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ABSTRAT

With the cost per byte of memory approaching that of the cost per byte for disks,
and with file systems increasingly distant from the host machinesy appeoach to the
implementation of virtual memory is necessaRather than preallocating sy space
which limits the maximum virtual memory that can be supported to the size of éipe sw
area, the system should support virtual memory up to the sum of the sizesicalph
memory plus sap space. & systems with a local sp disk, lt remote file systems, it
may be useful to use some of the memoryetepktrack of the contents of theagwspace
to avoid multiple fetches of the same data from the file system.

The nev implementation should also addwnéunctionality Processes should be
allowed to hae lamge sparse address spaces, to map files into their address spaces, to map
device memory into their address spaces, and to share memory with other processes. The
shared address space may either be obtained by mapping a file into (post&ilEntjlif
parts of their address space, or by arranging to starenymous memory’(that is,
memory that is zero fill on demand, and whose contents are lost when the last process
unmaps the memory) with another process as is done in System V

One use of shared memory is topde a high-speed Intétrocess Communica-
tion (IPC) mechanism betweendwr more cooperating processes.ifisure the intgrity
of data structures in a sharedim, processes must be able to use semaphores to coordi-
nate their access to these shared structures. In Systimes¥ semaphores are yided
as a set of system calls. Unfortunatéihe use of system calls reduces the throughput of
the shared memory IPC to that odsting IPC mechanismsWe ae proposing a scheme
that places the semaphores in the shared memgnyese, so that machines thavbaa
test-and-set instruction can handle the usual uncontested lock and unlock without doing a
system call. Only in the unusual case of trying to lock an alreadgddokk or in releas-
ing a wanted lock will a system call be requiredihe interfice will allov a userlevel
implementation of the System V semaphore iatfon most machines with a much
lower runtime cost.



1. Motivations for a New Mrtual Memory System

The virtual memory system disttited with Berleley UNIX has sered its design goals admirably
well over the ten years of itsxestence. Hwever the relentless a@wce of technology has dpgn to render
it obsolete. This section of the paper describes the current design, points out the current technological
trends, and attempts to define thevresign considerations that should beetaknto account in a mevir-
tual memory design.

Implementation of 4.3BSD virtual memory

All Berkeley Software Distrilutions through 4.3BSD hia wsed the same virtual memory desigll
processes, whether aaia sleeping, hae me amount of virtual address space associated with them.
This virtual address space is the combination of the amount of address space with whidaitialig
started plus anstack or heap>gpansions that tlyehavemade. Allrequests for address space are allocated
from available swap space at the time that yhare first made; if there is indidient swap space left to
honor the allocation, the system call requesting the address sylacgyhchronously Thus, the limit to
awailable virtual memory is established by the amount @fpsgpace allocated to the system.

Memory pages are used in a sort of shathg to contain the contents of recently accessed locations.
As a process first references a locationva pege is allocated and filled either with initialized data or zeros
(for new stack and break pageshs the supply of free pagesdies to run out, dirty pages are pushed to
the previously allocated sap space so that thean be reused to containwlg faulted pageslf a previ-
ously accessed page that has been pushedajp isvonce agn used, a free page is reallocated and filled
from the svap area [Babaoglu79], [Someren84].

Design assumptionsdr 4.3BSD virtual memory

The design criteria for the current virtual memory implementation were made in A97®at time
the cost of memory as about a thousand times greater per byte than magnetic Misksmachines were
used as centralized time sharing machinBsese machines hadrfmore disk storage than yhiead mem-
ory and gven the cost tradebfbetween memory and disk storageanted to mak maximal use of the
memory &en a the cost of vasting some of the disk space or generatitigaealisk 1/0O.

The primary motiation for virtual memory &s to allev the system to run indidual programs
whose address spaceceeded the memory capacity of the machifikus the virtual memory capability
allowed programs to be run that could notdndeen run on a sap based systentqually important in the
large central timesharing @inonment vas the ability to alle the sum of the memory requirements of all
active processes toxeeed the amount of phical memory on the machin@he epected mode of opera-
tion for which the system ag tuned \as to hae the sum of actie virtual memory be one and a half tootw
times the piisical memory on the machine.

At the time that the virtual memory systenasvdesigned, most machines ran with little or no net-
working. All the file systems were contained on disks that were directly connected to the m&atmine.
larly all the disk space #leted to svap space @s also directly connectedhus the speed and latgneith
which file systems could be accessed were roughlyagqnot to the speed and latgnwith which swap
space could be accessddiven the high cost of memory thereaw little incentre © havethe lernel leep
track of the contents of the ay area once a processted since it could almost as easily and quickly be
reread from the file system.

New influences

In the ten years since the current virtual memory systamdesigned, mariechnological adances
have accurred. Oneffect of the technological velution is that the micro-processor has becomegptul
enough to allev users to hae their ovn personal wrkstations. Thughe computing erironment is muing
awgy from a purely centralized time sharing model to arirenment in which users ka a ©omputer on
their desk. This workstation is linked through a netark to a centralized pool of machines thatvide fil-
ing, computing, and spooling serviceBhe workstations tend to ka a hrge quantity of memonput little
or no disk spaceBecause users do noamt to be bothered with backing up their disks, and because of the
difficulty of having a centralized administration backing up hundreds of small disks, these local disks are



typically used only for temporary storage and aspsgpaceLong term storage is managed by the central
file sener.

Another major technical adwnce has been in alMas of storage capacityln the last ten years we
have experienced adctor of four decrease in the cost per byte of disk storegthis same period of time
the cost per byte of memory has dropped bgctof of a hundredThus the cost per byte of memory com-
pared to the cost per byte of disk is approachingferdiice of only about aftor of ten.The efect of this
change is that theay in which a machine is used isgrning to change dramaticallAs the amount of
physical memory on machines increases and the number of users per machine decreapesi¢de®de
of operation is changing from that of supporting morevactirtual memory than p¥sical memory to that
of having a surplus of memory that can be used for other purposes.

Because manmachines will hae nore plysical memory than tlyedo swap ace (with diskless
workstations as anxereme @ample!), it is no longer reasonable to limit the maximum virtual memory to
the amount of sap space as is done in the current desi@ansequentlythe nev design will allav the
maximum virtual memory to be the sum ofypltal memory plus sap spaceFor machines with no sap
space, the maximum virtual memory will bevgmed by the amount of ghical memory

Another efect of the current technology is that the lateand overhead associated with accessing
the file system is considerably higher since the access must lerlieeonetvork rather than to a locally-
attached diskOne use of the surplus memorguld be to maintain a cache of recently used files; repeated
uses of these filesomld require at most aevification from the file seer that the data as up to date.
Under the current design, file caching is done by thif2bpool, while the free memory is maintained in a
separate poolThe nev design should hae mly a single memory pool so thatyafree memory can be
used to cache recently accessed files.

Another portion of the memory will be used teep track of the contents of the blocks ol an
locally-attached sep space analogously to thayvthat memory pages are handl&thus inactre svap
blocks can also be used to cache less-recently-used fileSiate the sap disk is locally attached, it can
be much more quickly accessed than a remotely located file sy$tamdesign allas the user to simply
allocate their entire local disk to aw space, thus allong the system to decide what files should be cached
to maximize its usefulnessthis design has twmajor benefits.It relieves the user of deciding what files
should be kpt in a small local file systentt also insures that all modified files are migrated back to the file
sener in a timely &shion, thus eliminating the need to dump the local disk or push the files manually

2. UserlInterface

This section outlines our nevirtual memory interice as it is currently gisioned. Thedetails of
the system call inteafe are contained in Appendix A.

Regions

The virtual memory intedce is designed to support bothgkar sparse address spaces as well as
small, densely-used address spadesthis contat, “small” is an address space roughly the size of the
physical memory on the machine, whiltarge” may etend up to the maximum addressability of the
machine. Aprocess may dide its address space up into a humber giores. Initially a process bgins
with four regions; a shared read-only fill-on-demandioa with its tet, a private fill-on-demand rgion for
its initialized data, a prate zero-fill-on-demand ggon for its uninitialized data and heap, and agbei
zero-fill-on-demand gion for its stack.In addition to these ggons, a process may allocatevnenes. The
regions may not werlap and the system may impose an alignment constraihthb size of the ggon
should not be limited ly@nd the constraints of the size of the virtual address space.

Each n& regon may be mapped either asvate or sharedWhen it is prvately mapped, changes to
the contents of the géon are not reflected to yether process that map the samgion. Reions may be
mapped read-only or read-writés an &ample, a shared libraryauld be implemented as dwegons; a
shared read-only géon for the t&t, and a prate read-write rgion for the global &riables associated with
the library

A regon may be allocated with one ofveeal allocation strages. Itmay map some memory hard-
ware on the machine such as a framéfdr. Since the hardare is responsible for storing the data, such



regions must bexelusive wse if theg are privately mapped.

A regon can map all or part of a fileAs the pages are first accessed, tlggoreis filled in with the
appropriate part of the filelf the region is mapped read-write and shared, changes to the contents of the
region are reflected back into the contents of the fii¢he region is read-write bt private, changes to the
region are copied to a pate page that is not visible to other processes mapping the file, and these modified
pages are not reflected back to the file.

The final type of rgion is ‘anorymous memory! Uninitialed data uses such agien, prvately
mapped; it is zero-fill-on-demand and its contents are abandoned when the last reference is dropped.
Unlike a egon that is mapped from a file, the contents of an amous rgion will never be read from or
written to a disk unless memory is short and part of tg@memust be paged to a s area.lf one of
these rgions is mapped shared, then all processes see the changesgiotihe Taisdifference has imper
tant performance considerations; therbead of reading, flushing, and possibly allocating a file is much
higher than simply zeroing memory

If several processes wish to share giom, then the must hae me way of rendezousing. for a
mapped file this is easy; the name of the file is used as the rendgmint. However, processes may not
need the semantics of mapped files nor be willing to payubdend associated with therfror anory-
mous memory themust use some other rendeme¢ point. Our current intedice allevs processes to asso-
ciate a descriptor with ag®n, which it may then pass to other processes that wish to attach tgitme re
Such a descriptor may be bound into the UNIX file system name space so that other processes can find it
just as thg would with a mapped file.

Shared memory as high speed int@rocess communication

The primary use esisioned for shared memory is to pide a high speed interprocess communica-
tion (IPC) mechanism between cooperating procesiassting IPC mechanisms.€. pipes, sockts, or
streams) require a system call to harfdhakt of data destined for another process, and another system call
by the recipient process to reeeihe data.Even if the data can be transferred by remapping the data pages
to avoid a memory to memory cgpthe orerhead of doing the system calls limits the throughput ofudll b
the lagest transfersShared memoryy contrast, allas processes to share data at lawd of granularity
without system intemntion.

However, to maintain all lut the simplest of data structures, the processes must serialize their modifi-
cations to shared data structures ifythee to aoid corrupting them.This serialization is typically done
with semaphoresUnfortunately most implementations of semaphores are done with system Galls
processes are onceaag limited by the need to do owsystem calls per transaction, one to lock the
semaphore, the second to releaseThie net dict is that the shared memory modelvides little if ary
improvement in interprocess bandwidth.

To achieve a gynificant impravement in interprocess bandwidth requires gdadecrease in the num-
ber of system calls needed to agki¢he interaction.In profiling applications that use serialization locks
such as the UNIX érnel, one typically finds that most locks are not contestéds if one can find aay
to avoid doing a system call in the case in which a lock is not contested,auie &pect to be able to dra-
matically reduce the number of system calls needed tovectsgalization.

In our design, cooperating processes manage their semaphores iwthattdvess spacén the typ-
ical case, a procesgeeutes an atomic test-and-set instruction to acquire a lock, finds it free, and thus is
able to get it.Only in the (rare) case where the lock is already set does the process need to do a system call
to wait for the lock to clearWhen a process is finished with a lock, it can clear the lock it€gify if the
“WANT” flag for the lock has been set is it necessary for the process to do a system call to cause the other
process(es) to bevakened.

Another issue that must be considered is portabifyme computers require access to special hard-
ware to implement atomic interprocessor test-and-Bet.such machines the setting and clearing of locks
would all hare 1o be done with system calls; applications could still use the sameanéeerfithout change,
though thg would tend to run sialy.

The other issue of compatibility is with Systens\#maphore implementatiorSince the System V
interface has been inxistence for seeral years, and applications e been hilt that depend on this



interface, it is important that this intade also bewailable. Althoughthe interfice is based on system calls
for both setting and clearing locks, the same interfcan be obtained using our irded without system
calls in most cases.

This implementation can be achéd as follows. SystenV allows entire sets of semaphores to be set
concurrently If any of the locks are unailable, the process is put to sleep untilytiah become sailable.
Under our paradigm, a single additional semaphore is defined that serializes access to the set of semaphores
being simulated.Once obtained in the usualay the set of semaphores can be inspected to see if the
desired ones arevalable. If they are available, the are set, the guardian semaphore is released and the
process proceeddf one or more of the requested set is ngilable, the guardian semaphore is released
and the process selects an wailable semaphores for which toaiw. Onbeing rewakened, the whole
selection process must be repeated.

In all the abee examples, there appears to be a race conditietween the time that the process
finds that a semaphore is letk and the time that it manages to call the system to sleep on the semaphore
another process may unlock the semaphore and issakeapvcall. Luckily the race can bevaided. The
insight that is critical is that the process and témé&l agree on the psical byte of memory that is being
used for the semaphor@he system call to put a process to sleepgakpointer to the desired semaphore
as its agument so that once inside therikel, the krnel can repeat the test-and-déthe lock has cleared
(and possibly the akeup issued) between the time that the process did the test-and-se¢randlly got
into the sleep request system call, then #madéd immediately resumes the process rather than putting it to
sleep. Thughe only problem to sobvis how the lernel interlocks between testing a semaphore and going
to sleep; this problem has already beenesblin &isting systems.
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4. Appendix A - Virtual Memory Interface

Mapping pages

The system supports sharing of data between processeswinglimages to be mapped into mem-
ory. These mapped pages may dieed with other processes qrivate to the processProtection and
sharing options are defined€sys/mman.h=as:

/* protections are chosen from these bitsedtogether */

#define PRT_READ 0x04 /* pages can be read */
#define PRT_WRITE 0x02 /* pages can be written */
#define PRT_EXEC 0x01 /* pages can bexecuted */

/* flags contain mapping type, sharing type and options */

/* mapping type; choose one */

#define MAP_FILE 0x0001 /*mapped from a file or de&e */
#define MAP_ANON 0x0002 /*allocated from memorwwvap gpace */
#define MAP_TYPE 0x000f /*mask for type field */



/* sharing types; choose one */

#define MAP_SHARED 0x0010 /*share changes */

#define MAP_PRIXTE 0x0000 /*changes are pate */

/* other flags */

#define MAP_FIXED 0x0020 /*map addr must bexactly as requested */
#define MAP_INHERIT 0x0040 /*region is retained afterxec */

#define MAP_HASSEMAPHOREOx0080 /*region may contain semaphores */
The cpu-dependent size of a page is returned byepegesizesystem call:

pagesize = getpagesize();
result int pagesize;

The call:

maddr = mmap(addlen, prot, flags, fd, pos);
result caddr_t maddr; caddr_t addr; int *len, prot, flags, fdt pbs;

causes the pages startingadtr and continuing for at mo#tn bytes to be mapped from the object repre-
sented by descriptdd, Sarting at byte déetpos The starting address of thegien is returned; for the
convenience of the system, it may f@if from that supplied unless the MAP_FIXED flag igegi in which
case theact address will be used or the call wdllf Theactual amount mapped is returneden The
addr, len, and posparameters must all be multiples of the pagesfzsuccessfummapwill delete ary pre-
vious mapping in the allocated address rarifjee parameteprot specifies the accessibility of the mapped
pages. Th@arameteflags specifies the type of object to be mapped, mapping options, and whether modi-
fications made to this mapped gapf the page are to beeftprivate or are to beshaedwith other refer
ences. Possibligpes include MAP_FILE, mapping agdar file or charactespecial deice memoryand
MAP_ANON, which maps memory not associated with specific file. The file descriptor used for creat-
ing MAP_ANON raions is used only for naming, and may beegias -1 if no name is associated with the
region.t The MAP_INHERIT flag allavs a rgion to be inherited after amxec The MAP_HAS-
SEMAPHORE flag allavs special handling for gions that may contain semaphores.

A facility is provided to synchronize a mappedji@n with the file it maps; the call

msync(addrlen);
caddr_t addr; int len;

writes aly modified pages back to the filesystem and updates the file modificationltiraris 0, all mod-

ified pages within the ggon containingaddr will be flushed; iflen is non-zero, only the pages containing
addr andlen succeeding locations will bex@mined. Aly required synchronization of memory caches will
also tale gace at this time.Filesystem operations on a file that is mapped for shared modifications are
unpredictablexcept after amsync

A mapping can be remed by the call

munmap(addden);
caddr_t addr; int len;

This call deletes the mappings for the specified address range, and causes further references to addresses
within the range to generatevaid memory references.

Page protection control
A process can control the protection of pages using the call

T The current design does not &lla process to specify the location of awspaceln the future we may define
an additional mapping type, MAP_\R, in which the file descriptor gument specifies a file or wee to
which swapping should be done.



mprotect(addren, prot);
caddr_t addr; int len, prot;

This call changes the specified pages teeh@otectionprot. Not all implementations will guarantee pro-
tection on a page basis; the granularity of protection changes may bgeasslan entire geon.

Giving and getting advice
A process that has kmtedge of its memory bekimr may use thenadvisecall:

madvise(addiden, behw);
caddr_t addr; int len, beha

Behavdescribesxpected behaor, as gven in <sys/mman.h>

#define MAD/_NORMAL 0  /* no further special treatment */
#define MAD/_RANDOM 1 /* expect random page references */
#define MAD/_SEQUENTIAL 2 /* expect sequential references */
#define MAD/_WILLNEED 3 /*will need these pages */

#define MAD/_DONTNEED 4 /*don't need these pages */

#define MAD/_SRACEAVAIL 5 /*insure that resources are resshy/

Finally, a process may obtain information about whether pages are core resident by using the call

mincore(addrlen, \ec)
caddr_t addr; int len; result charew;

Here the current core residgnaf the pages is returned in the character aveaywith a value of 1 mean-
ing that the page is in-core.

Synchronization primiti ves

Primitives ae provided for synchronization using semaphores in shared mergergaphores must
lie within a MAP_SHARED rgion with at least modes ER_READ and PRT_WRITE. The
MAP_HASSEMAPHORE flag must ke keen specified when thegien was created.To acquire a lock a
process calls:

value = mset(sem, ait)
result int \alue; semaphore *sem; intit;

Mset indivisibly tests and sets the semapheem If the the preious \alue is zero, the process has
acquired the lock anahsetreturns true immediatelyOtherwise, if thewait flag is zero, dilure is returned.

If waitis true and the puous \alue is non-zeransetrelinquishes the processor until notified that it should
retry.

To release a lock a process calls:

mclear(sem)
semaphore *sem;

Mclear indivisibly tests and clears the semaphseen If the *WANT"’ flag is zero in the pwéous \alue,
mclearreturns immediately If the "WANT'’ flag is non-zero in the prous \alue, mcleararranges for
waiting processes to retry before returning.

Two routines prgide services analogous to therkelsleepandwalkeupfunctions interpreted in the
domain of shared memonrA process may relinquish the processor by calirsteepwith a set semaphore:

msleep(sem)
semaphore *sem;

If the semaphore is still set when it is chedly the krnel, the process will be put in a sleeping state until
some other process issuesnamaleupfor the same semaphore within thgio: using the call:



mwakeup(sem)
semaphore *sem;

An mwaleupmay avaken dl sleepers on the semaphore, or magleen only the nat sleeper on a queue.



