
SSccrr eeeenn UUppddaattiinngg aanndd CCuurrssoorr MMoovveemmeenntt OOppttiimmiizzaattiioonn::
AA LLiibbrraarryy PPaacckkaaggee

Kenneth C. R. C. Arnold
Elan Amir

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes a package of C library functions which allow the user to:

• update a screen with reasonable optimization,

• get input from the terminal in a screen-oriented fashion, and

• independent from the above, move the cursor optimally from one point to another.

These routines all use thetteerr mmccaapp(5) database to describe the capabilities of the terminal.

AAcckknnoo wwlleeddggeemmeennttss

This package would not exist without the work of Bill Joy, who, in writing his editor, created the
capability to generally describe terminals, wrote the routines which read this database, and, most impor-
tantly, those which implement optimal cursor movement, which routines I have simply lifted nearly intact.
Doug Merritt and Kurt Shoens also were extremely important, as were both willing to waste time listening
to me rant and rave. The help and/or support of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash,
was, and is, also greatly appreciated.Ken Arnold 16April 1986

The help and/or support of Kirk McKusick and Keith Bostic (public vi!) was inv aluable in bringing
the package ‘‘into the 90’s’’, which now includes completely new data structures and screen refresh opti-
mization routines.Elan Amir 29 December 1992

SSccrr eeeenn PPaacckkaaggee PPSS11::1199--33

11.. OOvveerrvviieeww

In making available the generalized terminal descriptions intteerr mmccaapp(5), much information was
made available to the programmer, but little work was taken out of one’s hands. Thepurpose of this pack-
age is to allow the C programmer to do the most common type of terminal dependent functions, those of
movement optimization and optimal screen updating, without doing any of the dirty work, and with nearly
as much ease as is necessary to simply print or read things.

11..11.. TTeerrmmiinnoollooggyy

In this document, the following terminology is used:

wwiinnddoo ww: An internal representation containing an image of what a section of the terminal screen may look
like at some point in time.This subsection can either encompass the entire terminal screen, or any
smaller portion down to a single character within that screen.

tteerr mmiinnaall : Sometimes calledtteerr mmiinnaall ssccrreeeenn. The package’s idea of what the terminal’s screen currently
looks like, i.e., what the user sees now. This is a specialscreen:

ssccrr eeeenn: This is a subset of windows which are as large as the terminal screen,i.e., they start at the upper left
hand corner and encompass the lower right hand corner. One of these,stdscr, is automatically pro-
vided for the programmer.

11..22.. CCoommppiilliinngg AApppplliiccaattiioonnss

In order to use the library, it is necessary to have certain types and variables defined. Therefore,the
programmer must have a line:

##iinncclluuddee <<ccuurrsseess..hh>>

at the top of the program source.Compilations should have the following form:

cccc [flags] f ile ...−−llccuurr sseess −−lltteerrmmccaapp

11..33.. SSccrreeeenn UUppddaattiinngg

In order to update the screen optimally, it i e i p o f T d v o u t a l 0 . 8 2 1 k n o t o u p d a t e t h e s c r e e T d (8 1 a n d e n c o w t i) T j
 3 . 0 6 3 T c
 8 . 6 2 9 8 0 8 0 T d (j
 / R 8 1 s) T j
 0 T c

 4 6 . 6 5 6 8 0 1 3 T 1 . 8 5 0 T 6 5 9 9 0 5 7 8
 0 T w
 1 c
 8 6 c r e e n m a y 0 . 7 4 9 c u r r e n t l y. T e d (, i) T j
 3 . 2 3 5 7 8
 0 T 2 2 9 5 a a c k a g e ’ne2 to5 Td(:S)WINDj
5 .732R86in ss defdo

, icreen (.748 Tw
11.515.449 03 Td5 0 Td(ss)c

46.1Tf
3.7 0 Td7 10 Tf
0 Tw
50.1/R86 0 Td(ssip w
11.515.449 01
22.40 Td(ss)c

46.1
8.3
0 T1/R 10 Tf
60n a si
46.6568 1c
1 0 Td(ys)0.5499 0 Td(scr)T4.044199 j
11.85 0 T)i Td(re044199 jj
0 4.44197sas(,i)Tj
3.1.544Tw
77.5300 Td(:S))Tj
0 representatioj
0.023 Tw
76Tc
0.749 currently)Tj
re044193.11.202 Td(ys)0. Ano68 0
46.6568 -38j
4.5Tj
0 Tw
2 ee30909 0,i c
80 Tc
11.39sp(,i)Tj
3.1 0 Td(gs)Tro Td(c
1Tw
638 -12 pro-)by0.487 Tw49stdscr,i ang4sf
le cha-5.65.88 0 T3 Tf
Tj
/R8 10 AR8 10 Tf
2. 0 Treen,,i

PPSS11::1199--44 SSccrreeeenn PPaacckkaaggee

11..44.. NNaammiinngg CCoonnvveennttiioonnss

As hinted above, the routines can use several windows, but two are always available: curscr, which is
the image of what the terminal looks like at present, andstdscr, which is the image of what the programmer
wants the terminal to look like next. Theuser should not accesscurscr directly. Changes should be made
to the appropriate screen, and then the routinerefresh() (orwrefresh()) should be called.

Many functions are set up to deal withstdscras a default screen.For example, to add a character to
stdscr, one callsaddch() with the desired character. If a different window is to be used, the routinewad-

dch() (for wwindow-specific addch()) is provided1. This convention of prepending function names with a
“ww” when they are to be applied to specific windows is consistent.The only routines which donot do this
are those to which a window must always be specified.

In order to move the current (y, x) co-ordinates from one point to another, the routinesmove() and
wmove() are provided. However, it is often desirable to first move and then perform some I/O operation.
In order to avoid clumsiness, most I/O routines can be preceded by the prefix “ mmvv” and the desired (y, x)
co-ordinates can then be added to the arguments to the function.For example, the calls

move(y, x);
addch(ch);

can be replaced by

mvaddch(y, x, ch);

and

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. Ifa window
pointer is needed, it is always the first parameter passed.

22.. VVaarriiaabblleess

Many variables which are used to describe the terminal environment are available to the programmer.
They are:

type name description

WINDOW ∗ curscr current version of the screen (terminal screen).
WINDOW ∗ stdscr standard screen.Most updates are usually done here.
char∗ Def−term default terminal type if type cannot be determined
bool My−term use the terminal specification inDef−term as terminal, irrele-

vant of real terminal type
char∗ ttytype full name of the current terminal.
int LINES number of lines on the terminal
int COLS number of columns on the terminal
int ERR error flag returned by routines on a fail.
int OK flag returned by routines upon success.

33.. UUssaaggee

This is a description of how to actually use the screen package.For simplicity, we assume all updat-
ing, reading, etc.is applied tostdscr, although a different window can of course be specified.

1 Actually, addch() is really a “#define” macro with arguments, as are most of the "functions" which act uponstdscr.

SSccrr eeeenn PPaacckkaaggee PPSS11::1199--55

33..11.. IInniittiiaalliizzaattiioonn

In order to use the screen package, the routines must know about terminal characteristics, and the
space forcurscr and stdscrmust be allocated.These functions are performed byinitscr(). Sinceit
must allocate space for the windows, it can overflow core when attempting to do so.On this rather rare
occasion,initscr() returns ERR.initscr() mustalways be called before any of the routines which
affect windows are used.If it is not, the program will core dump as soon as eithercurscr or stdscrare ref-
erenced. However, it is usually best to wait to call it until after you are sure you will need it, like after
checking for startup errors.Terminal status changing routines like nl() andcbreak() should be called
afterinitscr().

After the initial window allocation done byinitscr(), specific window characteristics can be set.
Scrolling can be enabled by callingscrollok(). If you want the cursor to be left after the last change,
useleaveok(). If this isn’t done,refresh() will move the cursor to the window’s current (y, x) co-ordi-
nates after updating it.Additional windows can be created by using the functionsnewwin() andsub-
win(). delwin() allows you to delete an exisiting window. The variablesLINESandCOLScontrol the
size of the terminal.They are initially implicitly set byinitscr(), but can be altered explicitly by the
user followed by a call toinitscr(). Notethat any call to initscr(), will always delete any existing
stdscr and/or curscr before creating new ones so this change is best done before the initial call to
initscr().

33..22.. OOuuttppuutt

The basic functions used to change what will go on a window are addch() andmove(). addch()
adds a character at the current (y, x) co-ordinates, returning ERR if it would cause the window to illegally
scroll, i.e., printing a character in the lower right-hand corner of a terminal which automatically scrolls if
scrolling is not allowed. move() changes the current (y, x) co-ordinates to whatever you want them to be.
It returns ERR if you try to move off the window. As mentioned above, you can combine the two into
mvaddch() to do both things in one call.

The other output functions (such asaddstr() andprintw()) all calladdch() to add characters to
the window.

After a change has been made to the window, you must callrefresh(). whenyou want the portion
of the terminal covered by the window to reflect the change.In order to optimize finding changes,
refresh() assumes that any part of the window not changed since the lastrefresh() of that window has
not been changed on the terminal,i.e., that you have not refreshed a portion of the terminal with an overlap-
ping window. If this is not the case, the routinestouchwin(), touchline(), andtouchoverlap() are
provided to make it look like a desired part of window has been changed, thus forcingrefresh() to check
that whole subsection of the terminal for changes.

If you call wrefresh() with curscr, it will make the screen look like the image ofcurscr. This is
useful for implementing a command which would redraw the screen in case it got messed up.

33..33.. IInnppuutt

Input is essentially a mirror image of output.The complementary function toaddch() is getch()
which, if echo is set, will calladdch() to echo the character. Since the screen package needs to know what
is on the terminal at all times, if characters are to be echoed, the tty must be in raw or cbreak mode.If it is
not,getch() sets it to be cbreak, and then reads in the character.

33..44.. TTeerrmmiinnaattiioonn

In order to perform certain optimizations, and, on some terminals, to work at all, some things must be
done before the screen routines start up.These functions are performed ingetttmode() andsetterm(),
which are called byinitscr(). In order to clean up after the routines, the routineendwin() is provided.
It restores tty modes to what they were wheninitscr() was first called. The terminal state module uses
the variablecurses_termiosto save the original terminal state which is then restored upon a call toend-
win(). Thus,anytime after the call to initscr, endwin() should be called before exiting. Notehowever,

SSccrr eeeenn PPaacckkaaggee PPSS11::1199--77

Add the characterch on the window at the current (y, x) co-ordinates. Ifthe character is a newline
(´\n´) the line will be cleared to the end, and the current (y, x) co-ordinates will be changed to the
beginning off the next line if newline mapping is on, or to the next line at the same x co-ordinate if it
is off. A return (´\r´) will move to the beginning of the line on the window. Tabs (´\t´) will be
expanded into spaces in the normal tabstop positions of every eight characters.This returns ERR if it
would cause the screen to scroll illegally.

addstr(char ∗str);†

Add the string pointed to bystr on the window at the current (y, x) co-ordinates. Thisreturns ERR if
it would cause the screen to scroll illegally. In this case, it will put on as much as it can.

baudrate();†

Returns the output baud rate of the terminal.This is a system dependent constant (defined in
<<ssyyss//tt ttyy ..hh>> on BSD systems, which is included by<<ccuurr sseess..hh>>).

box(WINDOW win, char vert, char hor);

Draws a box around the window usingvert as the character for drawing the vertical sides, andhor for
drawing the horizontal lines.If scrolling is not allowed, and the window encompasses the lower
right-hand corner of the terminal, the corners are left blank to avoid a scroll.

cbreak();†

Set or the terminal to cbreak mode.

clear();†

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will cause a
clear-screen sequence to be sent on the next refresh() call. This also moves the current (y, x) co-
ordinates to (0, 0).

clearok(WINDOW ∗scr, int boolf);†

Sets the clear flag for the screenscr. If boolf is non-zero, this will force a clear-screen to be printed
on the next refresh(), or stop it from doing so ifboolf is 0. This only works on screens, and,
unlike clear(), does not alter the contents of the screen.If scr is curscr, the next refresh() call
will cause a clear-screen, even if the window passed torefresh() is not a screen.

clrtobot();†

Wipes the window clear from the current (y, x) co-ordinates to the bottom.This does not force a
clear-screen sequence on the next refresh under any circumstances. Thishas no associated “mmvv”
command.

clrtoeol();†

Wipes the window clear from the current (y, x) co-ordinates to the end of the line.This has no asso-
ciated “mmvv” command.

crmode();†

Identical tocbreak(). The misnamed macrocrmode() andnocrmode() is retained for back-
wards compatibility with ealier versions of the library.

PPSS11::1199--88 SSccrreeeenn PPaacckkaaggee

delch();

Delete the character at the current (y, x) co-ordinates. Eachcharacter after it on the line shifts to the
left, and the last character becomes blank.

deleteln();

Delete the current line.Every line below the current one will move up, and the bottom line will
become blank.The current (y, x) co-ordinates will remain unchanged.

delwin(WINDOW ∗win);

Deletes the window from existence. Allresources are freed for future use byccaall lloocc(3). If a window
has asubwin() allocated window inside of it, deleting the outer window the subwindow is not
affected, even though this does invalidate it. Therefore, subwindows should be deleted before their
outer windows are.

echo();†

Sets the terminal to echo characters.

endwin();

Finish up window routines before exit. This restores the terminal to the state it was before
initscr() (or gettmode() andsetterm()) was called.It should always be called before exiting
and before the final calls todelwin(). It does not exit. This is especially useful for resetting tty
stats when trapping rubouts viassiiggnnaall (2).

erase();†

Erases the window to blanks without setting the clear flag.This is analagous toclear(), except that
it never causes a clear-screen sequence to be generated on arefresh(). This has no associated
“mmvv” command.

erasechar();†

Returns the erase character for the terminal,i.e., the character used by the user to erase a single char-
acter from the input.

flushok(WINDOW ∗win, int boolf);

Normally, refresh() fflush(’s); stdoutwhen it is finished. flushok() allows you to control
this. if boolf is non-zero (i.e., non-zero) it will do thefflush(), otherwise it will not.

getch();†

Gets a character from the terminal and (if necessary) echos it on the window. This returns ERR if it
would cause the screen to scroll illegally. Otherwise, the character gotten is returned.If noecho has
been set, then the window is left unaltered.In order to retain control of the terminal, it is necessary
to have one ofnoecho, cbreak, or rawmodeset. If you do not set one, whatever routine you call to
read characters will setcbreakfor you, and then reset to the original mode when finished.

getstr(char ∗str);†

Get a string through the window and put it in the location pointed to bystr, which is assumed to be
large enough to handle it.It sets tty modes if necessary, and then callsgetch() (or wgetch()) to

SSccrr eeeenn PPaacckkaaggee PPSS11::1199--99

get the characters needed to fill in the string until a newline or EOF is encountered.The newline
stripped off the string.This returns ERR if it would cause the screen to scroll illegally.

gettmode();

Get the tty stats.This is normally called byinitscr().

getyx(WINDOW ∗win, int y, int x);

Puts the current (y, x) co-ordinates ofwin in the variablesy andx. Since it is a macro, not a function,
you do not pass the address ofy andx.

idlok(WINDOW ∗win, int boolf);

Reserved for future use.This will eventually signal torefresh() that it is all right to use the insert
and delete line sequences when updating the window.

inch();†

Returns the character at the current position on the given window. This does not make any changes
to the window.

initscr();

Initialize the screen routines.This must be called before any of the screen routines are used.It ini-
tializes the terminal-type data and such, and without it none of the routines can operate.If standard
input is not a tty, it sets the specifications to the terminal whose name is pointed to byDef−term (ini-
tially "dumb"). If the booleanMy−term is non-zero,Def−term is always used.If the system supports
the TTII OOCCGGWWII NNSSZZ ioctl(2) call, it is used to get the number of lines and columns for the terminal,
otherwise it is taken from thetteerr mmccaapp description.

insch(char c);

Insertc at the current (y, x) co-ordinates Each character after it shifts to the right, and the last charac-
ter disappears.This returns ERR if it would cause the screen to scroll illegally.

insertln();

Insert a line above the current one.Every line below the current line will be shifted down, and the
bottom line will disappear. The current line will become blank, and the current (y, x) co-ordinates
will remain unchanged.

killchar();†

Returns the line kill character for the terminal,i.e., the character used by the user to erase an entire
line from the input.

leaveok(WINDOW ∗win, int boolf);†

Sets the boolean flag for leaving the cursor after the last change.If boolf is non-zero, the cursor will
be left after the last update on the terminal, and the current (y, x) co-ordinates forwin will be changed
accordingly. If boolf
is 0 the cursor will be moved to the current (y, x) co-ordinates. Thisflag (initially 0) retains its value
until changed by the user.

PPSS11::1199--1100 SSccrreeeenn PPaacckkaaggee

move(int y, int x);

Change the current (y, x) co-ordinates of the window to (y, x). Thisreturns ERR if it would cause the
screen to scroll illegally.

mvcur(int lasty, int lastx, int newy, int newx);

Moves the terminal’s cursor from (lasty, lastx) to (newy, newx) in an approximation of optimal fash-
ion. Thisroutine uses the functions borrowed fromexversion 2.6. It is possible to use this optimiza-
tion without the benefit of the screen routines.With the screen routines, this should not be called by
the user. move() andrefresh() should be used to move the cursor position, so that the routines
know what’s going on.

mvprintw(int y, int x, const char ∗fmt, ...);

Equivalent to:

move(y, x);
printw(fmt, ...);

mvscanw(int y, int x, const char ∗fmt, ...);

Equivalent to:

move(y, x);
scanw(fmt, ...);

mvwin(WINDOW ∗win, int y, int x);

Move the home position of the window win from its current starting coordinates to (y, x). If that
would put part or all of the window off the edge of the terminal screen,mvwin() returns ERR and
does not change anything. For subwindows,mvwin() also returns ERR if you attempt to move it off
its main window. If you move a main window, all subwindows are moved along with it.

mvwprintw(WINDOW ∗win, int y, int x, const char ∗fmt, ...);

Equivalent to:

wmove(win, y, x);
printw(fmt, ...);

mvwscanw(WINDOW ∗win, int y, int x, const char ∗fmt, ...);

Equivalent to:

wmove(win, y, x);
scanw(fmt, ...);

newwin(int lines, int cols, int begin_y, int begin_x);

Create a new window with lines lines andcols columns starting at position (begin−y, begin−x). If
eitherlinesor cols is 0 (zero), that dimension will be set to (LINES − begin−y) or (COLS − begin−x)
respectively. Thus, to get a new window of dimensionsLINES× COLS, usenewwin(0, 0, 0, 0).

nl();†

SSccrr eeeenn PPaacckkaaggee PPSS11::1199--1111

Set the terminal to nl mode,i.e., start/stop the system from mapping<<RREETTUURRNN>> to <<LL II NNEE--
FFEEEEDD>>. If the mapping is not done,refresh() can do more optimization, so it is recommended,
but not required, to turn it off.

nocbreak();†

Unset the terminal from cbreak mode.

nocrmode();†

Identical tonocbreak(). Themisnamed macronocrmode() is retained for backwards compatibil-
ity with ealier versions of the library.

noecho();†

Turn echoing of characters off.

nonl();†

Unset the terminal to from nl mode.Seenl().

noraw();†

Unset the terminal from raw mode. Seeraw().

overlay(WINDOW ∗win1, WINDOW ∗win2);

Overlaywin1 on win2. The contents ofwin1, insofar as they fit, are placed onwin2 at their starting
(y, x) co-ordinates. Thisis done non-destructively, i.e., blanks onwin1 leave the contents of the
space onwin2 untouched. Notethat all non-blank characters are overwritten destructively in the
overlay.

overwrite(WINDOW ∗win1, WINDOW ∗win2);

Overwritewin1 on win2. The contents ofwin1, insofar as they fit, are placed onwin2 at their starting
(y, x) co-ordinates. Thisis done destructively, i.e., blanks onwin1become blank onwin2.

printw(char ∗fmt, ...);

Performs aprintf() on the window starting at the current (y, x) co-ordinates. Itusesaddstr() to
add the string on the window. It is often advisable to use the field width options ofprintf() to
avoid leaving things on the window from earlier calls.This returns ERR if it would cause the screen
to scroll illegally.

raw();†

Set the terminal to raw mode. Onversion 7UUNNII XX 22 this also turns off newline mapping (seenl()).

refresh();†

2 UUNNII XX is a trademark of Unix System Laboratories.

PPSS11::1199--1122 SSccrreeeenn PPaacckkaaggee

Synchronize the terminal screen with the desired window. If the window is not a screen, only that
part covered by it is updated.This returns ERR if it would cause the screen to scroll illegally. In this
case, it will update whatever it can without causing the scroll.

As a special case, ifwrefresh() is called with the window curscr the screen is cleared and
repainted as it is currently. This is very useful for allowing the redrawing of the screen when the user
has garbage dumped on his terminal.

resetty();†

resetty() restores them to whatsavetty() stored. These functions are performed automatically
by initscr() andendwin(). Thisfunction should not be used by the user.

savetty();†

savetty() saves the current tty characteristic flags. Seeresetty(). This function should not be
used by the user.

scanw(char ∗fmt, ...);

Perform ascanf() through the window using fmt. It does this using consecutive calls togetch()
(or wgetch()). Thisreturns ERR if it would cause the screen to scroll illegally.

scroll(WINDOW ∗win);

Scroll the window upward one line.This is normally not used by the user.

scrollok(WINDOW ∗win, int boolf);†

Set the scroll flag for the given window. If boolf is 0, scrolling is not allowed. Thisis its default set-
ting.

standend();†

End standout mode initiated bystandout().

standout();†

Causes any characters added to the window to be put in standout mode on the terminal (if it has that
capability).

subwin(WINDOW ∗win, int lines, int cols, int begin_y, int begin_x);

Create a new window with lines lines andcolscolumns starting at position (begin−y, begin−x) inside
the window win. This means that any change made to either window in the area covered by the sub-
window will be made on both windows. begin−y, begin−x are specified relative to the overall screen,
not the relative (0, 0)of win. If either linesor cols is 0 (zero), that dimension will be set to (LINES −
begin−y) or (COLS − begin−x) respectively.

touchline(WINDOW ∗win, int y, int startx, int endx);

This function performs a function similar totouchwin() on a single line.It marks the first change
for the given line to bestartx, if i t is before the current first change mark, and the last change mark is
set to beendxif it is currently less thanendx.

SSccrr eeeenn PPaacckkaaggee PPSS11::1199--1133

touchoverlap(WINDOW ∗win1, WINDOW ∗win2);

Touch the window win2 in the area which overlaps withwin1. If they do not overlap, no changes are
made.

touchwin(WINDOW ∗win);

Make it appear that the every location on the window has been changed.This is usually only needed
for refreshes with overlapping windows.

tstp()

This function will save the current tty state and then put the process to sleep.When the process gets
restarted, it restores the saved tty state and then callswrefresh(curscr); to redraw the screen.
Initscr() sets the signal SIGTSTP to trap to this routine.

unctrl(char ∗ch);†

Returns a string which is an ASCII representation ofch. Characters are 8 bits long.

unctrllen(char ∗ch);†

Returns the length of the ASCII representation ofch.

vwprintw(WINDOW ∗win, const char ∗fmt, va_list ap);

Identical toprintw() except that it takes both a window specification and a pointer to a variable
length argument list.

vwscanw(WINDOW ∗win, const char ∗fmt, va_list ap);

Identical toscanw() except that it takes both a window specification and a pointer to a variable
length argument list.

waddbytes(WINDOW ∗win, char ∗str, int len);

This function is the low lev el character output function.Lencharacters of the stringstr are output to
the current (y, x) co-ordinates position of the window specified bywin.

The following functions differ from the standard functions only in their specification of a window,
rather than the use of the default stdscr.

waddch(WINDOW ∗win, char ch);
waddstr(WINDOW ∗win, char ∗str);
wclear(WINDOW ∗win);
wclrtobot(WINDOW ∗win);
wclrtoeol(WINDOW ∗win);
wdelch(WINDOW ∗win);
wdeleteln(WINDOW ∗win);
werase(WINDOW ∗win);
wgetch(WINDOW ∗win);
wgetstr(WINDOW ∗win, char ∗str);
winch(WINDOW ∗win);†
winsch(WINDOW ∗win, char c);

PPSS11::1199--1144 SSccrreeeenn PPaacckkaaggee

winsertln(WINDOW ∗win);
wmove(WINDOW ∗win, int y, int, x");
wprintw(WINDOW ∗win, char ∗fmt, ...);
wrefresh(WINDOW ∗win);
wscanw(WINDOW ∗win, char ∗fmt, ...);
wstandend(WINDOW ∗win);
wstandout(WINDOW ∗win);

SSccrr eeeenn PPaacckkaaggee AAppppeennddiixx AA PPSS11::1199--1155

11.. EExxaammpplleess

Here we present a few examples of how to use the package.They attempt to be representative,
though not comprehensive. Further examples can be found in the games section of the source tree and in
various utilities that use the screen such assystat(1).

The following examples are intended to demonstrate the basic structure of a program using the pack-
age. Anadditional, more comprehensive, program can be found in the source code in theexamplessubdi-
rectory.

11..11.. SSiimmppllee CChhaarraacctteerr OOuuttppuutt

This program demonstrates how to set up a window and output characters to it.Also, it demonstrates
how one might control the output to the window. If you run this program, you will get a demonstration of
the character output chracteristics discussed in the above Character Output section.

#include <sys/types.h>
#include <curses.h>
#include <stdio.h>
#include <signal.h>

#define YSIZE 10
#define XSIZE 20

int quit();

main()
{

int i, j, c;
size_t len;
char id[100];
FILE ∗fp;
char∗s;

initscr(); /∗ Always call initscr() first ∗/
signal(SIGINT, quit); /∗ Make sure wou have a ’cleanup’ fn∗/
crmode(); /∗ We want cbreak mode∗/
noecho(); /∗ We want to have control of chars∗/
delwin(stdscr); /∗ Create our own stdscr∗/
stdscr = newwin(YSIZE, XSIZE, 10, 35);
flushok(stdscr, TRUE); /∗ Enable flushing of stdout∗/
scrollok(stdscr, TRUE); /∗ Enable scrolling∗/
erase(); /∗ Initially, clear the screen∗/

standout();
move(0,0);
while (1) {

c = getchar();
switch(c) {
case ’q’: /∗ Quit on ’q’ ∗/

quit();
break;

case ’s’: /∗ Go into standout mode on ’s’ ∗/
standout();
break;

PPSS11::1199--1166 SSccrreeeenn PPaacckkaaggee AAppppeennddiixx AA

case ’e’: /∗ Exit standout mode on ’e’∗/
standend();
break;

case ’r’: /∗ Force a refresh on ’r’ ∗/
wrefresh(curscr);
break;

default: /∗ By default output the character∗/
addch(c);
refresh();

}
}

}

int
quit()
{

erase(); /∗ Terminate by erasing the screen∗/
refresh();
endwin(); /∗ Always end with endwin()∗/
delwin(curscr); /∗ Return storage∗/
delwin(stdscr);
putchar(’0);
exit(0);

}

11..22.. TTwwiinnkkllee

This is a moderately simple program which prints patterns on the screen.It switches between pat-
terns of asterisks, putting them on one by one in random order, and then taking them off in the same fash-
ion. It is more efficient to write this using only the motion optimization, as is demonstrated below.

include <curses.h>
include <signal.h>

/∗
∗ the idea for this program was a product of the imagination of
∗ Kurt Schoens.Not responsible for minds lost or stolen.
∗/

define NCOLS80
define NLINES24
define MAXPATTERNS 4

typedef struct {
int y, x;

} L OCS;

LOCS Layout[NCOLS∗ NLINES]; /∗ current board layout∗/

SSccrr eeeenn PPaacckkaaggee AAppppeennddiixx AA PPSS11::1199--1177

int Pattern, /∗ current pattern number∗/
Numstars; /∗ number of stars in pattern∗/

char ∗getenv();

int die();

main()
{

srand(getpid()); /∗ initialize random sequence∗/

initscr();
signal(SIGINT, die);
noecho();
nonl();
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for (;;) {
makeboard(); /∗ make the board setup∗/
puton(’∗’); /∗ put on ’∗’s ∗/
puton(’ ’); /∗ cover up with ’ ’s ∗/

}
}

/∗
∗ On program exit, move the cursor to the lower left corner by
∗ direct addressing, since current location is not guaranteed.
∗ We lie and say we used to be at the upper right corner to guarantee
∗ absolute addressing.
∗/
die()
{

signal(SIGINT, SIG_IGN);
mvcur(0, COLS - 1, LINES - 1, 0);
endwin();
exit(0);

}

/∗
∗ Make the current board setup.It picks a random pattern and
∗ calls ison() to determine if the characterR19 de90.t pattern
∗ or not.
∗/
makeboard()
{

reg int y, x;
reg LOCS ∗lp;

Pattern = rand() % MAXPATTERNS;
lp = Layout;
for (y = 0; y < NLINES; y++)

PPSS11::1199--1188 SSccrreeeenn PPaacckkaaggee AAppppeennddiixx AA

for (x = 0; x < NCOLS; x++)
if (ison(y, x)) {

lp->y = y;
lp->x = x;
lp++;

}
Numstars = lp - Layout;

}

/∗
∗ Return TRUE if (y, x) is on the current pattern.
∗/
ison(y, x)
reg int y, x; {

switch (Pattern) {
case 0:/∗ alternating lines∗/

return !(y & 01);
case 1:/∗ box ∗/

if (x >= LINES && y >= NCOLS)
return FALSE;

if (y < 3 || y >= NLINES - 3)
return TRUE;

return (x < 3 || x >= NCOLS - 3);
case 2:/∗ holy pattern!∗/

return ((x + y) & 01);
case 3:/∗ bar across center∗/

return (y >= 9 && y <= 15);
}
/∗ NOTREACHED ∗/

}

puton(ch)
reg char ch;
{

reg LOCS ∗lp;
reg int r;
reg LOCS ∗end;
LOCS temp;

end = &Layout[Numstars];
for (lp = Layout; lp < end; lp++) {

r = rand() % Numstars;
temp =∗lp;
∗lp = Layout[r];
Layout[r] = temp;

}

for (lp = Layout; lp < end; lp++) {
mvaddch(lp->y, lp->x, ch);
refresh();

}
}

SSccrr eeeenn PPaacckkaaggee AAppppeennddiixx AA PPSS11::1199--1199

11.. TThhee WWIINNDDOOWW ssttrruuccttuurree

The WINDOW structure is defined as follows:

define WINDOW struct _win_st

struct _win_st {
short _cury, _curx;
short _maxy, _maxx;
short _begy, _begx;
short _flags;
short _ch_off;
bool _clear;
bool _leave;
bool _scroll;
char ∗∗_y;
short ∗_firstch;
short ∗_lastch;
struct _win_st ∗_nextp, ∗_orig;

};

define _ENDLINE 001
define _FULLWIN 002
define _SCROLLWIN 004
define _FLUSH 010
define _FULLLINE 020
define _IDLINE 040
define _STANDOUT 0200
define _NOCHANGE -1

−cury and −curx are the current (y, x) co-ordinates for the window. New characters added to the
screen are added at this point.−maxyand −maxxare the maximum values allowed for (−cury, −curx).

−begy and −begx are the starting (y, x) co-ordinates on the terminal for the window, i.e., the window’s
home. −cury, −curx, −maxy, and −maxxare measured relative to (−begy, −begx), not the terminal’s home.

−clear tells if a clear-screen sequence is to be generated on the next refresh() call. This is only
meaningful for screens.The initial clear-screen for the first refresh() call is generated by initially set-
ting clear to be TRUE for curscr, which always generates a clear-screen if set, irrelevant of the dimensions
of the window inv olved. −leaveis TRUE if the current (y, x) co-ordinates and the cursor are to be left after
the last character changed on the terminal, or not moved if there is no change.−scroll is TRUE if scrolling
is allowed.

−y is a pointer to an array of lines which describe the terminal.Thus:

−y[i]

is a pointer to theith line, and

−y[i][j]

is thejth character on theith line. −flagscan have one or more values or’d into it.

For windows that are not subwindows, −orig is NULL . For subwindows, it points to the main win-
dow to which the window is subsidiary. −nextp is a pointer in a circularly linked list of all the windows

3 All variables not normally accessed directly by the user are named with an initial “−−” to avoid conflicts with the user’s vari-
ables.

PPSS11::1188--2200 SSccrreeeenn PPaacckkaaggee AAppppeennddiixx BB

which are subwindows of the same main window, plus the main window itself.

−firstch and −lastch aremalloc(ed); arrays which contain the index of the first and last changed
characters on the line.−ch−off is the x offset for the window in the−firstch and−lastch arrays for this win-
dow. For main windows, this is always 0; for subwindows it is the difference between the starting point of
the main window and that of the subindow, so that change markers can be set relative to the main window.
This makes these markers global in scope.

All subwindows share the appropriate portions of_y, _firstch, _lastch, and _insdelwith their main
window.

−−EENNDDLL II NNEE says that the end of the line for this window is also the end of a screen.−−FFUULL LL WWIINN
says that this window is a screen. −−SSCCRR OOLLLLWWIINN indicates that the last character of this screen is at the
lower right-hand corner of the terminal;i.e., if a character was put there, the terminal would scroll. −−FFUULL --
LL LL II NNEE says that the width of a line is the same as the width of the terminal.If −−FFLL UUSSHH is set, it says that
fflush(, , stdout); should be called at the end of eachrefresh() −−SSTT AANNDDOOUUTT says that all characters
added to the screen are in standout mode.−−II NNSSDDEELL is reserved for future use, and is set byidlok().

−firstch is set to−−NNOOCCHHAANNGGEE for lines on which there has been no change since the lastrefresh().

SSccrr eeeenn PPaacckkaaggee AAppppeennddiixx CC PPSS11::1188--2211

11.. EExxaammpplleess

Here we present a few examples of how to use the package.They attempt to be representative,
though not comprehensive.

22.. SSccrreeeenn UUppddaattiinngg

The following examples are intended to demonstrate the basic structure of a program using the screen
updating sections of the package.Several of the programs require calculational sections which are irrele-
vant of to the example, and are therefore usually not included.It is hoped that the data structure definitions
give enough of an idea to allow understanding of what the relevant portions do.The rest is left as an exer-
cise to the reader, and will not be on the final.

22..11.. TTwwiinnkkllee

This is a moderately simple program which prints pretty patterns on the screen that might even hold
your interest for 30 seconds or more.It switches between patterns of asterisks, putting them on one by one
in random order, and then taking them off in the same fashion. Itis more efficient to write this using only
the motion optimization, as is demonstrated below.

include <curses.h>
include <signal.h>

/∗
∗ the idea for this program was a product of the imagination of
∗ Kurt Schoens.Not responsible for minds lost or stolen.
∗/

define NCOLS80
define NLINES24
define MAXPATTERNS 4

typedef struct {
int y, x;

} L OCS;

LOCS Layout[NCOLS∗ NLINES]; /∗ current board layout∗/

int Pattern, /∗ current pattern number∗/
Numstars; /∗ number of stars in pattern∗/

char ∗getenv();

int die();

main()
{

srand(getpid()); /∗ initialize random sequence∗/

initscr();
signal(SIGINT, die);
noecho();
nonl();
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

PPSS11::1188--2222 SSccrreeeenn PPaacckkaaggee AAppppeennddiixx CC

for (;;) {
makeboard(); /∗ make the board setup∗/
puton(’∗’); /∗ put on ’∗’s ∗/
puton(’ ’); /∗ cover up with ’ ’s ∗/

}
}

/∗
∗ On program exit, move the cursor to the lower left corner by
∗ direct addressing, since current location is not guaranteed.
∗ We lie and say we used to be at the upper right corner to guarantee
∗ absolute addressing.
∗/
die()
{

signal(SIGINT, SIG_IGN);
mvcur(0, COLS - 1, LINES - 1, 0);
endwin();
exit(0);

}

/∗
∗ Make the current board setup.It picks a random pattern and
∗ calls ison() to determine if the character is on that pattern
∗ or not.
∗/
makeboard()
{

reg int y, x;
reg LOCS ∗lp;

Pattern = rand() % MAXPATTERNS;
lp = Layout;
for (y = 0; y < NLINES; y++)

for (x = 0; x < NCOLS; x++)
if (ison(y, x)) {

lp->y = y;
lp->x = x;
lp++;

}
Numstars = lp - Layout;

}

/∗
∗ Return TRUE if (y, x) is on the current pattern.
∗/
ison(y, x)
reg int y, x; {

switch (Pattern) {
case 0:/∗ alternating lines∗/

return !(y & 01);

SSccrr eeeenn PPaacckkaaggee AAppppeennddiixx CC PPSS11::1188--2233

case 1:/∗ box ∗/
if (x >= LINES && y >= NCOLS)

return FALSE;
if (y < 3 || y >= NLINES - 3)

return TRUE;
return (x < 3 || x >= NCOLS - 3);

case 2:/∗ holy pattern!∗/
return ((x + y) & 01);

case 3:/∗ bar across center∗/
return (y >= 9 && y <= 15);

}
/∗ NOTREACHED ∗/

}

puton(ch)
reg char ch;
{

reg LOCS ∗lp;
reg int r;
reg LOCS ∗end;
LOCS temp;

end = &Layout[Numstars];
for (lp = Layout; lp < end; lp++) {

r = rand() % Numstars;
temp =∗lp;
∗lp = Layout[r];
Layout[r] = temp;

}

for (lp = Layout; lp < end; lp++) {
mvaddch(lp->y, lp->x, ch);
refresh();

}
}

22..22.. LLiiffee

This program fragment models the famous computer pattern game of life (Scientific American, May,
1974). Thecalculational routines create a linked list of structures defining where each piece is.Nothing
here claims to be optimal, merely demonstrative. This code, however, is a very good place to use the screen
updating routines, as it allows them to worry about what the last position looked like, so you don’t hav eto.
It also demonstrates some of the input routines.

include <curses.h>
include <signal.h>

/∗
∗ Run a life game. Thisis a demonstration program for
∗ the Screen Updating section of the -lcurses cursor package.
∗/

typedef struct lst_st { /∗ linked list element∗/
int y, x; /∗ (y, x) position of piece∗/

PPSS11::1188--2244 SSccrreeeenn PPaacckkaaggee AAppppeennddiixx CC

struct lst_st ∗next, ∗last; /∗ doubly linked∗/
} L IST;

LIST ∗Head; /∗ head of linked list∗/

int die();

main(ac, av)
int ac;
char ∗av[];
{

evalargs(ac, av); /∗ evaluate arguments∗/

initscr(); /∗ initialize screen package∗/
signal(SIGINT, die); /∗ set to restore tty stats∗/
cbreak(); /∗ set for char-by-char∗/
noecho(); /∗ input ∗/
nonl(); /∗ for optimization∗/

getstart(); /∗ get starting position∗/
for (;;) {

prboard(); /∗ print out current board∗/
update(); /∗ update board position∗/

}
}

/∗
∗ This is the routine which is called when rubout is hit.
∗ It resets the tty stats to their original values. This
∗ is the normal way of leaving the program.
∗/
die()
{

signal(SIGINT, SIG_IGN); /∗ ignore rubouts∗/
mvcur(0, COLS - 1, LINES - 1, 0);/∗ go to bottom of screen∗/
endwin(); /∗ set terminal to good state∗/
exit(0);

}

/∗
∗ Get the starting position from the user. They keys u, i, o, j, l,
∗ m, ,, and . are used for moving their relative directions from the
∗ k key. Thus, u move diagonally up to the left, , moves directly down,
∗ etc. xplaces a piece at the current position, " " takes it away.
∗ The input can also be from a file. Thelist is built after the
∗ board setup is ready.
∗/
getstart()
{

reg char c;
reg int x, y;
auto char buf[100];

SSccrr eeeenn PPaacckkaaggee AAppppeennddiixx CC PPSS11::1188--2255

box(stdscr, ’ |’, ’_’); /∗ box in the screen∗/
move(1, 1); /∗ move to upper left corner∗/

for (;;) {
refresh(); /∗ print current position∗/
if ((c = getch()) == ’q’)

break;
switch (c) {
case ’u’:
case ’i’:
case ’o’:
case ’j’:
case ’l’:
case ’m’:
case ’,’:
case ’.’:

adjustyx(c);
break;

case ’f’:
mvaddstr(0, 0, "File name: ");
getstr(buf);
readfile(buf);
break;

case ’x’:
addch(’X’);
break;

case ’ ’:
addch(’ ’);
break;

}
}

if (Head != NULL) /∗ start new list ∗/
dellist(Head);

Head = malloc(sizeof (LIST));

/∗
∗ loop through the screen looking for ’x’s, and add a list
∗ element for each one
∗/
for (y = 1; y < LINES - 1; y++)

for (x = 1; x < COLS - 1; x++) {
move(y, x);
if (inch() == ’x’)

addlist(y, x);
}

}

/∗
∗ Print out the current board position from the linked list
∗/
prboard() {

PPSS11::1188--2266 SSccrreeeenn PPaacckkaaggee AAppppeennddiixx CC

reg LIST ∗hp;

erase(); /∗ clear out last position∗/
box(stdscr, ’ |’, ’_’); /∗ box in the screen∗/

/∗
∗ go through the list adding each piece to the newly
∗ blank board
∗/
for (hp = Head; hp; hp = hp->next)

mvaddch(hp->y, hp->x, ’X’);

refresh();
}

33.. MMoottiioonn ooppttiimmiizzaattiioonn

The following example shows how motion optimization is written on its own. Programswhich flit
from one place to another without regard for what is already there usually do not need the overhead of both
space and time associated with screen updating.They should instead use motion optimization.

33..11.. TTwwiinnkkllee

The ttwwiinnkk lleeprogram is a good candidate for simple motion optimization.Here is how it could be
written (only the routines that have been changed are shown):

extern int _putchar();

main()
{

reg char ∗sp;

srand(getpid()); /∗ initialize random sequence∗/

if (isatty(0)) {
gettmode();
if ((sp = getenv("TERM")) != NULL)

setterm(sp);
signal(SIGINT, die);

}
else {

printf("Need a terminal on %d0, _tty_ch);
exit(1);

}
_puts(TI);
_puts(VS);

noecho();
nonl();
tputs(CL, NLINES, _putchar);
for (;;) {

makeboard(); /∗ make the board setup∗/
puton(’∗’); /∗ put on ’∗’s ∗/
puton(’ ’); /∗ cover up with ’ ’s ∗/

}

SSccrr eeeenn PPaacckkaaggee AAppppeennddiixx CC PPSS11::1188--2277

}

puton(ch)
char ch;
{

reg LOCS ∗lp;
reg int r;
reg LOCS ∗end;
LOCS temp;
static intlasty, lastx;

end = &Layout[Numstars];
for (lp = Layout; lp < end; lp++) {

r = rand() % Numstars;
temp =∗lp;
∗lp = Layout[r];
Layout[r] = temp;

}

for (lp = Layout; lp < end; lp++)
/∗ prevent scrolling∗/

if (!AM || (lp->y < NLINES - 1 || lp->x < NCOLS - 1)) {
mvcur(lasty, lastx, lp->y, lp->x);
putchar(ch);
lasty = lp->y;
if ((lastx = lp->x + 1) >= NCOLS)

if (AM) {
lastx = 0;
lasty++;

}
else

lastx = NCOLS - 1;
}

}

PPSS11::1188--22 SSccrreeeenn PPaacckkaaggee

Contents

1 Overview .. 3

1.1 Terminology ..3

1.2 Compiling Applications.. 3

1.3 Screen Updating.. 3

1.4 Naming Conventions ...4

2 Variables ...4

3 Usage ..4

3.1 Initialization .. 5

3.2 Output.. 5

3.3 Input .. 5

3.4 Termination ...5

4 Cursor Movement Optimizations... 6

5 Character Output and Scrolling.. 6

6 Terminal State Handling... 6

7 Subwindows ...6

8 The Functions... 6

AA ppppeennddiixx AA .. 15

1 Examples ..15

1.1 Simple Character Output... 15

1.2 Twinkle ..16

AA ppppeennddiixx BB ... 19

1 The WINDOW structure ..19

AA ppppeennddiixx CC .. 21

1 Examples ..21

2 Screen Updating... 21

2.1 Twinkle ..21

2.2 Life .. 23

3 Motion optimization... 26

3.1 Twinkle ..26

