Berkeley Rascal PX Implementation Notes
Version 2.0 — &anuary, 1979

William N. Dby’
M. Kirk McKusidd

Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

ABSTRET

Berkeley Pascal is designed for interagi instructional use and runs on tivex
11/78a The interpretepx executes the Bscal binaries generated by thesé€al translator
pi.

The PX Implementation Notedescribe the general ganization of px, detail the
various operations of the interpretend describe the file input/output structu@onclu-
sions are gien on the viability of an interpreter based approach to language implementa-
tion for an instructional efronment.

12 May 2000

Berkeley Rascal PX Implementation Notes
Version 2.0 — &anuary, 1979

William N. Dby’
M. Kirk McKusidd

Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

Intr oduction

ThesePX Implementation Notdsve been updated from theriginal PDP 11/7dmplementation notes
to reflect the interpreter that runs on the 11/78a These notes consist of four major parthe first part
outlines the general ganization ofpx. Section 2 describes the operations (instructions) of the interpreter
while section 3 focuses on input/output relatedvégti A final section gies monclusions about the viabil-
ity of an interpreter based approach to language implementation for instruction.

Related Berkeley Pascal documents

The PXP Implementation Notggve cetails of the internals of thexeeution profilerpxp; parts of the
interpreter related tpxp are discussed in section 2.18. paper describing the syntactic error reay
mechanism used ipi was presented at the @M Conference on Compiler Construction in Boulder Col-
orado in August, 1979.

Acknowledgements

This wersion ofpx is aPDP 11/70to VAX 11/780 opcode mapping of the originpk that was designed
and implemented by & Thompson, with x¢ensve mnodifications and additions by iliam Joy and
Charles Halg Without their vork, this Berleley Pascal system ould never have existed. Thesenotes
were first written by Wiam Joy for therbdpr 11/70mplementation. \WW would also lile to thank our &culty
advisor Susan L. Graham for her encouragement, her helpful comments and suggestions relatieg to Berk
ley Pascal and herxeellent editorial assistance.

T The financial support of the National Science®ufdation under grants MCS74-07644-A03 and
MCS78-07291 and of aam Graduate Fellship are gratefully ackmdedged.

T The financial support of a M@rd Hughes Graduate Feliship is gratefully ackneledged.

1. Organization

Most of pxis written in thevax 11/780assembly language, using theix® assemblels. Portions of
px are also written in theNix systems programming language Bx consists of a main procedure that
reads in the interpreter code, a main interpreter loop that transfers sigtgdesvarious code ggments
implementing the abstract machine operationgi-n procedures and functions, and/a@l routines that
support the implementation of thagal input-output efronment.

The interpreter runs at a fraction of the speed ofveanit compiled C code, with this fractiolary-
ing from 1/5 to 1/15.The interpreter occupies 18.5K bytes of instruction space, shared among all processes
executing Rascal, and has 4.6K bytes of data space (constants, error messages, et@j <ich is allo-
cated to eachxecuting process.

1.1. Format of the object file

Px normally interprets the code left in an object file by a run of gec& translatopi. The file
where the translator puts the object origina#ltyd the most commonly interpreted file, is caltgy. In
order that all persons usimpx share a commonxeimage, this eecutable file is a small process that coor
dinates with the interpreter to stasteeution. Theinterpreter code is placed at the end of a special
“ header’file and the size of the initialized data area of this header fil@#nded to include this code, so
that during gecution it is located at an easily determined address in its data spdmn eecuted, the
object process createpipe, creates another process by doinigik, and arranges that the resulting parent
process becomes an instancexf The child process then writes the interpreter code through the pipe that
it has to the interpreter process paraihen this process is complete, the chitdse

The real adantage of this approach is that it does not require modifications to the shell, and that the
resultant objects aretrue objects’ not requiring special treatmen® simpler mechanism wuld be to
determine the name of the file thatswexecuted and pass this to the interpretdoweve it is not possible
to determine this name in all cases.

1.2. Generalfeatures of object code

Pascal object code is relocatable as all addressing references for control transfers within the code are
relative. The code consists of instructions interspersed with inline detanstructions hae a ength that
is an @en number of bytesNo variables are épt in the object code area.

The first byte of a &cal interpreter instruction contains an operation cddiés allovs a total of
256 major operation codes, and 232 of these are in use in the quréftie second byte of each inter
preter instruction is called thésub-operation codg’or more commonly thesub-opcode It contains a
small intgger that mayfor example, be used as a block-structuresliéor the associated operatioff.the
instruction can tak a bngword constant, this constant is often pegtknto the sub-opcode if it fits into 8
bits and is not zeroA sub-opcode alue of zero specifies that the constantid not fit and therefore fol-
lows in the ngt word. Thisis a space optimization, thalue of zero for flagging the longer case being
cornvenient because it is easy to test.

Other instruction formats are use@ihe branching instructions takn off set in the follaving word,
operators that load constants onto the staak &dditrarily long inline constantalues, and manoperations
deal eclusively with data on the interpreter stack, requiring no inline data.

1.3. Stackstructure d the interpreter

The interpreter emulates a stack-structurascBl machineThe ‘load” i nstructions put &lues onto
the stack, where all arithmetic operationsetglace. The' store’ i nstructions ta& values of the stack and
place them in an address that is also contained on the Sthekonly way to mae data or to compute in

T For instance, if thexref program is placed in the directory ‘/usr/bin’ then when the user type®f pro-
gram.p’ the first agument to the program, nominally the programs namé&xeef.” W hile it would be possi-
ble to search in the standard place, i.e. the current direatatyhe system directories ‘/bin’ and ‘/usr/bin’ for a
corresponding object file, thisowld be &pensve and not guaranteed to succee®kveral shells gist that allav
other directories to be searched for commands, and there is, in generay, ttodetermine what these directo-
ries are.

the machine is with the stack.

To make the interpreter operations morewsrful and to thereby increase the interpreter speed, the
arithmetic operations in the interpreter digped”. Thatis, length comersion of arithmetic &lues occurs
when thg are used in an operatiohis eliminates interpreterycles for length corersion and the associ-
ated werhead. IBr example, when adding an igfer that fits in one byte to one that requires four bytes to
store, no‘conversion” operators are requiredlhe one byte ingger is loaded onto the stack, falled by
the four byte intger, and then an adding operator is used that has, implicit in its definition, the sizes of the
arguments.

1.4. Datatypes in the intempreter

The interpreter deals withgal different fundamental data typeln the memory of the machine, 1,
2, and 4 byte ingers are supported, with only 2 and 4 bytegats being present on the stadke inter
preter alvays comwerts to 4 byte intgers when there is a possibility ofeoflowing the shorter formats.
This corresponds to thefcal language definition of@flow in aithmetic operations that requires that the
result be correct if all partiallues lie within the bounds of the base gretetype: 4 byte intger \alues.

Character constants are treated similarly to 1 bytgénsefor most purposes, as are Boolezinas.
All enumerated types are treated asgetewalues of an appropriate length, usually 1 byfae interpreter
also has real numbers, ocgupm 8 bytes of storage, and sets and stringgnfing length. The appropriate
operations are included for each data type, such as set union and intersection and an operation to write a
string.

No specialpacked data formats are supported by the interpreiére smallest unit of storage occu-
pied by aw variable is one byteThe huilt-ins padk andunpad thus dgenerate to simple memory to mem-
ory transfers with no special processing.

1.5. Runtimeervironment

The interpreter runtime gimonment uses a stack data area and a heap data area, theptaa¢ k
opposite ends of memory and grtowards each otherAll global variables and ariables local to proce-
dures and functions areft in the stack aredynamically allocated ariables and uiffers for input/output
are allocated in the heap.

The addressing of block structureatiables is done by using adik display that contains the address
of its stack frame for each statically aetidock.? This display is referenced by instructions that load and
store \ariables and maintained by the operations for block entryxtchad for non-locagoto statements.

1.6. Dp,lc, loop

Three ‘global” variables in the interpreten addition to the ‘display”, are thedp, Ic,and theloop.
Thedpis a pointer to the display entry for the current block;dhis the abstract machine location counter;
and theloop is a reister that holds the address of the main interpreter loop so that returning to the loop to
fetch the ngt instruction is adst operation.

1.7. Thestack frame structure

Each actre Hock has a stack frame consisting of three parts: a block mark, Edables, and tem-
porary storage for partiallyvaluated &pressions. Thestack in the interpreter gns from the high
addresses in memory to thevladdresses, so that those parts of the stack frame thairathe top’ of the
stack hae the most ngaive dfsets from the display entry for the blockhe major parts of the stack
frame are represented in Figure 1Note that the localariables of each block ta regdive dfsets from
the corresponding display enttige “first’’ | ocal variable haing offset ‘-2’

1.8. Theblock mark

The block mark contains thevga information necessary to restore thgiemment when the current
block eits. It consists of tw parts. Thefirst and top-most part iswad by the CALL instruction in the

T Here ‘block” i s being used to mean nprocedue, functionor the main program.

Base of stack frame

Block mark Positive dfsets

~ Display entry points here

Local
variables

Negdive dfsets

Temporary

expression
space

Top of stack frame

Figure 1.1 — Structure of stack frame

interpreter This information is not present for the main program as itvsrrialled”. The second part
of the block mark is created by theG begin block operator that also allocates and clears the lacialble
storage. Théormat of these blocks is represented in Figure 1.2.

Created bycALL
Saved lino

Saved Ic

Saved dp

Created byBEG
Saved dp contents

Pointer to current
entry line and
section name

Current file name
and luffer

Top of stack reference

Figure 1.2 — Block mark structure

The data szed by the cALL operator includes the line numbaro of the point of call, that is printed
if the program eecution ends abnormally; the location courtegiving the return address; and the current
display entry addregip at the time of call.

The BEG begin operator s&s the preious display contents at thevé of this block, so that the dis-
play can be restored on blockite A pointer to the bginning line number and the name of this block is
also saed. Thisinformation is stored in the interpreter object code in-line afteB#leperator It is used
in printing a post-mortem backtrac&he saed file name andutffer reference are necessary because of the
input/output structure (this is discussed in detail in sections 3.3 andThé)top of stack referencevgs
the \alue the stack pointer shouldvearhen there are noxpression temporaries on the statkis used for
a monsisteng check in theLINO line number operators in the interpretiiat occurs before each statement
executed. Thishelps to catch ums in the interpretethat often manifest themsely by leaing the stack
non-empty between statements.

Note that there is noxplicit static link here. Thus to set up the display correctly after a non-local
goto statement one mustihwind” through all the block marks on the stack tauilebthe display

1.9. Arguments and eturn values

A function returns itsalue into a space resed/ by the calling block Arguments to dunction are
placed on top of this return areBor both procedure andfunction calls, aguments are placed at the end
of the expression eduation area of the calleMhen afunction completes, xpression ealuation can con-
tinue after popping the guments to théunction off the stack, xactly as if the functionalue had been
“loaded’. The amguments to grocedure are also popped the stack by the caller after itgeeution
ends.

As a simple gample consider the folang stack structure for a call to a functi§rof the form
“ f(a)!i.

Space for
value returned
from f

Value of a

Block Mark

Figure 1.3 — Stack structure on function call ‘f(a)’

If we suppose thdtreturns aeal and thata is an intger, the calling sequence for this functiomwd
be:

PUSH -8
RV4i a
CALL:l f
POP 4

Here we use the operateusHto clear space for the returalue, loada on the stack with dright
value” operator call the function, pop dfthe agumenta, and can then completerauation of the contain-
ing expression. Theperations used here will bgptained in section 2.

If the functionf were gven by
10function f(i: integer): real;
11 begin
12 f:=i
13end,

thenf would hare mde sequence:

BEG2 O
11
g

LV:| 40

RV4i 32

AS48

END

Here theBEG operator taks 9 bytes of inline datal he first byte specifies the length of the function
name. Thesecond longwrd specifies the amount of locariable storage, here non€he succeeding tw
lines give the line number of thbegin and the name of the block for error tracebatke BEG operator
places a name pointer in the block maillhe body of thdunction first talkes an address of ttienction
result \ariablef using the address of operatora. The net operation in the interpretation of this function
is the loading of thealue ofi. | is at the lgel of thefunction f, here symbolicallyl, and the first a&riable
in the local wariable areaThefunction completes by assigning the 4 byte gaeon the stack to the 8 byte
return location, hence thes4s assignment operatoand then uses thenD operator to ®it the current
block.

1.10. Themain interpreter loop
The main interpreter loop is simply:

iloop:
caseb (Ic)+,$0,$255
<table of opcode interpreter addresses>

The main opcode isxeracted from the first byte of the instruction and used toxinut® the table of
opcode interpreter addressé&3ontrol is then transferred to the specified locatibhe sub-opcode may be
used to inde the displayas a snall constant, or to specify one ofveral relational operatorsin the cases
where a constant is neededf i is not small enough to fit in the byte sub-operaaero is placed there
and the constant folles in the ngt word. Zerois easily tested foies the instruction that fetches the sub-
opcode sets the condition code flagsconstruction lile:

_OPER:
cvtbl (Ic)+,r0
bneq L1
cviwl (Ic)+,r0
L1:

is all that is needed tofett this packing of dataThis technique sees ace in the &scalobj object code.
The address of the instructionil@bp is always contained in the gister \ariableloop. Thus a return
to the main interpreter is simply:
jmp (loop)
that is both quick and occupies little space.

1.11. Errors
Errors during interpretatiorali into three classes:

1) Interpreter detected errors.
2) Hardware detected errors.
3) External gents.

Interpreter detected errors include 1/O errors amtt-im function errors. These errors cause a sub-
routine call to an error routine with a single parameter indicating the cause of theHardware errors
such as range errors andedlows are fielded by a special routine that determines the opcode that caused
the error It then calls the error routine with an appropriate error paramébddernal &ents include

interrupts and system limits such asitable memory They generate a call to the error routine with an
appropriate error codeThe error routine processes the error condition, printing an appropriate error mes-
sage and usually a backtrace from the point of the.error

2. Operations

2.1. Namingconventions and operation summary

Table 2.1 outlines the opcode typing gention. Theexpression ‘a above I means that ‘a’ is on
top of the stack with ‘b’ belw it. Table 2.3 describes each of the opcodése character] at the end of a
name specifies that all operations with the root prefix beforéthee summarized by one entryable 2.2
gives the codes used to describe the type inline dgiacted by each instruction.

Table 2.1 — Operator Sfites

Unary operator stikes

Sufix Example Argument type
2 NEG2 Short intger (2 bytes)
4 SQR4 Long integer (4 bytes)
8 ABS8 Real (8 bytes)

Binary operator stikes

Sufix Example Argument type
2 ADD2 Two short intgers
24 MUL24 Short abwge long intger
42 REL42 Long abwe dort integer
4 DIv4 Two long integers
28 DVD28 Short intger abee real
48 REL48 Long integger abee real
82 sSuB82 Real abwe sort integer
84 MUL84 Real abwe long intgyer
8 ADDS8 Tworeals

Other Sufixes

Sufix Example Argument types
T ADDT Sets
G RELG Strings

Table 2.2 - Inline data type codes

Code

Description

An address d$et is gven in the word following the
instruction.

An address d$et is gven in the four bytes folleing the instruction.

An index into the display
is given in the sub-opcode.

A relational operator is encoded in the sub-opcode. (see section

A small intgger is
placed in the sub-opcode, or in thextnord
if it is zero or too lage.

Variable length inline data.

A word \alue in the follaving word.

:E§<

A long alue in the follaving four bytes.

An inline constant string.

2.3)

Table 2.3 — Machine operations

Mnemonic Reference Description

ABSO 2.7 Absolutevalue

ADDO 2.7 Addition

AND 2.4 Boolearand

ARGC 2.14 Returnsumber of aguments to current proces
ARGV 2.14 Cop specified process gument into char array
AsO 25 Assignmenbperators

ASRT 2.12 Assertrueto continue

ATAN 2.13 Returnarctangent of gument

BEG s,Ww," 2.2,1.8 Writesecond part of block mark, enter block
BUFF 3.11 Specifibuffering for file "output"

CALL LA 2.2,1.8 Procedurer function call

CARD s 2.11 Cardinalityof set

CASEOH] 2.9 Casestatements

CHRO 2.15 Returngnteger to ascii mapping of gnment
CLCK 2.14 Returnsiser time of program

CONOv 25 Loadconstant operators

cos 2.13 Returngos of agument

COUNT w 2.10 Counta datement count point

CTTOT sw,w 211 Construcset

DATE 2.14 Cop date into char array

DEFNAME 3.11 Attachfile name fomprogram statement files
DISPOSE 2.15 Disposef a heap allocation

DIVO 2.7 Fixed diision

DVDO 2.7 Floatingdivision

END 2.2,1.8 Endlock execution

EOF 3.10 Returngrueif end of file

EOLN 3.10 Returngrueif end of line on input te file
EXP 2.13 Returngxponential of agument

EXPO 2.13 Returngnachine representation of reapenent
FILE 3.9 Pushdescriptor for actie file

FLUSH 3.11 Flusha file

FNIL 3.7 CheckKile initialized, not eof, synced
FOROa 2.12 For statements

GET 3.7 Getnext record from a file

GOTO 1A 2.2,1.8 Non-locafjoto statement

HALT 2.2 Produceontrol flov backtrace

IF a 2.3 Conditionatransfer

IN s,ww 2.11 Semembership

INCT 2.11 Membershijn a constructed set

INDO 2.6 Indirectionoperators

INX Os,ww 2.6 Subscriptingindexing) operator

ITOD 2.12 Conert integer to real

ITOS 2.12 Conert integer to short intger

LINO s 2.2 Setine numbercount statements

LLIMIT 2.14 Setinelimit for output tet file

LLVI,W 2.6 Addres®of operator

LN 2.13 Returngatural log of ggument

LRVOI,A 2.5 Rightvalue (load) operators

LV IL,w 2.6 Addres®of operator

MAX s,w 3.8 Maximumof top of stack angv

MESSAGE 3.6 Writeto terminal

3S
y

-10-

Table 2.3 — Machine operations

Mnemonic Reference Description

MIN s 3.8 Minimumof top of stack and

MODO 2.7 Modulus

MULO 2.7 Multiplication

NAM A 3.8 Corwvert enumerated typealue to print format
NEGO 2.7 Neydion

NEW s 2.15 Allocatea record on heap, set pointer to it
NIL 2.6 Assernhon-nil pointer

NODUMP s,Ww," 2.2 BEG main program, suppress dump

NOT 2.4 Booleamot

oDDO 2.15 Returngrue if argument is oddfalseif even
OFF s 2.5 Ofset address, typically used for field referen
OR 2.4 Boolearor

PACK s,w,w,w 2.15 Conert and copy from unpackd to packd
PAGE 3.8 Outputa formfeed to a td file

POP s 2.2,1.9 Pogamguments) dfstack

PRED] 2.7 Returngpredecessor of gnment

PUSH s 22,19 Cleaspace (for function result)

PUT 3.8 Outputa record to a file

PXPBUF w 2.10 Initializepxp count luffer

RANDOM 2.13 Returngandom number

RANGOv 2.8 Subrangehecking

READO 3.7 Readh record from a file

RELOr 2.3 Relationatest yielding Boolean result
REMOVE 3.11 Remue a fle

RESET 3.11 Operfile for input

REWRITE 3.11 Operfile for output

ROUND 2.13 Returngrunc(argument+ 0.5)

RvOl,a 2.5 Rightvalue (load) operators

SCLCK 2.14 Returnsystem time of program

SDUP 2.2 Duplicateop stack verd

SEED 2.13 Setrandom seed, return old seed

SIN 2.13 Returnsin of agument

SQRJ 2.7 Squaring

SQRT 2.13 Returnsquare root of gument

STLIM 2.14 Seprogram statement limit

STOD 2.12 Conert short intger to real

STOl 2.12 Conert short to long intger

SUBD 2.7 Subtraction

sucal 2.7 Returnsuccessor of gument

TIME 2.14 Cop time into char array

TRA a 2.2 Shortcontrol transfer (local branching)
TRA4 A 2.2 Longcontrol transfer

TRACNT wA 2.10 Counta procedure entry

TRUNC 2.13 Returngnteger part of agument

UNDEF 2.15 Returngalse

UNITO 3.10 Setctive file

UNPACK s,w,w,w 2.15 Conert and cop from pacled to unpaokd
WCLCK 2.14 Returngurrent time stamp

WRITEC 3.8 Characteunformatted write

WRITEF | 3.8 Generatormatted write

WRITES | 3.8 Stringunformatted write

-11-

Table 2.3 — Machine operations

Mnemonic

Reference

Description

WRITLN

3.8

Outputa rewline to a tet file

-12-

2.2. Basiccontrol operations

HALT

Corresponds to theaBcal procedurkalt; causes xecution to end with a post-mortem backtrace as if
a run-time error had occurred.

BEG s,Ww,"

Causes the second part of the block mark to be createdlVdnyties of local ariable space to be
allocated and cleared to zerStack werflow is detected herew is the first line of the body of this
section for error traceback, and the inline string (length s) the character representation of its name.

NODUMP s,Ww,"

Equivalent toBEG, and used to bgin the main program when th@’* option is disabled so that the
post-mortem backtrace will be inhibited.

END

Complementary to the operatarsLL andBEG, exits the current block, calling the procedpaose
to flush luffers for and release whocal files. Restores the @ironment of the caller from the block
mark. Ifthis is the end for the main program, all filesflushed and the interpreter iscged.

CALL ILA

Saves the current line numbegreturn address, and aatidsplay entry pointedp in the first part of
the block mark, then transfers to the entry poiaémgby the relatve addressA, that is the bginning
of aprocedure or function at level I.

PUSH s

Clearss bytes on the stackUsed to ma& gace for the returnalue of afunction just before calling
it.

POP s

Pops bytes of the stack.Used after dunction or procedure returns to remee the aguments from
the stack.

TRA a
Transfer control to relate aldressa as a locafjoto or part of a structured statement.

TRA4 A

Transfer control to an absolute address as part of a nongoimabr to branch wer procedure bod-
ies.

LINO s

Set current line number ® For consistenyg, check that the xpression stack is empty as it should be
(as this is the start of a statementlis consistenccheck will fail only if there is a bg in the inter
preter or the interpreter code has someheen damagedincrement the statement count and if it
exceeds the statement limit, generateuatf

GOTO I,A

Transfer control to addregsthat is in the block at \@l | of the display This is a non-locagjoto.
Causes each block to beited as if withenD, flushing and freeing files withclose until the current
display entry is at el 1.

-13-

SDUPO

Duplicate the wrd or long on the top of the stackhis is used mostly for constructing sesee
section 2.11.

2.3. Ifand relational operators

IFa

The interpreter conditional transfers all @éaface using this operator thaxamines the Boolean
value on the top of the stachf the value istrue, the net code is gecuted, otherwise control trans-
fers to the specified address.

RELOr

These tak two aguments on the stack, and the sub-operation code specifies the relational operation
to be done, coded as folis with ‘a’ abae ‘b’ on the stack:

Code Operation

0 a=b
2 a<>b
4 a<b
6 a>b
8 a<=b
10 a>=bh

Each operation does a test to set the condition code appropriately and then doesedrbiadeh
based on the sub-operation code to a test of the condition here specified, pushing a Bhmeam v
the stack.

Consider the statement fragment:
if a=bthen

If aandb are intgers this generates the fallimg code:

RV4l a
Rv4l b
REL4 =
IF Else part ofset

... Then part code ...

2.4. Boolearoperators

The Boolean operatorsiD, OR, and NOT manipulate glues on the top of the stackll Boolean \al-
ues are &pt in single bytes in memqrgr in sngle words on the stackZero represents a Booleéaise
and one a Booleanue.

2.5. Rightvalue, constant, and assignment operators

LRVOLA
Rv0Ol,a

The right \alue operators loadalues on the stackThey take a Hock number as a sub-opcode and
load the appropriate number of bytes from that block at tfeeto$pecified in the folleing word
onto the stack. As anxample, considetrv4:

-14-

_LRv4:
cvtbl (Ic)+,r0 #rOhas display inde
addI3 _display(r0),(Icy,r1 #rlhas \ariable address
pushl (r1) #putvalue on the stack
jmp (loop)

Here the interpreter places the displayelen r0. It then adds the appropriate displalue to the
inline offset and pushes thealue at this location onto the stacKontrol then returns to the main
interpreter loop.The RvO operators hee dort inline data that reduces the space required to address
the first 32K of stack space in each stack fraifiee operator®vi4 andrv24 provide eplicit con-
version to long as the data is pushddis saes the generation afTol to align aguments tac sub-
routines.

CONOr

The constant operators load @ue onto the stack from inline cod&mall intger \alues are con-
densed and loaded by tbeNioperatoythat is gven by

_CON1:
cvtbw (Ic)+,—(sp)
jmp (loop)

Here note that little wrk was required as the required constaaswailable at (Ic}. For longer

constantslc must be incremented before wireg the constantThe operatoCoN takes a length spec-
ification in the sub-opcode and can be used to load strings and attales length data onto the
stack. TheoperatorcoN14andcoN24provide explicit corversion to long as the constant is pushed.

ASO

The assignment operators are similar to arithmetic and relational operators in yhtkéhevo

operands, both in the staclytlihe lengths gen for them specify first the length of thalue on the
stack and then the length of thegiirin memory The taget address in memory is under tladue to
be stored.Thus the statement

i=1
wherei is a full-length, 4 byte, ingger, will generate the code sequence

Lv:| i
CON1:1
AS24

HereLv will load the address adf that is really gien as a Bock nhumber in the sub-opcode and af of
set in the follving word, onto the stack, occyipg a single wrd. CoONy, that is a single ard
instruction, then loads the constant 1, that is in its sub-opcode, onto theSitack there are not one
byte constants on the stack, this becomes a 2 byte, siogleinteger The interpreter then assigns a
length 2 intger to a length 4 ingeer usingas24. The code sequence fas24is given by:

_AS24:
incl Ic
cvitwl (sp)+.dspr
jmp (loop)

Thus the interpreter gets the singlerd/of the stack, ®tends it to be a 4 byte irger gets the tget
address dfthe stack, and finally stores thalwe in the taget. Thisis a typical use of the constant
and assignment operators.

-15-

2.6. Addressing operations

LLVIW
LV I,w
The most common operation done by the interpreter isléfievalue’ or “‘address of o peration. It
is given by:
_LLVv:
cvtbl (Ic)+,r0 #rOhas display inde
addI3 _display(r0),(Ic¥,—(sp) #pusladdress onto the stack
jmp (loop)

It calculates an address in the block specified in the sub-opcode by adding the associated display
entry to the dket that appears in the foling word. TheLv operator has a short inline data that
reduces the space required to address the first 32K of stack space in each call frame.

OFF s
The ofset operator is used in field namé&sus to get the address of

pt.fl

pi would generate the sequence

RV P
OoFF f1

where therv loads the &lue ofp, given its block in the sub-opcode andseft in the follaving word,
and the interpreter then adds thé&sef of the fieldfl in its record to get the correct addressF
takes its agument in the sub-opcode if it is small enough.

NIL
The example abwe is incomplete, lacking a check fond pointer The code generatedowld be
RV P
NIL
oFr fl1
where theniL operation checks for il pointer and generates the appropriate runtime error if it is.
LVCON "
A pointer to the specified length inline data is pushed onto the stdik.is primarily used foprintf
type strings used byRITEF. (see sections 3.6 and 3.8)
INX Os,ww
The operatorgnx2 andiNnx4 are used for subscriptind=or example, the statement
ali]:=2.0

with i an intgger anda an ‘array [1..1000] of real'would generate

-16-

LV:I a
RV4i i
INX4:8 1,999
CONS8 2.0
AS8

Here theLv operation taks the address afand places it on the stacKkhe \alue ofi is then placed
on top of this on the stackThe array address is ind® by the length 4 inde (a length 2 inde
would useiNx2) where the indiidual elements hee a &e of 8 bytes.The code foINx4 is:

_INX4:
cvtbl (Ic)+,r0
bneq L1
cvtwl (Ic)+,r0 #rOhas size of records
L1:
cvitwl (Ic)+,r1 #rlhas laver bound
movzwl (Ic)+,r2 #r2has uppetower bound
subl3 rl,(spy,r3 #r3has base subscript
cmpl r3,r2 #checKor out of bounds
bgtru esubscr
mull2 ro,r3 #calculatdyte ofset
addl2 r3,(sp) #calculatactual address
jmp (loop)
esubscr:
movw $ESUBSCR,_perrno
jor error

Here the laver bound is subtracted, and range clkdch@inst the upper minuswer bound. The
offset is then scaled to a bytdsgft into the array and added to the base address on the Ighaltik.
dimension subscripts are translated as a sequence of single subscriptings.

INDO

For indirect references througlar parameters and pointers, the interpreter has a set of indirection
operators that caert a pointer on the stack into alue on the stack from that addresd#ferentiND
operators are necessary because of the possibilityfefatif length operandslheIND14 andIND24
operators do caersions to long as tlygoush their data.

2.7. Arithmetic operators

The interpreter has mararithmetic operators All operators produce results long enough tos@me
oveflow unless the bounds of the base type aoeeded. Théasic operatorsvailable are

Addition: ADDO SUCCO
Subtraction: SUB] PREDC
Multiplication: ~ MUL SQRO
Division: DIV bvDO MODO
Unary: NEG] ABS

2.8. Rangechecking

The interpreter has weral range checking operator$he important distinction among these opera-
tors is betweenalues whose g range bgins at zero and those that do nogibeat zero, for xample a
subrange ariable whosealues range from 45 to 7@or those that bgin at zero, a simpletlogical’”’ com-
parison aginst the upper bound $igks. for others, both the Yoand upper bounds must be chedkinde-
pendentlyrequiring two comparisons. Othevax 11/780both checks are done using a single xniastruc-
tion so the only gin is in reducing the inline data.

-17-

2.9. Caseperators

The interpreter includes three operatorsdasestatements that are used depending on the width of
the caselabel type. For each width, the structure of the case data is the same, and is represented in figure
2.4.

CASEOP
No. of cases

Case
transfer
table

Array of case
label \alues

Figure 2.4 — Case data structure

The cAsEOPcase statement operators do a sequential search through the caselleisel Nthey
find the label alue, thg take the corresponding entry from the transfer table and cause the interpreter to
branch to the specified statemelitthe specified label is not found, an error results.

The CASE operators tal the number of cases as a sub-opcode if possiliiece diferent operators
are needed to handle single byterey and long case transfer tab&ues. Br example, thecAseorPioper
ator has the follving code sequence:

_CASEOP1:
cvtbl (Ic)+,r0
bneq L1
cvtwl (Ic)+,r0 #rOhas length of case table
L1:
movaw (Ic)[r0],r2 #r2has pointer to case labels
movzwl (sp},r3 #r3has the element to find
locc r3,r0,(r2) #rohas ind& of located element
beql caserr #elememtot found
mnegl r0,r0 #calculataew Ic
cviwl (r2)[r0],r1 #rlhas Ic ofset
addI2 ri,lc
jmp (loop)
caserr:

movw $ECASE,_perrno
jor error

Here the interpreter first computes the address of tiariag of the case labeblue area by adding
twice the number of case laballues to the address of the transfer table, since the transfer table entries are
2 byte address @dets. Itthen searches through the labalues, and generates an ECASE error if the label
is not found. If the label is found, the indeof the corresponding entry in the transfer tablexisagted and
that ofset is added to the interpreter location counter

2.10. Operationssupporting pxp
The following operations are defined to daeeution profiling.

-18-

PXPBUF w

Causes the interpreter to allocate a coufiieb with w four byte counters and to clear them to zero.
The count bffer is placed within an image of tipenon.oufiile as described in theXP Implementa-
tion Notes.The contents of thisuffer are written to the filpmon.outwhen the program ends.

COUNT w
Increments the counter specifiedvay

TRACNT w,A

Used at the entry point to procedures and functions, combining a transfer to the entry point of the
block with an incrementing of its entry count.

2.11. Sebperations

The set operations: unioxDpDT, intersectionMULT, element remeal SUBT, and the set relationals
RELT are straightfonard. Thefollowing operations are more interesting.

CARD s

Takes the cardinality of a set of sizbytes on top of the stack, iéag a 2 byte intger count.CARD
uses thdfs opcode to succesdy count the number of set bits in the set.

CTTOT s,w,w

Constructs a setThis operation requires a nonvigl amount of vark, checking bounds and setting
individual bits or ranges of bitsThis operation sequence is\s|cend motvates the presence of the
operatoriNCT belov. The aguments tacTToT include the number of elemergsn the constructed
set, the laver and upper bounds of the set, the wwalues, and a pair ofalues on the stack for each
range in the set, single elements in constructed sets being duplicatexsbustto form deyenerate
ranges.

IN s,w,w

The operatoiin for sets. The \alue s specifies the size of the set, theotw values the laver and
upper bounds of the sefThe \alue on the stack is chesk to be in the set on the stack, and a
Boolean walue oftrue or falsereplaces the operands.

INCT

The operatoin on a constructed set without constructingTihe left operand oih is on top of the
stack follaved by the number of pairs in the constructed set, and then the pairs tlesymsiklrs sin-
gle word integers. Rirs designate runs obles and singlealues are represented by ajeleerate
pair with both \alue equal.This operator is generated in grammatical constructs such as

if charactein [+, =", 'O, /]
or
if charactein ['a".."z", °'$", *']
These constructs are common asPal, anaNCT makes them run muchaster in the interpreteas if

they were written as an #ient series off statements.

2.12. Miscellaneous

Other miscellaneous operators that are present in the interprerararinat causes the program to
end if the Booleanalue on the stack is ntue, andsTol, STOD, ITOD, and ITOS that cowert between dif-
ferent length arithmetic operands for use in aligning tigeraents inprocedure andfunction calls, and
with some untypeduilt-ins, such asiN andcos

-19-

Finally, if the program is run with the run-time testing disabled, there are special operafors for
statements and special ixdieg operators for arrays thatyeindividual element size that is awer of 2.
The code can run significantlgdter using these operators.

2.13. MathematicalFunctions

The transcendental functiossy, COS ATAN, EXP, LN, SQRT, SEED, and RANDOM are talen from the
standard UNIX mathematical packag€hese functions takdouble precision floating pointalues and
return the same.

The functionExPO, TRUNC, and ROUND take a cbuble precision floating point numberxpPo returns
an inteer representing the machine representation of gisnants exponent, TRUNC returns the intger
part of its agument, anckOUND returns the rounded irger part of its ajument.

2.14. Systenfunctions and procedures

LLIMIT

A line limit and a file pointer are passed on the stéicthe limit is non-ngative te line limit is set
to the specifiedalue, otherwise it is set to unlimite@he deéult is unlimited.

STLIM

A statement limit is passed on the stack. The statement limit is set as spethredebult is
500,000. Ndimit is enforced when thég’’ option is disabled.

CLCK
SCLCK

CLCK returns the number of milliseconds of user time used by the progmamk returns the num-
ber of milliseconds of system time used by the program.

WCLCK

The number of seconds since some predefined time is returned. Its primary usefulness is in determin-
ing elapsed time and in pridling a unique time stamp.

The other system time procedures &ee andTIME that cofy an gppropriate tgt string into a pascal string
array The functionaRGC returns the number of command ling@aments passed to the prograithe pro-
cedureARGV takes an inde on the stack and copies the specified command liganaent into a pascal
string array

2.15. Rascal procedures and functions

PACK s,w,w,w
UNPACK s,w,w,w

They function as a memory to memory weowith several semantic checksThey do no “unpack-
ing” or “‘packing” in the true sense as the interpreter supports ncepatdta types.

NEW s
DISPOSE s

An Lv of a pointer is passedvew allocates a record of a specified size and puts a pointer to it into
the pointer ariable. bisposedeallocates the record pointed to by the pointer and sets the pointer to
NIL.

The functioncHRO corverts a suitably small inger into an ascii charactelts primary purpose is to do a
range check.The functionobboreturnstrue if its argument is odd and returfeseif its agument is een.

-20-

The functionuNDEF always returns thealuefalse
3. Input/output

3.1. Thefiles structure

Each file in the Bscal emironment is represented by a pointer tiles structure in the heapAt the
location addressed by the pointer is the element in the WileHow variable. Behindhis windav variable
is information about the file, at the folling offsets:

-108 FNAME Text name of associated UNIX file
-30 LCOUNT Currentount of lines output

-26 LLIMIT Maximum number of lines permitted
-22 FBUF UNIX FILE pointer

-18 FCHAIN Chain to nat file

-14 FLEV Pointer to associated filaxable

-10 PFMME Pointerto name of file for error messages
-6 FUNIT File status flags
-4 FSIZE Size of elements in the file
0 Fle windov element

HereFBUF is a pointer to the system FILE block for the filthe standard system I/O library is used
that pravides block ffered input/output, with 1024 characters normally transferred at each read or write.

The files in the Bscal emironment, are all linkd together on a single file chain throughrbaAIN
links. For each file th&LEV pointer gves its associated fileariable. Thesare used to free files at block
exit as described in section 3.3 bs&lo

The FNAME and PFM\ME give the associated file name for the file and the name to be used when
printing error diagnostics respaally. Although these names are usually the sanpet and outputusu-
ally have ro associated file name so the distinction is necessary

The FUNIT word contains a set of flags/hose representations are:

EOF 0x0100 At end-of-file

EOLN 0x0200 At end-of-line (tet files only)

SYNC 0x0400 File window is aut of sync

TEMP 0x0800 File is temporary

FREAD 0x1000 File is open for reading

FWRITE 0x2000 Filas open for writing

FTEXT 0x4000 File is a tat file; process EOLN

FDEF 0x8000 File structure createdubfile not opened

The EOF and EOLN bits here reflect the associatétib function values. TEMPspecifies that the
file has a generated temporary name and that it should therefore wedevhen its block gits. FREAD
and FWRITE specify thatsetandrewrite respectiely have been done on the file so that input or output
operations can be don&TEXT specifies the file is axefile so that EOLN processing should be done,
with newline characters turned into blanks, etc.

The SYNC bit, when true, specifies that there is no usable image in theffidewindov. As ds-
cussed in thaBerkeley Pascal Users Manual, the interactie ewironment necessitates \iag “input™
undefined at the lginning of execution so that a program may print a prompt before the user is required to
type input. The SYNC bit implements thisWhen it is set, it specifies that the element in the winchoist
be updated before it can be usdthis is n&er done until necessary

3.2. Initialization of files

All the variables in the &scal runtime arnronment are cleared to zero on block enffhis is neces-
sary for simple processing of file#. a file is unused, its pointer will bal. All references to an inagt
file are thus references througmih pointer If the Rascal system did not clear storage to zero before

-21-

execution it would not be possible to detect inaetfiles in this simple ay; it would probably be necessary
to generate (possibly complicated) code to initialize each file on block entry

When a file is first mentioned inresetor rewrite call, a luffer of the form described abe is associ-
ated with it, and the necessary information about the file is placed iruffes brhe file is also linkd into
the actve file chain. This chain is kpt sorted by block mark address, the FLEV entries.

3.3. Blockexit

When block &it occurs the interpreter must free the files that are in use in the block and their associ-
ated luffers. Thisis simple and dicient because the files in the a&etifile chain are sorted by increasing
block mark addressThis means that the files for the current block will be at the front of the cRain.
each file that is no longer accessible the interpreter first flushes theuffirsibit is an output file. The
interpreter then returns the filefier and the files structure and winddo the free space in the heap and
removes the file from the acte file chain.

3.4. Flushing

Flushing all the file bffers at abnormal termination, or on a call to the procefliusbor messgeis
done by flushing each file on the file chain that has the FWRITE bit set in its Geadjs w

3.5. Theactive file

For input-output,px maintains a notion of an ae# file. Eachoperation that references a file maak
the file it will be using the acte file and then does its operatioA.subtle point here is that one may do a
procedure call tavrite that involves a call to a function that references another file, thereby ylagtitbe
active file set up before therite. Thus the actie file is saed & block entry in the block mark and restored
at block eit.T

3.6. Fileoperations

Files in Rascal can be used in dwdistinct ways: as the object oéad, write get, and put calls, or
indirectly as though thewere pointers.The second use as pointers must be careful not to yeb&o
actie file in a reference such as

write(output, input)
or the system wuld incorrectly write on the input diee.

The fundamental operator related to the use of a filmiis This tales the file ariable, as a pointer
insures that the pointer is nat, and also that a usable image is in the file wimdy forcing thesyNnc bit
to be cleared.

A simple exkample that demonstrates the use of the file operatongeis lyyi
writeln(f)
that produces
RViI f

UNIT
WRITLN

3.7. Readoperations

GET
Advance the acte file to the ngt input element.

T It would probably be better to dispense with the notion ofedie and use another mechanism that did not
involve extra overhead on each procedure and function call.

-22-

FNIL

A file pointer is on the stack. Insure that the associated file v& @t that the file is synced so that
there is inputaailable in the windov.

READO

If the file is a ta&t file, read a block of t& and comert it to the internal type of the specified operand.
If the file is not a tet file then do an unformatted read of thextnecord. The procedur&kEADLN
reads upto and including thextend of line character

READE A

The operatoREADE reads a string name of an enumerated type angextsnit to its internal &lue.
READE takes a pointer to a data structure asashim figure 3.2.

No. of cases

offsets
of element
names

Array of
null terminated
element names

Figure 3.2 — Enumerated type @ersion structure
See the description efaM in the nat section for anxample.
3.8. Write operations

PUT
Output the element in the adtifile window.

WRITEF s

The agument(s) on the stack are output by fitwéntf standard/o library routine. The sub-opcode
specifies the number of longwd aguments on the stack.

WRITEC

The character on the top of the stack is output without formattorgudited characters must be out-
put with WRITEF.

WRITES

The string specified by the pointer on the top of the stack is output twriteestandard/o library
routine. Allcharacters including nulls are printed.

WRITLN

A linefeed is output to the aeti file. Theline-count for the file is incremented and chettlaginst
the line limit.

-23-

PAGE
A formfeed is output to the ae file.

NAM A

The \alue on the top of the stack is weried to a pointer to an enumerated type string nante
address points to an enumerated type structure identical to that usedamg. An eror is raised if
the \alue is out of rangeThe form of this structure for the predefined tygo®leanis shavn in fig-
ure 3.3.

bool: 2
6
12
17
"false"
"true”

Figure 3.3 — Boolean type caaision structure

The code foNAM is

_NAM:
incl Ic
addI3 (Ic)+,ap,r6 #rg@ooints to scalar name list
movl (sp}.r3 #r3has data alue
cmpw r3,(ré)t #check alue out of bounds
bgequ enamrng
movzwl (r6)[r3],r4 #rdhas string inde
pushab (r6)[r4] #pushstring pointer
jmp (loop)
enamrng:
movw $ENAMRNG, perrno
jor error

The address of the table is calculated by adding the base address of the interpredprtcdde,of-
set pointed to byc. The first word of the table gies the number of records and pides a range
check of the data to be outputhe pointer is then calculated as

tblbase=ap+ A,
size= [tblbase+;
return(tblbase- tbibase[alue]);

MAX s,w

The sub-opcods is subtracted from the irger on the top of the stackthe maximum of the result
and the second gument,w, replaces thealue on the top of the stacKhis function erifies that
variable specified width guments are non-getive, and meet certain minimum width requirements.

MIN s

The minimum of the alue on the top of the stack and the sub-opcode replacesitieeon the top of
the stack.

The uses of files and the file operations are summarized aarpke which outputs a reahsable (r) with
a variable width field (i).

-24—-

writeln('r =",r:i,” 7, true);

that generates the code

UNITOUT
FILE
CON14:1
CON14:3
LVCON:4
WRITES
RV r

RV4: i

MAX:8 1

RV4: i

MAX:1 1
LVCON:8 " 0ULE"
FILE

WRITEF:6

CONC4

WRITEC

CON14:1

NAM bool
LVCON:4 "00s"
FILE

WRITEF:3

WRITLN

Here the operatayNITOUT is an abbréiated form of the operataniT that is used when the file to be
made actie isoutput A file descriptorrecord count, string size, and a pointer to the constant stringj ‘
are pushed and then output\wRrITES. Next the \alue ofr is pushed on the stack and the precision size is
calculated by taking sen less than the width,ub not less than oneThis is folloved by the width that is
reduced by one to lea gace for the required leading blank.the width is too narmw, it is expanded by
fprintf. A pointer to the format string is pushed felled by a file descriptor and the operat@iTEF that
prints outr. The \alue of six onwRITEF comes from tw longs forr and a long each for the precision,
width, format string pointeind file descriptar The operatoconc4pushes thélank character onto a long
on the stack that is then printed outWRITEC. The internal representation ftue is pushed as a long
onto the stack and is then replaced by a pointer to the string/’‘by the operatonAM using the table
boolfor corversion. Thisstring is output by the operaterITEF using the format string%s”. Finally the
operatowRITLN appends a mdine to the file.

3.9. Fileactivation and status operations

UNITO

The file pointed to by the file pointer on the top of the stack isett@d to be the aate file. The
opcodesuNITINP and UNITOUT imply standard input and output respedi instead of gplicitly
pushing their file pointers.

FILE
The standardo library file descriptor associated with the aetfile is pushed onto the stack.

EOF

The file pointed to by the file pointer on the top of the stack is eldeitk end of file. A boolean is
returned withtrue indicating the end of file condition.

-25-

EOLN

The file pointed to by the file pointer on the top of the stack is eldefdt end of line. A boolean is
returned withtrue indicating the end of line conditioriNote that only tet files can check for end of
line.

3.10. Filehouseleeping operations

DEFNAME

Four data items are passed on the stack; the size of the data type associated with the file, the maxi-
mum size of the file name, a pointer to the file name, and a pointer to therifileler. Afile record

is created with the specified windaize and the file ariable set to point to itThe file is markd as

defined It not opened.This allavs program statement association of file names with féeiables

before their use by RESETOr aREWRITE

BUFF s

The sub-opcode is placed in thdernal \ariable_bufoptto specify the amount of I/Quifering that
is desired.The current options are:

0 — character at a timeuiffering
1 - line at a time bffering
2 — block huffering

The deéult value is 1.

RESET
REWRITE

Four data items are passed on the stack; the size of the data type associated with the file, the maxi-
mum size of the name (possibly zero), a pointer to the file name (possibly null), and a pointer to the
file variable. Ifthe file has neer existed it is created as DEFNAME. If no file name is specified and

no previous name xsts (for &ékample one created lyeFNAME) then a system temporary name is
created.ReESETthen opens the file for input, whikeEwRITE opens the file for output.

The three remaining file operations aeJsH that flushes the aeg file, REMOVE that tales the
pointer to a file name and remes the specified file, ansESSAGE that flushes all the output files and sets
the standard error file to be the waetfile.

4. Conclusions

It is appropriate to considegiven the amount of time irested in revriting the interpreterwhether
the time vas well spent, or whether a code-generator cowd been written with an equélent amount of
effort. TheBerkeley Pascal system is being modified to inéeé to the code generator of the portable C
compiler with not much moreavk than vas irvolved in ravritting px. Howeve this compiler will proba-
bly not supercede the interpreter in an instructionglremment as the necessary loading and assembly
processes will slw the compilation process to a noticeablgrée. Thiseffect will be further gaggerated
because student users spend more time in compilation thaecutien. Measurementsver the course of
a quarter at Ber&ley with a mixture of students from d@ning programming to upperwiion compiler
construction she that the amount of time in compilatioraeeds the amount of time spent in the inter
preter the ratio being approximately 60/40.

A more promising approach mightyebeen a thrav-away code generator such asasvdone for the
WATFIV system. Huwever the addition of high-quality post-mortem and interaettebugging fcilities
become much more figult to provide than in the interpreter @rmonment.

