Reprinted fromProceedings of the San Francisco USENIX Conference, pp. 295-303, June 1988.

Design of a General Pupose Memory Allocator or the 4.3BSD
UNIXT Kernel

Marshall Kirk McKusick
Michael J. Karels

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

ABSTRACT

The 4.3BSD UNIX lernel uses manmemory allocation mechanisms, each
designed for the particular needs of the utilizing subsystEms paper describes a gen-
eral purpose dynamic memory allocator that can be used by all oéhel kubsystems.
The design of this allocator tak adantage of knwn memory usage patterns in the
UNIX kernel and a ybrid stratgy that is time-difcient for small allocations and space-
efficient for lage allocations.This allocator replaces the multiple memory allocation
interfaces with a single easy-to-program irdesd, results in more fefient use of global
memory by eliminating partitioned and specialized memory pools, and is quick enough
that no performance loss is obseawelatve o the current implementationsChe paper
concludes with a discussion of outperience in using the mememory allocatqrand
directions for future wrk.

1. Kernel Memory Allocation in 4.3BSD

The 4.3BSD krnel has at least ten f@ifent memory allocatorsSome of them handle e blocks,
some of them handle small chained data structures, and others include information to describe 1/O opera-
tions. Oftenthe allocations are for small pieces of memory that are only needed for the duration of a single
system call.In a user process such short-term memaoyld be allocated on the run-time stadecause
the lernel has a limited run-time stack, it is not feasible to allocage moderate blocks of memory on it.
Consequentlysuch memory must be allocated through a more dynamic mechafignexample, when
the system must translate a pathname, it must allocate a one kildfgretd hold the nameOther blocks
of memory must be more persistent than a single system call and re@&llp e dlocated from dynamic
memory Examples include protocol control blocks that remain throughout the duration of therkhetw
connection.

Demands for dynamic memory allocation in trexriel hae increased as more servicevéddeen
added. Eachime a n& type of memory allocation has been required, a specialized memory allocation
scheme has been written to handleQften the ner memory allocation scheme has beeiitton top of an
older allocatar For example, the block déce subsystem puides a crude form of memory allocation
through the allocation of emptyuffers [Thompson78].The allocation is slo because of the implied
semantics of finding the oldestifter, pushing its contents to disk if there dirty, and moring plysical
memory into or out of theuffer to create the requested siZzia reduce the werhead, a‘hew’” memory
allocator vas luilt in 4.3BSD for name translation that allocates a pool of emyifers. Itkeeps them on
a free list so thg can be quickly allocated and freed [Maick85].

TUNIX is a rgistered trademark of ’&T in the US and other countries.

Summer USENIX '88 295 SarfFrancisco, June 20-24

Design of a General Purpose Memory ... McKusick, Karels

This memory allocation method hasvaml dravbacks. Firstthe nev alocator can only handle a
limited range of sizesSecond, it depletes thauffer pool, as it steals memory intended tdfér disk
blocks to other purposeginally, it creates yet another intade of which the programmer must lveaee.

A generalized memory allocator is needed to reduce the critypdé writing code inside theéenel.
Rather than prading mary semi-specialized ways of allocating memoyyhe kernel should prade a sin-
gle general purpose allocatdiith only a single integce, programmers do not need to figure out the most
appropriate \y to allocate memonyif a good general purpose allocator igitable, it helps woid the syn-
drome of creating yet another special purpose allacator

To ease the task of understandingshim use it, the memory allocator shouldveam interface simi-
lar to the interfice of the well-knan memory allocator praded for applications programmers through the
C library routinesmalloc() and free(). Like the C library interdce, the allocation routine should ¢al
parameter specifying the size of memory that is neetlad.range of sizes for memory requests should not
be constrainedThe free routine should taka winter to the storage being freed, and should not require
additional information such as the size of the piece of memory being freed.

2. Criteria for a Kernel Memory Allocator

The design specification for &inel memory allocator is similar toytnot identical to, the design
criteria for a user kel memory allocatar The first criterion for a memory allocator is that it makod use
of the plysical memory Good use of memory is measured by the amount of memory needed to hold a set
of allocations at anpoint in time. Percentage utilization isxpressed as:

requested
required

Here, ‘requested’is the sum of the memory that has been requested and not yet fieedquired’is the

amount of memory that has been allocated for the pool from which the requests areAfillaliocator

requires more memory than requested because of fragmentation and a needateehdy supply of free
memory for future requestsi perfect memory allocator euld hare a dilization of 100%. In practice,
having a 50% utilization is considered goodofik85].

Good memory utilization in theeknel is more important than in user proces&escause user pro-
cesses run in virtual memomnused parts of their address space can be pagedlaus. pages in the pro-
cess address space that are part of hguired’ pool that are not beingréquested’need not tie up pJsi-
cal memory Because thedtnel is not paged, all pages in thheduired’ pool are held by thedtnel and
cannot be used for other purposé@s. keep the krnel utilization percentage as high as possible, it is-desir
able to release unused memory in thequired’ pool rather than to hold it as is typically done with user
processes. Becauiee kernel can directly manipulate itsvo page maps, releasing unused memorgss f
a user process must do a system call to release memory

The most important criterion for a memory allocator is that itasé fBecauseiemory allocation is
done frequentlya dow memory allocator will dgrade the system performanc8peed of allocation is
more critical when xecuting in the lkernel than in user code, because thmé& must allocate mgirdata
structure that user processes can allocate cheaply on their run-timelstadKlition, the &rnel represents
the platform on which all user processes run, and if it is, stawill degrade the performance ofesy pro-
cess that is running.

Another problem with a sl® memory allocator is that programmers of frequently-usatdd inter
faces will feel that the cannot afford to use it as their primary memory allocattmstead the will build
their avn memory allocator on top of the original by maintaining thein @ool of memory blocksMulti-
ple allocators reduce thefiefency with which memory is usedThe kernel ends up with mardifferent
free lists of memory instead of a single free list from which all allocation can Wa.dfr example, con-
sider the case of twaubsystems that need memoily they havetheir avn free lists, the amount of mem-
ory tied up in the tw lists will be the sum of the greatest amount of memory that each of ahsailvays-
tems haswer used. Ifthey share a free list, the amount of memory tied up in the free list may be as lo
the greatest amount of memory that either subsystem ésethe number of subsystems @g) the sa
ings from haing a single free list g

utilization =

Summer USENIX '88 296 SarfFrancisco, June 20-24

McKusick, Karels Design of a General Purpose Memory ...

3. Existing Userlevel | mplementations

There are mandifferent algorithms and implementations of diggel memory allocators A survey
of those wailable on UNIX systems appeared indi85]. Nearlyall of the memory allocators tested
made good use of memothough most of them were too wldor use in the &rnel. Thefastest memory
allocator in the suey by nearly a &ctor of two was the memory allocator pided on 4.2BSD originally
written by Chris Kingslg at California Institute of €chnology Unfortunatelythe 4.2BSD memory alloca-
tor also vasted twice as much memory as its nearest competitor in they.surv

The 4.2BSD uselevel memory allocator wrks by maintaining a set of lists that are ordered by
increasing paers of tw. Eachlist contains a set of memory blocks of its corresponding Siaulfill a
memory request, the size of the request is rounded up toxhpaaeer of two. A piece of memory is then
removed from the list corresponding to the specifiedvpo of two and returned to the requesterhus, a
request for a block of memory of size 53 returns a block from the 64-sized lighical memory alloca-
tion requires a roundup calculation felled by a linked list remwal. Only if the list is empty is a real
memory allocation doneThe free operation is alsadt; the block of memory is put back onto the list from
which it came. The correct list is identified by a size indicator stored immediately preceding the memory
block.

4. ConsiderationsUnique to a Kernel Allocator

There are seeral special conditions that arise when writing a memory allocator foretirekthat do
not apply to a user process memory allocakinst, the maximum memory allocation can be determined at
the time that the machine is boot€ethis number is nger more than the amount of psical memory on the
machine, and is typically much less since a machine with all its memory dedicated to the operating system
is uninteresting to useThus, the krnel can statically allocate a set of data structures to manage its dynami-
cally allocated memory These data structures vee need to be xpanded to accommodate memory
requests; yet, if properly designed,ytheeed not be lgre. For a user process, the maximum amount of
memory that may be allocated is a function of the maximum size of its virtual meAltmgugh it could
allocate static data structures to manage its entire virtual meeaenyif they were eficiently encoded the
would potentially be hugeThe other alternate is to dlocate data structures as yrege needed However,
that adds d@ra complications such aswéailure modes if it cannot allocate space for additional structures
and additional mechanisms to link them all together

Another special condition of theeknel memory allocator is that it can control #gncaddress space.
Unlike user processes that can onlywgrand shrink their heap at one end, tlegriel can kep an arena of
kernel addresses and allocate pieces from that arena which it then populatesysiithl phemory The
effect is much the same as a user process that has parts of its address space paged oytaréheattime
use, &cept that the érnel can eplicitly control the set of pages allocated to its address spaeeresult is
that the ‘working set’ of pages in use by thesknel exactly corresponds to the set of pages that it is really
using.

A final special condition that applies to thesriel is that all of the diérent uses of dynamic memory
are knovn in adwance. Eaclone of these uses of dynamic memory can be assigned aRgpeach type
of dynamic memory that is allocated, ttertkel can preide allocation limits.One reason gen for having
separate allocators is that no single allocator couldestaevrest of the érnel of all its gailable memory
and thus a single runay client could not paralyze the systefy putting limits on each type of memory
the single general purpose memory allocator cavigiedhe same protection@gst memory staation.t

Figure 1 shas the memory usage of therkel wer a one day period on a general timesharing
machine at Bemdey. The ‘In Use”, ‘‘Free’, and ‘Mem Use’ fields are instantaneouslues; the
“ Requests’field is the number of allocations since system startup;Hingh’ Use’ field is the maximum
value of the “‘Mem Use’ field since system startuf.he figure demonstrates that most allocations are for
small objects.Large allocations occur infrequentignd are typically for long-lied objects such asuffers
to hold the superblock for a mounted file systerhus, a memory allocator only needs to &st for small
pieces of memory

TOne might seriously ask the question what good it isrfy’’ one subsystem within theeknel hangs if it is
something lile the netvork on a diskless arkstation.

Summer USENIX '88 297 SarfFrancisco, June 20-24

Design of a General Purpose Memory ... McKusick, Karels

Memory statistics byurcket size
Size InUse Free Requests

128 329 39 3129219

256 0 0 0

512 4 0 16

1024 17 5 648771

2048 13 0 13

2049-4096 0 0 157

4097-8192 2 0 103

8193-16384 0 0 0

16385-32768 1 0 1

Memory statistics by type
Type InUse MemUse HighUse Requests
mbuf 6 1K 17K 3099066
devbuf 13 53K 53K 13
soclet 37 5K 6K 1275
pch 55 7K 8K 1512
routetbl 229 29K 29K 2424
fragtbl 0 0K 1K 404
zombie 3 1K 1K 24538
namei 0 0K 5K 648754
ioctlops 0 0K 1K 12
superblk 24 34K 34K 24
temp 0 0K 8K 258
\.in0
\.ce

\¥(Lb. W¥(Lt

5. Implementation of the Kernel Memory Allocator

In reviewing the @ailable memory allocators, none of their stgags could be used without some
modification. Thekernel memory allocator that we ended up with isyarid of the fist memory allocator
found in the 4.2BSD C library and awler but more-memory-éitcient first-fit allocator

Small allocations are done using the 4.2BSDRvgmeof-two list stratgy; the typical allocation
requires only a computation of the list to use and the vanob an dement if it is &ailable, so it is quite
fast. Macrosare proided to @oid the cost of a subroutine calDnly if the request cannot be fulfilled from
a list is a call made to the allocator itselfo ensure that the allocator isways called for lage requests,
the lists corresponding to g allocations are whys empty Appendix A shws the data structures and
implementation of the macros.

Similarly, freeing a block of memory can be done with a madree macro computes the list on
which to place the request and puts it therae free routine is called only if the block of memory is con-
sidered to be a Ige allocation.Including the cost of blocking out interrupts, the allocation and freeing
macros generate respeety only nine and sixteen (simple)AX instructions.

Because of the infifiengy of power-of-two dlocation stratgies for lage allocations, a dirent
strat@y is used for allocations iger than tw kilobytes. Theselection of tw kilobytes is dexied from our
statistics on the utilization of memory within therkel, that sheed that 95 to 98% of allocations are of
size one kilobyte or lessA frequent caller of the memory allocator (the name translation functivaysal
requests a one kilobyte blocladditionally the allocation method for lge blocks is based on allocating
pieces of memory in multiples of page€onsequently the actual allocation size for requests of size

Summer USENIX '88 298 SarfFrancisco, June 20-24

McKusick, Karels Design of a General Purpose Memory ...

2 x pagesize or less are identical.tn 4.3BSD on the XX, the (software) page size is one kilobyte, s@tw
kilobytes is the smallest logical cutof

Large allocations are first rounded up to be a multiple of the page Bimeallocator then uses a
first-fit algorithm to find space in theknel address arena set aside for dynamic allocatibimss a request
for a five kilobyte piece of memory will usexactly five pages of memory rather than eight kilobytes as
with the paver-of-two dlocation stratgy. When a lage piece of memory is freed, the memory pages are
returned to the free memory pool, and the address space is returnedeamtéieaéldress arena where it is
coalesced with adjacent free pieces.

Another technique to impve both the eficiency of memory utilization and the speed of allocation is
to cluster same-sized small allocations on a pMybeen a list for a peerof-two dlocation is emptya
new page is allocated anduiiled into pieces of the needed siZéhis stratgy speeds future allocations as
several pieces of memory becomeadable as a result of the call into the allocator

kernel memory pages

char *kmembas
kmemsizes[] = 024,256, 512,3072,cont, cont, 128, 128, free, cont, 128,1024,free, cont, cont,

Legend:
free — unused page
cont — continuation of pwous page

Usage:
memsize(addr)
char *addr;

return(kmemsizes[(addr — kmembase)AGESIZE);

\.in 0 \.ce *(Lb \¥(Lt

Because the size is not specified when a block of memory is freed, the allocatoeepustkk of
the sizes of the pieces it has handed dine 4.2BSD uselevel allocator stores the size of each block in a
header just before the allocatiorlowever, this stratgy doubles the memory requirement for allocations
that require a pmer-of-two-sized block. Therefore, instead of storing the size of each piece of memory
with the piece itself, the size information is associated with the memory pagee 2 shas hav the ler-
nel determines the size of a piece of memory that is being freed, by calculating the page in which it resides,
and looking up the size associated with that pd&jeminating the cost of theverhead per piece impved
utilization far more thanxpected. Theeason is that mgrellocations in the &rnel are for blocks of mem-
ory whose size isxactly a paver of two. Theseequests wuld be nearly doubled if the udewel strategy
were used.Now they can be accommodated with nasted memory

The allocator can be called both from the top half of #radd, which is willing to it for memory
to become &ilable, and from the interrupt routines in the bottom half of tedd that cannot ait for
memory to becomevailable. Clientsindicate their willingness (and ability) toaw with a flag to the allo-
cation routine.For clients that are willing to wait, the allocator guarrentees that their request will succeed.
Thus, these clients can need not check the relug¥rom the allocatorlf memory is ungailable and the
client cannot \ait, the allocator returns a null pointéfhese clients must be prepared to cope with this
(hopefully infrequent) condition (usually byiiig up and hoping to do better later).

1To understand wi this number is X pagesize one obserss that the pser-of-two dgorithm yields sizes of 1,

2, 4, 8, ...pages while the lge block algorithm that allocates in multiples of pages yields sizes of 1, 2, 3, 4, ...
pages. Thusor allocations of sizes between one and pages both algorithms usedvpages; it is not until
allocations of sizes betweendvend three pages that a féifence emeyes where the peer-of-two dgorithm

will use four pages while the ig& block algorithm will use three pages.

Summer USENIX '88 299 SarfFrancisco, June 20-24

Design of a General Purpose Memory ... McKusick, Karels

6. Resultsof the Implementation

The nev memory allocator &s written about a year ag&orversion from the old memory alloca-
tors to the n& allocator has been going owee since. Mary of the special purpose allocators/baeen
eliminated. Thidist includescalloc(), wmemall (), and zmemall (). Mary of the special purpose memory
allocators hilt on top of other allocators i@ dso been eliminatedFor example, the allocator thatas
built on top of the hbffer pool allocatomgeteblk() to dlocate pathnameuifers innamei() has been elimi-
nated. Becausthe typical allocation is saét, we hee found that none of the special purpose pools are
needed. Indeedhe allocation is about the same as th&iptes cost of allocatinguffers from the netark
pool (mbufs). Consequentlgpplications that used to allocate netkwbuffers for their an uses hee been
switched wer to using the general purpose allocator without increasing their running time.

Quantifying the performance of the allocator ididifit because it is hard to measure the amount of
time spent allocating and freeing memory in tekenkel. Theusual approach is to compile arkel for pro-
filing and then compare the running time of the routines that implemented the old abstestisntivose
that implement the me one. Theold routines are dicult to quantify because inddual routines were
used for more than one purpodeor example, thegeteblk() routine was used both to allocate one kilobyte
memory blocks and for its intended purpose ofvjging buffers to the filesystemDifferentiating these
uses is often difcult. To get a measure of the cost of memory allocation before putting in aualoea-
tor, we summed up the running time of all the routines whosdusive task wvas memory allocationTo
this total we added the fraction of the running time of the multi-purpose routines that could clearly be iden-
tified as memory allocation usag€his number shwed that approximately three percent of the time spent
in the lernel could be accounted to memory allocation.

The nev allocator is dificult to measure because the usual case of the memory allocator is imple-
mented as a macrad-hus, its running time is a small fraction of the running time of the numerous routines
in the lernel that use itTo get a bound on the cost, we changed the mawrayalto call the memory allo-
cation routine.Running in this mode, the memory allocator accounted for six percent of the time spent in
the kernel. Rctoring out the cost of the statistics collection and the subroutinevediead for the cases
that could normally be handled by the macro, we estimate that the allocatidr account for at most four
percent of time in theetnel. Theseneasurements siwathat the ner alocator does not introduce signifi-
cant nev run-time costs.

The other major success has beenegieping the size information on a frge basisThis technique
allows the most frequently requested sizes to be allocated withesiewltalso reduces the amount of
bookkeeping information associated with the allocator to four kilobytes of information pgabye of
memory under management (with a one kilobyte page size).

7. Future Work

Our net project is to covert mary of the static krnel tables to be dynamically allocateStatic
tables include the process table, the file table, and the mount kdaking these tables dynamic will Ve
two benefits. Firstjt will reduce the amount of memory that must be statically allocated at boot Siece.
ond, it will eliminate the arbitrary upper limit imposed by the current static sizing (although a limit will be
retained to constrain ruway clients). Otheresearchers la dready shan the memory sangs achiged
by this cowersion [Rodriguez88].

Under the current implementation, memory isenenoved from one size list to anothekVith the
4.2BSD memory allocator this causes problems, particularly fge lalfocations where a process may use
a quarter mgabyte piece of memory once, which is thewenevailable for ary other size requestln our
hybrid scheme, memory can be dted between la@ge requests so that dgr blocks of memory are v
stranded as tlyeare with the 4.2BSD allocatorHoweve, pages allocated to small requests are allocated
once to a particular size andveechanged thereafterf a burst of requests came in for a particular size,
that size wuld acquire a lge amount of memory thatowld then not be\ailable for other future
requests.

In practice, we do not find that the free lists become ta@e laHavever, we havebeen iwvestigating
ways to handle such problems if $heccur in the future.Our current imestigations ivolve aroutine that
can run as part of the idle loop thabwid sort the elements on each of the free lists into order of increasing

Summer USENIX '88 300 SarfFrancisco, June 20-24

McKusick, Karels Design of a General Purpose Memory ...

address. Sincary given page has only one size of elements allocated from it, fieetedf the sorting
would be to sort the list into distinct pageAlhen all the pieces of a page became free, the page itself could
be released back to the free pool so that it could be allocated to another pigfumagh there is no guar
antee that all the pieces of a pagauld ever be freed, most allocations are shoxtel, lasting only for the
duration of an open file descriptan open netwrk connection, or a system cals new alocations wuld

be made from the page sorted to the front of the list, return of elements from pages at theulthekens

tually allon pages later in the list to be freed.

Two of the traditional UNIX memory allocators remain in the current sysfEne terminal subsys-
tem useglists (character lists).That part of the system ixgected to undgo major reision within the
the net year or so, and it will probably be changed to mbafs & it is merged into the netark system.
The other major allocator that remaingéblk(), the routine that manages the filesysterfids pool mem-
ory and associated control informatio@nly the filesystem useagtblk() in the current system; it manages
the constant-sizedulffer pool. We dan to mege the filesystemuffer cache into the virtual memory sys-
tem’s page cache in the futuréhis change will allev the size of the uffer pool to be changed according
to memory load, bt will require a polig for balancing memory needs with filesystem cache performance.

8. Acknowledgments

In the spirit of community support, weeamade \arious ersions of our allocatorvailable to our
test sites. They havebeen lisily burning it in and giing us feedback on theixgeriences. & acknowl-
edge their imaluable input. The feedback from the Usenix program committee on the initial draft of our
paper suggested numerous important imgreents.

9. Refernces
Korn85 Darid Korn, Kiem-Phong ¥, “In Search of a Better MallocProceedings of the Portland
Usenix Conference, pp 489-506, June 1985.

McKusick85 M.McKusick, M. Karels, S. Léer, “Performance Impreements and Functional Enhance-
ments in 4.3BSD’Proceedings of the Portland Usenix Conference, pp 519-531, June 1985.

Rodriguez88 RobeRodriguez, Matt i§ehler Larry Ralmer Ricky Palmer “A Dynamic UNIX Operat-
ing System’ Proceedings of the San Francisco Usenix Conference, June 1988.

Thompson78 kn Thompson,UNIX Implementation’ Bell System Technical Journal, volume 57, num-
ber 6, pp 1931-1946, 1978.

Summer USENIX '88 301 SarfFrancisco, June 20-24

Design of a General Purpose Memory ...

10. Appendix A - Implementation Details

/*

* Constants for setting the parameters of &l memory allocator

*

*2** MINBUCKET is the smallest unit of memory that will be

* allocated. It must be at leastdgr enough to hold a pointer

*

* Units of memory less or equal to MAXALLOCSE will permanently
* allocate plysical memory; requests for these size pieces of memory
* are quite &st. Allocations greater than MAXALLOCS/& must

* always allocate and free phical memory; requests for these size

* allocations should be done infrequently asythdl be slow.

* Constraints: CLBYTES <= MAXALLOCSXE <=2 ** (MINBUCKET + 14)
*and MAXALLOCSIZE must be a pser of two.

*/

#define MINBJCKET 4 /* 4 => min allocation of 16 bytes */
#define MAXALLOCSAVE (2* CLBYTES)

/*

* M aximum amount of &rnel dynamic memory

* Constraints: must be a multiple of the pagesize.
*/

#define MAXKMEM (1024 * AGESIZE)

/*

* Arena for all lernel dynamic memory allocation.
* This arena is knan to start on a page boundary
*/

extern char kmembase[MAXKMEM];

/*
* Array of descriptors that describe the contents of each page
*/
struct kmemsizes {
short ks_indx; /* bucket ind«, size of small allocations */
u_short ks_pagecnt; for large allocations, pages allocated */
} kmemsizes[MAXKMEM / RGESIZE];

/*
* Set of huckets for each size of memory block that is retained
*/
struct kmembckets {
caddr_t kb_net; /* list of free blocks */
} bucketMINBUCKET + 16];

/*
* M acro to cowert a size to alicket inde. If the size is constant,
* this macro reduces to a compile time constant.
*/
#define MINALLOCSIZE (1<< MINBUCKET)
#define BJCKETINDX(size) \
(size) <= (MINALLOCSIZE * 128) \
? (size) <= (MINALLOCSIZE * 8) \
? (size) <= (MINALLOCSIZE * 2) \

Summer USENIX '88 302

McKusick, Karels

SarfFrancisco, June 20-24

McKusick, Karels

? (size) <= (MINALLOCSIZE * 1)\
? MINBUCKET + 0) \
- (MINBUCKET + 1)\
: (size) <= (MINALLOCSIZE * 4) \
? MINBUCKET + 2)\
- (MINBUCKET + 3)\
: (size) <= (MINALLOCSIZE* 32) \
? (size) <= (MINALLOCSIZE * 16) \
? MINBUCKET + 4)\
: (MINBUCKET + 5)\
: (size) <= (MINALLOCSIZE * 64) \
? MINBUCKET + 6) \
: (MINBUCKET + 7) \
: (size) <= (MINALLOCSIZE * 2048) \
[*etc...*

/*

* M acro \ersions for the usual cases of malloc/free
*/

#define MALLOC(space, cast, size, flags) {\

}

Design of a General Purpose Memory ...

register struct kmemixkets *kbp = &hucket[BUCKETINDX(size)]; \

long s = splimp(); \
if (kbp->kb_next == NULL) {\
(space) = (cast)malloc(size, flags); \
}else {\
(space) = (cast)kbp->kb_xte\
kbp->kb_net = *(caddr_t *)(space); \
ja
splx(s); \

#define FREE(addr) {\

register struct kmemixkets *kbp; \

register struct kmemsizes *ksp =\
&kmemesizes[((addr) - kmembase)AGESIZE]; \

long s = splimp(); \

if (1 << ksp->ks_indx > MAXALLOCSAE) {\
free(addr); \

}else {\
kbp = &bucket[ksp->ks_indx]; \
*(caddr_t *)(addr) = kbp->kb_ne; \
kbp->kb_net = (caddr_t)(addr); \

ja

splx(s); \

Summer USENIX '88 303

SarfFrancisco, June 20-24

