Measuring and Improving the Performance of Berkeley UNIX*

April 17,1991

Marshall Kirk McKusid,
Samuel JLefflert,
Michael J Karels

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, CA 94720

ABSTRAT

The 4.2 Berkley Software Distrilution of uNIX® for the VAXT had seeral prob-
lems that could serely afect the woerall performance of the systenT.hese problems
were identified with &rnel profiling and system tracing during day to day udSace
potential problem areas had been identified benchmark programs wesedd® high-
light the bottlenecksThese benchmarkrified that the problemsisted and preided
a metric aguinst which to alidate proposed solutions'his paper xamines the perfer
mance problems encountered and describes modifications tedidem made to the sys-
tem since the initial distriltion.

The changes to the systenvlaonsisted of impreements to the performance of
the «isting facilities, as well as enhancements to the curraailitfes. Performance
improvements in the &rnel include cacheing of path name translations, reductions in
clock handling and schedulinggehead, and impraed throughput of the netark sub-
system. Performandenprovements in the libraries and utilities include replacement of
linear searches of system databases withxettibbokup, meging of most netwrk ser
vices into a single daemon, and eemsion of system utilities to use the mordicént
facilities available in 4.2BSD. Enhancements in thesknel include the addition of sub-
nets and gtevays, increases in mgrkernel limits, cleanup of the signal and autoconfigu-
ration implementations, and support for windoand system loggingrunctional &ten-
sions in the libraries and utilities include the addition of an Internet namer, sew g/s-
tem management tools, anxtensions tadbxto work with Pascal. Thepaper concludes
with a brief discussion of changes made to the system to enhance sesliritfythese
enhancements are present in Béak UNIX 4.3BSD.

CR Catgories and Subject Descriptors: D.4@perating Systems] File Systems Management fite
organization, diectory structues, access methqd®.4.8 [Operating Systems] Performance -

* UNIX is a trademark of A&T Bell Laboratories.

T Samuel J. Ldfer is currently emplged by: Silicon Graphics, Inc.

This work was done under grants from the National Sciermenéfation under grant MCS80-05144, and the
Defense Adance Research Projects Ageri®oD) under ARR Order No. 4031 monitored by Ma Elec-
tronic System Command under Contract No. NO0039-82-C-0235.

1 VAX, MASSBUS, UNIBUS, and DEC are trademarks of Digital Equipment Corporation.



measuements, opational analysis
Additional Keywords and Phrases: Belky UNIX, system performance, application program irsteef

General €rms: UNIX operating system, measurement, performance.



Performance -i-

TABLE OF CONTENTS

1. Introduction

2. Obsewation techniques

1.

Systenmaintenance tools

.2. Kernel profiling
.3. Kernel tracing
4. Benchmarlprograms

3. Resultsof our obsewations

1.

1.1
1.2,

2

2.1,
2.2
2.3
2.4,
.2.5.
.2.6.
2.7.
.2.8.

Userprograms

Mailsystem
Netvork seners

Systenoverhead

Micro-operatiolbenchmarks
Rath name translation
Clockprocessing

Terminal multiplexors
Procestable management
Filesystem bffer cache
Netvork subsystem

Mrtual memory subsystem

4. Performance Improvements

1.

1.1,
1.2,
1.3
1.4
.1.5.
.1.6.
A1.7.
.1.8.
1.9.

Performancémprovements in the Krnel

NameCacheing
IntelligentAuto Siloing
Proces$able Management
Scheduling

ClockHandling

FileSystem

Netvork

BExec

Contgt Switching

.1.10. Setjm@nd Longjmp
.1.11. Compensatinfgr Lack of Compiler €chnology

2.

2.1,
2.2
2.3
2.4,
.2.5.
.2.6.

Improrements to Libraries and Utilities

HashedDatabases
Bufered I/O

Mail System

Netvork Seners

TheC Run-time Library
Csh

5. Functional Extensions

1.

1.1,
1.2,
1.3
1.4,
.1.5.
.1.6.
A1.7.
.1.8.

DRAFT

Kernel Extensions

SubnetBroadcasts, and Gatays
Interbice Addressing
UsetControl of Netvork Buffering
Numbenof File Descriptors
Kernel Limits
MemoryManagement

Signals

Systenbogging

April 17, 1991

Contents

McKusick, et. al.



Performance -ii- Contents

.1.9. Windows

.1.10. Configuratiomf UNIBUS Devices

.1.11. DiskRecwery from Errors

.2. FunctionaExtensions to Libraries and Utilities
.2.1. NameSener

.2.2.  SystenManagement

.2.3.  Routing

.2.4. Compilers

6. Security Tightening
1. GeneriKernel
.2. SecurityProblems in Utilities

7. Conclusions
Acknowledgements
References

Appendix — Benchmark Programs

DRAFT April 17, 1991 McKusick, et. al.



Performance -1- Introduction

1. Introduction

The Berleley Software Distritutions of uNix for the VAX have alded mag new @pabilities that
were preiously unaailable underunix. The derelopment efort for 4.2BSD concentrated on piding
new facilities, and in getting them toork correctly Mary new data structures were added to the system to
support these mecapabilities. Inaddition, mag of the isting data structures and algorithms were put to
new uses or their old functions placed under increased denmelefect of these changesaw that mech-
anisms that were well tuned under 4.1BSD no longeviged adequate performance for 4.2BSThe
increased user feedback that came with the release of 4.2BSD amdirsgdrody of e&perience with the
system highlighted the performance shortcomings of 4.2BSD.

This paper details theark that we hee done since the release of 4.2BSD to measure the perfor
mance of the system, detect the bottlenecks, and find solutions to remedyMbstrof our tuning has
been in the conkt of the real timesharing systems in ouvismnment. Rathethan using simulated avk-
loads, we hae ught to analyze our tuningfefts under realistic conditiondViuch of the vark has been
done in the machine independent parts of the system, hence thesesmgmis could be applied to other
variants of UNIX with equal succesdll of the changes made Y& been included in 4.3BSD.

Section 2 of the paper describes the tools and technigaitzbte to us for measuring system perfor
mance. InSection 3 we present the results of using these tools, while Section 4 has the performance
improvements that hae been made to the system based on our measurenfeetsion 5 highlights the
functional enhancements thatveaeen made to Bedley UNIX 4.2BSD. Section 6 discusses some of the
security problems that i been addressed.

2. Obsewation techniques

There are mantools aailable for monitoring the performance of the systefmose that we found
most useful are described ba&lo

2.1. Systemmaintenance tools

Several standard maintenance programs avalirmble in observing the basic actions of the system.
Thevmstafl) program is designed to be an aid to monitoring systemwidétyactlogether with thgs(1)
command (as in'ps a’”’), it can be used to yrestigate systemwide virtual memory acdty. By running
vmstatwhen the system is aeg#l you can judge the system afly in several dimensions: job distriltion,
virtual memory load, paging and apping acttity, disk and cpu utilization.Ideally, to havea balanced
system in actity, there should be ¥e blocked (b) jobs, there should be little paging oapping aciiity,
there should bevailable bandwidth on the disk diees (most single arms peak out at 25-35 tps in prac-
tice), and the user cpu utilization (us) should be highv@Ba%).

If the system is sy, then the count of aete jobs may be lge, and seeral of these jobs may often
be blocled (b). If the virtual memory is acte, then the paging demon will be running (sr will be non-
zero). ltis healtly for the paging demon to free pages when the virtual memory gets #dt triggered
by the amount of free memory dropping hela threshold and increases its pace as free memory goes to
zero.

If you runvmstatwhen the system isugy (a ‘vmstat 5’ gives dl the numbers computed by the sys-
tem), you can find imbalances by noting abnormal job digtdbs. If mary processes are bloe# (b),
then the disk subsystem igeloaded or imbalancedf you have sveal non-dma déces or open teletype
lines that are‘finging’’, or user programs that are doing high-speed ndfeted input/output, then the
system time may go high (60-80% or highelf)is often possible to pin dm the cause of high system
time by looking to see if there igs@ssve @mntext switching (cs), interrupt aeity (in) or system call actt
ity (sy). Long term measurements on one of ougéamachines shwan average of 60 contd switches
and interrupts per second and &erage of 90 system calls per second.

If the system is hedly loaded, or if you hee little memory for your load (1 ngabyte is little in our
ervironment), then the system may be forced taswThisis likely to be accompanied by a noticeable
reduction in the system resporeiess and long pauses when intev@cjpbs such as editors aw out.

A second important program igstat(1). lostatiteratively reports the number of characters read and
written to terminals, and, for each disk, the number of transfers per second, kilobytes transferred per

DRAFT April 17,1991 McKusick, et. al.



Performance -2- Obsenation techniques

second, and the milliseconds peerage seeklt also gies the percentage of time the system has spent in
user mode, in user mode runningIpriority (niced) processes, in system mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and the number of
words transferred are counted; for terminals coleltj the number of input and output characters are
counted. Alsogvey 100 ms, the state of each disk ¥amined and a tally is made if the disk is \aeti
From these numbers and the transfer rates of tiieeadeit is possible to determineesage seek times for
each deice.

When filesystems are poorly placed on thalable disks, figures reported lgstat can be used to
pinpoint bottlenecks.Under heay system load, disk tria€ should be spread out among theveliwith
higher trafic expected to the déces where the root, @@, and /tmp filesystems are locatélhen multi-
ple disk drves ae attached to the same contrglbe system will attempt toverlap seek operations with
I/O transfers.When seeks are performedstatwill show non-zero serage seek timesMost modern disk
drives hould ehibit an aierage seek time of 25-35 ms.

Terminal trafic reported byiostat should be healy output oriented unless terminal lines are being
used for data transfer by programs suchwg Input and output rates are system specBicreen editors
such asii andemacdend to &hibit output/input ratios of grwvhere from 5/1 to 8/10n one of our layest
systems, 88 terminal lines plus 32 pseudo terminals, we @osanvaerage of 180 characters/second input
and 450 characters/second outpgra@l days of operation.

2.2. Kernel profiling

It is simple to bild a 4.2BSD krnel that will automatically collect profiling information as it oper
ates simply by specifying thep option toconfig(8) when configuring aéenel. Theprogram counter sam-
pling can be dvien by the system clock, or by an alternate real time clotke latter is highly recom-
mended as use of the system clock results in statistical anomalies in accounting for the time spent in the
kernel clock routine.

Once a profiling system has been booted statisticeging is handled bkgmon(8). Kgmonallows
profiling to be started and stopped and the internal state of the profiffiegstto be dumpedkKgmoncan
also be used to reset the state of the intenunéis to allev multiple experiments to be run without reboot-
ing the machine.

The profiling data is processed wgprof (1) to obtain information gerding the systers’ gperation.
Profiled systems maintain histograms of teenkel program countgthe number of imocations of each rou-
tine, and a dynamic call graph of theeeuting system.The postprocessing propegs the time spent in
each routine along the arcs of the call gra@prof then generates a listing for each routine in theél,
sorted according to the time it uses including the time of its call graph descerBelus.each routine
entry is shwn its (direct) call graph children, andvadheir times are propaded to this routineA similar
display abwe the routine shws hav this routines ime and the time of its descendents is praped)to its
(direct) call graph parents.

A profiled system is about 5-10% dgar in its tat space because of the calls to count the subroutine
invocations. Wherhe systemecutes, the profiling data is stored inuffbr that is 1.2 times the size of
the text space.All the information is summarized in memoiyis ot necessary to kia a tace file being
continuously dumped to disklhe overhead for running a profiled systeraries; under normal load we see
anywhere from 5-25% of the system time spent in the profiling catkeis the system is noticeably wier
than an unprofiled system, yet is not so bad that it cannot be used in a produdtmmresnt. Thisis
important since it alls us to gther data in a real eimonment rather than trying to vise synthetic wrk
loads.

2.3. Kernel tracing

The kernel can be configured to trace certain operations by specifypigphs TRACE” in the con-
figuration file. This forces the inclusion of code that records the occurrencesmifsentrace ecodsin a
circular tuffer in kernel memory Events may be enabled/disabled selestyi while the system is operat-
ing. Eachtrace record contains a time stamp éralkrom the YAX hardware time of day clock ggster), an
evant identifiey and additional information that is interpreted according to tremtetype. Buffer cache

DRAFT April 17, 1991 McKusick, et. al.



Performance -3- Obsenation techniques

operations, such as initiating a read, include the diske,dolock numbeyr and transfer size in the trace
record. \irtual memory operations, such as a pagein completing, include the virtual address and process id
in the trace recordThe circular liffer is normally configured to hold 256 16-byte trace records.

Several user programs were written to sample and interpret the tracing inform&time program
runs in the background and periodically reads the circuiffierbof trace recordsThe trace information is
compressed, in some instances interpreted to generate additional information, and a summary is written to a
file. In addition, the sampling program can also record information from oémeelkdata structures, such
as those interpreted by tlenstatprogram. Datawritten out to a file is furtheruffered to minimize 1/0
load.

Once a trace log has been created, programs that compress and interpret the data may be run to gen-
erate graphs skong the data and relationships between travedts and system load.

The trace packageas used mainly to westigate the operation of the file systemffbr cache.The
sampling program maintained a history of read-ahead blocks and used the trace information to calculate,
for example, percentage of read-ahead blocks used.

2.4. Benchmarkprograms

Benchmark programs were used irotways. Firsta aiite of programs as constructed to calculate
the cost of certain basic system operatioDperations such as system calétnead and conke switching
time are critically important inveluating the werall performance of a systenBecause of the drastic
changes in the system between 4.1BSD and 4.2BS[xsitimportant to erify the averhead of these o
level operations had not changed appreciably

The second use of benchmarkaswn eercising suspected bottleneckg/hen we suspected a spe-
cific problem with the system, a small benchmark progras written to repeatedly use tlaeifity. While
these benchmarks are not useful as a general tgotainegve quick feedback on whether gpothesized
improvement is really hang an efect. Itis important to realize that the only real assurance that a change
has a beneficial fct is through long term measurements of general timeshavifgghave numerous
examples where a benchmark program suggestsimpraements while the change in the long term sys-
tem performance is gégible, and cowersely examples in which the benchmark program run morelglo
but the long term system performance impm®sdgnificantly.

3. Resultsof our obsewations

When 4.2BSD s first installed on seral lage timesharing systems thegdadation in perfor
mance vas significant. Informal measurements shed 4.2BSD preiding 80% of the throughput of
4.1BSD (based on load@ages obsernd under a normal timesharing loadjany of the initial problems
found were because of programs that were not part of 4. 1BSIDg the techniques described in thevpre
ous section and standard process profilingraé problems were identifiedLater work concentrated on
the operation of thedtnel itself. In this section we discuss the problems weged; inthe net section we
describe the changes made to the system.

3.1. Userprograms

3.1.1. Mailsystem

The mail system @s the first culprit identified as a major conitidy to the dgradation in system
performance. At ucasfilm the mail system is hely used on one machine, aAX-11/780 with eight
megabytes of memory Message tréit is usually between users on the same machine and ranges from per
son-to-person telephone messages tepmgnization distrilution lists. After corversion to 4.2BSD, it &s
immediately noticed that mail to distution lists of 20 or more people caused the system load to jump by
arywhere from 3 to 6 points.The number of processes speed by thesendmailprogram and the

12The standard tracedilities distrituted with 4.2 difer slightly from those described heréhe time stamp
in the distriluted system is calculated from therikel’s ime of day ariable instead of theAX hardware reis-
ter, and the luffer cache trace points do not record the transfer size.

24 During part of these obsetions the machine had only four gabytes of memory

DRAFT April 17, 1991 McKusick, et. al.



Performance -4- Results of our obseations

messages sent frosendmailto the system logging procesysla@, generated significant load both from
their execution and their interference with basic system operatidme number of conk switches and
disk transfers often doubled whitendmailoperated; the system call rate jumped dramaticé{stem
accounting information consistently stved sendmailas the top cpu user on the system.

3.1.2. Netvork servers

The netvork services prnadded in 4.2BSD add me capabilities to the systemubare not without
cost. Thesystem uses one daemon process to accept requests for eawk setwice preided. Thepres-
ence of may such daemons increases the numbers of@gbcesses and files, and requires gdarcon-
figuration to support the same number of usdilse averhead of the routing and status updates can con-
sume seeral percent of the cpuRemote logins and shells incur moreediead than their local eqaients.
For example, a remote login uses three processes and a pseudo-terminal handler in addition to the local
hardware terminal handlerWhen using a screen edit@ending and echoing a single characteolves
four processes on twmachines. Thadditional processes, corteswitching, netwrk trafic, and terminal
handler @erhead can roughly triple the load presented by one local terminal user

3.2. Systenoverhead

To measure the costs ofimous functions in thedtnel, a profiling system ag run for a 17 hour
period on one of our general timesharing machin#kile this is not as reproducible as a synthetcks
load, it certainly represents a realistic te$his test vas run on seeral occasions \er a three month
period. Despitéhe long period of time that elapsed between the test runs the shape of the profiles, as mea-
sured by the number of times each system call entry paisicailed, were remarkably similar

These profiles turned upweeal bottlenecks that are discussed in thet section. Several of these
were n&v to 4.2BSD, lut most were caused byealoading of mechanisms whichorked acceptably well
in previous BSD systemsThe general conclusion from our measuremets tivat the ratio of user to sys-
tem time had increased from 45% system / 55% user in 4.1BSD to 57% system / 43% user in 4.2BSD.

3.2.1. Micro-operation benchmarks

To compare certain basic system operations between 4.1BSD and 4.2BSD a suite of benchmark pro-
grams vas constructed and run on AX£11/750 with 4.5 mgabytes of plysical memory and tavdisks on
a MASSBUS controller Tests were run with the machine operating in single user mode under both
4.1BSD and 4.2BSD.Pajing was localized to the dre where the root file systemas located.

The benchmark programs were modeled after the Kashtan benchmarks, [Kashtan80], with identical
sources compiled under each systérhe programs and their intended purpose are described briefly before
the presentation of the result§he benchmark scripts were run twice with the resulte/stas the @erage
of the two runs. Thesource code for each program and the shell scripts used during the benchmarks are
included in the Appendix.

The set of tests sha in Table 1 vas concerned with system operations other than padihg.
intent of most benchmarks is cledrhe result of runningignocswis deducted from theswbenchmark to
calculate the cont switch averhead. Theexectests use tw different jobs to guge the cost ofverlaying
a lamer program with a smaller one and viegsa. Thé' null job” and “big job” differ solely in the size
of their data sgments, 1 kilobyte ersus 256 kilobytesln both cases the e sement of the parent is
larger than that of the chifiAll programs were compiled into the deft load format that causes thatte
segment to be demand paged out of the file system and shared between processes.

The results of these tests arewshan Table 2. If the 4.1BSD results are scaled to reflect their being
run on a YAX-11/750, the correspond closely to those found iny86].’

In studying the measurements we found that the basic system call and switeh o/erhead did
not change significantly between 4.1BSD and 4.2B%Be signocswesults were caused by the changes to

36 These tests should alsovkareasured the cost okpanding the tet sgment; unfortunately time did not
permit running additional tests.

48We assume that aAX-11/750 runs at 60% of the speed of AX#11/780 (not considering floating point
operations).

DRAFT April 17, 1991 McKusick, et. al.



Performance

-5- Results of our obseations

Test Description

syscall perforni100,000getpid system calls

csw performl0,000 contet switches using signals

signocsw send0,000 signals to yourself

pipeself4 send 0,000 4-byte messages to yourself

pipeself512 sentl0,000 512-byte messages to yourself

pipediscard4 senti0,000 4-byte messages to child who discards
pipediscard512 serltD,000 512-byte messages to child who discards
pipeback4 rchange 10,000 4-byte messages with child

pipeback512 xchange 10,000 512-byte messages with child

forksO fork-eit-wait 1,000 times

forks1k sbrk(1024)fault page, fork-git-wait 1,000 times

forks100k sbrk(102400jault pages, fork-gt-wait 1,000 times

vforksO vfork-&it-wait 1,000 times

vforks1lk sbrk(1024)fault page, vfork-git-wait 1,000 times

vforks100k sbrk(102400jault pages, vfork-git-wait 1,000 times

execsOnull fork-exec “null job’’-exit-wait 1,000 times

execsOnull (1K er) execsOnull abwe, with 1K ervironment added

execs1knull sbrk(1024)ault page, fork-gec “null job’’-exit-wait 1,000 times
execslknull (1K em) | execslknull abee, with 1K ervironment added

execs100knull sbrk(102400Jault pages, fork-eec “null job’’-exit-wait 1,000 times
vexecsOnull vfork-eec “null job’-exit-wait 1,000 times

vexecslknull sbrk(1024)ault page, vfork-gec “null job’’-exit-wait 1,000 times
vexecs100knull sbrk(102400jault pages, vfork-eec “null job’’-exit-wait 1,000 times
execsObig fork-eec “big job”-exit-wait 1,000 times

execslkbig sbrk(1024¥ault page, fork-gec “big job”-exit-wait 1,000 times
execs100kbig sbrk(102400fault pages, fork-eec “big job”-exit-wait 1,000 times
vexecsObig vfork-eec “big job”-exit-wait 1,000 times

vexecslkbig sbrk(1024¥ault pages, vfork-eec “big job”-exit-wait 1,000 times
vexecs100kbig sbrk(102400fault pages, vfork-eec “big job”-exit-wait 1,000 times

Table 1. Kernel Benchmark programs.

the signalinterface, resulting in an additional subroutineoration for each call, not to mention additional
compl«ity in the systens implementation.

The times for the use of pipes are significantly higher under 4.2BSD because of their implementation
on top of the interprocess communicatiagifities. Under4.1BSD pipes were implemented without the
compl«ity of the soclet data structures and with simpler co@ewrther while not olviously a fctor here,
4.2BSD pipes ha less systemuifer space pnaded them than 4.1BSD pipes.

The exec tests shan in Table 2 were performed with 34 bytes ofvieonment information under
4.1BSD and 40 bytes under 4.2BSDo figure the cost of passing data through thérenment, the
execsOnull and eecslknull tests were rerun with 1065 additional bytes of date results are shoin
Table 3.

Test Real User System
4.1 42 || 41| 42| 4.1 4.2
execsOnull 197.0| 229.0| 4.1| 2.6 167.8 2123
exeslknull || 199.0) 230.0 42 26 170{4 2149

Table 3. Benchmark results witlarge” environment (all times in seconds).

These results shothat passing gument data is significantly ster than under 4.1BSD: 121 ms/by&r-v
sus 93 ms/byteEven using thisdctor to adjust the basiv@head of arexec system call, thisdcility is
more costly under 4.2BSD than under 4.1BSD.

DRAFT April 17, 1991 McKusick, et. al.



Performance -6- Results of our obseations

Berkeley Software Distritution UNIX Systems
Test Elapsed ime UserTime SystenTime
s 4.1 4.2 43 | 41| 42| 43| 4.1 4.2 4.3
syscall 28.0| 29.0 23.0| 45| 53| 3.5/ 239 23.7 20.4
csw 45.0| 60.0 45.0\| 3.5 | 43| 3.3| 195 25.4 19.Q
signocsw 16.5| 23.0 16.0| 1.9 | 3.0| 1.1 146 20.1 15.2
pipeself4 21.5| 29.0 26.0{ 1.1 | 1.1| 0.8/ 20.1 28.0 25.6
pipeself512 47.5] 59.0 55.0| 1.2 | 1.2| 1.0/ 46.1 58.3 54.2
pipediscard4 32.0 42.0 36.0| 3.2 | 3.7| 3.0/ 155 18.8 15.6
pipediscard512 61.0 76.0 69.0| 3.1 | 2.1| 2.0| 29.7 36.4 33.2
pipeback4 57.0f 75.0 66.0{ 29 | 3.2| 3.3]| 251 34.2 29.7
pipeback512 110.0 138.0 | 125.0/| 3.1 34 22 522 65.7 57.7
forksO 37.5| 41.0 22.0{ 05| 0.3| 0.3]| 345 37.6 218
forks1k 40.0| 43.0 22.0{ 0.4 | 0.3| 0.3]| 36.0 38.8 21.6
forks100k 217.5| 223.0| 176.0| 0.7/ 0.6 04 2143 2184 176.2
vforksO 345| 37.0 22.0/ 05| 06| 0.5] 27.3 28.5 17.9
vforks1k 35.0| 37.0 22.0/ 0.6 | 0.8| 0.5 27.2 28.6 17.9
vforks100k 35.0/ 37.0 22.0/ 0.6 | 0.8| 0.6/ 27.6 28.9 17.9
execsOnull 97.5| 92.0 66.0| 3.8 | 24| 0.6 68.7 82.5 48.6
execsOnull (1K eR) 197.0 | 229.0 75.0| 41| 26| 0.9| 167.8 212.3 62.6
execs1knull 99.0| 100.0 66.0| 4.1 | 19| 0.6| 70.5 86.8 48.7
execslknull (1K em) || 199.0 | 230.0| 75.0| 4.2| 2.6/ 0.7 1704 2149 62.7
execs100knull 283.5| 278.0| 216.0 4.8 28 11 2519 2693 202.0
vexecsonull 100.0f 92.0 66.0| 5.1 | 2.7| 1.1 63.7 76.8 45.1
vexecslknull 100.0f 91.0 66.0| 5.2 | 28| 1.1 63.2 77.1 45.1
vexecs100knull 100.0, 92.0 66.0{ 5.1 | 3.0| 1.1]| 64.0 77.7 45.6
execsObig 129.0| 201.0| 101.0f 4.0 3.0 10 102/6 1535927
execslkbig 130.0| 202.0| 101.0f 3.7 3.0 1.0 104,77 1555 93.0
execs100kbig 318.0) 385.0 | 263.0/| 4.8 3.1 1.1 286/6 3391 247.9
vexecsObig 128.0| 200.0 | 101.0f 4.6/ 3.8 16 985 | 149.6| 90.4
vexecs1kbig 125.0| 200.0| 101.0f 4.7/ 38 1.8 989 | 149.3| 88.6
vexecs100kbig 126.0f 200.0 | 101.0f 4.2 34 1.8 99.5| 151.0| 89.0

Table 2. Kernel Benchmark results (all times in seconds).

3.2.2. Rith name translation

The single mostx@ensve function performed by theeknel is path name translatiofhis has been
true in almost eery UNIX kernel [Mosher80]; we find that our general time sharing systems do about
500,000 name translations per day

Name translations became morgensve in 4.2BSD for sgeral reasons.The single mostx@ensve
addition was the symbolic link Symbolic links hae te efect of increasing thevarage number of compo-
nents in path names to be translatéd.an insidiousxample, consider the system manager that decides to
change /tmp to be a symbolic link to /usr/tmname such as /tmp/tmp1234 thatvpoesly required tw
component translations, warequires four component translations plus the cost of reading the contents of
the symbolic link.

The nev directory format also changes the characteristics of name translati@more compbe
format requires more computation to determine where to plagesmteies in a directory Corversely the
additional information alls the system to only look at aatientries when searching, hence searches of
directories that had once gvo lage hut currently hae few active entries are chedd quickly The nev
format also stores the length of each name so that costly string comparisons are only done on names that
are the same length as the name being sought.

DRAFT April 17, 1991 McKusick, et. al.



Performance -7- Results of our obseations

The net dect of the changes is that theseage time to translate a path name in 4.2BSD is 24.2 mil-
liseconds, representing 40% of the time processing system calls, that is 19% of thecketahcthe kr-
nel, or 11% of all gcles executed on the machin€lhe times are she in Table 4. We haveno compara-
ble times fomameiunder 4.1 though tlyeare certain to be significantly less.

part time % of kernel

self 14.3ms/call 11.3%
child 9.9ms/call 7.9%
total 24.2ms/call 19.2%

Table 4. Call times fonameiin 4.2BSD.

3.2.3. Clockprocessing

Nearly 25% of the time spent in therkel is spent in the clock processing routin@his is a clear
indication that to @oid sampling bias when profiling thetnel with our tools we need to i them from
an independent clock.These routines are responsible for implementing timeouts, scheduling the proces-
sor, maintaining lernel statistics, and tending@nous hardwre operations such as draining the terminal
input silos. Only minimal work is done in the hardave clock interrupt routine (at high priority), the rest is
performed (at a lwer priority) in a softvare interrupt handler scheduled by the hamewinterrupt handler
In the worst case, with a clock rate of 100 Hz and witlerg hardware interrupt scheduling a sofive
interrupt, the processor must field 200 interrupts per secbhd.overhead of simply trapping and return-
ing is 3% of the machineycles, figuring out that there is nothing to do requires an additional 2%.

3.2.4. Terminal multiplexors

The terminal multiplgors supported by 4.2BSD V& programmable receér silos that may be used
in two ways. Wth the silo disabled, each character reegticauses an interrupt to the procesdamabling
the recerer silo allows the silo to fill before generating an interrupt, \alitg multiple characters to be read
for each interruptAt low rates of input, receed characters will not be processed for some time unless the
silo is emptied periodicallyThe 4.2BSD krnel uses the input silos of each terminal multipleand emp-
ties each silo on each clock interrufthis allovs high input rates without the cost of ypdaracter inter
rupts while assuring ¥ lateny. Howeve, as character input rates on most machines are usually lo
(about 25 characters per second), this can resulceseve ovehead. Atthe current clock rate of 100 Hz,
a machine with 5 terminal multipi®rs configured mads 500 calls to the reeer interrupt routines per
second. Iraddition, to achiee aceptable input lategydor flow control, each clock interrupt must sched-
ule a softvare interrupt to run the silo draining routife¥. This implies that the arst case estimate for
clock processing is the basieeshead for clock processing.

3.2.5. Piocess table management

In 4.2BSD there are numerous places in thné&l where a linear search of the process table is per
formed:

* inext to locate and akeup a process’parent;
* inwaitwhen searching fatomBIE andSTOPPED processes;

» infork when allocating a me process table slot and counting the number of processes already created
by a user;

* innewproc, to verify that a process id assigned to a/peocess is not currently in use;
» inkill andgsignalto locate all processes to which a signal should beeted;

» inschedcpuwhen adjusting the process prioritie®ry second; and

* inschedwhen locating a process to @wout and/or sap in.

510t js not possible to check the input silos at the time of the actual clock interrupt without modifying the
terminal line disciplines, as the input queues may not be in a consisteft.state

DRAFT April 17,1991 McKusick, et. al.



Performance -8- Results of our obseations

These linear searches can incur significastteead. Theule for calculating the size of the process table
is:
nproc = 20 + 8 * maxusers

that means a 48 user system willéa 94 slot process tabléWith the addition of netark services in
4.2BSD, as manas a dzen sergr processes may be maintained simplywaitincoming requestsThese
seners are normally created at boot time which causes them to be allocated slots negintireghef the
process tableThis means that process table searches under 4.2BSDdyetdikale dgnificantly longer
than under 4.1BSDSystem profiling shes that as much as 20% of the time spent in gradt on a
loaded system (aAX-11/780) can be spent sthedcpuand, on gerage, 5-10% of thedtnel time is spent
in schedcpu The other searches of the proc table are similafscegd. Thisshovs the system can no
longer tolerate using linear searches of the process table.

3.2.6. Filesystem luffer cache

The trace dcilities described in section 2.3 were useddther statistics on the performance of the
buffer cache.We were interested in measuring théeefiveness of the cache and the read-ahead policies.
With the file system block size in 4.2BSD four to eight times that of a 4.1BSD file system, we were con-
cerned that lgye amounts of read-ahead might be performed without being Adsul. we were interested
in seeing if the rules used to size thdfér cache at boot time werevesely afecting the werall cache
operation.

The tracing packageas run eer a three hour period during a peak mid-afternoon period oAXa V
11/780 with four mgabytes of plysical memory This resulted in auffer cache containing 400 kilobytes
of memory spread among 50 to 2Qdffers (the actual number otiffers depends on the size mix of disk
blocks being read at ggiven time). Thepertinent configuration information is sk in Table 5.

Controller Drive Device FileSystem
DEC MASSBJS DECRP06 hpOd  /usr

hpOb svap
Emulex SC780 FujitsuEagle hpla  /usr/spool/ne/s

hplb svap

hple lusr/src

hpld /uQ(users)
Fujitsu Eagle hp2a tmp

hp2b svap

hp2d /ul(users)
Fujitsu Eagle hp3a /

Table 5. Actve file systems duringuffer cache tests.

During the test period the loadenage ranged from 2 to 13 with aveeage of 5. The system had no
idle time, 43% user time, and 57% system tirfibe systemaeraged 90 interrupts per seconddeding
the system clock interrupts), 220 system calls per second, and 58 sevitehes per second (40luntary
10 involuntary).

The actve virtual memory (the sum of the address space sizes of all jobs teatihan the preious
twenty seconds)war the period ranged from 2 to 6 gabytes with an eerage of 3.5 mgabytes. There
was no swapping, though the page daemoasainspecting about 25 pages per second.

On average 250 requests to read disk blocks were initiated per sedtede include read requests
for file blocks made by user programs as well as requests initiated by the s@stetem reads include
requests for indeéng information to determine where a fdag'ext data block resides, file system layout
maps to allocate medata blocks, and requests for directory contents needed to do path name translations.

On arerage, an 85% cache hit ratasvobsered for read requestd hus only 37 disk reads were ini-
tiated per secondn addition, 5 read-ahead requests were made each second filling about 20%ufiéthe b
pool. Despitehe policies to rapidly reuse read-aheaffdrs that remain unclaimed, more than 90% of the

DRAFT April 17, 1991 McKusick, et. al.



Performance -9- Results of our obseations

read-aheaduffers were used.

These measurements sred that the bffer cache s working efectively. Independent tests v@a
also shwed that the size of thauffier cache may be reduced significantly on memory-poor system without
severe efects; we hae rot yet tested thisypothesis [Shannon83].

3.2.7. Netvork subsystem

The overhead associated with the netk facilities found in 4.2BSD is often diult to gauge with-
out profiling the systemThis is because most input processing is performed in modules scheduled with
software interrupts.As a result, the system time spent performing protocol processing is rarelytettrib
the processes that really raeeihe data.Since the protocols supported by 4.2BSD cawlue sgnificant
overhead this s a serious conceriiresults from a profileddtnel sha an average of 5% of the system
time is spent performing nebrk input and timer processing in ourvennment (a 3Mb/s Ethernet with
most trafic using TCP). This figure can ary significantly depending on the neik hardvare used, the
avaage message size, and whether paokassembly is required at the natkviayer On one machine we
profiled over a 17 hour period (our gteway to the ARFANET) 206,000 input messages accounted for 2.4%
of the system time, while another 0.6% of the system tiam spent performing protocol timer processing.
This machine w&s configured with an@C LH/DH IMP interaice and a DMA 3Mb/s Ethernet contraller

The performance of TCPver slower long-haul netarks was dgraded substantially by twprob-
lems. Thefirst problem vas a lig that preented round-trip timing measurements from being made, thus
increasing retransmissions unnecessaiilye second @as a problem with the maximumgseent size cho-
sen by TCPthat was well-tuned for Ethernetubwas poorly chosen for the ARRET, where it causes
paclet fragmentation.(The maximum sgment size w&s actually ngotiated upwrds to a &lue that
resulted in gcessve fragmentation.)

When benchmasdd in Ethernet esironments the main memoryfier management of the netvk
subsystem presented some performance anomdltes.overhead of processing smalinbufs” seveely
affected throughput for a substantial range of message dizespite of the dct that most system ustilities
made use of the throughput optimal 1024 byte size, user procassdddge dgradations for some arbi-
trary sizes. This as specially true for TCP/IP transmissions [Cabrera84, Cabrera85].

3.2.8. Vrtual memory subsystem

We ran a set of tests intended t@eise the virtual memory system under both 4.1BSD and 4.2BSD.
The tests are described iable 6. The test programs dynamically allocated a 7.3#gte array (using
sbrk(2)) then referenced pages in the array either: sequeniiedypurely randomdshion, or such that the
distance between successipges accessedas randomly selected from a Gaussian distigm. Inthe
last case, successimuns were made with increasing standandat®sns.

Test Description

seqpage sequentiallguch pages, 10 iterations
seqpage-v aabove, but first male vadvisg2) call
randpage touchandom page 30,000 times
randpage-v aabove, but first male vadvisecall

gausspage.l 30,00Baussian accesses, standandadion of 1
gausspage.10| above, sandard deiation of 10
gausspage.30| above, sandard deiation of 30
gausspage.40| above, sandard deiation of 40
gausspage.50| above, sandard deiation of 50
gausspage.60| above, sandard deiation of 60
gausspage.80| above, sandard deiation of 80
gausspage.inf| aabove, sandard deiation of 10,000

Table 6. Rging benchmark programs.

DRAFT April 17, 1991 McKusick, et. al.



Performance -10- Results of our obseations

The results in dble 7 shar how the additional memory requirements of 4.2BSD can generate more
work for the paging systemUnder 4.1BSD, the system used 0.5 of the 4.§anges of plysical memory
on the test machine; under 4.2BSD it used nearly danyee of plysical memory This resulted in more
page &ults and, hence, more system tinfe. establish a common ground on which to compare the paging
routines of each system, we check instead viakage pagedult service times for those test runs that had a
statistically significant number of random pagalfs. Thesdigures, shan in Table 8, sher no dgnificant
difference between the twsystems in the area of pagauft servicing. We airrently hae ro explanation
for the results of the sequential paging tests.

Test Real User System Rge Rwlts

s 4.1 42 | 4.1 4.2 4.1 4.2 4.1 4.2
seqgpage 959 1126 | 16.7| 12.8) 197.0 2130 17132 17113
segpage-v 579 812 3.8 5.3|| 216.0 | 237.7| 8394 8351
randpage 571 569 6.7 7.6 64.0 77.2 808b 9776
randpage-v 572 562 6.1 7.3 62.2 77.% 8126 9852
gausspage.l 25 24| 23.6| 23.8 0.8 0.8 8 8
gausspage.10 26 26| 22.7| 23.0 3.2 3.6 2 2
gausspage.30 34 33| 25.0| 2438 8.6 8.9 2 2
gausspage.40 42 81| 23.9| 25.0| 115 13.6 3 260
gausspage.50| 113 175 24.2| 26.2| 19.6 26.3 784 1851
gausspage.60|| 191 234 | 27.6| 26.7| 27.4 36.0 2067 317y
gausspage.80|| 312 329 | 28.0| 27.9| 415 52.0 3933 5106
gausspage.inf| 619 621 | 82.9| 85.6| 68.3 81.5 8046 9650

Table 7. Rging benchmark results (all times in seconds).

Page Faults PFST
Test 41 | 42| 41 42
randpage 8085 9776 | 791| 789

randpage-v 8126 9852 || 765| 784
gausspage.inf| 8046 9650 848 844

Table 8. Rge Ault service times (all times in microseconds).

4. Performance Improvements

This section outlines the changes made to the system since the 4.2BShtiistridhechanges
reported here were made in response to the problems described in Sedttmn iBipravements &ll into
two major classes; changes to therkel that are described in this section, and changes to the system
libraries and utilities that are described in the felt@ section.

4.1. Rerformance Improvements in the Kernel

Our goal has been to optimize system performance for our general timeshaningreent. Since
most sites running 4.2BSD V& keen forced to tak alvantage of declining memory costs rather than
replace their xé@isting machines with ones that are morvedul, we hae chosen to optimize running time
at the &pense of memoryThis tradedf may need to be reconsidered for personatlkatations that ha
smaller memories and higher latgrdisks. Decreaseis the running time of the system may be unnotice-
able because of higher paging rates incurred bygardaernel. Wheregossible, we hze dlowed the size
of caches to be controlled so that systems with limited memory may reduce them as appropriate.

6% The 4.1BSD system used for testingswreally a 4.1a system configured with reking facilities and
code to support remote file acce3he 4.2BSD system also included the remote file access &idee both
systems wuld be lager than similarly configuredvanilla” 4.1BSD or 4.2BSD system, we consider out con-
clusions to still be alid.

DRAFT April 17, 1991 McKusick, et. al.



Performance -11- Performance Impr@ments

4.1.1. NameCacheing

Our initial profiling studies shveed that more than one quarter of the time in the systasnspent in
the pathname translation routimamej translating path names to inod®s An inspection ohameishavs
that it consists of tav nested loops.The outer loop is tkgrsed once per pathname componértie inner
loop performs a linear search through a directory looking for a particular pathname component.

Our first idea \as to reduce the number of iterations around the inner loopnaéiby observing that
mary programs step through a directory performing an operation on each entry ifdgumprove perfor-
mance for processes doing directory scans, the systeps krack of the directoryfeét of the last compo-
nent of the most recently translated path name for each prd€éss.next name the process requests is in
the same directoryhe search is started from thdset that the prdous name \as found (instead of from
the bginning of the directory) Changing directories ualidates the cache, as does modifying the directory
For programs that step sequentially through a directory with
N files, search time decreases fraN?) to O(N).

The cost of the cache is about 20 lines of code (about 0.2 kilobytes) and 16 bytes per process, with
the cached data stored in a procegsérvector.

As a quick benchmark toevify the maximum déctiveness of the cache we rdls -I'’ on a drec-
tory containing 600 filesBefore the peprocess cache this command used 22.3 seconds of system time.
After adding the cache the program used the same amount of userdirnte ystem time dropped to 3.3
seconds.

This change prompted our rerunning a profiled system on a machine containing tieemed The
results shwed that the time inameidropped by only 2.6 ms/call and still accounted for 36% of the system
call time, 18% of the érnel, or about 10% of all the machingles. Thisamounted to a drop in system
time from 57% to about 55%Tlhe results are shm in Table 9.

part time % of kernel

self 11.0ms/call 9.2%
child  10.6ms/call 8.9%
total 21.6ms/call 18.1%

Table 9. Call times fonameiwith perprocess cache.

The small performance imprement was caused by awocache hit ratio.Although the cache as
90% efective when hit, it wvas only usable on about 25% of the names being translateddditional rea-
son for the small imprement was that although the amount of time spemameiitself decreased sub-
stantially more time vas spent in the routines that it called since each directory had to be accessed twice;
once to search from the middle to the end, and once to search frongitharigeto the middle.

Frequent requests for a small set of names are best handled with a cache of recent name
translationy’. This has the éct of eliminating the inner loop efamei For each path name component,
nameifirst looks in its cache of recent translations for the needed ni&ihexists, the directory search can
be completely eliminated.

The system already maintained a cache of recently accessed inodes, so the initial name cache main-
tained a simple name-inode association tres used to check each component of a path name during name
translations. W& considered implementing the cache by tagging each inode with its most recently translated
name, ot eventually decided to hee a &parate data structure thapt names with pointers to the inode
table. Bgging inodes has twdrawbacks; man inodes such as those associated with login ports remain in
the inode table for a long period of timejttare neer looked up by nameOther inodes, such as those

describing directories are loe#t up frequently by mardifferent namese(g. “.” ). By keeping a separate

7161 |node is an abbuation for ‘Index node’. Eachfile on the system is described by an inode; the inode
maintains access permissions, and an array of pointers to the disk blocks that hold the data associated with the
file.

818 The cache isdyed on a name and the inode andicke number of the directory that containsAssoci-
ated with each entry is a pointer to the corresponding entry in the inode table.

DRAFT April 17, 1991 McKusick, et. al.



Performance -12- Performance Impr@ments

table of names, the cache can truly reflect the most recently used nmamadded benefit is that the table
can be sized independently of the inode table, so that machines with small amounts of memory can reduce
the size of the cache (ovem diminate it) without modifying the inode table structure.

Another issue to be considered issthe name cache should hold references to the inode tsbte.
mally processes holdhard referencesby incrementing the reference count in the inodg tieéerence.
Since the system reuses only inodes with zero reference counts, a hard reference insures that the inode
pointer will remain walid. However, if the name cache holds hard references, it is limited to some fraction
of the size of the inode table, since some inodes must be left freeMdilese Italso maks it impossible
for other parts of thedenel to erify sole use of a déce or file. These reasons made it impractical to use
hard references withoutfatting the behaor of the inode cacheing schem&hus, we chose instead to
keep “soft reference$’protected by aapability — a 3-bit number guaranteed to be uniaﬂl% When an
entry is made in the name cache, the capability of its inode is copied to the name caché&/leemtran
inode is reused it is issued awneapability When a name cache hit occurs, the capability of the name
cache entry is compared with the capability of the inode that it refereli¢he. capabilities do not match,
the name cache entry isvatid. Sincethe name cache holds only soft references, it may be sized indepen-
dent of the size of the inode tabl&.final benefit of using capabilities is that all cached names for an inode
may be inalidated without searching through the entire cache; instead all you need to do is assign a ne
capability to the inode.

The cost of the name cache is about 200 lines of code (about 1.2 kilobytes) and 48 bytes per cache
entry Depending on the size of the system, about 200 to 1000 entries will normally be configured, using
10-50 kilobytes of pysical memory The name cache is resident in memory at all times.

After adding the system wide name cache we rélan-I’ on the same directoryThe user time
remained the same, Wwever the system time rose slightly to 3.7 secon@iis was not surprising asamei
now had to maintain the cacheytbwas neer able to male any use of it.

Another profiled system ag created and measurements were collecterdadl7 hour period. These
measurements sived a 13 ms/call decreaseriamej with nameiaccounting for only 26% of the system
call time, 13% of the time in thesknel, or about 7% of all the machingles. Systentime dropped from
55% to about 49%The results are sho in Table 10.

part time % of kernel

self 4.2ms/call 6.2%)
child  4.4ms/call 6.6%
total 8.6ms/call 12.8%

Table 10. Call times fomameiwith both caches.

On our general time sharing systems we find that during theevaelr period from 8AM to 8PM
the system does 500,000 to 1,000,000 name translatgtasistics on the performance of both caches/sho
that the lage performance impvement is caused by the high hit ratibhe name cache has a hit rate of
70%-80%; the directory tsfet cache gets a hit rate of 5%-15%he combined hit rate of the dwcaches
almost alvays adds up to 85%With the addition of the tavcaches, the percentage of system timeotdel
to name translation has dropped from 25% to less than Y@Bde the system wide cache reduces both the
amount of time in the routines thaameicalls as well amameiitself (since fever directories need to be
accessed or searched), it is interesting to note that the actual percentage of system timeaspeiitsielf
increaseswen though the actual time per call decreasHsis is because less total time is being spent in the
kernel, hence a smaller absolute time becomegaraotal percentage.

4.1.2. IntelligentAuto Siloing

Most terminal input hardare can run in tev modes: it can either generate an interrupt each time a
character is receéd, or collect characters in a silo that the system then periodically drEanprovide
quick response for interaeé input and flav control, a silo must be chee& 30 to 50 times per second.

92 2 \When all the numbers ba teen &hausted, all outstanding capabilities aregpedr and numbering

starts @er from scratch.Puiging is possible as all capabilities are easily foundeimd& memory

DRAFT April 17, 1991 McKusick, et. al.



Performance -13- Performance Impr@ments

Ascii terminals normally xhibit an input rate of less than 30 characters per secanthis input rate theg
are most diciently handled with interrupt per character mode, since this generates ifgerrupts than
draining the input silos of the terminal multiptes at each clock interrupthen input is being generated
by another machine or a malfunctioning terminal connectiowgba, the input rate is usually more than
50 characters per secontl.is more eficient to use a déce’s slo input mode, since this generatewée
interrupts than handling each character as a separate inteSinge a gien dialup port may switch
between uucp logins and user logins, it is impossible to statically select the fioishteihput mode to
use.

We therefore changed the terminal multigde handlers to dynamically choose between the use of
the silo and the use of peharacter interruptsAt low input rates the handler processes characters on an
interrupt basis,widing the werhead of checking each intade on each clock interrupRuring periods of
sustained input, the handler enables the silo and starts a timer to drairTiniguimer runs less frequently
than the clock interrupts, and is used only when there is a substantial amount o ptriansition from
using silos to an interrupt per character is damped to minimize the number of transitions stithrhfic
(such as in netark communication).Input characters seevo flush the silo, preenting long lateng. By
switching between these e&wmodes of operation dynamicallyhe oserhead of checking the silos is
incurred only when necessary

In addition to the sangs in the terminal handlers, the clock interrupt routine is no longer required to
schedule a softare interrupt after each hardwe interrupt to drain the siloSthe softvare-interrupt leel
portion of the clock routine is only needed when timegsire or the current user process is collecting an
execution profile. Thus, the number of interrupts attrthble to clock processing is substantially reduced.

4.1.3. Pocess able Management

As systems hae gown lamger, the size of the process table hasagrdar past 200 entriedith lage
tables, linear searches must be eliminated fropnfeequently usedafcility. The kernel process table is
now multi-threaded to all selectve sarching of actie and zombie processe#\ third list threads unused
process table slotd=ree slots can be obtained in constant time by taking one from the front of the free list.
The number of processes used bywerguser may be computed by scanning only thevadist. Sincethe
4.2BSD release, thesknel maintained lingd lists of the descendents of each procé&sss linkage is no
exploited when dealing with processite parents seeking theié status of children ne avoid linear search
of the process tablepbexamine only their direct descendents.addition, the préous algorithm for find-
ing all descendents of arxigng process used multiple linear scans of the process tdblis. has been
changed to foll the links between child process and siblings.

When forking a n& process, the system must assign it a unique process idernfiieisystem pra-
ously scanned the entire process table each time it createdmaness to locate an identifier thaasvnot
already in use.Now, to avoid scanning the process table for eactv ipeocess, the system computes a
range of unused identifiers that can be directly assigfedly when the set of identifiers igleausted is
another process table scan required.

4.1.4. Scheduling

Previously the scheduler scanned the entire process table once per second to recompute precess prior
ities. Processethat had run for their entire time slice had their prioritydoed. Processedbat had not
used their time slice, or that had been sleeping for the past second had their priorityQaissygtems
running mag processes, the scheduler represented nearly 20% of the systeniféimeduce this wer-
head, the scheduler has been changed to consider only runnable processes when recomputingTpriorities.
insure that processes sleeping for more than a second still get their appropriate priority boost, their priority
is recomputed when there placed back on the run queugince the set of runnable process is typically
only a small fraction of the total number of processes on the system, the cosikafigrthe scheduler
drops proportionally

4.1.5. ClockHandling

The hardvare clock interrupts the processor 100 times per second at high prissityost of the
clock-based ents need not be done at high priarithe system schedules amer priority software

DRAFT April 17, 1991 McKusick, et. al.



Performance -14- Performance Impr@ments

interrupt to do the less time-criticalemts such as cpu scheduling and timeout proces$ign there are

no such eents, and the softare interrupt handler finds nothing to do and retuffise high priority gent

now checks to see if there arengriority events to process; if there is nothing to do, the safennterrupt

is not requestedOften, the high priority interrupt occurs during a period when the machine had been run-
ning at lav priority. Rather than posting a sofane interrupt that wuld occur as soon as it returns, the
hardware clock interrupt handler simplywers the processor priority and calls the safevclock routines
directly. Between these twoptimizations, nearly 80 of the 100 soéixe interrupts per second can be elim-
inated.

4.1.6. FileSystem

The file system uses a d@r block size, typically 4096 or 8192 byteto dlow small files to be
stored diciently, the lage blocks can be brek into smaller fragments, typically multiples of 1024 bytes.
To minimize the number of full-sized blocks that must be brolnto fragments, the file system uses a best
fit stratggy. Programs that slely grow files using write of 1024 bytes or less can force the file system to
copy the data to successly larger and lager fragments until it finally gues to a full sized blockThe file
system still uses a best fit stigyethe first time a fragment is writtetdowever, the first time that the file
system is forced to cgpa gowing fragment it places it at the diening of a full sized block Continued
grownth can be accommodated without furtherydog by using up the rest of the blocK.the file ceases to
grow, the rest of the block is stiliailable for holding other fragments.

When creating a mefile name, the entire directory in which it will reside must be scanned to insure
that the name does not alreadyseé For lage directories, this scan is time consumiBgcause there as
no provision for shortening directories, a directory that is ong-filled will increase the cost of file cre-
ation eren dter the wer-filling is corrected. Thus, for &ample, a congested uucp connection cavelea
legacy long after it is cleared upTo dleviate the problem, the systemwnaeletes empty blocks that it
finds at the end of a directory while doing a complete scan to createrame.

4.1.7. Netvork

The de&ult amount of bffer space allocated for stream seik(including pipes) has been increased
to 4096 bytes.Stream soosts and pipes moreturn their liffer sizes in the block size field of the stat
structure. Thignformation allavs the standard 1/O library to use more optimaffdring. Unix domain
stream soaddts also return a dummywdee and inode number in the stat structure to increase compatibility
with other pipe implementationslhe TCP maximum ggnent size is calculated according to the destina-
tion and interdce in use; non-local connections use a more catsergze for long-haul netarks.

On multiply-homed hosts, the local address bound by T@Paways corresponds to the intade
that will be used in transmitting data patkfor the connectionSereral bugs in the calculation of round
trip timing have keen correctedTCP nav switches to an alternateatpvay when an risting route &ils, or
when an ICMP redirect message is reegi ICMP source quench messages are used to throttle the trans-
mission rate of TCP streams by temporarily creating an artificially small sendwyiatbretransmissions
send only a single paekrather than resending all queued da#asend poliy has been implemented that
decreases the number of small peiskoutstanding for netwk terminal trafic [Nagle84], preiding addi-
tional reduction of netark congestion.The oserhead of paost routing has been decreased by changes in
the routing code and by cacheing the most recently used route for each datageam sock

The luffer management stragg implemented bgosendchas been changed to nealetter use of the
increased size of the satkiuffers and a better tuned delayed askiedgement algorithmRouting has
been modified to include a one element cache of the last route complitkighle messages send with the
same destination morequire less processingrerformance deteriorates because of load in either the sender
host, recaier host, or ether Also, ary CPU contention dgrades substantially the throughput aciide by
user processes [Cabrera8%)e haveobserned empty YAX 11/750s using up to 90% of theiyales trans-
mitting network messages.

4.1.8. Exec

When execing a n&v process, the érnel creates the weprograms agument list by coping the
arguments and etronment from the parent processtldress space into the system, then back caihag

DRAFT April 17,1991 McKusick, et. al.



Performance -15- Performance Impr@ments

onto the stack of the méy created processThese tvo copy operations were done one byte at a timg, b
are nov done a string at a timeThis optimization reduced the time to process gurment list by adctor
of ten; the gerage time to do aexeccall decreased by 25%.

4.1.9. ContextSwitching

The lernel used to post a sofive &ent when it vanted to force a process to be reschedutaftien
the process auld be rescheduled for other reasons befgiting the lernel, delaying thevent trap. At
some later time the proces®wd agin be selected to run ancdbuwld complete its pending system call,
finally causing the\ent to tale pdace. Theevent would cause the scheduler to beaked a scond time
selecting the same process to rdie fix to this problem is to cancelyasbftware reschedulevents when
saving a process conte Thischange doubles the speed with which processes can synchronize using pipes
or signals.

4.1.10. Setjmp/Longjmp

The lernel routinesetjmp that saes the current system contein preparation for a non-local goto
used to s& mary more raisters than necessary under most circumstari8ggrimming its operation to
save aly the minimum state required, theethead for system calls decreased by\anage of 13%.

4.1.11. Compensatindor L ack of Compiler Technology

The current compilersvailable for C do not do ansignificant optimization.Good optimizing com-
pilers are unlikly to be liilt; the C language is not well suited to optimization because of its rampant use
of unbound pointers.Thus, mag classical optimizations such as common spbession analysis and
selection of rgister \ariables must be done by hand usitegterior” knowvledge of when such optimiza-
tions are safe.

Another optimization usually done by optimizing compilers is inlixga@sion of small or frequently
used routinesln past Berkley systems this has been done by usiegto run wer the assembly language
and replace calls to small routines with the code for the body of the routine, often a AMdtesivuction.
While this optimization eliminated the cost of the subroutine call and return, it did not eliminate the push-
ing and popping of seral aguments to the routineThe sedscript has been replaced by a more intelligent
expandeyinline, that meges the pushes and pops intovesoo regsters. Br example, if the C code

if (scanc(mapli], 1, 47, i - 63))

is compiled into assembly language it generates the codeshahe left hand column ofable 11. The
sedinline expander changes this code to thatvaidn the middle columnThe naver optimizer eliminates
most of the stack operations to generate the codersimothe right hand column.

Alternative C Language Code Optimizations
cc sed inline

subl3  $64,_i,—(sp)| subl3  $64,_i,—(sp) | subl3  $64,_ir5
pushl  $47 pushl  $47 movl  $47,r4
pushl  $1 pushl  $1 pushl  $1
mull2  $16, i,r3 mull2  $16,_i,r3 mull2  $16, i,r3
pushl  =56(fp)[r3] | pushl  -56(fp)[r3] mavl -56(fp)[r3],r2
calls $4,_scanc | movl (sp)+,r5 mavl (sp)+,r3
tstl ro movl (sp)+,r4 scanc  r2,(r3),(r4),r5
jeql L7 movl (sp)+,r3 tstl ro

movl (sp)+,r2 jeql L7

scanc  r2,(r3),(r4),r5

tstl ro

jeql L7

DRAFT

Table 11. Alternatie inline code gpansions.

April 17, 1991

McKusick, et. al.




Performance -16- Performance Impr@ments

Another optimization imolved regaluating eisting data structures in the coxt@f the current sys-
tem. For example, disk bffer hashing \as implemented when the system typically had thirty to fifty
buffers. Mostsystems today wa 200 to 1000 bffers. Consequentlynost of the hash chains contained
ten to a hundreduffers each! The running time of the W levd buffer management primites was dra-
matically impraved Smply by enlaging the size of the hash table.

4.2. Improvements to Libraries and Utilities

Intuitively, changes to thedinel would seem to hee the greatest paybsince the affect all pro-
grams that run on the systerHowever, the kernel has been tuned nyatimes before, so the opportunity
for significant impreement was small. By contrast, may of the libraries and utilities had ver been
tuned. Br example, we found utilities that spent 90% of their running time doing single character read sys-
tem calls. Changing the utility to use the standard 1/O library cut the running time bgtar fof fie!
Thus, while most of our time has been spent tuning ¢neek, more than half of the speedups are because
of improvements in other parts of the syste®ome of the more dramatic changes are described in the fol-
lowing subsections.

4.2.1. Hashedatabases

UNIX provides a set of database management routitas, that can be used to speed lookups in
large data files with anxéernal hashed indefile. Theoriginal version of dbm was designed to avk with
only one database at a tim&hese routines were generalized to handle multiple database files, enabling
them to be used inwgites of the passard and host file lookup routine3.he nev routines used to access
the passwrd file significantly imprae the running time of manimportant programs such as the mail sub-
system, the C-shell (in doing tildegansion)]s -, etc.

4.2.2. Buffered I/O

The nev filesystem with its layer block sizes alles better performanceubit is possible to dgade
system performance by performing numerous small transfers rather than using appropriatelyffeireed b
The standard 1/O library automatically determines the optimibsize for each fileSome C library rou-
tines and commonly-used programs use-level 1/0 or their evn huffering, havever. Seveal important
utilities that did not use the standard 1/O library and weiféeeling 1/O using the old optimaluffer size,
1Kbytes; the programs were changed wéfdy I/O according to the optimal file system blocksiZénese
include the editqthe assemblefoader remote file cop, the text formatting programs, and the C compiler

The standard error output has traditionally beeruffaied to preent delay in presenting the output
to the userand to preent it from being lost if bffers are not flushedThe inordinate xpense of sending
single-byte paadts through the netwk led us to impose auffering scheme on the standard error stream.
Within a single call tdprintf, dl output is lffered temporarily Before the call returns, all output is
flushed and the stream isaag marled unhiffered. Asbefore, the normal block or linauffering mecha-
nisms can be used instead of thead&fbehaior.

It is possible for programs with good intentions to unintentionally defeat the standard 1/O dibrary’
choice of I/O loffer size by using theethuf call to assign an outputffer. Because of portability require-
ments, the deiult tuffer size preided bysethuf is 1024 bytes; this can lead, oncaiagto addederhead.

One such program with this problermas\cat, there are undoubtedly other standard system utilities with
similar problems as the system has changed much sincevéhe originally written.

4.2.3. Mail System

The problems discussed in section 3.1.1 prompted significankt @n the entire mail systenThe
first problem identified &s a lng in thesysl@ program. Themail delvery programsendmailogs all mail
transactions through this process with the 4.2BSD interprocess communicatiliies. Syslg then
records the information in a log fil&Jnfortunately syslay was performing asyncoperation after each mes-
sage it rece@ed, whether it vas logged to a file or nofThis wrealed haoc on the efectiveness of the
buffer cache andxplained, to a laye etent, wty sending mail to lage distrilution lists generated such a
heary load on the system (one syslog message generated for each message recipient causing almost a
continuous sequence of sync operations).

DRAFT April 17, 1991 McKusick, et. al.



Performance -17- Performance Impr@ments

The hashed data base files were installed in all mail programs, resulting in a order of magnitude
speedup on lge distrilution lists. The code inbin/mail that notifies theeomsatprogram when mail has
been delrered to a user as changed to cache host table lookups, resulting in a similar speedugeon lar
distribution lists.

Next, the file locking &cilities pravided in 4.2BSDflock(2), were used in place of the old locking
mechanism. Thenail system préously usedlink and unlink in implementing file locking primities.
Because these operations usually modify the contents of directorjeethere synchronous disk opera-
tions and cannot tekadvantage of the name cache maintained by the systémlink requires that the
entry be found in the directory so that it can be nestiplink requires that the directory be scanned to
insure that the name does not alreadgte By contrast the advisory lockingdility in 4.2BSD is dfcient
because it is all done with in-memory tabl@hus, the mail systemag modified to use the file locking
primitives. Thisyielded another 10% cut in the basiedead of deliering mail. Extensve grofiling and
tuning ofsendmailand compiling it without dalgging code reduced theashead by another 20%.

4.2.4. Netvork Servers

With the introduction of the netwk facilities in 4.2BSD, a myriad of services becamailable,
each of which required itsam daemon procesdMany of these daemons were rarely Vieeused, yet thg
lay asleep in the process table consuming system resources and genevally ¢torn response Rather
than haing mary servers started at boot time, a single serinetd was aubstituted. Thigprocess reads a
simple configuration file that specifies the services the system is willing to support and listens for service
requests on each servisdnternet port. When a client requests service the appropriateesé\created and
passed a service connection as its standard irgerters that require the identity of their client may use
the getpeernamesystem call; likwise geisokknamemay be used to find out a serg local address without
consulting data base fileFhis scheme is attragé for several reasons:

» it eliminates as manas a dzen processes, easing systertread and allwing the file and tet tables
to be made smaller

» seners need not contain the code required to handle connection queueing, simplifying the programs,
and

» installing and replacing sexks becomes simpler

With an increased numbers of netks, both local andxéernal to Berkley, we found that the wer-
head of the routing processasybecoming inordinately highSeveral changes were made in the routing
daemon to reduce this loaBoutes to eternal netwarks are no longerxehanged by routers on the internal
machines, only a route to a daft gatavay. This reduces the amount of nerk trafic and the time
required to process routing messagkesaddition, the routing daemonaw profiled and functions responsi-
ble for lage amounts of time were optimize@he major changes were aster hashing scheme, and inline
expansions of the ubiquitous byte-awping functions.

Under certain circumstances, when outpaswlocled, attempts by the remote login process to send
output to the user were rejected by the system, although asphémtcall had indicated that data could be
sent. Thisresulted in continuous attempts to write the data until the remote user restarted ohiput.
problem vas initially asoided in the remote login handlend the original problem in thesknel has since
been corrected.

4.2.5. TheC Run-time Library

Several people hee found poorly tuned code in frequently used routines in the C library [Lank-
ford84]. Inparticular the running time of the string routines can be cut in halfvinytirg them using the
VAX string instructions.The memory allocation routines\eabeen tuned to aste less memory for mem-
ory allocations with sizes that are answ of two. Certainlibrary routines that did file input in one-charac-
ter reads hae been correctedOther library routines includinfyeadandfwrite have keen revritten for efi-
ciengy.

DRAFT April 17,1991 McKusick, et. al.



Performance -18- Performance Impr@ments

4.2.6. Csh

The C-shell vas comerted to run on 4.2BSD by writing a set of routines to simulate the old jobs
library. While this pravided a functioning C-shell, it & grossly indicient, generating up to twenty sys-
tem calls per promptThe C-shell has been modified to use the signal facilities directly cutting the
number of system calls per prompt in ha#fdditional tuning vas done with the help of profiling to cut the
cost of frequently usedcfilities.

5. Functional Extensions

Some of thedcilities introduced in 4.2BSD were not completely implemenfedimportant part of
the efort that went into 4.3BSD as to clean up and unify bothwend old fcilities.

5.1. Kernel Extensions

A significant efort went into impreing the netwrking part of the &nel. Thework consisted of fix-
ing bugs, tuning the algorithms, andvamping the lavest levels of the system to better handle heteroge-
neous netwrk topologies.

5.1.1. SubnetsBroadcasts and Gateways

To dlow sites to &pand their netark in an autonomous and ordergshion, subnetarks hae been
introduced in 4.3BSD [GADS85]This facility allows sites to subdide their local Internet address space
into multiple subnetark address spaces that are visible only by hosts at that Ttedff-site hosts
machines on a site’'aibnetworks appear to reside on a single retw Therouting daemon has been
reworked to preide routing support in this type ofvaronment.

The defult Internet broadcast address isvrapecified with a host part of all orse’rather than all
zeros. Thebroadcast address may be set at boot time oniatpeface basis.

5.1.2. InterfaceAddressing

The oganization of netwrk interfaces has beenwerked to more cleanly support multiple nenk
protocols. Netwrk interfaces no longer contain a hgsttldress on that netwk; instead each intexte
contains a pointer to a list of addresses assigned to thata®erThigpermits a single inteate to support,
for example, Internet protocols at the same time as XNS protocols.

The Address Resolution Protocol (ARP) support for 1@amge/second Ethernett has been made
more fleible by allaving hosts to act as aftlearing housé’f or hosts that do not support AR addi-
tion, system managers\emnmore control @er the contents of the ARP translation cache and may interac-
tively interrogate and modify the caclsetontents.

5.1.3. UserControl of Network Buffering

Although the system allocates reasonabladéefimounts of lffering for most connections, certain
operations such as file system dumps to remote machines benefit from significant increafiesrig b
[Walsh84]. Thesetsokopt system call has beenxtended to allev such requestsin addition,getsodopt
and setsokopt, are nav interfaced to the protocol Vel allowing protocol-specific options to be manipu-
lated by the user

5.1.4. Numberof File Descriptors

To dlow full use of the mandescriptor based servicegadable, the preious hard limit of 30 open
files per process has been reldx Thechanges entailed generalizisglectto handle arrays of 32-bit
words, remeing the dependercon file descriptors from the page table entries, and limiting most of the
linear scans of a procesdile table. The de&ult perprocess descriptor limit & raised from 20 to 64,
though there are no longenamrd upper limits on the number of file descriptors.

104 Ethernet is a trademark of Xerox.

DRAFT April 17, 1991 McKusick, et. al.



Performance -19- Functional Extensions

5.1.5. Kernel Limits

Many internal lernel configuration limits he been increased by suitable modifications to data struc-
tures. Thdimit on physical memory has been changed from &#hgte to 64 mgabyte, and the limit of
15 mounted file systems has been changed to Pb&.maximum file system size has been increased to 8
gigabyte, number of processes to 65536, and per process size tg@y@mef data and 64 rgebyte of
stack. Notethat these are upper bounds, theadiflimits for these quantities are tuned for systems with
4-8 maabyte of plysical memory

5.1.6. MemoryManagement

The global clock page replacement algorithm used ve haingle hand that &s used both to mark
and to reclaim memoryThe first time that it encountered a pageauld clear its reference bitf the ref-
erence bit ws still clear on its n& pass across the page, ibwld reclaim the pageThe use of a single
hand does not ark well with lage plysical memories as the time to complete a singlelugon of the
hand can ta& up to a minute or more.By the time the hand gets around to the redriages, the informa-
tion is usually no longer pertinenDuring periods of sudden shortages, the page daemon will not be able to
find ary reclaimable pages until it has completed a fulohgtion. To dleviate this problem, the clock
hand has been split into avgeparate handsThe front hand clears the reference bits, the back hanavéollo
a onstant number of pages behind reclaiming pages that stildeared reference bitswhile the code
has been written to allothe distance between the hands to &eed, we haee rot found ag algorithms
suitable for determining loto dynamically adjust this distance.

The configuration of the virtual memory system used to require a significant understanding of its
operation to do such simple tasks as increasing the maximum processhsgzerocess has been signifi-
cantly impraved s that the most common configuration parameters, such as the virtual memory sizes, can
be specified using a single option in the configuration #tndard configurations support data and stack
segments of 17, 33 and 64 gabytes.

5.1.7. Signals

The 4.2BSD signal implementatiorould push seeral words onto the normal run-time stack before
switching to an alternate signal stackhe 4.3BSD implementation has been corrected so that the entire
signal handles date is na pushed onto the signal stacknother limitation in the original signal imple-
mentation vas that it used an undocumented system call to return from sidgyedss could not write their
own return from &ceptions; 4.3BSD formally specifies thigreturnsystem call.

Many existing programs depend on interrupted system cale restartable system call semantics of
4.2BSD signals caused manf these programs to breako smplify porting of programs from inferior
versions ofuUNIX the sigvecsystem call has beentended so that programmers may specify that system
calls are not to be restarted after particular signals.

5.1.8. Systeniogging

A system logging dcility has been added that senésniel messages to the syslog daemon for log-
ging in /usr/adm/messages and possibly for printing on the system coflelexised scheme for logging
messages eliminates the time lag in updating the messages file, unifies the formnatlahkssages, pro-
vides a finer granularity of controver the messages that get printed on the console, and eliminates the
degradation in response during the printing afpriority kernel messagefRecorerable system errors and
common resource limitations are logged using thdlify. Most system utilities such as init and login,
have been modified to log errors to syslog rather than writing directly on the console.

5.1.9. Windows

The tty structure has been augmented to hold information about the size of an associatedwindo
terminal. Theseizes can be obtained by programs such as editors énatevknav the size of the screen
they are manipulating.When these sizes are changed,a signal, SIGWINCH, is sent the current process
group. Theeditors hae been modified to catch this signal and reshape theiv gfethe world, and the
remote login program and sernav cooperate to propadge windev sizes and winde size changes across

DRAFT April 17, 1991 McKusick, et. al.



Performance -20- Functional Extensions

a retwork. Otherprograms and libraries such as curses that need the width or height of the seeeen ha
been modified to use thiadility as well.

5.1.10. Configurationof UNIBUS Devices

The UNIBUS configuration routines f1ia been atended to alle auto-configuration of dedicated
UNIBUS memory held by déces. Thenew routines simplify the configuration of memory-mapped
devices and correct problems occurring on reset of the UISLB

5.1.11. DiskRecovery from Errors

The MASSRJS disk drver's aror recavery routines hae keen fixed to retry before correcting ECC
errors, support ECC on bad-sector replacements, and correctly attempt retries after earlieecmtrect
in the same transfeiThe error messages are more accurate.

5.2. FunctionalExtensions to Libraries and Utilities

Most of the changes to the utilities and librariegehiaeen to allav them to handle a more general set
of problems, or to handle the same set of problems more quickly

5.2.1. NameServer

In 4.2BSD the name resolution routinggtfiostbynamegetservbynameetc.) were implemented by
a ®t of database files maintained on the local machineonsistencies or obsolescence in these files
resulted in inaccessibility of hosts or servicéis.4.3BSD these files may be replaced by a agtwmame
sener that can insure a consistentwief the name space in a multimachine/issnment. Thisname
sener operates in accordance with Internet standards for service on tA&NERPMockapetris83].

5.2.2. SystenManagement

A new uility, rdist, has been praded to assist system managers eéefing all their machines up to
date with a consistent set of sources and binaAemsaster set of sources may reside on a single central
machine, or be distrilied at (knwn) locations throughout the ronment. Ne& versions ofgety, init,
andlogin meige the functions of seral files into a single place, and allanore fleibility in the startup of
processes such as windmanagers.

The nev utility timedkeeps the time on a group of cooperating machines (within a single LAN) syn-
chronized to within 30 millisecondst does its corrections using ameystem call that changes the rate of
time adwance without stopping or versing the system clocklt normally selects one machine to act as a
master If the master dies or is partitioned, avmaster is electedOther machines may participate in a
purely slae role.

5.2.3. Routing

Many bugs in the routing daemon e teen fixed; it is considerably more rost, and nav under
stands hw to properly deal with subnets and point-to-point native. Itsoperation has been made more
efficient by tuning with the use ofkecution profiles, along with inlinexpansion of common operations
using the krnelsinline optimizer

5.2.4. Compilers

The symbolic deliggerdbxhas had mannew features added, and all the iwrohugs fived. Inaddi-
tion dbx has beenxended to wrk with the Rscal compiler The fortran compilef77 has had numerous
bugs fixed. TheC compiler has been modified so that it can, optiongtyerate single precision floating
point instructions when operating on single precisiamables.

6. Security Tightening

Since we do not wish to encourage rampant system cracking, we describe only briefly the changes
made to enhance security

DRAFT April 17, 1991 McKusick, et. al.



Performance -21- Security Tghtening

6.1. GenericKernel

Several loopholes in the process traciragifity have been correctedPrograms being traced may not
be executed; &ecuting programs may not be tracd@rograms may not pvae input to terminals to which
they do not have read permissionThe handling of process groups has been tightened to eliminate some
problems. Whera program attempts to change its process group, the system checks to see if the process
with the pid of the process groupsystarted by the same usé#rit exists and vas started by a ddrent
user the process group number change is denied.

6.2. SecurityProblems in Utilities

Setuid utilities no longer use tip@penor systemibrary routines. Access to the érnel's data struc-
tures through the kmem wee is nav restricted to programs that are set grougkchém”. Thus mary
programs that used to run with rootyilgges no longer need to do sAccess to disk deces is nav con-
trolled by an ‘operator’ group id; this permission ales operators to function without being the super
user Only users in group wheel can dsu root’; this restriction allvs administrators to define a super
user access listNumerous holes lva been closed in the shell to peat users from gining prvileges
from set user id shell scripts, although use of such scripts is still highly discouraged on systems that are
concerned about security

7. Conclusions

4.2BSD, while functionally superior to 4.1BSD, lackmuch of the performance tuning required of a
good system.We found that the distrited system spent 10-20% more time in thenkl than 4.1BSD.
This added werhead combined with problems withvesal user programs gerely limited the werall per
formance of the system in a general timesharinvg@mment.

Changes made to the system since the 4.2BSD distnibhave diminated most of the added system
overhead by replacing old algorithms or introducing additional cacheing schérhescombined caches
added to the name translation process reducevitage cost of translating a pathname to an inode by
more than 50%These changes reduce the percentage of time spent running in the system by nearly 9%.

The use of silo input on terminal ports only when necessary hagedllihe system tovaid a lage
amount of softwre interrupt processingObsenations shw that the system is forced to field about 25%
fewer interrupts than before.

The lernel changes, combined with nyabug fixes, mak the system much more respasmsin a
general timesharing emonment. The4.3BSD Berleley UNIX system nav appears capable of supporting
loads at least as lg& as those supported under 4.1BSD whileighog all the ne interprocess communi-
cation, netwrking, and file systematilities.

Acknowledgements

We would like to thank Robert Elz for sharing his ideas and his code for cacheing system wide names
and searching the process tablge thank Alan Smith for initially suggesting the use of a capability based
cache. W dso acknavledge Geage Goble who dropped myaof our changes into his production system
and reported back s to the disasters that yheaused. Théuffer cache read-ahead trace package w
based on a program written by Jimason. RalpiCampbell implemented geral of the C library changes.

The original ersion of the Internet daemoragvwritten by Bill Jg. In addition, we would like to thank the
mary other people that contriited ideas, information, andovk while the system &as undegoing change.

References

[Cabrera84] LuisFelipe Cabrera, Eduard Huntédichael J. Karels, and D&l Mosher “A
UserProcess Oriented Performance Study of Ethernet dtkimg Under Berk-
ley UNIX 4.2BSD; Research Report No. UCB/CSD 84/217, Wénsity of Cali-
fornia, Berleley, December 1984.

DRAFT April 17, 1991 McKusick, et. al.



Performance

[Cabrera85]

[GADS85]

[Joy80]
[Kashtan80]
[Lankford84]

[Leffler84]

[McKusick85]

[Mockapetris83]

[Mogul84]

[Mosher80]

[Nagle84]
[Ritchie74]

[Shannon83]
[Walsh84]

DRAFT

-22- References

Luid-elipe Cabrera, Michael J. Karels, andvidaMosher “The Impact of Bufer
Management on Netwking Software Performance in Bezley UNIX 4.2BSD: A
Case Study Proceedings of the Summer Usenix Conference, PortlandjoBre
June 1985, pp. 507-517.

GADS(Gatavay Algorithms and Data Structureadk force), ‘Towad an Inter
net Standard for Subnettifidg FC-940, Netwrk Information CenteiSRI Interna-
tional, April 1985.

Jogy, William, “Comments on the performance of UNIX on th&X”’, Computer
System Research Group, U.C. Badg. April 1980.

KashtanDavid L., “UNIX and VMS, Some Performance Comparis6nSRI
International. Februar$980.

Jefrey Lankford, ‘UNIX System V and 4BSD PerformanteRroceedings of the
Salt Lale Gty Usenix Confexnce pp 228-236, June 1984.

Saml effler, Mike Karels, and M. Kirk McKisick, ‘Measuring and Impnzng the
Performance of 4.2BSD,Proceedings of the Salt Laldty Usenix Confernce

pp 237-252, June 1984.

M. Kirk McKusick, Mike Karels, and Samual Lidr, “Performance
Improvements and Functional Enhancements in 4.3B®@ceedings of thed?t-

land Usenix Confemce pp 519-531, June 1985.

Bul Mockapetris, ‘Domain Names — Implementation and Scheduletwork
Information CenterSRI International, RFC-883, Nember 1983.

Jefrey Mogul, ‘Broadcasting Internet Datagrarh® FC-919, Netwrk Informa-
tion Center SRI International, October 1984.

MosherDavid, “UNIX Performance, an IntrospectionPresented at the Boulder
Colorado Usenix Conference, January 19&pies of the paper arevalable
from Computer System Research Group, U.C. 8eyk

JohrNagle, ‘Congestion Control in IP/TCP Internetvks; RFC-896, Netwrk
Information CenterSRI International, January 1984.

Ritchie,D. M. and Thompson, K., The UNIX Time-Sharing Systerh’ CACM
17, 7. July 1974. pp 365-375

ShannoWy., private communication, July 1983

RobertWalsh and Robert Gurwitz,Converting BBN TCP/IP to 4.2BSD, Pro-
ceedings of the Salt LalGity Usenix Confence pp 52-61, June 1984.

April 17,1991 McKusick, et. al.



Performance -23- Appendix A — Benchmark sources

Appendix A — Benchmark souces

The programs shvn here run under 4.2 with only routines from the standard libra¥i#gen run under 4.1
they were augmented withgetpagesizeroutine and a cgpof therandomfunction from the C library The
vforksandvexecsprograms are constructed from fioeks andexecsprograms, respewtly, by substituting
calls tofork with calls tovfork.

syscall
/*
* System call @erhead benchmark.
*/
main(agc, agv)
char *agv[];
{

register int ncalls;

if (argc < 2) {
printf("usage: %s #syscallsOg0]);
exit(1);

}

ncalls = atoi(agv[1]);

while (ncalls-- > 0)

csw
/*

* Context switching benchmark.

*

* Force system to conteswitch 2*nsigs

* times by forking and>ehanging signals.

* To calculate systemwerhead for a conte

* switch, the signocsw program must be run
*with nsigs. Overhead is then estimated by
*  tl=tme csw<n>

*  t2 =time sighocsw <n>

*  overhead =11l -2 * t2;

*/

#include <signal.h>

int  nsigs;

main(agc, agv)
char *agv[];
{
int pid;

if (argc < 2) {
printf("usage: %s nsignalsO,gx0]);
exit(1);
}
nsigs = atoi(agv[1]);
signal(SIGALRM, sigsub);
otherpid = pid;
kill(otherpid, SIGALRM);
}
for (;;)

DRAFT April 17, 1991 McKusick, et. al.



Performance -24-

sigpause(0);
}
signal(SIGALRM, sigsub);
kill(otherpid, SIGALRM);
if (--nsigs <= 0)
exit(0);
}
signocsw
/*

* Signal without contet switch benchmark.

*/

#include <signal.h>

int
int

pid;
nsigs;

main(agc, agv)

char *agv[];

{
register int i;
if (argc < 2) {
printf("usage: %s nsignalsO,gx0]);
exit(1);
}
nsigs = atoi(agv[1]);
signal(SIGALRM, sigsub);
kill(pid, SIGALRM);
}
signal(SIGALRM, sigsub);
}
pipeself
/*

* | PC benchmark,
* write to self using pipes.

*/

main(agc, agv)

{

DRAFT

char *agv[];

char wf[512];
int fd[2], msgsize;
register int i, iter;

if (argc < 3) {
printf("usage: %s iterations message-sizefjv[@y);
exit(1);

}

argc--, agv++;

April 17, 1991

Appendix A — Benchmark sources

McKusick, et. al.



Performance -25-

iter = atoi(*agv);

amgc--, agv++;

msgsize = atoi(*av);

if (msgsize > sizeof {if) || msgsize <= 0) {
printf("%s: Bad message size.0, gg);
exit(2);

}

if (pipe(fd) < 0) {
perror("pipe");
exit(3);

}

for (i=0;i<iter; i++) {
write(fd[1], buf, msgsize);
read(fd[0], luf, msgsize);

}
}
pipediscard
/*

* | PC benchmarkl,
* write and discard using pipes.
*/

main(agc, agv)
char *agv[];
{

char wf[512];
int fd[2], msgsize;
register int i, iter;

if (argc < 3) {
printf("usage: %s iterations message-sizefjv[@i);
exit(1);

}

amgc--, agv++;

iter = atoi(*agv);

amgc--, agv++;

msgsize = atoi(*av);

if (msgsize > sizeof (i) || msgsize <= 0) {
printf("%s: Bad message size.0, dg);
exit(2);

}
if (pipe(fd) < 0) {
perror(“pipe");
exit(3);
}
read(fd[0], luf, msgsize);
else
for (i=0;i < iter; i++)
write(fd[1], buf, msgsize);

DRAFT April 17, 1991

Appendix A — Benchmark sources

McKusick, et. al.



Performance -26-

pipeback

/*

* | PC benchmark,
* read and reply using pipes.

*

* Process forks andxehanges messages
* over a gpe in a request-responseshion.

*/

main(agc, agv)

{

}

forks

/*

* Benchmark program to calculate forkav
* overhead (approximately)Process

* forks and gits while parent its.

* The time to run this program is used
*in calculating &ec overhead.

char *agv[];

char wf[512];
int fd[2], fd2[2], msgsize;
register int i, iter;

if (argc < 3) {
printf("usage: %s iterations message-sizefjv[@1);
exit(1);

}

argc--, agv++;

iter = atoi(*agv);

argc--, agv++;

msgsize = atoi(*av);

if (msgsize > sizeof (i) || msgsize <= 0) {
printf("%s: Bad message size.0, dg);
exit(2);

}

if (pipe(fd) < 0) {
perror(“pipe");
exit(3);

}

if (pipe(fd2) < 0) {
perror(“pipe");
exit(3);

read(fd[0], luf, msgsize);
write(fd2[1], kuf, msgsize);
}

for (i=0;i<iter; i++) {
write(fd[1], buf, msgsize);
read(fd2[0], luf, msgsize);

else

DRAFT April 17, 1991

Appendix A — Benchmark sources

McKusick, et. al.



Performance -27-

main(agc, agv)
char *agv[l;
{
register int nforks, i;
char *cp;
int pid, child, status, brksize;

if (argc < 2) {
printf("usage: %s numbeaf-forks sbrk-size0, aw[0]);
exit(1);

}

nforks = atoi(agv[1]);

if (nforks < 0) {
printf("%s: bad number of forks0,@r1]);
exit(2);

}

brksize = atoi(agv[2]);

if (brksize < 0) {
printf("%s: bad size to sbrk0,@r2]);
exit(3);

}
cp = (char *)sbrk(brksize);
if ((int)cp ==-1) {
perror("sbrk™);
exit(4);
}
for (i= 0; i < brksize; i += 1024)
cplil =1;
while (nforks-- > 0) {
perror(“fork");
exit(-1);
}
if (child == 0)
_exit(-1);
while ((pid = wait(&status)) != -1 && pid = child)

}
exit(0);

}

execs
/*

* Benchmark program to calculateee

* overhead (approximately)Process
*forks and recs "null”" test program.

* The time to run the fork program should
*then be deducted from this one to

* estimate the werhead for thexec.

*/

main(agc, agv)
char *agv[];

{

register int neecs, i;

DRAFT April 17, 1991

Appendix A — Benchmark sources

McKusick, et. al.



Performance -28-

if (argc < 3) {

printf("usage: %s numbef-execs sbrk-size job-name0,

agv[0]);
exit(1);
}
nexecs = atoi(agv[1]);
if (nexecs < 0) {
printf("%s: bad number ofxecs0, agv[1]);
exit(2);
}
brksize = atoi(agv[2]);
if (brksize < 0) {
printf("%s: bad size to sbrk0,@r2]);
exit(3);

}
cp = sbrk(brksize);

if ((int)cp ==-1) {
perror("sbrk™);

exit(4);

}

for (i=0; i < brksize; i += 1024)
cpli] = 1i;

while (nexecs-- > 0) {
perror(“fork");

exit(-1);
}
if (child == 0) {
execv(amgv[3], agv);
perror("eecv");
_exit(-1);
}
while ((pid = wait(&status)) != -1 && pid = child)
}
exit(0);
}
nulljob
/*
* Benchmark "null job" program.
*/

main(agc, agv)
char *agv[];

{
exit(0);
}
bigjob
/*
* Benchmark "null big job" program.
*/

/* 250 here is intended to approximatesvéxt+data size */

DRAFT April 17, 1991

Appendix A — Benchmark sources

McKusick, et. al.



Performance -29- Appendix A — Benchmark sources

char space[1024250] = "force into data ggnent”;
main(agc, agv)

char *agv[];

{

exit(0);

DRAFT April 17, 1991 McKusick, et. al.



Performance -30- Appendix A — Benchmark sources

segpage
/*

* Sequential page access benchmark.
*/

#include <sys/advise.h>

main(agc, agv)
char *agv[];
{
register i, niter;
register char *pf, *lastpage;
int npages = 4096, pagesize, vflag = 0;
char *pages, *name;

name = agv[0];
argc--, agv++;
again:
if (argc < 1) {
usage:
printf("usage: %s [ -v ] [ -p #pages ] niter0, name);
exit(1);
}
if (stremp(*agy, "-p") == 0) {
argc--, agv++;
if (argc < 1)
goto usage;
npages = atoi(*av);
if (npages <= 0) {
printf("%s: Bad page count.O, f@r);
exit(2);
}
argc--, agv++;
goto a@in;
}
if (strcmp(*agy, "-v") == 0) {
argc--, agv++;
vilag++;
goto a@in;
}
niter = atoi(*agv);
if (pages == (char *)0) {
printf("Can't allocate %d pages (%2.1f mabytes).0,
npages, (npages * pagesize) / (1024. * 1024.));
exit(3);
}
lastpage = pages + (npages * pagesize);
if (vflag)
vadvise(\A_SEQL);
for (i = 0; i < niter; i++)
for (pf = pages; pf < lastpage; pf += pagesize)
*pf = 1;

DRAFT April 17, 1991

McKusick, et. al.



Performance -31- Appendix A — Benchmark sources

randpage

/*

* Random page access benchmark.
*/

#include <sys/advise.h>

main(agc, agv)
char *agv[];

{
register int npages = 4096, pagesize, pn, i, niter;
int vflag = 0, debg = 0;
char *pages, *name;
name = agv[0];
argc--, agv++;
again:
if (argc < 1) {
usage:

printf("usage: %s [-d ] [ -v ][ -p #pages ] niter0, name);
exit(1);
}
if (strcemp(*agy, "-p") == 0) {
amgc--, agv++;
if (argc < 1)
goto usage;
npages = atoi(*av);
if (npages <= 0) {
printf("%s: Bad page count.O, f@r);
exit(2);
}
amgc--, agv++;
goto a@in;
}
if (stremp(*agy, "-v") == 0) {
amgc--, agv++;
vilag++;
goto a@in;
}
if (stremp(*agy, "-d") == 0) {
amgc--, agv++;
delug++;
goto a@in;
}
niter = atoi(*agv);
if (pages == (char *)0) {
printf("Can't allocate %d pages (%2.1f mabytes).0,
npages, (npages * pagesize) / (1024. * 1024.));
exit(3);
}
if (vflag)
vadvise(\A_ANOM);
for (i = 0; i < niter; i++) {
printf("touch page %d0, pn);
pages[pagesize * pn] = 1;

DRAFT April 17, 1991

McKusick, et. al.



Performance -32- Appendix A — Benchmark sources

}
}
gausspage
/*

* Random page access with

* a gaussian distrilstion.

*

* Allocate a lage (zero fill on demand) address
* space anddult the pages in a randoraugsian
*order

*/

main(agc, agv)
char *agv[l;
{
register int pn, i, niterdelta;
register char *pages;
float sd = 10.0;
int npages = 4096, pagesize, dgix O;
char *name;

name = agv[0];
amgc--, agv++;
again:
if (argc < 1) {
usage:
printf(
"usage: %s [ -d ] [ -p #pages ] [ -s standardiatén ] iterations0, name);
exit(1);
}
if (strcmp(*agy, "-s") == 0) {
amgc--, agv++;
if (argc < 1)
goto usage;
sscanf(*agv, "%f", &sd);
if (sd <= 0) {
printf("%s: Bad standard gmtion.0, *agv);
exit(2);
}
amgc--, agv++;
goto a@in;
}
if (stremp(*agy, "-p") == 0) {
amgc--, agv++;
if (argc < 1)
goto usage;
npages = atoi(*av);
if (npages <= 0) {
printf("%s: Bad page count.O, f@r);
exit(2);
}
amgc--, agv++;
goto a@in;

DRAFT April 17, 1991

McKusick, et. al.



Performance -33-

}

if (strcemp(*agy, "-d") == 0) {
amgc--, agv++;
delug++;
goto a@in;

}

niter = atoi(*agv);

if (pages == (char *)0) {

printf("Can't allocate %d pages (%2.1f mabytes).0,
npages, (npages*pagesize) / (1024. * 1024.));

exit(3);
}
pn = 0;
for (i = 0; i < niter; i++) {
delta = gquss(sd, 0.0);
while (pn + delta < 0 || pn + delta > npages)
delta = gquss(sd, 0.0);

pn += delta;
if (debug)
printf("touch page %d0, pn);
else
pages[pn * pagesize] = 1;
}
}
float

gauss(sd, mean)
float sd, mean;

{
register float ga, gb;
}
float
static int seed = 1;
static int biggest = OxTffff ;
return ((float)rand(seed) / (float)biggest);
}

run (shell script)

#! /bin/csh -fx

# Script to run benchmark programs.
#

date

malke dean; time mak

time syscall 200000

time seqpage -p 7500 10

time seqpage -v -p 7500 10

time randpage -p 7500 30000

time randpage -v -p 7500 30000
time qausspage -p 7500 -s 1 30000
time gausspage -p 7500 -s 10 30000
time gausspage -p 7500 -s 30 30000

DRAFT April 17, 1991

Appendix A — Benchmark sources

McKusick, et. al.



Performance -34- Appendix A — Benchmark sources

time gausspage -p 7500 -s 40 30000

time qausspage -p 7500 -s 50 30000

time gausspage -p 7500 -s 60 30000

time gausspage -p 7500 -s 80 30000

time qausspage -p 7500 -s 10000 30000

time csw 10000

time signocsw 10000

time pipeself 10000 512

time pipeself 10000 4

time udgself 10000 512

time udgself 10000 4

time pipediscard 10000 512

time pipediscard 10000 4

time udgdiscard 10000 512

time udgdiscard 10000 4

time pipeback 10000 512

time pipeback 10000 4

time udgback 10000 512

time udgback 10000 4

size forks

time forks 1000 O

time forks 1000 1024

time forks 1000 102400

size vforks

time vforks 1000 O

time vforks 1000 1024

time vforks 1000 102400

counten

size nulljob

time execs 1000 O nulljob

time execs 1000 1024 nulljob

time execs 1000 102400 nulljob

time vexecs 1000 O nulljob

time vexecs 1000 1024 nulljob

time vexecs 1000 102400 nulljob

size bigjob

time execs 1000 O bigjob

time execs 1000 1024 bigjob

time execs 1000 102400 bigjob

time vexecs 1000 O bigjob

time vexecs 1000 1024 bigjob

time vexecs 1000 102400 bigjob

# fill environment with 1024 bytes

setew a 012345678901234567890123456789012345678901234567890123456780123456789
setew b 012345678901234567890123456789012345678901234567890123456780123456789
setew ¢ 012345678901234567890123456789012345678901234567890123456780123456789
seterw d 012345678901234567890123456789012345678901234567890123456780123456789
setew e 012345678901234567890123456789012345678901234567890123456780123456789
setew f 012345678901234567890123456789012345678901234567890123456780123456789
seterw g 012345678901234567890123456789012345678901234567890123456780123456789
setew h 012345678901234567890123456789012345678901234567890123456780123456789
setew i 012345678901234567890123456789012345678901234567890123456780123456789
setew j 012345678901234567890123456789012345678901234567890123456780123456789
setew k 012345678901234567890123456789012345678901234567890123456780123456789

DRAFT April 17, 1991 McKusick, et. al.



Performance -35- Appendix A — Benchmark sources

seten | 012345678901234567890123456789012345678901234567890123456780123456789

setewr m 012345678901234567890123456789012345678901234567890123456780123456789
seten n 012345678901234567890123456789012345678901234567890123456780123456789
seten 0 012345678901234567890123456789012345678901234567890123456780123456789
counten

time execs 1000 O nulljob

time execs 1000 1024 nulljob

time execs 1000 102400 nulljob

time execs 1000 O bigjob

time execs 1000 1024 bigjob

time execs 1000 102400 bigjob

DRAFT April 17, 1991 McKusick, et. al.



Performance -36- Appendix A — Benchmark sources

DRAFT April 17,1991 McKusick, et. al.



