Using gprof to Tune the 4.2BSD Krnel

Marshall Kirk McKusidk

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

ABSTRAT

This paper describes Wahe gprof profiler accounts for the running time of called
routines in the running time of the routines that call thérnthen eplains hev to config-
ure a profiling krnel on the 4.2 Beeley Software Distritution of UNIX® for the \AXE
and discusses tradésfin techniques for collecting profile dat&prof identifies prob-
lems that seerely afects the werall performance of thedtnel. Oncea potential prob-
lem areas is identified benchmark programs argsédé to highlight the bottleneck.
These benchmarkserify that the problem»ast and preide a metric aginst which to
validate proposed solutionsTwo caches are added to therkel to allgiate the bottle-
neck andgprof is used to alidates their ééctiveness.

T VAX is a trademark of Digital Equipment Corporation.

4.2BSD Performance -i- Contents

TABLE OF CONTENTS

1. Introduction

2. Thegprof Profiler

.1. DataPresentation”
.1.1. TheFlat Profile

.1.2. TheCall Graph Profile
.2 Profilingthe Kernel

3. Usinggprof to Impr ove Rerformance
.1. Usingthe Profiler
2. AnExample of Tining

4. Conclusions
Acknowledgements

References

May 21, 1984 McKusick

4.2BSD Performance -1- Contents

1. Introduction

The purpose of this paper is to describe the tools and techniques thadlatdeafor imprasing the
performance of the theeknel. Theprimary tool used to measure therikel is the hierarchical profiler
gprof. The profiler enables the user to measure the cost of the abstractions tlehéhetwides to the
user Once the gpensve dstractions are identified, optimizations are postulated to help wagreir per
formance. Theseptimizations are each inddually verified to insure that tlyeare producing a measur
able impreement.

2. Thegprof Profiler

The purpose of thgprof profiling tool is to help the usewauate alternatie implementations of
abstractions. Thegprof design taks adantage of thedct that the &rnel though lage, is structured and
hierarchical. V& provide a profile in which thexecution time for a set of routines that implement an
abstraction is collected and cbad to that abstractionThe profile can be used to compare and assess the
costs of arious implementations [Graham82] [Graham83].

2.1. Datapresentation

The data is presented to the user in tifferent formats.The first presentation simply lists the rou-
tines without rgard to the amount of time their descendants Udee second presentation incorporates the
call graph of the &rnel.

2.1.1. TheFlat Profile

The flat profile consists of a list of all the routines that are called duretgitéon of the krnel, with
the count of the number of times yhare called and the number of seconds>adcation time for which
they are themseles accountableThe routines are listed in decreasing orderxe€etion time. A list of the
routines that are wer called during gecution of the kernel is also \ailable to \erify that nothing impor
tant is omitted by this profiling runThe flat profile gies a qlick overview of the routines that are used,
and shws the routines that are themgsedwesponsible for lge fractions of thex@cution time. In practice,
this profile usually shes that no single function isverwhelmingly responsible for the total time of the
kernel. Noticethat for this profile, the indidual times sum to the totakecution time.

2.1.2. TheCall Graph Profile

Ideally, we would like to print the call graph of thedtnel, lut we are limited by the twdimensional
nature of our output dé&ces. W cannot assume that a call graph is plagad even if it is, that we can
print a planar grsion of it. Instead, we choose to list each routine, together with information about the rou-
tines that are its direct parents and childr&his listing presents a windointo the call graphBased on
our eperience, both parent information and child information is important, and showdiladla without
searching through the outpukigure 1 shavs a samplgprof entry

called/total parents

index %time self descendants called+self name index
called/total children

0.20 1.20 4/10 CALLER1 [7]

0.30 1.80 6/10 CALLER2 [1]

[2] 415 0.50 3.00 10+4 EXAMPLE [2]

1.50 1.00 20/40 SUB1<cyclel> [4]

0.00 0.50 1/5 SUB2 [9]

0.00 0.00 0/5 SUB3 [11]

Figure 1. Profile entry faEXAMPLE.

The major entries of the call graph profile are the entries from the flat profile, augmented by the time
propagted to each routine from its descendarisis profile is sorted by the sum of the time for the rou-
tine itself plus the time inherited from its descendaiitse profile shavs which of the higher &l routines

May 21, 1984 McKusick

4.2BSD Performance -2- Thegprof Profiler

spend lage portions of the totalkecution time in the routines that theall. For each routine, we siwthe
amount of time passed by each child to the routine, which includes time for the child itself and for the
descendants of the child (and thus the descendants of the roMtkaelso shav the percentage these times
represent of the total time accounted to the ch8dnilarly, the parents of each routine are listed, along
with time, and percentage of total routine time, preped to each one.

Cycles are handled as single entitidie g/cle as a whole is shm as though it were a single rou-
tine, except that members of thgale are listed in place of the childreAlthough the number of calls of
each member from within theyde are shen, they do not affect time propagtion. Whena dild is a
member of aycle, the time shan is the appropriate fraction of the time for the wholele Self-recur
sive routines hae teir calls brokn davn into calls from the outside and self-recuesialls. Onlythe out-
side calls d&ct the propagtion of time.

The xample shan in Figure 2 is the fragment of a call graph corresponding to the entry in the call
graph profile listing shen in Figure 1.

Figure 2. Example call graph fragment.

The entry is for routinEXAMPLE, which has the Caller routines as its parents, and the Sub routines
as its children.The reader shouldelep in mind that all information is\gn with respect t&EXAMPLE The
index in the first column shes thatEXAMPLE is the second entry in the profile listindhe EXAMPLE
routine is called ten times, four times BALLER1, and six times byCALLER2. Consequently 40% of
EXAMPLE’s time is propagted toCALLER1, and 60% OfEXAMPLE’s time is propagted toCALLER2.

The self and descendant fields of the parent $he amount of self and descendant tEXAMPLE prop-
agates to them (it not the time used by the parents directipte thatEXAMPLE calls itself recursiely

four times. The routineEXAMPLE calls routineSUB1 twenty times,SUB2 once, and ner calls SUB3
SinceSUB2is called a total of fig imes, 20% of its self and descendant time is prajEabtoEXAMPLE'’S
descendant time fieldBecausesUB1is a member ofycle 1 the self and descendant times and call count
fraction are those for thg/cle as a wholeSince gcle 1 is called a total of forty times (not counting calls
among members of theyae), it propagtes 50% of theycle’s lIf and descendant time EXAMPLE's
descendant time fieldzinally each name is folleed by an indethat shavs where on the listing to find the
entry for that routine.

2.2. Profiling the Kernel

It is simple to bild a 4.2BSD krnel that will automatically collect profiling information as it eper
ates simply by specifying thep option toconfig(8) when configuring aéenel. Theprogram counter sam-
pling can be duien by the system clock, or by an alternate real time clotke latter is highly recom-
mended as use of the system clock results in statistical anomalies in accounting for the time spent in the
kernel clock routine.

Once a profiling system has been booted statisticeging is handled bygmon(8). Kgmonallows
profiling to be started and stopped and the internal state of the profiffiegstto be dumpedkKgmoncan
also be used to reset the state of the inteurfédis to allev multiple experiments to be run without reboot-
ing the machine.The profiling data can then be processed wjitof (1) to obtain information gearding

May 21, 1984 McKusick

4.2BSD Performance -3- Thegprof Profiler

the systens gperation.

A profiled system is about 5-10% dgar in its tat space because of the calls to count the subroutine
invocations. Wherhe systemecutes, the profiling data is stored inwffbr that is 1.2 times the size of
the text space.All the information is summarized in memoiyis ot necessary to kia a tace file being
continuously dumped to disklhe overhead for running a profiled systeraries; under normal load we see
anywhere from 5-25% of the system time spent in the profiling catkeis the system is noticeably wier
than an unprofiled system, yet is not so bad that it cannot be used in a produdtmmresnt. Thisis
important since it alls us to gther data in a real einonment rather than trying to vise synthetic wrk
loads.

3. Techniques br Impr oving Performance

This section gies ®veal hints on general optimization techniquétsthen proceeds with arxample
of haw they can be applied to the 4.2BS[@rkel to impree its performance.

3.1. Usingthe Profiler

The profiler is a useful tool for impring a set of routines that implement an abstractibcan be
helpful in identifying poorly coded routines, and weleating the nes algorithms and code that replace
them. Tking full adwantage of the profiler requires a carefwhmination of the call graph profile, and a
thorough knavledge of the abstractions underlying ttezriel.

The easiest optimization that can be performed is a small change to a control construct or data struc-
ture. Anobvious starting point is toxpand a small frequently called routine inlin€he dravback to
inline expansion is that the data abstractions in teenél may become less parameterized, hence less
clearly defined.The profiling will also become less useful since the loss of routines wik fitaloutput
more granular

Further potential for optimization lies in routines that implement data abstractions whosgetal e
tion time is long. If the data abstraction function cannot easily be speeded up, it may dgaghous to
cache its results, and eliminate the need to rerun it for identical inpoése and other ideas for program
improvement are discussed in [Bery#d].

This tool is best used in an itexatigpproach: profiling the érnel, eliminating one bottleneck, then
finding some other part of thetnel that bgins to dominatex@cution time.

A completely diferent use of the profiler is to analyze the contrel thdan unfamiliar section of the
kernel. Byrunning an rample that eercises the ur@miliar section of thedenel, and then usingprof, you
can get a vie of the control structure of the warhiliar section.

3.2. AnExample of Tuning

The first step is to come up with a method for generating profile Wéaxefer to run a profiling
system for about a one day period on one of our general timesharing madhiiksthis is not as repro-
ducible as a syntheticarkload, it certainly represents a realistic tade haverun one day profiles onse
eral occasionswer a three month periodDespite the long period of time that elapsed between the test runs
the shape of the profiles, as measured by the number of times each system call entgspmitied; were
remarkably similar

A second alternaie is o write a small benchmark program to repeategtaise a suspected bottle-
neck. Whilethese benchmarks are not useful as a long term profyectre give cuick feedback on
whether a fipothesized impneement is really hang an efect. Itis important to realize that the only real
assurance that a change has a benefidadtas through long term measurements of general timesharing.
We havenumerous xamples where a benchmark program suggestsimpraements while the change in
the long term system performance igligible, and cowersely ekamples in which the benchmark program
run more slaly, but the long term system performance inyaodgnificantly.

An investigation of our long term profiling sked that the single moskgensve function performed
by the lernel is path name translatiolVe find that our general time sharing systems do about 500,000
name translations per dayhe cost of doing name translation in the original 4.2BSD is 24.2 milliseconds,

May 21, 1984 McKusick

4.2BSD Performance -4- Techniques for Impnang Performance

representing 40% of the time processing system calls, which is 19% of the/¢t¢alio the krnel, or 11%
of all cycles executed on the machinélhe times are shn in Figure 3.

part time % of kernel

self 14.3ms/call 11.3%
child 9.9ms/call 7.9%
total 24.2ms/call 19.2%

Figure 3. Call times fonamei

The system measurements collectedwstbthe pathname translation routimamej was clearly
worth optimizing. An inspection ohameishavs that it consists of twnested loops.The outer loop is tra-
versed once per pathname componéiite inner loop performs a linear search through a directory looking
for a particular pathname component.

Our first idea \as to obsem that mary programs step through a directory performing an operation on
each entry in turnThis caused us to modifyameito cache the directory fskt of the last pathname com-
ponent lookd up by a processThe cached déget is then used as the point at which a search in the same
directory bgins. Changingdirectories inaidates the cache, as does modifying the directéiyr pro-
grams that step sequentially through a directory Witliies, search time decreases fraN2) to O(N).

The cost of the cache is about 20 lines of code (about 0.2 kilobytes) and 16 bytes per process, with
the cached data stored in a procegsérvector.

As a quick benchmark tcevify the efectiveness of the cache we rals —I'’ on a drectory contain-
ing 600 files. Before the peprocess cache this command used 22.3 seconds of systenAfiereadding
the cache the program used the same amount of user tibikelsystem time dropped to 3.3 seconds.

This change prompted our rerunning a profiled system on a machine containing et The
results shwed that the time inameidropped by only 2.6 ms/call and still accounted for 36% of the system
call time, 18% of the érnel, or about 10% of all the machingles. Thisamounted to a drop in system
time from 57% to about 55%Tl he results are shm in Figure 4.

part time % of kernel

self 11.0ms/call 9.2%
child 10.6ms/call 8.9%
total 21.6ms/call 18.1%

Figure 4. Call times fonameiwith perprocess cache.

The small performance imprement was caused by awocache hit ratio.Although the cache as
90% efective when hit, it wvas only usable on about 25% of the names being translateddditional rea-
son for the small imprement was that although the amount of time spemameiitself decreased sub-
stantially more time vas spent in the routines that it called since each directory had to be accessed twice;
once to search from the middle to the end, and once to search frongith@rigeto the middle.

Most missed names were caused by path name components other than thbusadRobert Elz
introduced a system wide cache of most recent name translalibescache iséyed on a name and the
inode and déce number of the directory that containsAtssociated with each entry is a pointer to the cor
responding entry in the inode tabl&his has the &ct of short circuiting the outer loop aamei For
each path name componenameifirst looks in its cache of recent translations for the needed nHirte.
exists, the directory search can be completely eliminaliethe name is not recognized, then the-jper-
cess cache may still be useful in reducing the directory search Tiheetwo cacheing schemes comple-
ment each other well.

The cost of the name cache is about 200 lines of code (about 1.2 kilobytes) and 44 bytes per cache
entry Depending on the size of the system, about 200 to 1000 entries will normally be configured, using
10-44 kilobytes of pysical memory The name cache is resident in memory at all times.

May 21, 1984 McKusick

4.2BSD Performance -5- Techniques for Impnang Performance

After adding the system wide name cache we rélan-I’ on the same directoryThe user time
remained the same, Wwever the system time rose slightly to 3.7 secon@iis was not surprising asamei
now had to maintain the cacheytbwas neer able to male any use of it.

Another profiled system as created and measurements were collesterdaone day period.These
measurements shved a 6 ms/call decrease namej with nameiaccounting for only 31% of the system
call time, 16% of the time in thesknel, or about 7% of all the machingles. Systentime dropped from
55% to about 49%The results are shm in Figure 5.

part time % of kernel

self 9.5ms/call 9.6%
child 6.1ms/call 6.1%
total 15.6ms/call 15.7%

Figure 5. Call times fomameiwith both caches.

Statistics on the performance of both cachesvghe lage performance impwement is caused by

the high hit ratio.On the profiled system a 60% hit ratasrobsersd in the system wide cach&his, cou-

pled with the 25% hit rate in the pprocess déet cache yielded anfe€tive ache hit rate of 85%While

the system wide cache reduces both the amount of time in the routineartieitalls as well aniamei

itself (since fever directories need to be accessed or searched), it is interesting to note that the actual per
centage of system time spentiameiitself increasesven though the actual time per call decreasgsis

is because less total time is being spent in #radt, hence a smaller absolute time becomegarléotal
percentage.

4. Conclusions

We havecreated a profiler that aids in theseation of the kernel. For each routine in theeknel, the
profile shavs the &tent to which that routine helps suppaoatrious abstractions, andahat routine uses
other abstractionsThe profile assesses the cost of routines at\alslef the lernel decompositionThe
profiler is easily used, and can be compiled into #mméd. Itadds only fie to thirty percent recution
overhead to the érnel being profiled, produces no additional output while &radl is running and ales
the kernel to be measured in its reavieonment. kKernel profiles can be used to identify bottlenecks in per
formance. W haveshavn how to improve performance by caching recently calculated name translations.
The combined caches added to the name translation process redugeape eost of translating a path-
name to an inode by 35%flhese changes reduce the percentage of time spent running in the system by
nearly 9%.

Acknowledgements

I would like o thank Robert Elz for sharing his ideas and his code for cacheing system wide names.
Thanks also to all the users at Beldg who provided all the input to generate therkel profiles. This
work was supported by the Defense Adee Research Projects AggiiDoD) under Arpa Order No. 4031
monitored by Neal Electronic System Command under Contract No. NO0039-82-C-0235.

References

[Bentley81] Bentlg, J L., “Writing Efficient Code’, Department of Computer Science,
Carngyie-Mellon Uniersity, Rittsburgh, Pennsylania, CMU-CS-81-116, 1981.

[Graham82] Grahan§., Kessler P, McKusick, M., ‘gprof: A Call Graph Ercution Profiler,

Proceedings of the SIGPLAN '82 Symposium on Compiler Constructiaomeé
17, Number 6, June 1982. pp 120-126

[Graham83] Grahant., Kessler P, McKusick, M., ‘An Execution Profiler for Modular Pro-
grams’ Software - Practice and Experiencelime 13, 1983. pp 671-685

May 21, 1984 McKusick

4.2BSD Performance -6- References

[Ritchie74] Ritchie,D. M. and Thompson, K., The UNIX Time-Sharing Systerh’ CACM
17, 7. July 1974. pp 365-375

May 21, 1984 McKusick

