Malloc(3) in modern Virtual Memory environments.

Revised Fri Apr 512:50:07 1996

Poul-Henning Kamp

<phk@FreeBSD.qgr>
Den Andensidste i¥ing
Valbygaardsej 8
DK-4200 Slagelse
Denmark

ABSTRACT

Malloc/free is one of the oldest part of the C languagé&r@mment and oliously
the world has changed a bit since iagvfirst made.The fact that most UNIX &rnels
have thanged from a sap/sgment to a virtual memory/page based memory manage-
ment has not been $igfently reflected in the implementations of the malloc/free API.

A new implementation &s designed, written, tested and bench-etarkith an ge
on the vorkings and performance characteristics of modemnua Memory systems.

1. Introduction

Most programs need to allocate storage dynamically in addition to wehatatic storage the com-
piler resered at compile-time.To C pogrammers thisafct is rather oldous, kut for mary years this \as
not an accepted and recognizedtf and maylanguages still used today dbsupport this notion ade-
quately

The classic UNIX krnel proides two very simple and paerful mechanisms for obtaining dynamic
storage, thexecution stack and the heafhe stack is usually put at therfupper end of the address-space,
from where it gravs davn as &r as needed, though this may depend on the CPU d&dignheap starts at
the end of thévss segment and gnes upvards as needed.

There isnt really a lernel-interice to the stack as suchhe kernel will allocate some amount of
memory for it, not een telling the process thexact size. If the process needs more space than that, it will
simply try to access it, hoping that therkel will detect that accessvealeen attempted outside the allo-
cated memoryand try to etend it. If the kernel fils to extend the stack, this could be because of lack of
resources or permissions or because it may just be impossible to do in the first place, the process will usu-
ally be shot dan by the lernel.

In the C language, thereists a little used inteafce to the staclalloca(3), which will explicitly allo-
cate space on the stackhis is not a intedce to the &rnel, lut merely an adjustment done to the stack-
pointer such that space will bgailable and unharmed by warsubroutine calls yet to be made while the
contet of the current subroutine is intact.

Due to the nature of normal use of the stack, there is no corresponding "free" ppetratstead the
space is returned when the current function returns to its caller and the stack frame is disnmEmteled.
the cause of much grief, and probably the single most important reason that alloca(3) is not, and should not
be, used widely

The heap on the other hand has gplieit kernel-interfce in the system cdlrk(2). The agument
to brk(2) is a pointer to where the procesmts the heap to end.here is also a intaate calledsbrk(2)
taking an increment to the current end of the heafpthiis is merely dibc front for brk(2).

-2- Introduction

In addition to these ta memory resources, modern virtual memorgrrels proide the
mmap(2)/mmunmap(2) intexfe which allars almost complete controler any hit of virtual memory in
the process address room.

Because of the generality of the mmap(2) istesfand the ay the data structures representing the
regions are laid out, sbrk(2) is actuallgster in use than the egaent mmap(2) call, simply because the
mmap(2) has to search for information that is implicit in the sbrk(2) call.

2. Thekernel and memory

Brk(2) isn't a particularly conwenient interfice, it vas probably made more to fit the memory model
of the hardware being used, than to fill the needs of the programmers.

Before paged and/or virtual memory systems became common, the most popular memory manage-
ment Bcility used for UNIX vas sgments. Thisvas dso \ery often the only @hicle for imposing protec-
tion on \arious parts of memoryDepending on the haragse, sgments can be gthing, and consequently
how the kernels &ploited them aried a lot from UNIX to UNIX and from machine to machine.

Typically a process auld hare ;ne sgment for the tet section, one for the data and bss section
combined and one for the stad®n some systems thexteshared a ggnent with the data and bss, anaisw
consequently just as writable as them.

In this setup all the brk(2) system callkap do is to find the right amount of free storage, possibly
moving things around in ptsical memorymaybe @en svapping out a sgment or tve to make pace, and
change the upper limit on the datgmsent according to the addresgepi

In a more modern page based virtual memory implementation this is still pretty much the situation,
except that the granularity is wopages: The é&rnel finds the right number of free pages, possibly paging
some pages out to free them up, and then plug them into the page-table of the process.

As such the dféerence is ery small, the real dérence is that in the oldaxld of swapping, either
the entire processasg in primary storage (or itomldn't be ®lected to be run) in a modern VMrkel, a
process might only va a sibset of its pages in primary memgtlye rest will be paged in, if and when the
process tries to access them.

Only very fav programs deal with the brk(2) intade directlythe fev that does usually ka their
own memory managemengdilities. LISPor FORTH interpreters are goodkamples. Mosbther pro-
grams use thenalloc(3) interface instead, and lea it to the malloc implementation to use brk(2) to get
storage allocated from theitnel.

3. Malloc and free

The job of malloc(3) is to turn the rather simple brk@ilfty into a service programs can actually
use without getting hurt.

The archetypical malloc(3) implementatioadps track of the memory between the end of the bss
section, as defined by thend symbol, and the current brk(2) point using a didKist of chunks of mem-
ory. Each item on the list has a status as either free or used, a pointer tgtteetryeand in most cases to
the preious as well, to speed up inserts and deletes in the list.

When a malloc(3) request comes in, the list igensed from the front and if a free chunk big enough
to hold the request is found, it is returned, if the free chunk is bigger than the size requestettea ne
chunk is made from thexeess and put back on the list.

When a chunk i$ree(3)’ed, the chunk is found in the list, its status is changed to free and if one or
both of the surrounding chunks are freeyta® collapsed to one.

A third kind of request;ealloc(3) exists, it will resize a chunk, trying toveid copying the contents
if possible. It is seldom used, and has only had a significant impact on performancenirseééal situa-
tions. Thetypical pattern of use is to malloc(3) a chunk of the maximum size needed, read in the data and
adjust the size of the chunk to match the size of the data read using realloc(3).

For reasons of étiency, the original implementation of malloc(3) put the small structure used to
contain the ne and prgious pointers plus the state of the chunk right before the chunk itself.

-3- Mallocand free

As a matter ofdct, the canonical malloc(3) implementation can be studied inQletestament;
chapter 8 grse 7 [Kernighan & Ritchie]

Various optimisations can be applied to thevablasic algorithm:

If in freeing a chunk, we end up with the last chunk on the list being free, we can return that to the
kernel by calling brk(2) with the first address of that chunk and ther thakpreious chunk the last
on the chain by terminating itsiéxt”” pointer

A best-fit algorithm can be used instead of first-fit at gmerse of memorybecause statistically
fewer chances to brk(2) backwds will present themseds.

Splitting the list in tve, once for used and one for free chunks to speed the searching.
Putting free chunks on one ofveeal free-list depending on the size to speed allocation.

4. The problems

Even though malloc(3) is a lot simpler to use than theli&(2)/sbrk(2) interhce or maybexactly
because of that, a lot of problems arise from its use.

Writing to memory outside the allocated churikhe most lilely result being that the data structure
used to hold the links and flags about this chunk or thkieame gets thrashed.

Freeing a pointer to memory not allocated by mall®his is often a pointer that points to an object
on the stack or in the data-section, invaeimplementations of C it mayen be in the text- section
where it is lilely to be readonlySome malloc implementations detect this, sometdon’

Freeing a modified pointerThis is a ery common mistak freeing not the pointer malloc(3)
returned, bt rather some &det from it. Some mallocs will handle this correctly if thésadt is posi-
tive.

Freeing the same pointer more than once.
Accessing memory in a chunk after it has been free(3)’ed.

The handling of these problemsviaraditionally been weakA core-dump vas the most common
form for "handling”, lnt in rare cases one coulgperience thedmous "malloc: corrupt arenarhessage
before the core-dumpEven worse though, ery often the program will just continue, possiblyigd
wrong results.

An entirely diferent form for problem is that the memory returned by malloc(3) can contgin an
vaue. Unfortunatelymost lernels, correctlyzero out the storage therovide with brk(2), and thus the
storage malloc returns will be zeroed in maases as well, so programmers are not particular apt to notice
that their code depend on malloc’ed storage to be zeroed.

With problems this big and error handling this weak, it is not surprising that problems are hard and
time consuming to find and fix.

5. Alternative implementations

These problems were actually the inspiration for the first altgenatilloc implementationsSince
their main aim was delbigging, thg would often use techniques dikdlocating a guard zone before and
after the chunk, and possibly fill these guard zones with some pattern, so accesses outside the allocated
chunk can be detected with some decent probab#itother widely used technique is to use tablestpk
track of what chunks were actually in what state and so on.

This class of delgging has been tehk to its practical>@reme by the product "Purify" which does
the entire memory-colouringkercise and not only éeps track of what is in use and whattishut also
detects if the first reference is a read (whiduld return undefinedalues) and other such violations.

Later actual complete implementations of mallocvad; but mary of these still based theirakkings
on the basic schema mentionedvprasly, disregarding that in the meantime virtual memory and paging
have kecome the standard@ronment.

-4- Alternative implementations

The most widely used "alternati' malloc is undoubtedly’gnumalloc’ which hae receved wide
acclaim and certainly rungadgter than most stock mallocK. does havever tend to &re badly in a cases
where paging is the norm rather than tkeeption.

The particular malloc that prompted thisnk basically didrt bother reusing storage until therkel
forced it to do so by refusing further allocations with sbrk(at may ma& snse if you wrk alone on
your avn personal mainframeubas a general polidt is less than optimal.

6. Performance
Performance for a malloc(3) implementation comes as/asiables:

A: How much time does it use for searching and manipulating data struciveesill refer to this
as ‘overhead time:

B: How well does it manage the storagghis rather mgue metric we callduality of allocation’.

The wverhead time is easy to measure, just to a lot of malloc/free caltiolig kinds and combina-
tion, and compare the results.

The quality of allocation is not quite as simple as ti@e measure of quality is the size of the pro-
cess, that should wlously be minimized.Another measure is thexeution time of the processrhis is
not an olrious indicator of qualitybut people will generally agree that it should be minimized as well, and
if malloc(3) can do aything to do so, it shouldExplanation wly it is gill a good metric follavs:

In a traditional sgment/svap lernel, the desirable beliaur of a process is toelep the brk(2) asvo
as possible, thus minimizing the size of the data/bss/hegapese, which in turn translates to a smaller pro-
cess and a smaller probability of the process beirgped out, gedakter gecution time as anvarage.

In a paging evironment this is not a bad choice for aaiéf, lut a couple of details needs to be
looked at much more carefully

First of all, the size of a process becomes a magee concept since only the pages that are actually
used needs to be in primary storage faecation to progress, and thenly need to be there when used.
That implies that manmore processes can fit in the same amount of primary storage, since most processes
have a igh degree of locality of reference and thus only need some fraction of their pages to actually do
their joh

From this it follavs that the interesting size of the process, is some subset of the total amount of vir
tual memory occupied by the procedsis number isit’a constant, it aries depending on the whereabouts
of the process, and it may indeed fluctuate wildlgr the lifetime of the process.

One of the names for thisgue concept iscurrent working set’. It has been defined madifferent
ways over the years, mostly to satisfy and support claims in etar§g or benchmark contts.

For now we can simply say that it is the number of pages the process needs in order to ruri-at a suf
ciently low paging rate in a congested primary storafieprimary storage ism’congested, this is not really
important of course,li most systems ould be better dfusing the pages for disk-cache or similar func-
tions, so from that perspeati it will always be congested.lf the number of pages is too small, the process
will wait for its pages to be read from secondary storage much of the timsefoib ibig, the space could be
used better for something else.

From the vigv of any dngle process, this number of pages is "all of my pages'from the point of
view of the OS it should be tuned to maximise the total throughput of all the processes on the machine at
the time. This is usually done usingarious kinds of least-recently-used replacement algorithms to select
page candidates for replacement.

With this knavledge, can we decide what the performance goal is for a modern mallda@), #’' s
almost as simple as it used to MaEnimize the number of pages accessed.

This really is the core of it alllf the number of accessed pages is small, then locality of reference is
higher and all kinds of caches (which essentially is what the primary storage is in a VM sysigm)b&t-
ter.

It's interesting to notice that the classical mallai¢ésfon this one because the information about free
chunks are &pt with the free chunks themse$s Insome of the benchmarks this came out as all the pages

-5- Performance

were paged invery time a malloc were made, because malloc had vert@ the free-list to find a suitable
chunk for the allocationlf memory is not in use, then you shouldatcess it.

The secondary goal is moreident: Try to work in pages.

That males it easier for theeknel, and \astes less virtual memorgost modern implementations
does this when tlyeinteract with the &rnel, lut few try to avoid objects spanning pages.

If an objects size is less or equal to a page, there is no reason for it to gpagdés. Haing objects
span pages means thabtpages must be paged in, if that object is accessed.

With this analysis in the lugge, we can start coding.

7. Implementation

A new malloc(3) implementation as written to meet the goals, and to tk&eet possible to address
the shortcomings listed preusly.

The source is 1218 lines of C code, and can be found in FreeBSD 2.2 (and probabérdains as
well) as src/lib/libc/stdlib/malloc.c.

The main data structure is tpage-directory which contains aoid* for each page we ka ontrol
ove. The walue can be one of:

MALLOC_NOT_MINE Another part of the code may call brk(2) to get a piece of the. c&bnse-
guently we cannot rely on the memory we get from #radd to be one consectgigece of memory
and therefore we need awto mark such pages as "untouchable”.

MALLOC_FREE This is a free page.

MALLOC_FIRST This is the first page in a (multi-)page allocation.
MALLOC_FOLLOW This is a subsequent page in a multi-page allocation.
struct pginfo* A pointer to a structure describing a partitioned page.

In addition there st a linked list of small data structures that describe the free space as runs of free
pages.

Notice that these structures are not part of the free pages thesydivather allocated with malloc
so that the free pages themsshare neer referenced while theare free.

When a request for storage comes in, it will be treated ‘aage’ allocation if it is bigger than half
a page. Thdreelist will be searched and the first run of free pages that can satisfy the request Ehesed.
first page gets set tdALLOC_FIRST status, if more than that one page is needed the rest of them gets
MALLOC_FOLLOW status in the page-directory

If there were no pages on the free-list, brk(2) will be called, and the pages will get added to the page-
directory with statuMALL OC_FREE and the search restarts.

Freeing a number of pages is done by changing their state in the page directory to MALLOC_FREE,
and then trzerse the free-pages list to find the right place for this run of pages, possibly collapsing with the
two neighbouring runs into one run and, if it is possible, release some memory backdmtieoi calling
brk(2).

If the request is less than or equal to half of a page, its size will be rounded up to the ne@rast po
two before being processed and if the request is less than some minimum size, it is rounded up to that size.

These sub-page allocations are edrfrom pages which are split up into some number of equal size
chunks. Br each of these pagestauct pginfo describes the size of the chunks on this page, hary
there are, hw mary are free and so onThe description consist of a bitmap of used chunks, andus
counters and numbers used &ef track of the sttifn the page.

For each size of sub-page allocation, the pginfo structures for the pagesvidteleachunks in them
form a list. The head of these lists are stored in predetermined slots atginaibg of the page directory
to male access dst.

To dlocate a chunk of some size, the head of the list for the corresponding staenised, and a
free chunk found, the number of free chunks on that page is decreased by one and if zero the pginfo

-6- Implementation

structure is unlinkd from the list.

To free a chunk, the page is deed from the pointerthe page table for that page contains a pointer to
the pginfo structure, where the free bit is set for the chunk, the number of free chunks increased by one, and
if equal to one, the pginfo structure is l@tkinto the proper place on the list for this size of chutikthe
count increases to match the number of chunks on the page, the pginfo structure ésl drdimkthe list
and free(3)’ed and the actual page itself is free(3)’ed too.

To be 100% correct performance-wise these lists should be ordered according to the recent number of
accesses to that pagehis information is not\ailable and it would essentially mean a reordering of the
list on every memory reference toelep it up-to-datelnstead thg are ordered according to the address of
the pagesinterestingly enough, in practice this comes out to almost the same thing performance wise.

It's mot that surprising after all, #'the diference between folleing the cravd or actvely directing
where it can go, in bothays you can end up in the middle of it all.

The side dkct of this compromise is that it also uses less storage, and thevisthas to be
reordered, all the ordering happens when pages are added or deleted.

It is an interesting twist to the implementation thatditeict pginfo Is allocated with malloc.That
is, "as with malloc" to be painfully correcthe code knars the special case where the first (couple) of
allocations on the page is actually the pginfo structure and deals with it accordihiglyvoids some silly
"chicken and gg" issues.

8. Bellsand whistles.

brk(2) is actually not aary fast system call when you ask for storagéis is mainly because of the
need by the &rnel to zero the pages before handing theen, @ therefore this implementation does not
release back heap-pages, until there isgelahunk to release back to thertkel. Chanceare pretty good
that we will need it agin pretty soon arway. Since these pages are not accessed at ajl vitlesoon be
paged out and donéffect arything kut swap-space usage.

The page directory is actuallgjt in a mmap(2)’ed piece of anygnous memory This avoids some
rather silly cases that weowld otherwise hae o be handled when the page directory has toxiereded.

One particular nice feature is that all pointers passed to free(3) and realloc(3) can bd cbacku-
sively for validity: First the pointer is maek to find the pageThe page directory is thexamined, it must
contain either MALLOC_FIRS]Tin which case the pointer must poixaetly at the page, or it can contain
a druct pginfo*, in which case the pointer must point to a one of the chunks described by that structure.
Warnings will be printed on stderr and nothing will be done with the pointer in case it is found walioe in

An ernvironment \ariableMALLOC_OPTIONS allows the user some controlas the behsiour of
malloc. Someof the more interesting options are:

Abort If malloc fails to allocate storage, core-dump the process with a message rathewptwrite
handle this correctlylt's anazing hav few programs actually handle this condition correctiyd
consequently the kiac they can create is the more creatia destructve.

Dump Writes malloc statistics to a file calléthalloc.out’ prior to process termination.

Hint Pass a hint to thedenel about pages we no longer need through the madvise(2) system call.
This can help performance on machines that pagelyédry eliminating unnecessary page-ins and
page-outs of unused data.

Realloc Always do a free and malloc when realloc(3) is call€de deéult is to leae things alone if
the size of the allocation is still in the same size-cl&gs%. programs doing @rbage collect using
realloc(3) this ma& the heap collapseas$ter Since the malloc will reallocate from thewest aail-
able address.

Junk will explicitly fill the allocated area with a particulaalue to try to detect if programs rely on it
being zero.

Zero will explicitly zero out the allocated chunk of memowhile ary space after the allocation in
the chunk will be filled with the junkalue to try to catch out of the chunk references.

-7- Theroad not takn.

9. Theroad not yet taken.
A couple of aenues werexplored that could be interesting in some set of circumstances.

Using mmap(2) instead of brk(2)as actually shver, snce brk(2) knas a lot of the things that
mmap has to find out first.

In general there is little room for further impement of the time-gerhead of the malloc, further
improvements will hae 1 be in the area of impning paging behdour.

It is still under consideration to add a feature such that if realloc is called vaitretey aguments,
the internal allocations will be reallocated to perfornaebgge collect.This could be used in certain types
of programs to collapse the memory usd,do fr it doesnt seem to be wrth the effort.

Malloc/Free can be a significant point of contention in multi-threaded progriamasgrain locking
of the data-structures inside the implementation should be implementaid@aessive pin-waiting.

10. Conclusion and experience.

In general the performance féifences between gnumalloc and this malloc are not thatTiig.
major diference comes when primary storage is seriougy+@mmitted, in which case gnumallo@astes
time paging in pages &'t going to useln such cases as much asatér of five in wall-clock time has
been seen in ddrence. Aparfrom that gnumalloc and this implementation are pretty much head-en per
formance wise.

Several legacy programs in the BSD 4.4 Lite disttibon had code that depended on the memory
returned from malloc to be zeroed, in a couple of cases frea§galled more than once for the same allo-
cation and a f® cases een called free(3) with pointers to objects in the data section or on the stack.

A couple of users he reported that using this malloc on other platforms yielded "pretty impeessi
results”, lot no hard benchmarksvyebeen made.

11. Acknowledgements & references.

The first implementation of this algorithmaw actually a file system, done in assembler using 5-hole
“ Baudot’ paper tape for a drum storagevide attached to a 20 bit germanium transistor computer with
2000 words of memorybut that vas maw years ago.

Peter Vémm <peter@FreeBSDg¥ came up with the idea to store the page-directory in
mmap(2)’ed memory instead of in the hedjhis has preen to be a gpod mae.

Lars Fredriksen <fredriks@mcs.com> found and identified a fence-ypg$t the code.

