Reprinted with permission from the "Proceedings of that& 1994 Usenix Confer
ence", January 1994, San Francisco, CAydgpt The Usenix Association.

Not Quite NFS, Soft Cache Consistency for NFS

Rick Madklem
University of Guelph

Abstract

There are some constraints inherent in the NESJMtocol that result in performance limitations for
high performance wrkstation emironments. Thigaper discusses an NFSdikrotocol named Not Quite
NFS (NQNFS), designed to address some of these limitatibimis. protocol preides full cache consis-
teng during normal operation, while permitting mordeetive dient-side caching in an fefrt to improve
performance. Therare also a ariety of minor protocol changes, in order to resolrious NFS issues.
The emphasis is on obsed/ performance of a preliminary implementation of the protocol, in order to
shav how well this design wrks and to suggest possible areas for further ingoment.

1. Introduction

It has been obseed that werall workstation performance has not been scaling with processor speed
and that file system 1/O is a limitingdtor [Ousterhout90]Ousterhout notes that a principal challenge for
operating system #elopers is the decoupling of system calls from their underlying 1/O operations, in order
to improve average system call response timd=or distributed file systems,very synchronous Remote
Procedure Call (RPC) tak a minimum of a fe milliseconds and, as such, is analogous to an underlying
I/O operation. This suggests that client caching withexrywgood hit ratio for read type operations, along
with asynchronous writing, is required in order woid delays vaiting for RPC repliesHowever, the NFS
protocol requires that the senvbe statele$sind does not pride ary explicit mechanism for client cache
consisteng, putting constraints on hothe client may cache datdhis paper describes an NFSdigroto-
col that includes a cache consisterc

sharing by requiring the writer to push all the writes through to theerserv close and king readers

check to see if the file has been modified upon open. If the file has been modified, the clisrahyall

cached data for that file, as it iswatale. NFSimplementations typically detect file modification by
checking a cached copf the file’s modification time; since this cachedlwue is often sgeral seconds out

of date and only has a resolution of one second, an NFS client often uses stale cached data for some time
after the file has been updated on theeserv

A more dificult case is concurrent write sharing, where write operations are inggtmiith read
operations. Consistepndor this case, often referred to as "full cache consigtenequires that a reader
always receves the most recently written datdNeither NFS nor the Andvel TC file system maintain con-
sisteng for this case.The simplest mechanism for maintaining full cache consigtentie one used by
Sprite [Nelson88], which disables all client caching of the file wisn@ncurrent write sharing might
occur There are other mechanisms described in the literatumet®Ra, Burravs88], tut they appeared to
be too elaborate for incorporation into NQNFS (foample, kent's requires specialized hardve).
NQNFS difers from Sprite in the ay it detects write sharing. The Sprite sgrmaintains a list of files
currently open by thearious clients and detects write sharing when a file open request for writing is
receved and the file is already open for reading (or vieesa). Thidist of open files is hard state informa-
tion that must be resered after a seer crash, which is a significant problem in itgnoright [Mogul93,
Welch90].

The approach used by NQNFS isaiant of the Leases mechanism [Gray8B].this model, the
sener issues to a client a promise, referred to as a "lease," that the client may cache a specific object with-
out fear of conflict. A lease has a limited duration and must bewedeby the client if it wishes to con-
tinue to cache the objectn NQNFS, clients hold short-term (up to one minute) leases on files for reading
or writing. The leases are analogous to entries in the open fileXegpethat thg expire after the lease
term unless remeed by the client.As such, one minute after issuing the last lease there are no current
leases and therefore no lease records to beemtbafter a crash, hence the term "soft sestate."

A related design consideration is thayaclient writing is done.Synchronous writing requires that
all writes be pushed through to the sgrduring the write system callhis is the simplestariant, from a
consisteng point of view, snce the serer alvays has the most recently written data. It also permiys an
write errors, such as "file system out of space" to be pateddack to the cliest’lprocess via the write
system call returnUnfortunately this approach limits the client write rate, based orersemite perfor
mance and client/seev RPC round trip time (RI).

An alternatve this is delayed writing, where the write system call returns as soon as the data is
cached on the client and the data is written to theesesometime laterThis permits client writing to
occur at the rate of local storage access up to the size of the local désthefor cases where file trunca-
tion/deletion occurs shortly after writing, the write to the semay be woided since the data has already
been deleted, reducing serwvrite load. There are some w®lous dravbacks to this approachFor any
Sprite-like gystem to maintain full consistepahe serer must "callback” to the client to cause the delayed
writes to be written back to the serwhen write sharing is about to occUihere are also problems with
the propagtion of errors back to the client process that issued the write systertloalieason for this is
that the system call has already returned without reporting an error and the process mae aseallg
terminated. Asvell, there is a risk of the loss of recently written data if the client crashes before the data is
written back to the seev.

A compromise between theseadternatives is asynchronous writing, where the write to the serv
is initiated during the write system calltbthe write system call returns before the write completdss
approach minimizes the risk of data loss due to a client crashgistes the possibility of reducing serv
write load by thraving writes avay when a file is truncated or deleted.

NFS implementations usually do a mix of asynchronous and delayed wiitiqguéh all writes to
the serer upon close, in order to maintain open/close consigtelAeshing the delayed writes on close
negates much of the performance atvage of delayed writing, since the delays that weosled in the
write system calls are obsen/in the close system calkin to Sprite, the NQNFS protocol does delayed
writing in an efort to achiee good client performance and uses a callback mechanism to maintain full

cache consistegc

3. Related Work

There has been a great deal dbrefput into impraing the performance and consistgiof the NFS
protocol. This wrk can be put in tw categories. Thdirst catgory are implementation enhancements for
the NFS protocol and the seconddlve modifications to the protocol.

The work done on implementation enhancementsgehatacked two problem areas, NFS sa&wwrite
performance and RPC transport problerBgner write performance is a major problem for NFS, in part
due to the requirement to push all writes to theesempon close and in part due to thetfthat, for writes,
all data and meta-data must be committed to radatile storage before the serveplies to the write RPC.
The Prestoser™*t [Moran90] system uses noakatile RAM as a bffer for recently written data on the
sener, o that the write RPC replies can be returned to the client before the data is written to the-disk sur
face. Writegathering [Juszczak94] is a softwe technique used on the sarwhere a write RPC request is
delayed for a short time in the hope that another contiguous write request wd| srrihat the can be
merged into one write operatiorSince the replies to all of the ngex writes are not returned to the client
until the write operation is completed, this delay does not violate the proMttan write operations are
merged, the number of disk writes can be reduced, imipgosener write performanceAlthough either of
the abw@e reduces write RPC response time for the exgivcannot be reduced to zero, and sg; dient
side caching mechanism that reduces write RPC load or client dependenceeorRB&wesponse time
should still impree oveall performance.Good client side caching should be complementary to these
sener techniques, although client performance imgmeents as a result of caching may be less dramatic
when these techniques are used.

In NFS, each Sun RPC request is packaged in a UDP datagram for transmission t@thé thewer
is started, and if a timeout occurs before the corresponding RPC reply isdetbe RPC request is
retransmitted. Therare two problems with this modelFirst, when a retransmit timeout occurs, the RPC
may be redone, instead of simply retransmitting the RPC request message toethé\ secent-request
cache can be used on the serio minimize the rgative impact of redoing RPCs [Juszczak8Jhe sec-
ond problem is that a lge UDP datagram, such as a read request or write repdy be fragmented by IP
and if ary one IP fragment is lost in transit, the entire UDP datagram is lestt§]. Since entire requests
and replies are packaged in a single UDP datagram, this puts an upper bound on the read/write data size (8
kbytes).

Adjusting the retransmit timeout {H) intenal dynamically and applying a congestion windon
outstanding requests has beervainto be of some help [Nocki89] with the retransmission problenAn
alternatve o this is to use TCP transport to dely the RPC messages reliably [Macklem90] and one of
the performance results in this papernsfithe efects of this further

Srinivasan and Mogul [SrinBsan89] enhanced the NFS protocol to use the Sprite cache corysistenc
algorithm in an dbrt to improve performance and to pvade full client cache consisteyc This eperi-
mental implementation demonstrated significantly better performance than INE8fdred from a lack of
crash receery support. The NQNFS protocol design bowed heaily from this work, kut differed from
the Sprite algorithm by using Leases instead of file open state to detect write signgdecision to use
Leases ws made primarily tovaid the crash rea@ry problem. More recent wrk by the Sprite group
[Baker91] and Mogul [Mogul93] hae aldressed the crash reeoy problem, making this design tradeof
more questionable mo

Sun has recently updated the NFS protocol éosidn 3 [SUN93], using some changes similar to
NQNFS to addressavious issues. Thee¥sion 3 protocol uses 64bit file sizes arfdaif, proides a Read-
dir_and_Lookup RPC and an access RMCalso praides cache hints, to permit a client to be able to
determine whether a file modification is the result of that ctiemtite or some other clierst’write. It
would be possible to add either Spritely NFS or NQNFS support for cache constistéime NFS érsion
3 protocol.

4. NQNFS Consistency Protocol and Recovery

The NQNFS cache consistgnorotocol uses a soménat Sprite-lile [Nelson88] mechanismubis
based on Leases [Gray89] instead of hardesestate information about open fileBhe basic principle is
that the serer disables client caching of files wheeeconcurrent write sharing could ocg¢ly perform-
ing a serer-to-client callback, forcing the client to flush its caches and to do all subsequent I/O on the file
with synchronous RPCSA Sprite serer maintains a record of the open state of files for all clients and uses
this to determine when concurrent write sharing might oc&his open stateanformation might also be
referred to as an infinite-term lease for the file, wiplieit lease cancellationNQNFS, on the other hand,
uses a short-term lease thapiees due to timeout after a maximum of one minute, unlgpBcily
renaved by the client.The fundamental diérence is that an NQNFS client muskek renaing a lease to
use cached data whereas a Sprite client assumes the daltd imtil canceled by the sawor the file is
closed. Usindeases permits the servto remain "stateless," since the soft state information, which con-
sists of the set of current leases, is moot after one minute, when all the Jgaises e

Wheneer a dient wishes to access a fdahta it must hold one of three types of lease: read-caching,
write-caching or non-cachinglhe latter type requires that all file operations be done synchronously with
the serer via the appropriate RPCs.

A read-caching lease alls for client data cachingubno modifications may be don#. may, how-
eve, be dhared between multiple clients. Diagram 1vgba@ typical read-caching scenario. Thestical
solid black lines depict the lease recordéote that the time lines are wbere near to scale, since a
client/serer interaction will normally tad less than one hundred milliseconds, whereas the normal lease
duration is thirty secondskvery lease includesrmodevvaue, which changes upoweey modification of
the file. It may be used to check to see if data cached on the client is still current.

A write-caching lease permits delayed write cachingyéquires that all data be pushed to theeserv
when the leasexpires or is terminated by awietion callback. When a write-caching lease has almost
expired, the client will attempt taxéend the lease if the file is still opemtlis required to push the delayed
writes to the sewrr if renaval fails (as depicted by diagram 2Jhe writes may not ané & the serer until
after the write lease hagpred on the client, Ut this does not result in a consistgpcoblem, so long as
the write lease is stillalid on the semr. Note that, in diagram 2, the lease record on theesgemains
current after the»iry time, due to the conditions mentioned in sectionf® write RPC is done on the
sener after the write lease hagpired on the semr, this could be considered an error since consigtenc
could be lost, bt it is not handled as such by NQNFS.

Diagram 3 depicts ho read and write leases are replaced by a non-caching lease when there is the
potential for write sharing.A write-caching lease is not used in the Stanford V Digteith System
[Gray89], since synchronous writing isvalys used. A side &fct of this change is that the dito ten sec-
ond lease duration recommended by Grag ¥ound to be insfifient to achige gpod performance for the
write-caching leaseExperimentation shwed that thirty secondsas about optimal for cases where the
client and serer are connected to the same local areaar&tveo thirty seconds is the deft lease dura-
tion for NQNFS. A maximum of twice that alue is permitted, since Gray stwd that for some netwk
topologies, a layer lease duration functions bettétlthough there is anxglicit get_lease RPC defined for
the protocol, most lease requests are piggydxhckito the other RPCs to minimize the additionefteead
introduced by leasing.

4.1. Rationale
Leasing vas chosenwer hard serer state information for the follding reasons:

1. Thesener must maintain state information about all current client lesBese at most one lease is
allocated for each RPC and the leasqsre after their lease term, the upper bound on the number of
current leases is the product of the lease term and ther RC rate.In practice, it has been
obsened that less than 10% of RPCs request lemses and since most leasegha erm of thirty
seconds, the folleing rule of thumb should estimate the number ofeselease records:

Number of Serer Lease Records0.1 * 30 * RPC rate

Client A
Read syscall

Read syscall
from cache

Lease times

Read syscall

Modrev same

so can still
cache

Read syscal
from cache

__Read + lease req

. Reply

Read redcache
miss

- miss
Repy

S

Sener

Read caching leasge

for Client A

obit

' Get lease req

. Reply
with same modne

Read req (cache
miss)

I

w Read syscall

Reply

Client B adde
Read req

(cache migp)

Reply

Lease alid on machine
Diagram #1: Read Caching Leases

Read syscalls
from cache

Client A Sener
Get write lease req

Write syscall :\
1ﬁg@led/ Write caching

) Lease for client A
Delayed writg

syscalls
Lease rengd

before epiry W Lease rensed

Close syscall

Get write lease

Write req

W Lease times out
Write req
T Expiry delayed

" Repl
% due to write actiity

Expires write_slack
' seconds after lagtite
—— Lease alid on machine

Diagram #2: Write Caching Lease

Lease gpires

Client A gead Re ener Client B

ues \
Read syscal pluslease |
Read syscal
from cache

Get Lease Requegt

Read syscall _ ———— 1

_ Reply ———
Reneved with same modne
Lease (can still cache)

Get writelease Write syscall

| Get writelease

| \"l Write syscall
i Reply write cachi

9 Delayed writes
lease being cached

Read syscal Get read lease
L\ Eviction Notice

Delayed writes

epl
Write being flushed to

to the serer
Reply

— Reply |
Reply non-cachinfy Vacated |
lease _ ! :

/ %et write le write syscall

Read data Read request
(not cached)]

Reply da
w/ non-caching leas

synchronous
writes
(not cached)

Lease ®lid on machine
Diagram #3: Write sharing case

Since each lease record occupies 64 bytes ofiseremorystoring the lease records should not be a
serious problemlf a sener has ghausted lease storage, it can simpaitva fav seconds for a lease

to expire and free up a recor@®n the other hand, a Spritedikerver must store records for all files
currently open by all clients, which can require significant storage foge, laesily loaded serer.

In [Mogul93], it is proposed that a mechanisaguely similar to paging could be used to deal with
this for Spritely NFS, bt this appears to introduce airfamount of compbaty and may limit the
usefulness of open records for storing other state information, such as file locks.

2. Aftera srver crashes it must reee lease records for the current outstanding leases, which actually
implies that if it vaits until all leases la expired, there is no state to reen The serer must vait
for the maximum lease duration of one minute, and it muse sttroutstanding write requests result-
ing from terminated write-caching leases before issuing leases. The one minute delay can be
overlapped with file system consistgnchecking (g. fsck). Because no state must be nezed, a
lease-based sari like an NFS serer, avoids the problem of state reawy after a crash.

There can, hoever, be problems during crash reeery because of a potentially ¢g number of
write backs due to terminated write-caching leasese of these problems is a "rgery storm"”
[Baker91], which could occur when the senis oerloaded by the number of write RPC requests.
The NQNFS protocol deals with this by replying with a return status code calleddity later to

all RPC requests xeept write) until the write requests subsidé.this time, there has not beenfsuf
cient testing of seer crash reogery while under heay sener load to determine if the
try_acpin_later reply is a sfi€ient solution to the problemThe other problem is that consistgnc
will be lost if other RPCs are performed before all of the write backs for terminated write-caching
leases hae mmpleted. Thiss handled by only performing write RPCs until no write RPC requests
arrive for write_slack seconds, where write_slack is setweraktimes the client timeout retransmit
intenval, at which time it is assumed all clientsv&dad an opportunity to send their writes to the
sener.

3. Anotheradwantage of leasing is that, since leases are required at times when other I/O operations
occur, lease requests can almosvajls be piggybackd on other RPCsyaiding some of the \er-
head associated with thepdicit open and close RPCs required by a Sprite-fiistem. Compared
with Sprite cache consistenchis can result in a significantiyier RPC load (see table #1).

5. Limitations of the NQNFS Protocol

There is a serious risk when leasing is used for delayed write cadhitigp serer is simply too
busy to service a lease reva before a write-caching lease terminates, the client will not be able to push
the write data to the sexwbefore the lease has terminated, resulting in inconsyst&ute that the danger
of inconsisteng occurs when the seev assumes that a write-caching lease has terminated before the client
has had the opportunity to write the data back to theeselv an efort to avoid this problem, the NQNFS
sener does not assume that a write-caching lease has terminated until three conditions are met:

1 - dock time > (&piry time + clock skw)
2 - there is at least one serdaemon (nfsd) ating for an RPC request
3 - no write RPCs recekid for leased file within write_slack after the correctepliiy time

The first condition ensures that the lease kas&red on the client.The clock_skw, by default three sec-

onds, must be set to alue lager than the maximum time-of-day clock error that isliiko occur during

the maximum lease duratiohe second condition attempts to ensure that the client is aithgvfor

replies to ap writes that are still queued for service by an nfsd. The third condition tries to guarantee that
the client has transmitted all write requests to theegesmce write_slack is set towaal times the cliens
timeout retransmit inteal.

There are also certain file system semantics that are problematic for both NFS and NQNFS, due to
the lack of state information maintained by the serf a file is unlinled on one client while open on
another it will be remaed from the file sersr, resulting in &iled file accesses on the client that has the file
open. Ifthe file system on the se&wvis out of space or the client usedsk quota has beerxeseded, a
delayed write cardil long after the write system callas successfully completedlvith NFS this error will

be detected by the close system call, since the delayed writes are pushed uponittldd®@NNS hav-
eva, the delayed write RPC may not occur until after the close system call, possiblsiter the process
has a&ited. Thereforeif a process must check for write errors, a system call sufdyrmamust be used.

Another problem occurs when a process on one client is runninggeutable file and a process on
another client starts to write to the file. The read lease on the first client is terminated byethblugehe
client has no recoursaubto terminate the process, since the process is already in progress on the old
executable.

The NQNFS protocol does not support file locking, since a file lomkldvhare © invadve hard,
recovered after a crash, state information.

6. Other NQNFS Protocol Features

NQNFS also includes aaviety of minor modifications to the NFS protocol, in an attempt to address
various limitations. The protocol uses 64bit file sizes antsefs in order to handle & files. TCP trans-
port may be used as an altermatibo UDP for cases where UDP does not perform wé&tansport mecha-
nisms such as TCP also permit the use of mugetaread/write data sizes, which might imgqerfor
mance in certain @ronments.

The NQNFS protocol replaces the Readdir RPC with a Readdir_and_Lookup RPC that returns the
file handle and attriltes for each file in the directory as well as nhame and file id nuritbés additional
information may then be loaded into the lookup and file-atiilsaches on the clienthus, for cases such
as "Is -I", thestatsystem calls can be performed locally without doinglaokup or getattr RPCsAnother
additional RPC is the Access RPC that checks for file accessibiiipnsaighe semr. This is necessary
since in some cases the client user ID is mapped téeaedif user on the seswand doing the access check
locally on the client using file attites and client credentials is not corre®ne case where this becomes
necessary is when the NQNFS mount point is usied&ros authentication, where thereros authenti-
cation ticlet is translated to credentials on the sethat are mapped to the client side useiFd. further
details on the protocol, see [Macklem93].

7. Performance

In order to gauate the dectiveness of the NQNFS protocol, a benchmarkswised that as
designed to typify real ark on the client wrkstation. Benchmarksuch as Laddis [Wle93], that per
form sener load characterization are not appropriate for tligkysince it is primarily client cachingfief
cieng that needs to bevduated. Sincahese tests are measuringe@ll client system performance and
not just the performance of the file system, each sequence of asnzeviormed on identical hardwe and
operating system in order tadtor out the system componentieeting performance other than the file sys-
tem protocol.

The equipment used for the all the benchmarks are members of the DECstatanily jof work-
stations using the MIPS™§ RISC architectufdie operating system running on these systeassa\pre-
release grsion of 4.4BSD Unix™1 For al benchmarks, the file seswwas a DECstation 2100 (10 MIPS)
with 8Mbytes of memory and a local RZ23 SCSI disk (27msgexage access time)lhe clients range in
speed from DECstation 2100s to a DECstation 5000/25, arsgsalun with six block 1/0O daemons and a
4Mbyte huffer cache, xcept for the test runs where theffler cache size as the independenasiable. In

all cases /tmp is mounted on the local SCSI%ldkmachines were attached to the same uncongested Eth-
ernet, and ran in single user mode during the benchméhkkess noted otherwise, test runs used UDP
RPC transport and the resultseyi are the aerage \alues of four runs.

The benchmark used is the Modified AndiBenchmark (MAB) [Ousterhout90], which is a slightly
modified \ersion of the benchmark used to characterize performance of thewARBE: file system

Testing using the 4.4BSD MFS [Malsick90] resulted in slightly dgaded performance, probably since the machines only
had 16Mbytes of memorgnd so paging increased.

[Howard88]. TheMAB was set up with thexecutable binaries in the remote mounted file system and the
final load step ws commented out, due to a linkage problem during testing under 4.4B&pefore,
these results are not directly comparable to other reported MAB reSuktsMAB is made up of fiy ds-

tinct phases:

1. Males five drectories (no significant cost)

2. Coyy a file system subtree to aovking directory
3. Getfile attributes (stat) of all the @rking files

4. SearcHor strings (grep) in the files

5. Compilea library of C sources and argkithem

Of the five phases, the fifth is byaf the lagest and is the onefatted most by client caching mechanisms.
The results for phase #1 areanant over al the caching mechanisms.

7.1. Buffer Cache Size Tests

The first &periment vas done to see whaff&ft changing the size of theffer cache wuld have
client performance. A single DECstation 5000/2&8swised to do a series of runs of MAB withfetiént
buffer cache sizes for fouaxiations of the file system protocol. The foarigtions are as folles:

Case 1: NFS - The NFS protocol as implemented in 4.4BSD
Case 2: Leases - The NQNFS protocol using leases for cache congistenc

Case 3: Leases, Rdirlookup - The NQNFS protocol using leases for cache consiatehwith the
readdir RPC replaced by Readdir_and_Lookup

Case 4. Leases, Attrib leases, Rdirlookup - The NQNFS protocol using leases for cache copsistenc
with the readdir RPC replaced by the Readdir_and_Lookup, and requirialiddease not
only for file-data accessubalso for file-attribte access.

As can be seen in figure 1, theffler cache achiees aout optimal performance for the range obtiw ten
megabytes in size. At eleen megdytes in size, the system pageswvilgand the runs did not complete in a
reasonable time. v at 64Kbytes, theulfer cache imprees performance wer no buffer cache by a sig-
nificant magin of 136-148 secondsisus 239 seconddhis may be due, in part, to thect that the Com-

pile Phase of the MAB uses a rather smadtking set of file dataAll variants of NQNFS achie eout

the same performance, running around 3@&%tefr than NFS, with a slightly gar diference for lage
buffer cache sizesBased on these results, all remaining tests were run withuffer lbache size set to
4Mbytes. Although do not knowv what causes the local peak in the esrbetween 0.5 and 2 gabytes,

there is some indication that contention faffér cache blocks, between the update process (which pushes
delayed writes to the seawevery thirty seconds) and the I/O system calls, may beled.

7.2. Multiple Client L oad Tests

During preliminary runs of the MAB, it as obsered that the seer RPC counts were reduced sig-
nificantly by NQNFS as compared to NFS (table (Spritely NFS and Ultrix™4.3/NFS numbers were
taken from [Mogul93] and are not directly comparable, due to numeroigsedi€es in thexgerimental
setup including deletion of the load step from phaserhi$ suggests that the NQNFS protocol might scale
better with respect to the number of clients accessing therséitve experiment described in this section
ran the MAB on from one to ten clients concurrentityobsene the efects of hedier sener load. The
clients were started at roughly the same time by pressing all the <reeympgether and, although not
synchronized bgond that point, all clients euld finish the test run within aboutaveeconds of each other
This was not a realistic load of N agi dients, hut it did result in a reproducible increasing client load on
the serer. The results for the fourariants are plotted in figures 2-5.

Figure #1: MAB Phase 5 (compile)
160 I I I I

140 b\// |
120 [V /0
100 |

Time (sec) 80|

60 | NFS
B Leases i
40 Leases, Rdirlookup
B Leases, Attrib leases, Rdirlookup i
20
I L L L L
0
0 2 4 6 8 10
Buffer Cate Size (MBytes)
Table #1: MAB RPC Counts
RPC Getattr Read Write Lookup Other GetLease/Open-Closeotall|
BSD/NQNFS 277 139 306 575 294 127 1718
BSD/NFS 1210 506 451 489 238 0 2894
Spritely NFS 259 836 192 535 306 1467 3595
Ultrix4.3/NFS 1225 1186 476 810 305 0 4002

For the MAB benchmark, the NQNFS protocol reduces the RPC counts signifitamtiyith a min-
imum of extra overhead (the GetLease/Open-Close count).

Figure #2: MAB Phase 2 (copying)
T

140 f T I
— 2 |
120
100 | 7
80 | 7
Time (sec) B
60 7
- Leases
0 | Leases, Rdirlookup T
Leases, Attrib leases, Rdirlookup
20 [7
L L L L L
0
0 2 4 6 8 10

Number of Clients

Time (sec)

Time (sec)

40

35

30

25

15

10

40

35

30

25

15

10

Figure #3: MAB Phase 3 (stat/find)
T

T T T

NFS
Leases
Leases, Rdirlookup
Leases, Attrib leases, Rdirlookup

L L L (. L

2 4 6 8 10

Number of Clients

Figure #4: MAB Phase 4 (@p/wc/find)
T T T

NFS
Leases
Leases, Rdirlookup
Leases, Attrib leases, Rdirlookup

L L L (. L

2 4 6 8 10

Number of Clients

Figure #5: MAB Phase 5 (compile)
T T

450 ‘ ‘ ‘
400 |]
350 | 7
300 |]
— —
250
Time (sec) i
200 [
150 | NFS]
L Leases _
100 Leases, Rdirlookup
50 [Leases, Attrib leases, Rdirlookup —
L L L L L
0
0 2 4 6 8 10

Number of Clients

In figure 2, where a subtree ofverty small files is copied, the &ifence between the protocan+
ants is minimal, with the NQNFSaxiants performing slightly betterFor this case, the Read-
dir_and_Lookup RPC is a slight hindrance undewvdaad, possibly because it results irgkar directory
blocks in the bffer cache.

In figure 3, for the phase that gets file atitéds for a lage number of files, the leasingnants tak
about 50% longeindicating that there are performance problems in this aoedah& case wherealid cur
rent leases are required foregy file when attrilites are returned, the performance is significandyses
than when the attrilies are allved to be stale by avieseconds on the clientl havenot been able to
explain the oscillation in the cuesg for the Lease cases.

For the string searching phase depicted in figure 4, the leaairants that do not requirahd leases
for files when attribtes are returned appear to scale better witresévad than NFSHowever, the efect
appears to be gégible until the serer load is &irly heavy.

Most of the time in the MAB benchmark is spent in the compilation phase and this is where the dif-
ferences between caching methods are most pronoufrcéidure 5 it can be seen thatygarotocol \ariant
using Leases performs aboutaatbr of two better than NFS at a load of ten clients. This indicates that the
use of NQNFS may ale seners to handle significantly more clients for this type ofkioad.

Table 2 summarizes the MAB run times for all phases for the single client DECstation 5000/25. The
Leasescase refers to using leases, wheread #ases, Rdirtase uses the Readdir_and_Lookup RPC as
well and theBCade Onlycase uses leasesjtlonly the biffer cache and not the attuite or name caches.

The No Cading cases does not doyaglient side caching, performing all system calls via synchronous
RPCs to the seer.

Table #2: Single DECstation 5000/25 Client ElapsedeB (sec)

Phase 1 2 3 4 5 Total %Improvement
No Caching 6 b 11 40 258 380 -93
NFS 5 24 15 20 133 197 0
BCache Only 5 20 24 23 116 188 5
Leases, Rdirl 5 20 21 20 105 171 13
Leases 5 19 21 21 99 165 16

7.3. Processor Speed Tests

An important goal of client-side file system caching is to decouple the 1/0O system calls from the
underlying distrilited file system, so that the clieng/stem performance might scale with processor speed.
In order to test this, a series of MAB runs were performed on three DECstations that are sieyitafoe
processor speedn addition to the four protocolaviants used for the ab® tests, runs were done with the
client caches turned foffor worst case performance numbers for caching mechanisms with a 100% miss
rate. The CPU utilization @ measured, as an indicator oivhouch the processoras blocking for 1/0
system calls. Note that since the systems were running in single user mode and otherwise quiescent, almost
all CPU actvity was directly related to the MAB rurThe results are presented in tableThe CPU time
is simply the product of the CPU utilization and elapsed running time and, as such, is the optimistic bound
on performance achieble with an ideal client caching scheme thatenblocks for 1/0. As can be seen in
the table, ap caching mechanism achies dgnificantly better performance than when caching is disabled,
roughly doubling the CPU utilization with a corresponding reduction in run tioreNFS, the CPU uti-
lization is dropping with increase in CPU speed, whicluld suggest that it is not scaling with CPU speed.
For the NQNFS wariants, the CPU utilization remains at just beR0%, which suggests that the caching
mechanism is wrking well and scaling within this CPU rangBlote that for this benchmark, the ratio of
CPU times for the DECstation 3100 and DECstation 5000/25 are qdé@eedifthan the Dhrystone MIPS
ratings would suggest.

Overall, the results seem encouraging, although it remains to be seen whether or not the caching pro-
vided by NQNFS can continue to scale with CPU performafitere is a good indication that NQNFS
permits a semr to scale to more clients than does NFS, at leastddtl@ads akin to the MAB compile
phase. Amore dificult question is "What if the sesv is much dster doing write RPCs?" as a result of
some technology such as Prestosexwrite gathering. Since dgnificant part of the diérence between
NFS and NQNFS is the synchronous writing, it ididilt to predict hav much a serer capable ofdst
write RPCs will ngate the performance imprements of NQNFS At the \ery least, table 1 indicates that
the write RPC load on the servhas decreased by approximately 30%, and this reduced write load should
still result in some impngement.

Indications are that the Readdir_and_Lookup RPC has notwatpperformance for these tests and
may in fact be dgrading performance slightlyThe results in figure 3 indicate some problems, possibly
with handling of the attrilte cache. It seems logical that the Readdir_and_Lookup RPC should be permit
priming of the attrilite cache impngng hit rate, lot the results are counter to that.

7.4. Internetwork Delay Tests

This experimental setup &s used tox@lore hav the diferent protocol &riants might performer
internetworks with lager RPC RTs. The sergr was maed to a £parate Ethernet, using a MicrX11™
as an IP router to the other Ethernet. The 4.3Reno BSD Unix system running on theAMItrmes mod-
ified to delay IP paaks being fonarded by a tunable N millisecond delaye implementation as rather
crude and did not try to simulate a distibon of delay times nor &s it programmed to drop patk at a

Table #3: MAB Phase 5 (compile)
DS2100 (10.5 MIPS) DS3100 (14.0 MIPS) DS5000/25 (26.7 MIPS)
Elapsed CPU CPU Elapsed CPU CPU Elapsed CPU CPU
time Util(%) time time Util(%) time time Util(%) time

Leases 143 89 127 113 87 98 99 89 88
Leases, Rdirl 150 89 134 110 91 100 105 88 92
BCache Only 169 85 144 129 78 101 116 75 87
NFS 172 77 132 135 74 100 133 71 94
No Caching 330 47 155 256 41 105 258 39 101

given rate, lut it sened as a simple emulation of a longt fietwork® [Jacobson88]. Th&AB was run
using both UDP and TCP RPC transports foradety of R'T delays from fie to two hundred millisec-
onds, to obseps/the efects of RT delay on RPC transporit was found that, due to a higlanability
between runs, four runsas not sufce, so eight runs at eachlve was done.The results in figure 6 and
table 4 are thevarage for the eight runs.

| found these results somleat surprising, since | had assumed that stability across an interketw
connection wuld be a function of RPC transport protoctboking at the standard dations obsered
between the eight runs, there is an indication that the NQNFS protocol plagerartde in maintaining
stability than the underlying RPC transport protodblappears that NFSver TCP transport is the least
stable ariant tested.lt should be noted that the TCP implementation usasl wughly at 4.3BSDahoe
release and that the 4.4BSD TCP implementatias far less stable andawld fail intermittently due to a
bug | was not able to isolatdt would appear that some of the recent enhancements to the 4.4BSD TCP
implementation hae a @trimental efect on the performance of RPC-type fimloads, which intermix
small and lage data transfers in both directioris.is obvious that more xploration of this area is needed
before ag conclusions can be madeyload the &ct that wer alocal area netark, TCP transport pxades

Figure #6: MAB Phase 5 (compile)
T T

500
— —
400 s
300 |]
Time (sec)
— —
200
Leases,UDP
L Leases,TCP/ . _
100 NFS,UDP
NFS,TCP
i 1 ol !
0
0 50 100 150 200

Round Tip Delay (msec)

Table #4: MAB Phase 5 (compile) for Internek Delays
NFS,UDP NFS, TCP Leases,UDP Leases, TCP
Delay Elapsed Standard Elapsed Standard Elapsed Standard Elapsed Standard
(msec) timgsec) Deiation time(sec) Deiation time(sec) Deiation time(sec) Deiation

5 139 2.9 139 2.4 112 7.0 108 6.0
40 175 5.1 208 44.5 150 23.8 139 4.3
80 207 3.9 213 4.7 180 7.7 210 52.9
120 276 29.3 273 17.1 221 7.7 238 5.8
160 304 7.2 328 77.1 275 21.5 274 10.1
200 372 35.0 506 235.1 338 25.2 379 69.2

3Long fat netvorks refer to netark interconnections with a Bandwidth X'R product > 18 bits.

performance comparable to UDP

8. Lessons Learned

Evaluating the performance of a distribd file system is fraught with @dulties, due to the man
software and hardare fctors iwolved. Thelimited benchmarking presented here took a considerable
amount of time and the resultaiged by the xercise only gie indications of what the performance might
be for a fev scenarios.

The IP router with delay introduction e to be a \aluable tool for protocol delggindg', and may
be useful for a morextensive gudy of performancewer internetvorks if enhanced to do a better job of
simulating internetwrk delay and paek loss.

The Leases mechanism pided a simple model for the pigion of cache consistepend did seem
to improve performance for arious scenariosUnfortunately it does not preide the serer state informa-
tion that is required for file system semantics, such as locking, thgtsofanare systems demanth pro-
duction emironments on my campus, the need for file locking and the correct generation of the ETXTBSY
error code areafr more important that full cache consistenad leasing does not satisfy these needs.
Another file system semantic that requires hardesestate is the delay of file remab until the last close
system call. Although Spritely NFS did not support this semantic eitherogical that the open file state
maintained by that systemowid facilitate the implementation of this semantic more easily thmrdathe
Leases mechanism.

9. Further Work

The current implementation uses aefix moderate sizeduffier cache designed for the local UFS
[McKusick84] file system.The results in figure 1 suggest that this is adequate so long as the cache is of an
appropriate sizeHowever, a nechanism permitting the cache tary in size has been shio to outperform
fixed sized bffer caches [Nelson90], and could be beneficial. It could also be useful wotldduffer
cache to gre very lage by making use of local backing store for cases wherersgevformance is lim-
ited. Avery large huffer cache size awuld in turn permit gperimentation with much lger read/write data
sizes, &cilitating hulk data transfers across lorgt hetworks, such as will characterize the Internet of the
near future.A careful redesign of theuffer cache mechanism to pide support for these featureswid
probably be the ng implementation step.

The results in figure 3 indicate that the mechanics of caching fileussiland maintaining the
attribute caches mnsisteng needs to be loadd at further There also needs to be morerkwdone on the
interaction between a Readdir_and_Lookup RPC and the name angteitabhes, in anfeft to reduce
Getattr and Lookup RPC loads.

The NQNFS protocol has wer been used in a productionwwmnment and doing soauld provide
needed insight into mowell the protocol saisfies the needs of reathkgtation emironments. Itis hoped
that the distribtion of the implementation in 4.4BSD wilkdilitate use of the protocol in productiorvien
ronments elsehere.

The big question that needs to be resdlis whether Leases are an adequate mechanism for cache
consisteng or whether hard seer state is requiredGiven the work presented here and in the papers
related to Sprite and Spritely NFS, there are clear indications that a cache conslgtenthim can
improve loth performance and file system semanti&s.yet, hovever, it is unclear what the best approach
to maintain consistends. Itwould appear that hard state information is required for file locking and other
mechanisms and, if so, it seems appropriate to use it for cache coysisteet.

“It exposed tw bugs in the 4.4BSD netwking, one a problem in the Lance chipverifor the DECstation and the other a TCP
window sizing problem that | ws not able to isolate.

10. Acknowledgements

| would like o thank the members of the CSRG at theveersity of California, Berkley for their
continued supportwar the years. \WWhout their encouragement and assistance this amftwould never
have been implementedProf. Jim Linders and Prof.om WIison here at the Uwérsity of Guelph helped
proofread this paper and fleff Mogul provided a great deal of assistance, helping to turn my gibberish
into something at least moderately readable.

11. References

[Baker91] MaryBaker and John Ousterhouty@ability in the Sprite Distribted File System, In
Opemating System Rigaw, (25)2, pg. 95-98, April 1991.
[Baker91la] MaryBaker, private communication, May 1991.

[Burrows88] MichaelBurrows, Eficient Data Sharing,é&chnical Report #153, Computer Laboratory
University of Cambridge, Dec. 1988.

[Gray89] CaryG. Gray and Déd R. Cheriton, Leases: An fiffient Fault-Tolerant Mechanism for
Distributed File Cache Consistgndn Proc. of the Welfth ACM Symposium on Opsgr
ing Systems Principal&itchfield Rark, AZ, Dec. 1989.

[Howard88] JohnH. Howard, Michael L. KazarSherri G. Menees, Dad A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham and Michaelekt\scale and Performance in a Dis-
tributed File SystemACM Trans. on Computer Systen@)1, pg 51-81, Feli988.

[Jacobson88] &n Jacobson and R. BraddiGP Extensions for Long-Delayths ARPANET Work-
ing Group Requests for Comment, DDN NetwInformation CenteiSRI International,
Menlo Rark, CA, October 1988, RFC-1072.

[Jacobson89] & Jacobson, Sun NFS Performance Probléingate CommunicationNovember
1989.
[Juszczak89] Chetluszczak, Impnang the Performance and Correctness of an NFSeBénvProc.

Winter 1989 USENIX Confence pg. 53-63, San Dgo, CA, January 1989.

[Juszczak94] Cheluszczak, Impnang the Write Performance of an NFS Sayo gppear inProc.
Winter 1994 USENIX Confence San Francisco, CA, January 1994.

[Kazar88] MichaelL. Kazar Synchronization and Caching Issues in the AndFéle System, In
Proc. WWnter 1988 USENIX Confence pg. 27-36, Dallas, TX, February 1988.

[Kent87] Christopher A. Kent and Jdfey C. Mogul, Fragmentation Consided Harmful
Research Report 87/3, Digital Equipment Corporatioestééfn Research Laboratory
Dec. 1987.

[Kent87a] ChristophelA. Kent, Cache Coheence in Distriluted SystemdResearch Report 87/4,

Digital Equipment Corporation ¥gtern Research LaboratoApril 1987.

[Macklem90] RickMacklem, Lessons Learnediifing the 4.3BSD Reno Implementation of the NFS
Protocol, InProc. Wnter 1991 USENIX Confence pg. 53-64, Dallas, TX, January
1991.

[Macklem93] RickMacklem, The 4.4BSD NFS Implementation, The System Magar's Manual
4.4 Berleley Software Distrilution, Uniersity of California, Berkley, June 1993.

[McKusick84] MarshalK. McKusick, Wlliam N. Joy, Samuel J. Ldfer and Robert S.dbry, A Fast
File System for UNIXACM Transactions on Computer Systendsl. 2, Number 3, pg.
181-197, August 1984.

[McKusick90] MarshalK. McKusick, Michael J. Karels andelith Bostic, A Rgeable Memory Based
Filesystem, InProc. Summer 1990 USENIX Corgfece pg. 137-143, Anaheim, CA,
June 1990.

[Mogul93]

[Moran90]

[Nelson88]

[Nelson90]
[Nowicki89]

[Ousterhout90]

[Sandbeg85]

[Srinivasan89]

[Steiner88]

[SUN8]

[SUN93]

[Wittle93]

Jefrey C. Mogul, Recwery in Spritely NFS, Research Report 93/2, Digital Equipment
Corporation Véstern Research Laboratpdyne 1993.

JosepiMoran, Russel SandlgrDon Coleman, Jonatharepecs and Bobylon, Break-
ing Through the NFS Performance BarriarProc. Spring 1990 EUUG Confance pg.
199-206, Munich, FRG, April 1990.

MichaeN. Nelson, Brent B. \&ich, and John K. Ousterhout, Caching in the Sprite Net-
work File SystemACM Transactions on Computer Syste(@§l pg. 134-154, February
1988.

MichaeN. Nelson,Virtual Memory vs. Theile SystemResearch Report 90/4, Digital
Equipment Corporation ¥étern Research Laboratokyarch 1990.

Bill Nowicki, Transport Issues in the Netvk File System, IIlComputer Communication
Review, pg. 16-20, March 1989.

JohiK. Ousterhout, Wi Arent Operating Systems Gettingaster As Bst as Hard-
ware? InProc. Summer 1990 USENIX Comfece pg. 247-256, Anaheim, CA, June
1990.

RusselSandbey, David Goldbeg, Stere Kleiman, Dan Vélsh, and Bob yon, Design
and Implementation of the Sun Netk filesystem, InProc. Summer 1985 USENIX
Confeence pages 119-130, Portland, OR, June 1985.

V Srinivasan and Jéfey. C. Mogul, Spritely NFS: Experiments with Cache-Consistenc
Protocols, InProc. of the Welfth ACM Symposium on Opaing Systems Principals
Litchfield Park, AZ, Dec. 1989.

JG. SteinerB. C. Neuman and J. |. SchilleKerberos: An Authentication Service for
Open Netwrk Systems, IProc. Wnter 1988 USENIX Confence pg. 191-202, Dallas,
TX, February 1988.

SunMicrosystems Inc.NFS: Network He System Ritocol SpecificationARPANET
Working Group Requests for Comment, DDN Netl Information CenteiSRI Interna-
tional, Menlo Rrk, CA, March 1989, RFC-1094.

SunMicrosystems Inc.NFS: Network He System &fsion 3 Potocol SpecificationSun
Microsystems Inc., Mountaini&v, CA, June 1993.

Mark Wittle and Bruce E. Kith, LADDIS: The Ne&t Generation in NFS File Seaw
Benchmarking, InProc. Summer 1993 USENIX Cordiace pg. 111-128, Cincinnati,
OH, June 1993.

ONFS is beliged to be a tademark of Sun Microsystems, Inc.

T Prestosere is a tademark of Lgao Systems, Inc.

8§ MIPS is a trademark of Silicon Graphics, Inc.

T DECstation, Micro¥AXII and Ultrix are trademarks of Digital Equipment Corp.
T Unix is a trademark of Nell, Inc.

