already exists in the dynamic call graph, no action is required.Statically discovered arcs that



PSD:18-6 gprof — a Call Graph Execution Profiler

• •

Cycle to be collapsed.
Figure 2.

7 8

6 6

2 4 5

1 3

Topological numbering after cycle collapsing.
Figure 3.

do not exist in the dynamic call graph are added to the graph with a traversal count of zero.Thus they are
never responsible for any time propagation. However, they may affect the structure of the graph.Since
they may complete strongly connected components, the static call graph construction is done before topo-
logical ordering.

5. DataPresentation

The data is presented to the user in two different formats.The first presentation simply lists the rou-
tines without regard to the amount of time their descendants use.The second presentation incorporates the
call graph of the program.

5.1. TheFlat Profile

The flat profile consists of a list of all the routines that are called during execution of the program,
with the count of the number of times they are called and the number of seconds of execution time for
which they are themselves accountable.The routines are listed in decreasing order of execution time. A
list of the routines that are never called during execution of the program is also available to verify that noth-
ing important is omitted by this execution. Theflat profile gives a quick overview of the routines that are
used, and shows the routines that are themselves responsible for large fractions of the execution time. In
practice, this profile usually shows that no single function is overwhelmingly responsible for the total time
of the program.Notice that for this profile, the individual times sum to the total execution time.



gprof — A Call Graph Execution Profiler PSD:18-7

5.2. TheCall Graph Profile

Ideally, we would like to print the call graph of the program, but we are limited by the two-dimen-
sional nature of our output devices. We cannot assume that a call graph is planar, and even if i t is, that we
can print a planar version of it. Instead, we choose to list each routine, together with information about the
routines that are its direct parents and children.This listing presents a window into the call graph.Based
on our experience, both parent information and child information is important, and should be available
without searching through the output.

The major entries of the call graph profile are the entries from the flat profile, augmented by the time
propagated to each routine from its descendants.This profile is sorted by the sum of the time for the rou-
tine itself plus the time inherited from its descendants.The profile shows which of the higher level routines
spend large portions of the total execution time in the routines that they call. For each routine, we show the
amount of time passed by each child to the routine, which includes time for the child itself and for the
descendants of the child (and thus the descendants of the routine).We also show the percentage these times
represent of the total time accounted to the child.Similarly, the parents of each routine are listed, along
with time, and percentage of total routine time, propagated to each one.

Cycles are handled as single entities.The cycle as a whole is shown as though it were a single rou-
tine, except that members of the cycle are listed in place of the children.Although the number of calls of
each member from within the cycle are shown, they do not affect time propagation. Whena child is a
member of a cycle, the time shown is the appropriate fraction of the time for the whole cycle. Self-recur-
sive routines have their calls broken down into calls from the outside and self-recursive calls. Onlythe out-
side calls affect the propagation of time.

The following example is a typical fragment of a call graph.

CALLER1 CALLER2

EXAMPLE

SUB1 SUB2 SUB3

The entry in the call graph profile listing for this example is shown in Figure 4.

called/total parents
index %time self descendants called+self name index

called/total children

0.20 1.20 4/10 CALLER1 [7]
0.30 1.80 6/10 CALLER2 [1]

[2] 41.5 0.50 3.00 10+4 EXAMPLE [2]
1.50 1.00 20/40 SUB1<cycle1> [4]
0.00 0.50 1/5 SUB2 [9]
0.00 0.00 0/5 SUB3 [11]

Profile entry forEXAMPLE.
Figure 4.



PSD:18-8 gprof — a Call Graph Execution Profiler

The entry is for routineEXAMPLE, which has the Caller routines as its parents, and the Sub routines
as its children.The reader should keep in mind that all information is given with respect to EXAMPLE. The
index in the first column shows thatEXAMPLE is the second entry in the profile listing.The EXAMPLE
routine is called ten times, four times byCALLER1, and six times byCALLER2. Consequently 40% of
EXAMPLE’s time is propagated toCALLER1, and 60% ofEXAMPLE’s time is propagated toCALLER2.
The self and descendant fields of the parents show the amount of self and descendant timeEXAMPLE prop-
agates to them (but not the time used by the parents directly).Note thatEXAMPLE calls itself recursively
four times. The routineEXAMPLE calls routineSUB1 twenty times,SUB2 once, and never calls SUB3.
SinceSUB2 is called a total of five times, 20% of its self and descendant time is propagated toEXAMPLE’s
descendant time field.BecauseSUB1 is a member ofcycle 1, the self and descendant times and call count
fraction are those for the cycle as a whole.Since cycle 1 is called a total of forty times (not counting calls
among members of the cycle), it propagates 50% of the cycle’s self and descendant time toEXAMPLE’s
descendant time field.Finally each name is followed by an index that shows where on the listing to find the
entry for that routine.

6. Usingthe Profiles

The profiler is a useful tool for improving a set of routines that implement an abstraction.It can be
helpful in identifying poorly coded routines, and in evaluating the new algorithms and code that replace
them. Taking full advantage of the profiler requires a careful examination of the call graph profile, and a
thorough knowledge of the abstractions underlying the program.

The easiest optimization that can be performed is a small change to a control construct or data struc-
ture that improves the running time of the program.An obvious starting point is a routine that is called
many times. For example, suppose an output routine is the only parent of a routine that formats the data.If
this format routine is expanded inline in the output routine, the overhead of a function call and return can be
saved for each datum that needs to be formatted.

The drawback to inline expansion is that the data abstractions in the program may become less
parameterized, hence less clearly defined.The profiling will also become less useful since the loss of rou-
tines will make its output more granular. For example, if the symbol table functions ‘‘lookup’’, ‘ ‘insert’’,
and ‘‘delete’’ are all merged into a single parameterized routine, it will be impossible to determine the costs
of any one of these individual functions from the profile.

Further potential for optimization lies in routines that implement data abstractions whose total execu-
tion time is long.For example, a lookup routine might be called only a few times, but use an inefficient lin-
ear search algorithm, that might be replaced with a binary search.Alternately, the discovery that a rehash-
ing function is being called excessively, can lead to a different hash function or a larger hash table.If the
data abstraction function cannot easily be speeded up, it may be advantageous to cache its results, and elim-
inate the need to rerun it for identical inputs.These and other ideas for program improvement are discussed
in [Bentley81].

This tool is best used in an iterative approach: profiling the program, eliminating one bottleneck, then
finding some other part of the program that begins to dominate execution time. For instance, we have used
gprof on itself; eliminating, rewriting, and inline expanding routines, until reading data files (hardly a target
for optimization!) represents the dominating factor in its execution time.

Certain types of programs are not easily analyzed bygprof. They are typified by programs that
exhibit a large degree of recursion, such as recursive descent compilers.The problem is that most of the
major routines are grouped into a single monolithic cycle. Asin the symbol table abstraction that is placed
in one routine, it is impossible to distinguish which members of the cycle are responsible for the execution
time. Unfortunatelythere are no easy modifications to these programs that make them amenable to analy-
sis.

A completely different use of the profiler is to analyze the control flow of an unfamiliar program.If
you receive a program from another user that you need to modify in some small way, it is often unclear
where the changes need to be made.By running the program on an example and then usinggprof, you can
get a view of the structure of the program.



gprof — A Call Graph Execution Profiler PSD:18-9

Consider an example in which you need to change the output format of the program.For purposes of
this example suppose that the call graph of the output portion of the program has the following structure:

CALC1 CALC2 CALC3

FORMAT1 FORMAT2

"WRITE"

Initially you look through thegprof output for the system call ‘‘WRITE’’ . The format routine you will need
to change is probably among the parents of the ‘‘WRITE’’ p rocedure. Thenext step is to look at the profile
entry for each of parents of ‘‘WRITE’’ , in this example either ‘‘FORMAT1’’ o r ‘‘FORMAT2’’ , to determine
which one to change.Each format routine will have one or more parents, in this example ‘‘CALC1’’ ,
‘‘ CALC2’’ , and ‘‘CALC3’’ . By inspecting the source code for each of these routines you can determine
which format routine generates the output that you wish to modify. Since thegprof entry shows all the
potential calls to the format routine you intend to change, you can determine if your modifications will
affect output that should be left alone.If you desire to change the output of ‘‘CALC2’’ , but not ‘‘CALC3’’ ,
then formatting routine ‘‘FORMAT2’’ needs to be split into two separate routines, one of which implements
the new format. You can then retarget just the call by ‘‘CALC2’’ t hat needs the new format. Itshould be
noted that the static call information is particularly useful here since the test case you run probably will not
exercise the entire program.

7. Conclusions

We hav ecreated a profiler that aids in the evaluation of modular programs.For each routine in the
program, the profile shows the extent to which that routine helps support various abstractions, and how that
routine uses other abstractions.The profile accurately assesses the cost of routines at all levels of the pro-
gram decomposition.The profiler is easily used, and can be compiled into the program without any prior
planning by the programmer. It adds only five to thirty percent execution overhead to the program being
profiled, produces no additional output until after the program finishes, and allows the program to be mea-
sured in its actual environment. Finally, the profiler runs on a time-sharing system using only the normal
services provided by the operating system and compilers.

8. References

[Bentley81]
Bentley, J. L., ‘‘Writing Efficient Code’’, Department of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, CMU-CS-81-116, 1981.

[Graham82]
Graham, S. L., Henry, R. R., Schulman, R. A., ‘‘A n Experiment in Table Driven Code Generation’’,
SIGPLAN ’82 Symposium on Compiler Construction, June, 1982.

[Joy79]
Joy, W. N., Graham, S. L., Haley, C. B. ‘‘Berkeley Pascal User’s Manual’’, Version 1.1, Computer
Science Division University of California, Berkeley, CA. April 1979.

[Knuth71]
Knuth, D. E. ‘‘A n empirical study of FORTRAN programs’’, Software - Practice and Experience, 1,
105-133. 1971



PSD:18-10 gprof — a Call Graph Execution Profiler

[Satterthwaite72]
Satterthwaite, E. ‘‘Debugging Tools for High Level Languages’’, Software - Practice and Experience,
2, 197-217, 1972

[Tarjan72]
Tarjan, R. E., ‘‘Depth first search and linear graph algorithm,’’ SIAM J. Computing 1:2, 146-160,
1972.

[Unix]
Unix Programmer’s Manual, ‘‘prof command’’, section 1, Bell Laboratories, Murray Hill, NJ. Jan-
uary 1979.


