A Pageable Memory Based Filesystem

Marshall Kirk McKusidk
Michael J Karels
Keith Bostic

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

email: mckusick@cs.Beedtey.EDU
telephone: 415-642-4948

ABSTRAT

This paper describes the mations for memory-based filesysteml.compares
techniques used to implement them and describes tivbalcks of using dedicated mem-
ory to support such filesystem3o avoid the dravbacks of using dedicated memoity
discusses tilding a simple memory-based filesystem in pageable mentbdgtails the
performance characteristics of this filesystem and concludes with areas for foitkire w

Introduction

This paper describes the mwation for and implementation of a memory-based filesystem.
Memory-based filesystems veexsted for a long time; thehave generally been maeted as
RAM disks or sometimes as sofive packages that use the maclsirggneral purpose mem-
ory.[White1980a]

A RAM disk is designed to appear dikny ather disk peripheral connected to a machihe.
is normally interfced to the processor through the 1183 Bnd is accessed through side driver
similar or sometimes identical to thevite driver used for a normal magnetic diskhe deice
driver sends requests for blocks of data to thei@keand the requested data is then D&dAo or
from the requested blocKnstead of storing its data on a rotating magnetic disk, the RAM disk
stores its data in a Ige array of random access memory ablile memory Thus, the latencof
accessing the RAM disk is nearly zero compared to the 15-50 milliseconds of latemced
when access rotating magnetic medi®AM disks also hee the benefit of being able to transfer
data at the maximum DMA rate of the system, while disks are typically limited by the rate that
the data passes under the disk head.

Software packages simulating RAM disks operate by allocatinged faartition of the sys-
tem memory The softvare then praides a deice driver interface similar to the one described for
hardware RAM disks, cept that it uses memory-to-memory gopstead of DMA to mee the
data between the RAM disk and the systeffidos, or it maps the contents of the RAM disk into
the system Wbifers. Becauséhe memory used by the RAM disk is netitable for other pur
poses, softare RAM-disk solutions are used primarily for machines with limited addressing
capabilities such as P€that do not hee an efective way of using thexdra memory ayway.



Most softvare RAM disks lose their contents when the system isepmd dwn or
rebooted. Thecontents can be wad by using battery baad-up memoryby storing critical
filesystem data structures in the filesystem, and by running a congisteak program after
each reboot.These conditions increase the haadevcost and potentially slodown the speed of
the disk. Thus, RAM-disk filesystems are not typically designed to sarybwer failures;
because of theirolatility, their usefulness is limited to transient or easily recreated information
such as might be found ftbmp. Their primary benefit is that tiidhave higher throughput than
disk based filesystems.[Smith1981a] This inwetbthroughput is particularly useful for utilities
that male heary use of temporary files, such as compiledn fast processors, nearly half of the
elapsed time for a compilation is sperditing for synchronous operations required for file cre-
ation and deletionThe use of the memory-based filesystem nearly eliminates dltingvtime.

Using dedicated memory ta@usively support a RAM disk is a poor use of resourcése
overall throughput of the system can be imp by using the memory where it is getting the
highest access ratd.hese needs may shift between supporting process virtual address spaces and
caching frequently used disk blocki.the memory is dedicated to the filesystem, it is better used
in a luffer cache.The huffer cache permitsakter access to the data because it requires only a sin-
gle memory-to-memory cgfrom the lernel to the user proces§he use of memory is used in a
RAM-disk configuration may require tamemory-to-memory copies, one from the RAM disk to
the luffer cache, then another gofrom the hiffer cache to the user process.

The nev work being presented in this paper isléing a prototype RAM-disk filesystem in
pageable memory instead of dedicated memadie goal is to pndde the speed benefits of a
RAM disk without paying the performance penalty inherent in dedicating part of ttsicgh
memory on the machine to the RAM disBy building the filesystem in pageable memaity
competes with other processes for thealable memory When memory runs short, the paging
system pushes its least-recently-used pages to backing &eiteg pageable also alie the
filesystem to be much Iger than wuld be practical if it were limited by the amount ofygpical
memory that could be dedicated to that purpdake. typically operate ouftmp with 30 to 60
megabytes of space which is par than the amount of memory on the machihleis configura-
tion allovs small files to be accessed quickisile still allowing /tmp to be used for big files,
although at a speed more typical of normal, disk-based filesystems.

An alternatve © huilding a memory-based filesystermowd be to hee a flesystem that
never did operations synchronously andveeflushed its dirty bffers to disk. However, we
believe tat such a filesystemaould either use a disproportionatelygarpercentage of thauffer
cache space, to the detriment of other filesystemspaldwequire the paging system to flush its
dirty pages.Waiting for other filesystems to push dirty pages subjects them to delays velitle w
ing for the pages to be writteWe avait the results of others trying this approach.[Ohta1990a]

Implementation

The current implementation took less time to write than did this pdpeonsists of 560
lines of kernel code (1.7K t¢ + data) and some minor modifications to the program thdsb
disk based filesystemagnfs A condensed arsion of the &rnel code for the memory-based
filesystem are reproduced in Appendix 1.

A filesystem is created byvioking the modifiechewfs with an option telling it to create a
memory-based filesystenit allocates a section of virtual address space of the requested size and
builds a filesystem in the memory instead of on a disk partitiwhen luilt, it does amountsys-
tem call specifying a filesystem type MfS (Memory File System).The auxiliary data parame-
ter to the mount call specifies a pointer to the base of the memory in which itilh#sebfilesys-
tem. (Theauxiliary data parameter used by the local filesysigs),gpecifies the block déce
containing the filesystem.)



The mount system call allocates and initializes a mount table entry and then calls the
filesystem-specific mount routinelhe filesystem-specific routine is responsible for doing the
mount and initializing the filesystem-specific portion of the mount table.efitrg memory-
based filesystem-specific mount routingfs_mount), is shown in Appendix 1.1t allocates a
block-device vnode to represent the memory diskice Inthe prvate area of this vnode it
stores the base address of the filesystem and the process identifien@ffdygrocess for later
reference when doing I/Olt also initializes an 1/O list that it uses to record outstanding 1/O
requests. Itan then call thefsfilesystem mount routine, passing the special bloskedesnode
that it has created instead of the usual disk bloskedernode. The mount proceeds just asyan
other local mount, >eept that requests to read from the blockiake are ectored through
mfs_stategy() (described belw) instead of the usuabpec_stategy() block device 1/0O function.
When the mount is completettfs_mounf) does not return as most other filesystem mount func-
tions do; instead it sleeps in therkel avaiting 1/0 requests.Each time an I/O request is posted
for the filesystem, a akeup is issued for the correspondimgvfs process. Wheawdened, the
process checks for requests on iiffdr list. A read request is serviced by gop data from the
section of thenewfs address space corresponding to the requested disk block tertied tiffer.
Similarly a write request is serviced by gom data to the section of tinewfsaddress space cor
responding to the requested disk block from temé&l luffer. When all the requests v@a been
serviced, theewfsprocess returns to sleep toat more requests.

Once mounted, all operations on files in the memory-based filesystem are handledf®y the
filesystem code until tlyeget to the point where the filesystem needs to do I/O on thieede
Here, the filesystem encounters the second piece of the memory-based fileystiead of call-
ing the special-dace stratgy routine, it calls the memory-based stggteoutine,mfs_stategy().
Usually, the request is serviced by linking thaffer onto the I/O list for the memory-based
filesystem vnode and sending akaup to thenewfs process. Thisvakeup results in a corke
switch to thenewfs process, which does a gop or copyout as described abe The stratgy
routine must be careful to check whether the I/O request is coming framevifeprocess itself,
however. Such requests happen during mount and unmount operations, whesritbé ik read-
ing and writing the superblockdere,mfs_stategy() must do the 1/O itself tovmid deadlock.

The final piece of é&rnel code to support the memory-based filesystem is the close routine.
After the filesystem has been successfully unmounted, thieedelose routine is calledror a
memory-based filesystem, thevite close routine isnfs_closé€). This routine flushes grpend-
ing I/O requests, then sets the I/O list head to a spealiad ¥hat is recognized by the 1/0O servic-
ing loop inmfs_mounf) as an indication that the filesystem is unmountdthe mfs_mount) rou-
tine «its, in turn causing theewfs process to»at, resulting in the filesystemanishing in a cloud
of dirty pages.

The paging of the filesystem does not requingagditional code bgond that already in the
kernel to support virtual memaryThe newfs process competes with other processes on an equal
basis for the maching'available memory Data pages of the filesystem thavdaot yet been
used are zero-fill-on-demand pages that do not gcagmory athough thg currently allocate
space in backing storeAs long as memory is plentiful, the entire contents of the filesystem
remain memory residenWhen memory runs short, the oldest pageseoffs will be pushed to
backing store as part of the normal pagingvégti The pages that are pushed usually hold the
contents of files that e been created in the memory-based filesystatihlve rot been recently
accessed (or kra keen deleted).[L&Er1989a]

Performance

The performance of the current memory-based filesystem is determined by the memory-to-
memory coy speed of the processoEmpirically we find that the throughput is about 45% of



this memory-to-memory cepspeed. Theasic set of steps for each block written is:
1) memory-to-memorgopy from the user process doing the write teeenk! ffer
2) contt-switch to thenewfsprocess

3) memory-to-memorgopy from the lernel luffer to thenewfsaddress space

4) contet switch back to the writing process

Thus each write requires at leasbtmemory-to-memory copies accounting for about 90% of the
CPUtime. Theremaining 10% is consumed in the comtewitches and the filesystem allocation
and block location codeThe actual conté switch count is really only about half of theonst
case outlined abe kecause read-ahead and write-behindwalhoultiple blocks to be handled
with each contet switch.

On the sixMIPS CClPaver 6/32 machine, thewareading and writing speed is only about
twice that of a rgular disk-based filesystentHowever, for processes that create and deleteyman
files, the speedup is considerably greafdre reason for the speedup is that the filesystem must
do two synchronous operations to create a file, first writing the allocated inode to disk, then creat-
ing the directory entry Deleting a file similarly requires at leastaveynchronous operations.
Here, the lav lateny of the memory-based filesystem is noticeable compared to the disk-based
filesystem, as a synchronous operation can be done with jastotviext switches instead of
incurring the disk latenc

Future Work

The most obious shortcoming of the current implementation is that filesystem blocks are
copied twice, once between thewfs process’ address space and teenkl luffer cache, and
once between theeknel uffer and the requesting procesbBhese copies are done infdient
process contds, necessitating wvcontext switches per group of 1/O requestBhese problems
arise because of the current inability of thegriel to do page-in operations for an address space
other than that of the currently-running process, and the currentvemience of mapping pro-
cess-wvned pages into thesknel uffer cache.Both of these problems argpected to be sobd
in the net version of the virtual memory system, and thus we chose not to address them in the
current implementationWith the nev version of the virtual memory system, wepect to use
ary part of pltysical memory as part of theuffer cache, wen though it will not be entirely
addressable at once within therikel. Inthat system, the implementation of a memory-based
filesystem thatwids the double copand contet switches will be much easier

Ideally part of the &rnels aldress space auld reside in pageable memor@nce such a
facility is available it would be most éicient to hiild a memory-based filesystem within therk
nel. Onepotential problem with such a scheme is thatyriamnels are limited to a small address
space (usually afemegdytes). Thigestriction limits the size of memory-based filesystem that
such a machine can suppo@n such a machine, therkel can describe a memory-based filesys-
tem that is lager than its address space and us&iadow’ to map the lager filesystem address
space into its limited address spadée windav would maintain a cache of recently accessed
pages. Theroblem with this scheme is that if th@rking set of actie pages is greater than the
size of the windw, then much time is spent remapping pages avdidating translation bffers.
Alternatively, a ®parate address space could be constructed for each memory-based filesystem as
in the current implementation, and the memory-resident pages of that address space could be
mapped ractly as other cached pages are accessed.

The current system uses thdsting local filesystem structures and code to implement the
memory-based filesystenT.he major adantages of this approach are the sharing of code and the
simplicity of the approachThere are seral disadantages, hwever. One is that the size of the
filesystem is fied at mount time.This means that a fd number of inodes (files) and data



blocks can be supportedCurrently this approach requires enoughapwnspace for the entire
filesystem, and prents epansion and contraction of the filesystem on demartte current
design also prents the filesystem from taking aaivtage of the memory-resident character of the
filesystem. lwould be interesting tox@lore other filesystem implementations thaiNd be less
expensve b execute and that wuld male better use of the spacd-ar example, the current
filesystem structure is optimized for magnetic disksincludes replicated control structures,
“cylinder groups’with separate allocation maps and control structures, and data structures that
optimize rotational layout of filesNone of this is useful in a memory-based filesystem (at least
when the backing store for the filesystem is dynamically allocated and not contiguous on a single
disk type). On the other hand, directories could be implemented using dynamically-allocated
memory oganized as linkd lists or trees rather than as files storedliak’” blocks. Allocation

and location of pages for file data might use virtual memory pvesitind data structures rather

than direct and indirect block#\ reimplementation along these lines will be considered when the
virtual memory system in the current system has been replaced.

References

Leffler1989a.
S. J. Lefler, M. K. McKusick, M. J. Karels, and J. S. Quarterma@ie Design and Imple-
mentation of the 4.3BSD UNIX Opéing SystemAddison-Wesleg/, Reading, MA (1989).

Ohtal990a.
Masataka Ohta and Hirosheduka, ‘A Fast /tmp File System by Async Mount Option,
USENIXAssociation Confence Poceedingsp. 7?7-??? (June 1990).

Smith1981a.
A. J. Smith, ‘Bibliography on file and 1/O system optimizations and related topi@per
ating Systems Rew 14(4), p. 39-54 (October 1981).

White1980a.
R. M. White, ‘Disk Storage €chnology’ Scientific Americar243(2), p. 138-148 (August
1980).



Appendix A - Implementation Details

/*

* This structure defines the control data for the memory
* based file system.

*/

struct mfsnode {
struct vnodemfs_vnode; /*vnode associated with this mfsnode */
caddr_t mfs_baseif /* base of file system in memory */
long mfs_size; [* size of memory file system */
pid_t mfs_pid; [* supporting process pid */
struct luf *mfs_kuflist; /* list of I/O requests */

¥

/*

* Convert between mfsnode pointers and vnode pointers

*/

#define VIOMFS(vp) ((structmfsnode *)(vp)->v_data)
#define MFES©OV(mfsp) ((mfsp)->mfs_vnode)

#define MFS_EXIT(struct uf *)-1

/*

* Arguments to mount MFS

*/

struct mfs_ags {
char *name; /* name to &port for statfs */
caddr_t base; /* base address of file system in memory */
u_long size; [* size of file system */

h



/*
* M ount an MFS filesystem.
*/
mfs_mount(mp, path, data)
struct mount *mp;
char *path;
caddr_t data;

struct vnode *devp;
struct mfsnode *mfsp;
struct luf *bp;

struct mfs_ags ags;

/*
* Create a block dece to represent the disk.
*
devvp = getnawwnode(VT_MFS, VBLK, &mfs_vnodeops);
mfsp = VIOMFS(devp);
/*
* Savebase address of the filesystem from the supporting process.
*
copyin(data, &ags, (sizeof mfs_ais));
mfsp->mfs_basedf args.base;
mfsp->mfs_size = gs.size;
/*
* Record the process identifier of the supporting process.
*
mfsp->mfs_pid = u.u_procp->p_pid;
/*
* M ount the filesystem.
*
mfsp->mfs_loiflist = NULL;
mountfs(devp, mp);
/*
* | oop processing I/O requests.
*
while (mfsp->mfs_hflist 1= MFS_EXIT) {
while (mfsp->mfs_hflist != NULL) {
bp = mfsp->mfs_bflist;
mfsp->mfs_iflist = bp->a_forw;
offset = mfsp->mfs_basefof (bp->b_blkno * DEV_BSIZE);
if (op->b_flags & B_READ)
copyin(offset, bp->b_un.b_addop->b_bcount);
else /* write_request */
copyout(bp->b_un.b_addoffset, bp->b_bcount);
biodone(bp);
}
sleep((caddr_t)derp, PWAIT);



/*
* | f the MFS process requests the 1/0O then we must do it directly
* Otherwise put the request on the list and request the MFS process
*t0 be un.
*/
mfs_stratgy(bp)
struct luf *bp;
{
struct vnode *devp;
struct mfsnode *mfsp;
off_t offset;

devvp = bp->b_vp;
mfsp = VIOMFS(devp);
if (mfsp->mfs_pid == u.u_procp->p_pid) {
offset = mfsp->mfs_basefof (bp->b_blkno * DEV_BSIZE);
if (op->b_flags & B_READ)
copyin(offset, bp->b_un.b_addop->b_bcount);
else /* write_request */
copyout(bp->b_un.b_addoffset, bp->b_bcount);
biodone(bp);
}else {
bp->ar_forw = mfsp->mfs_bflist;
mfsp->mfs_liflist = bp;
wakeup((caddr_t)bp->b_vp);

}

/*
* The close routine is called by unmount after the filesystem
* has been successfully unmounted.
*/
mfs_close(devp)
struct vnode *devp;
{
struct mfsnode *mfsp = VOMFS(vp);
struct luf *bp;

/*

* Finish ary pending 1/O requests.

*

while (bp = mfsp->mfs_uiflist) {
mfsp->mfs_loflist = bp->a_forw;
mfs_doio(bp, mfsp->mfs_basdépf
wakeup((caddr_t)bp);

/*

* Send a request to the filesystem seno «it.
*

mfsp->mfs_loiflist = MFS_EXIT,
wakeup((caddr_t)vp);



