
To ward a Compatible Filesystem Interface

Michael J. Karels
Marshall Kirk McKusick

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, California 94720

ABSTRACT

As network or remote filesystems have been implemented forUNIX ,† several stylized
interfaces between the filesystem implementation and the rest of the kernel have been
developed. Notableamong these are Sun Microsystems’ Virtual Filesystem interface
(VFS) using vnodes, Digital Equipment’s Generic File System (GFS) architecture, and
AT&T’ s File System Switch (FSS).Each design attempts to isolate filesystem-dependent
details below a generic interface and to provide a framework within which new filesys-
tems may be incorporated.However, each of these interfaces is different from and
incompatible with the others.Each of them addresses somewhat different design goals.
Each was based on a different starting version ofUNIX , targetted a different set of filesys-
tems with varying characteristics, and uses a different set of primitive operations provided
by the filesystem.The current study compares the various filesystem interfaces. Criteria
for comparison include generality, completeness, robustness, efficiency and esthetics.
Several of the underlying design issues are examined in detail.As a result of this com-
parison, a proposal for a new filesystem interface is advanced that includes the best fea-
tures of the existing implementations.The proposal adopts the calling convention for
name lookup introduced in 4.3BSD, but is otherwise closely related to Sun’s VFS. A
prototype implementation is now being developed at Berkeley. This proposal and the
rationale underlying its development have been presented to major software vendors as an
early step toward convergence on a compatible filesystem interface.

Intr oduction

As network communications and workstation environments became common elements inUNIX sys-
tems, several vendors ofUNIX systems have designed and built network file systems that allow client pro-
cess on oneUNIX machine to access files on a server machine.Examples include Sun’s Network File Sys-
tem, NFS [Sandberg85], AT&T’ s recently-announced Remote File Sharing, RFS [Rifkin86], the LOCUS
distributed filesystem [Walker85], and Masscomp’s extended filesystem [Cole85].Other remote filesys-
tems have been implemented in research or university groups for internal use, notably the network filesys-
tem in the Eighth EditionUNIX system [Weinberger84] and two different filesystems used at Carnegie-Mel-
lon University [Satyanarayanan85].Numerous other remote file access methods have been devised for use
within individual UNIX processes, many of them by modifications to the C I/O library similar to those in
the Newcastle Connection [Brownbridge82].

† UNIX is a registered trademark of AT&T.

This is an update of a paper originally presented at the September 1986 conference of the EuropeanUNIX

Users’ Group.Last modified April 16, 1991.

-2-

Multiple network filesystems may frequently be found in use within a single organization. Thesecir-
cumstances make it highly desirable to be able to transport filesystem implementations from one system to
another. Such portability is considerably enhanced by the use of a stylized interface with carefully-defined
entry points to separate the filesystem from the rest of the operating system.This interface should be simi-
lar to the interface between device drivers and the kernel. Althoughvarying somewhat among the common
versions ofUNIX , the device driver interfaces are sufficiently similar that device drivers may be moved
from one system to another without major problems.A clean, well-defined interface to the filesystem also
allows a single system to support multiple local filesystem types.

For reasons such as these, several filesystem interfaces have been used when integrating new filesys-
tems into the system.The best-known of these are Sun Microsystems’ Virtual File System interface, VFS
[Kleiman86], and AT&T’ s File System Switch, FSS.Another interface, known as the Generic File System,
GFS, has been implemented for the ULTRIX‡ system by Digital [Rodriguez86].There are numerous dif-
ferences among these designs.The differences may be understood from the varying philosophies and
design goals of the groups involved, from the systems under which the implementations were done, and
from the filesystems originally targetted by the designs.These differences are summarized in the following
sections within the limitations of the published specifications.

Design goals

There are several design goals which, in varying degrees, have driven the various designs.Each
attempts to divide the filesystem into a filesystem-type-independent layer and individual filesystem imple-
mentations. Thedivision between these layers occurs at somewhat different places in these systems,
reflecting different views of the diversity and types of the filesystems that may be accommodated.Compat-
ibility with existing local filesystems has varying importance; at the user-process level, each attempts to be
completely transparent except for a few filesystem-related system management programs.The AT&T inter-
face also makes a major effort to retain familiar internal system interfaces, and even to retain object-file-
level binary compatibility with operating system modules such as device drivers. BothSun and DEC were
willing to change internal data structures and interfaces so that other operating system modules might
require recompilation or source-code modification.

AT&T’ s interface both allows and requires filesystems to support the full and exact semantics of their
previous filesystem, including interruptions of system calls on slow operations. Systemcalls that deal with
remote files are encapsulated with their environment and sent to a server where execution continues.The
system call may be aborted by either client or server, returning control to the client.Most system calls that
descend into the file-system dependent layer of a filesystem other than the standard local filesystem do not
return to the higher-level kernel calling routines.Instead, the filesystem-dependent code completes the
requested operation and then executes a non-local goto (longjmp) to exit the system call.These efforts to
avoid modification of main-line kernel code indicate a far greater emphasis on internal compatibility than
on modularity, clean design, or efficiency.

In contrast, the Sun VFS interface makes major modifications to the internal interfaces in the kernel,
with a very clear separation of filesystem-independent and -dependent data structures and operations.The
semantics of the filesystem are largely retained for local operations, although this is achieved at some
expense where it does not fit the internal structuring well.The filesystem implementations are not required
to support the same semantics as localUNIX filesystems. Several historical features ofUNIX filesystem
behavior are difficult to achieve using the VFS interface, including the atomicity of file and link creation
and the use of open files whose names have been removed.

A major design objective of Sun’s network filesystem, statelessness, permeates the VFS interface.
No locking may be done in the filesystem-independent layer, and locking in the filesystem-dependent layer
may occur only during a single call into that layer.

A final design goal of most implementors is performance.For remote filesystems, this goal tends to
be in conflict with the goals of complete semantic consistency, compatibility and modularity. Sun has cho-
sen performance over modularity in some areas, but has emphasized clean separation of the layers within
the filesystem at the expense of performance.Although the performance of RFS is yet to be seen, AT&T

‡ ULTRIX is a trademark of Digital Equipment Corp.

-3-

seems to have considered compatibility far more important than modularity or performance.

Differ ences among filesystem interfaces

The existing filesystem interfaces may be characterized in several ways. Eachsystem is centered
around a few data structures or objects, along with a set of primitives for performing operations upon these
objects. Inthe originalUNIX filesystem [Ritchie74], the basic object used by the filesystem is the inode, or
index node. Theinode contains all of the information about a file except its name: its type, identification,
ownership, permissions, timestamps and location.Inodes are identified by the filesystem device number
and the index within the filesystem.The major entry points to the filesystem arenamei, which translates a
filesystem pathname into the underlying inode, andiget, which locates an inode by number and installs it in
the in-core inode table.Nameiperforms name translation by iterative lookup of each component name in
its directory to find its inumber, then usingiget to return the actual inode.If the last component has been
reached, this inode is returned; otherwise, the inode describes the next directory to be searched.The inode
returned may be used in various ways by the caller; it may be examined, the file may be read or written,
types and access may be checked, and fields may be modified.Modified inodes are automatically written
back the the filesystem on disk when the last reference is released withiput. Although the details are con-
siderably different, the same general scheme is used in the faster filesystem in 4.2BSDUNIX [Mckusick85].

Both the AT&T interface and, to a lesser extent, the DEC interface attempt to preserve the inode-ori-
ented interface. Eachmodify the inode to allow different varieties of the structure for different filesystem
types by separating the filesystem-dependent parts of the inode into a separate structure or one arm of a
union. Bothinterfaces allow operations equivalent to thenameiandiget operations of the old filesystem to
be performed in the filesystem-independent layer, with entry points to the individual filesystem implemen-
tations to support the type-specific parts of these operations.Implicit in this interface is that files may be
conveniently be named by and located using a single index within a filesystem.The GFS provides specific
entry points to the filesystems to change most file properties rather than allowing arbitrary changes to be
made to the generic part of the inode.

In contrast, the Sun VFS interface replaces the inode as the primary object with the vnode.The
vnode contains no filesystem-dependent fields except the pointer to the set of operations implemented by
the filesystem.Properties of a vnode that might be transient, such as the ownership, permissions, size and
timestamps, are maintained by the lower layer. These properties may be presented in a generic format upon
request; callers are expected not to hold this information for any length of time, as they may not be up-to-
date later on.The vnode operations do not include a corollary foriget; the only external interface for
obtaining vnodes for specific files is the name lookup operation.(Separate procedures are provided outside
of this interface that obtain a ‘‘file handle’’ f or a vnode which may be given to a client by a server, such that
the vnode may be retrieved upon later presentation of the file handle.)

Name translation issues

Each of the systems described include a mechanism for performing pathname-to-internal-representa-
tion translation. The style of the name translation function is very different in all three systems.As
described above, the AT&T and DEC systems retain thenameifunction. Thetwo are quite different, how-
ev er, as the ULTRIX interface uses thenameicalling convention introduced in 4.3BSD.The parameters
and context for the name lookup operation are collected in anameidatastructure which is passed tonamei
for operation.Intent to create or delete the named file is declared in advance, so that the final directory scan
in nameimay retain information such as the offset in the directory at which the modification will be made.
Filesystems that use such mechanisms to avoid redundant work must therefore lock the directory to be
modified so that it may not be modified by another process before completion.In the System V filesystem,
as in previous versions ofUNIX , this information is stored in the per-processuserstructure bynameifor
use by a low-level routine called after performing the actual creation or deletion of the file itself.In
4.3BSD and in the GFS interface, these side effects ofnameiare stored in thenameidatastructure given as
argument tonamei, which is also presented to the routine implementing file creation or deletion.

The ULTRIX nameiroutine is responsible for the generic parts of the name translation process, such
as copying the name into an internal buffer, validating it, interpolating the contents of symbolic links, and
indirecting at mount points.As in 4.3BSD, the name is copied into the buffer in a single call, according to

-4-

the location of the name.After determining the type of the filesystem at the start of translation (the current
directory or root directory), it calls the filesystem’s nameientry with the same structure it received from its
caller. The filesystem-specific routine translates the name, component by component, as long as no mount
points are reached.It may return after any number of components have been processed.Nameiperforms
any processing at mount points, then calls the correct translation routine for the next filesystem.Network
filesystems may pass the remaining pathname to a server for translation, or they may look up the pathname
components one at a time.The former strategy would be more efficient, but the latter scheme allows mount
points within a remote filesystem without server knowledge of all client mounts.

The AT&T nameiinterface is presumably the same as that in previous UNIX systems, accepting the
name of a routine to fetch pathname characters and an operation (one of: lookup, lookup for creation, or
lookup for deletion).It translates, component by component, as before.If it detects that a mount point
crosses to a remote filesystem, it passes the remainder of the pathname to the remote server. A pathname-
oriented request other than open may be completed within thenameicall, avoiding return to the (unmodi-
fied) system call handler that callednamei.

In contrast to the first two systems, Sun’s VFS interface has replacednameiwith lookupname. This
routine simply calls a new pathname-handling module to allocate a pathname buffer and copy in the path-
name (copying a character per call), then callslookuppn. Lookuppnperforms the iteration over the directo-
ries leading to the destination file; it copies each pathname component to a local buffer, then calls the
filesystemlookupentry to locate the vnode for that file in the current directory. Per-filesystemlookuprou-
tines may translate only one component per call.For creation and deletion of new files, the lookup opera-
tion is unmodified; the lookup of the final component only serves to check for the existence of the file.The
subsequent creation or deletion call, if any, must repeat the final name translation and associated directory
scan. For new file creation in particular, this is rather inefficient, as file creation requires two complete
scans of the directory.

Several of the important performance improvements in 4.3BSD were related to the name translation
process [McKusick85][Leffler84]. Thefollowing changes were made:

1. A system-wide cache of recent translations is maintained.The cache is separate from the inode cache,
so that multiple names for a file may be present in the cache.The cache does not hold ‘‘hard’’ refer-
ences to the inodes, so that the normal reference pattern is not disturbed.

2. A per-process cache is kept of the directory and offset at which the last successful name lookup was
done. Thisallows sequential lookups of all the entries in a directory to be done in linear time.

3. Theentire pathname is copied into a kernel buffer in a single operation, rather than using two subrou-
tine calls per character.

4. A pool of pathname buffers are held bynamei, avoiding allocation overhead.

All of these performance improvements from 4.3BSD are well worth using within a more generalized
filesystem framework. Thegeneralization of the structure may otherwise make an already-expensive func-
tion even more costly. Most of these improvements are present in the GFS system, as it derives from the
beta-test version of 4.3BSD.The Sun system uses a name-translation cache generally like that in 4.3BSD.
The name cache is a filesystem-independent facility provided for the use of the filesystem-specific lookup
routines. TheSun cache, like that first used at Berkeley but unlike that in 4.3, holds a ‘‘hard’’ reference to
the vnode (increments the reference count).The ‘‘soft’’ reference scheme in 4.3BSD cannot be used with
the current NFS implementation, as NFS allocates vnodes dynamically and frees them when the reference
count returns to zero rather than caching them.As a result, fewer names may be held in the cache than
(local filesystem) vnodes, and the cache distorts the normal reference patterns otherwise seen by the LRU
cache. Asthe name cache references overflow the local filesystem inode table, the name cache must be
purged to make room in the inode table.Also, to determine whether a vnode is in use (for example, before
mounting upon it), the cache must be flushed to free any cache reference.These problems should be cor-
rected by the use of the soft cache reference scheme.

A final observation on the efficiency of name translation in the current Sun VFS architecture is that
the number of subroutine calls used by a multi-component name lookup is dramatically larger than in the
other systems.The name lookup scheme in GFS suffers from this problem much less, at no expense in vio-
lation of layering.

-5-

A final problem to be considered is synchronization and consistency. As the filesystem operations
are more stylized and broken into separate entry points for parts of operations, it is more difficult to guaran-
tee consistency throughout an operation and/or to synchronize with other processes using the same filesys-
tem objects.The Sun interface suffers most severely from this, as it forbids the filesystems from locking
objects across calls to the filesystem.It is possible that a file may be created between the time that a lookup
is performed and a subsequent creation is requested.Perhaps more strangely, after a lookup fails to find the
target of a creation attempt, the actual creation might find that the target now exists and is a symbolic link.
The call will either fail unexpectedly, as the target is of the wrong type, or the generic creation routine will
have to note the error and restart the operation from the lookup.This problem will always exist in a state-
less filesystem, but the VFS interface forces all filesystems to share the problem.This restriction against
locking between calls also forces duplication of work during file creation and deletion.This is considered
unacceptable.

Support facilities and other interactions

Several support facilities are used by the currentUNIX filesystem and require generalization for use
by other filesystem types.For filesystem implementations to be portable, it is desirable that these modified
support facilities should also have a uniform interface and behave in a consistent manner in target systems.
A prominent example is the filesystem buffer cache.The buffer cache in a standard (System V or 4.3BSD)
UNIX system contains physical disk blocks with no reference to the files containing them.This works well
for the local filesystem, but has obvious problems for remote filesystems.Sun has modified the buffer
cache routines to describe buffers by vnode rather than by device. For remote files, the vnode used is that
of the file, and the block numbers are virtual data blocks.For local filesystems, a vnode for the block
device is used for cache reference, and the block numbers are filesystem physical blocks. Use of per-file
cache description does not easily accommodate caching of indirect blocks, inode blocks, superblocks or
cylinder group blocks.However, the vnode describing the block device for the cache is one created inter-
nally, rather than the vnode for the device looked up when mounting, and it is located by searching a private
list of vnodes rather than by holding it in the mount structure.Although the Sun modification makes it pos-
sible to use the buffer cache for data blocks of remote files, a better generalization of the buffer cache is
needed.

The RFS filesystem used by AT&T does not currently cache data blocks on client systems, thus the
buffer cache is probably unmodified.The form of the buffer cache in ULTRIX is unknown to us.

Another subsystem that has a large interaction with the filesystem is the virtual memory system.The
virtual memory system must read data from the filesystem to satisfy fill-on-demand page faults. For effi-
ciency, this read call is arranged to place the data directly into the physical pages assigned to the process (a
‘‘ raw’’ read) to avoid copying the data.Although the read operation normally bypasses the filesystem
buffer cache, consistency must be maintained by checking the buffer cache and copying or flushing modi-
fied data not yet stored on disk.The 4.2BSD virtual memory system, like that of Sun and ULTRIX, main-
tains its own cache of reusable text pages.This creates additional complications.As the virtual memory
systems are redesigned, these problems should be resolved by reading through the buffer cache, then map-
ping the cached data into the user address space.If the buffer cache or the process pages are changed while
the other reference remains, the data would have to be copied (‘‘copy-on-write’’).

In the meantime, the current virtual memory systems must be used with the new filesystem frame-
work. Boththe Sun and AT&T filesystem interfaces provide entry points to the filesystem for optimization
of the virtual memory system by performing logical-to-physical block number translation when setting up a
fill-on-demand image for a process.The VFS provides a vnode operation analogous to thebmapfunction
of the UNIX filesystem. Given a vnode and logical block number, it returns a vnode and block number
which may be read to obtain the data.If the filesystem is local, it returns the private vnode for the block
device and the physical block number. As the bmapoperations are all performed at one time, during pro-
cess startup, any indirect blocks for the file will remain in the cache after they are once read.In addition,
the interface provides astrategy entry that may be used for ‘‘raw’’ reads from a filesystem device, used to
read data blocks into an address space without copying. Thisentry uses a buffer header (buf structure) to
describe the I/O operation instead of auio structure. Thebuffer-style interface is the same as that used by
disk drivers internally. This difference allows the currentuio primitives to be avoided, as they copy all data

-6-

to/from the current user process address space.Instead, for local filesystems these operations could be
done internally with the standard raw disk read routines, which use auio interface. Whenloading from a
remote filesystems, the data will be received in a network buffer. If network buffers are suitably aligned,
the data may be mapped into the process address space by a page swap without copying. In either case, it
should be possible to use the standard filesystem read entry from the virtual memory system.

Other issues that must be considered in devising a portable filesystem implementation include kernel
memory allocation, the implicit use of user-structure global context, which may create problems with reen-
trancy, the style of the system call interface, and the conventions for synchronization (sleep/wakeup, han-
dling of interrupted system calls, semaphores).

The Berkeley Proposal

The Sun VFS interface has been most widely used of the three described here.It is also the most
general of the three, in that filesystem-specific data and operations are best separated from the generic layer.
Although it has several disadvantages which were described above, most of them may be corrected with
minor changes to the interface (and, in a few areas, philosophical changes).The DEC GFS has other
advantages, in particular the use of the 4.3BSDnameiinterface and optimizations.It allows single or mul-
tiple components of a pathname to be translated in a single call to the specific filesystem and thus accom-
modates filesystems with either preference.The FSS is least well understood, as there is little public infor-
mation about the interface. However, the design goals are the least consistent with those of the Berkeley
research groups.Accordingly, a new filesystem interface has been devised to avoid some of the problems
in the other systems.The proposed interface derives directly from Sun’s VFS, but, like GFS, uses a
4.3BSD-style name lookup interface. Additionalcontext information has been moved from theuserstruc-
ture to thenameidatastructure so that name translation may be independent of the global context of a user
process. Thisis especially desired in any system where kernel-mode servers operate as light-weight or
interrupt-level processes, or where a server may store or cache context for several clients. This calling
interface has the additional advantage that the call parameters need not all be pushed onto the stack for each
call through the filesystem interface, and they may be accessed using short offsets from a base pointer
(unlike global variables in theuserstructure).

The proposed filesystem interface is described very tersely here.For the most part, data structures
and procedures are analogous to those used by VFS, and only the changes will be be treated here.See
[Kleiman86] for complete descriptions of the vfs and vnode operations in Sun’s interface.

The central data structure for name translation is thenameidatastructure. Thesame structure is used
to pass parameters tonamei, to pass these same parameters to filesystem-specific lookup routines, to com-
municate completion status from the lookup routines back tonamei, and to return completion status to the
calling routine.For creation or deletion requests, the parameters to the filesystem operation to complete the
request are also passed in this same structure.The form of thenameidatastructure is:

/*
* Encapsulation of namei parameters.
* One of these is located in the u. area to
* minimize space allocated on the kernel stack
* and to retain per-process context.
*/
struct nameidata {

/* arguments to namei and related context: */
caddr_t ni_dirp; /* pathname pointer */
enum uio_seg ni_seg; /* location of pathname */
short ni_nameiop; /* see below */
struct vnode*ni_cdir; /* current directory */
struct vnode*ni_rdir; /* root directory, if not normal root */
struct ucred*ni_cred; /* credentials */

/* shared between namei, lookup routines and commit routines: */
caddr_t ni_pnbuf; /* pathname buffer */

-7-

char *ni_ptr; /* current location in pathname */
int ni_pathlen; /* remaining chars in path */
short ni_more; /* more left to translate in pathname */
short ni_loopcnt; /* count of symlinks encountered */

/* results: */
struct vnode*ni_vp; /* vnode of result */
struct vnode*ni_dvp; /* vnode of intermediate directory */

/* BEGIN UFS SPECIFIC */
struct diroffcache { /* last successful directory search */

struct vnode*nc_prevdir; /* terminal directory */
long nc_id; /* directory’s unique id */
off_t nc_prevoffset; /*where last entry found */

} ni_nc;
/* END UFS SPECIFIC */
};

/*
* namei operations and modifiers
*/
#define LOOKUP 0 /* perform name lookup only */
#define CREATE 1 /* setup for file creation */
#define DELETE 2 /* setup for file deletion */
#define WANTPARENT 0x10 /* return parent directory vnode also */
#define NOCACHE 0x20 /* name must not be left in cache */
#define FOLLOW 0x40 /* follow symbolic links */
#define NOFOLLOW 0x0 /* don’t follow symbolic links (pseudo) */

As in current systems other than Sun’s VFS,nameiis called with an operation request, one of LOOKUP,
CREATE or DELETE. For a LOOKUP, the operation is exactly like the lookup in VFS.CREATE and
DELETE allow the filesystem to ensure consistency by locking the parent inode (private to the filesystem),
and (for the local filesystem) to avoid duplicate directory scans by storing the new directory entry and its
offset in the directory in thendirinfo structure. Thisis intended to be opaque to the filesystem-independent
levels. Notall lookups for creation or deletion are actually followed by the intended operation; permission
may be denied, the filesystem may be read-only, etc. Therefore,an entry point to the filesystem is provided
to abort a creation or deletion operation and allow release of any locked internal data.After anameiwith a
CREATE or DELETE flag, the pathname pointer is set to point to the last filename component.Filesystems
that choose to implement creation or deletion entirely within the subsequent call to a create or delete entry
are thus free to do so.

Thenameidatais used to store context used during name translation.The current and root directories
for the translation are stored here.For the local filesystem, the per-process directory offset cache is also
kept here.A fi le server could leave the directory offset cache empty, could use a single cache for all clients,
or could hold caches for several recent clients.

Several other data structures are used in the filesystem operations.One is theucred structure which
describes a client’s credentials to the filesystem.This is modified slightly from the Sun structure; the
‘‘ accounting’’ group ID has been merged into the groups array. The actual number of groups in the array is
given explicitly to avoid use of a reserved group ID as a terminator. Also, typedefs introduced in 4.3BSD
for user and group ID’s hav ebeen used.Theucredstructure is thus:

-8-

/*
* Credentials.
*/
struct ucred {

u_short cr_ref; /* reference count */
uid_t cr_uid; /* effective user id */
short cr_ngroups; /* number of groups */
gid_t cr_groups[NGROUPS]; /*groups */
/*
* The following either should not be here,
* or should be treated as opaque.
*/
uid_t cr_ruid; /* real user id */
gid_t cr_svgid; /* saved set-group id */

};

A final structure used by the filesystem interface is theuio structure mentioned earlier. This structure
describes the source or destination of an I/O operation, with provision for scatter/gather I/O. It is used in
the read and write entries to the filesystem.Theuio structure presented here is modified from the one used
in 4.2BSD to specify the location of each vector of the operation (user or kernel space) and to allow an
alternate function to be used to implement the data movement. Thealternate function might perform page
remapping rather than a copy, for example.

/*
* Description of an I/O operation which potentially
* i nv olves scatter-gather, with individual sections
* described by iovec, below. uio_resid is initially
* set to the total size of the operation, and is
* decremented as the operation proceeds.uio_offset
* i s incremented by the amount of each operation.
* uio_iov is incremented and uio_iovcnt is decremented
* after each vector is processed.
*/
struct uio {

struct iovec *uio_iov;
int uio_iovcnt;
off_t uio_offset;
int uio_resid;
enum uio_rwuio_rw;

};

enum uio_rw{ U IO_READ, UIO_WRITE };

-9-

/*
* Description of a contiguous section of an I/O operation.
* I f iov_op is non-null, it is called to implement the copy
* operation, possibly by remapping, with the call
* (*iov_op)(from, to, count);
* where from and to are caddr_t and count is int.
* Otherwise, the copy is done in the normal way,
* t reating base as a user or kernel virtual address
* according to iov_segflg.
*/
struct iovec {

caddr_t iov_base;
int iov_len;
enum uio_seg iov_segflg;
int (*iov_op)();

};

/*
* Segment flag values.
*/
enum uio_seg {

UIO_USERSPACE, /* from user data space */
UIO_SYSSPACE, /* from system space */
UIO_USERISPACE /* f rom user I space */

};

File and filesystem operations

With the introduction of the data structures used by the filesystem operations, the complete list of
filesystem entry points may be listed.As noted, they derive mostly from the Sun VFS interface. Lines
marked with+ are additions to the Sun definitions; lines marked with! are modified from VFS.

The structure describing the externally-visible features of a mounted filesystem,vfs, is:

/*
* Structure per mounted file system.
* Each mounted file system has an array of
* operations and an instance record.
* The file systems are put on a doubly linked list.
*/
struct vfs {

struct vfs *vfs_next; /* next vfs in vfs list */
+ struct vfs *vfs_prev; /* prev vfs in vfs list */

struct vfsops *vfs_op; /* operations on vfs */
struct vnode *vfs_vnodecovered; /* vnode we mounted on */
int vfs_flag; /* flags */

! int vfs_fsize; /* fundamental block size */
+ int vfs_bsize; /* optimal transfer size */
! uid_t vfs_exroot; /* exported fs uid 0 mapping */

short vfs_exflags; /*exported fs flags */
caddr_t vfs_data; /* private data */

};

-10-

/*
* v fs flags.
* V FS_MLOCK lock the vfs so that name lookup cannot proceed past the vfs.
* This keeps the subtree stable during mounts and unmounts.
*/
#define VFS_RDONLY 0x01 /* read only vfs */

+ #define VFS_NOEXEC 0x02 /* can’t exec from filesystem */
#define VFS_MLOCK 0x04 /* lock vfs so that subtree is stable */
#define VFS_MWAIT 0x08 /* someone is waiting for lock */
#define VFS_NOSUID 0x10 /* don’t honor setuid bits on vfs */
#define VFS_EXPORTED 0x20 /* file system is exported (NFS) */

/*
* exported vfs flags.
*/
#define EX_RDONLY 0x01 /* exported read only */

The operations supported by the filesystem-specific layer on an individual filesystem are:

/*
* Operations supported on virtual file system.
*/
struct vfsops {
! int (*vfs_mount)(/* vfs, path, data, datalen */);
! int (*vfs_unmount)(/* vfs, forcibly */);
+ int (*vfs_mountroot)();

int (*vfs_root)(/* vfs, vpp */);
! int (*vfs_statfs)(/* vfs, vp, sbp */);
! int (*vfs_sync)(/* vfs, waitfor */);
+ int (*vfs_fhtovp)(/* vfs, fhp, vpp */);
+ int (*vfs_vptofh)(/* vp, fhp */);
};

Thevfs_statfsentry returns a structure of the form:

/*
* fi le system statistics
*/
struct statfs {
! short f_type; /* type of filesystem */
+ short f_flags; /* copy of vfs (mount) flags */
! long f_fsize; /* fundamental file system block size */
+ long f_bsize; /* optimal transfer block size */

long f_blocks; /* total data blocks in file system */
long f_bfree; /* free blocks in fs */
long f_bavail; /* free blocks avail to non-superuser */
long f_files; /* total file nodes in file system */
long f_ffree; /* free file nodes in fs */
fsid_t f_fsid; /* file system id */

+ char *f_mntonname; /* directory on which mounted */
+ char *f_mntfromname; /* mounted filesystem */

long f_spare[7]; /* spare for later */
};

typedef long fsid_t[2]; /* file system id type */

-11-

The modifications to Sun’s interface at this level are minor. Additional arguments are present for the
vfs_mountandvfs_umountentries. vfs_statfsaccepts a vnode as well as filesystem identifier, as the infor-
mation may not be uniform throughout a filesystem.For example, if a client may mount a file tree that
spans multiple physical filesystems on a server, different sections may have different amounts of free space.
(NFS does not allow remotely-mounted file trees to span physical filesystems on the server.) The final
additions are the entries that support file handles.vfs_vptofhis provided for the use of file servers, which
need to obtain an opaque file handle to represent the current vnode for transmission to clients.This file
handle may later be used to relocate the vnode usingvfs_fhtovp without requiring the vnode to remain in
memory.

Finally, the external form of a filesystem object, thevnode, is:

/*
* vnode types. VNON means no type.
*/
enum vtype { V NON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK };

struct vnode {
u_short v_flag; /* vnode flags (see below) */
u_short v_count; /* reference count */
u_short v_shlockc; /* count of shared locks */
u_short v_exlockc; /* count of exclusive locks */
struct vfs *v_vfsmountedhere; /*ptr to vfs mounted here */
struct vfs *v_vfsp; /* ptr to vfs we are in */
struct vnodeops *v_op; /* vnode operations */

+ struct text *v_text; /* text/mapped region */
enum vtype v_type; /*vnode type */
caddr_t v_data; /* private data for fs */

};

/*
* vnode flags.
*/
#define VROOT 0x01 /* root of its file system */
#define VTEXT 0x02 /* vnode is a pure text prototype */
#define VEXLOCK 0x10 /* exclusive lock */
#define VSHLOCK 0x20 /* shared lock */
#define VLWAIT 0x40 /* proc is waiting on shared or excl. lock */

The operations supported by the filesystems on individualvnodes are:

-12-

/*
* Operations on vnodes.
*/
struct vnodeops {
! int (*vn_lookup)(/* ndp */);
! int (*vn_create)(/* ndp, vap, fflags */);
+ int (*vn_mknod)(/* ndp, vap, fflags */);
! int (*vn_open)(/* vp, fflags, cred */);

int (*vn_close)(/* vp, fflags, cred */);
int (*vn_access)(/* vp, fflags, cred */);
int (*vn_getattr)(/*vp, vap, cred */);
int (*vn_setattr)(/* vp, vap, cred */);

+ int (*vn_read)(/* vp, uiop, offp, ioflag, cred */);
+ int (*vn_write)(/* vp, uiop, offp, ioflag, cred */);
! int (*vn_ioctl)(/* vp, com, data, fflag, cred */);

int (*vn_select)(/* vp, which, cred */);
+ int (*vn_mmap)(/* vp, ..., cred */);

int (*vn_fsync)(/* vp, cred */);
+ int (*vn_seek)(/* vp, offp, off, whence */);

! int (*vn_remove)(/* ndp */);
! int (*vn_link)(/* vp, ndp */);
! int (*vn_rename)(/* src ndp, target ndp */);
! int (*vn_mkdir)(/* ndp, vap */);
! int (*vn_rmdir)(/* ndp */);
! int (*vn_symlink)(/* ndp, vap, nm */);

int (*vn_readdir)(/* vp, uiop, offp, ioflag, cred */);
int (*vn_readlink)(/* vp, uiop, ioflag, cred */);

+ int (*vn_abortop)(/* ndp */);
+ int (*vn_lock)(/* vp */);
+ int (*vn_unlock)(/* vp */);
! int (*vn_inactive)(/* vp */);
};

/*
* fl ags for ioflag
*/
#define IO_UNIT 0x01 /* do io as atomic unit for VOP_RDWR */
#define IO_APPEND 0x02 /* append write for VOP_RDWR */
#define IO_SYNC 0x04 /* sync io for VOP_RDWR */

The argument types listed in the comments following each operation are:

ndp Apointer to anameidatastructure.

vap A pointer to avattr structure (vnode attributes; see below).

fflags Fileopen flags, possibly including O_APPEND, O_CREAT, O_TRUNC and O_EXCL.

vp A pointer to avnodepreviously obtained withvn_lookup.

cred Apointer to aucredcredentials structure.

uiop A pointer to auio structure.

ioflag Any of the IO flags defined above.

-13-

com Anioctl command, with typeunsigned long.

data Apointer to a character buffer used to pass data to or from anioctl.

which Oneof FREAD, FWRITE or 0 (select for exceptional conditions).

off A file offset of typeoff_t.

offp A pointer to file offset of typeoff_t.

whence Oneof SEEK_SET, SEEK_CUR, or SEEK_END.

fhp A pointer to a file handle buffer.

Several changes have been made to Sun’s set of vnode operations.Most obviously, the vn_lookup
receives a nameidatastructure containing its arguments and context as described.The same structure is
also passed to one of the creation or deletion entries if the lookup operation is for CREATE or DELETE to
complete an operation, or to thevn_abortopentry if no operation is undertaken. For filesystems that per-
form no locking between lookup for creation or deletion and the call to implement that action, the final
pathname component may be left untranslated by the lookup routine.In any case, the pathname pointer
points at the final name component, and thenameidatacontains a reference to the vnode of the parent
directory. The interface is thus flexible enough to accommodate filesystems that are fully stateful or fully
stateless, while avoiding redundant operations whenever possible. Oneoperation remains problematical,
the vn_renamecall. It is tempting to look up the source of the rename for deletion and the target for cre-
ation. However, filesystems that lock directories during such lookups must avoid deadlock if the two paths
cross. For that reason, the source is translated for LOOKUP only, with the WANTPARENT flag set; the
target is then translated with an operation of CREATE.

In addition to the changes concerned with thenameidatainterface, several other changes were made
in the vnode operations.Thevn_rdrw entry was split intovn_readandvn_write; frequently, the read/write
entry amounts to a routine that checks the direction flag, then calls either a read routine or a write routine.
The two entries may be identical for any giv en filesystem; the direction flag is contained in theuio given as
an argument.

All of the read and write operations use auio to describe the file offset and buffer locations.All of
these fields must be updated before return.In particular, thevn_readdirentry uses this to return a new file
offset token for its current location.

Several new operations have been added.The first,vn_seek, is a concession to record-oriented files
such as directories.It allows the filesystem to verify that a seek leaves a file at a sensible offset, or to return
a new offset token relative to an earlier one. For most filesystems and files, this operation amounts to per-
forming simple arithmetic.Another new entry point isvn_mmap, for use in mapping device memory into a
user process address space.Its semantics are not yet decided.The final additions are thevn_lock and
vn_unlock entries. Theseare used to request that the underlying file be locked against changes for short
periods of time if the filesystem implementation allows it. They are used to maintain consistency during
internal operations such asexec, and may not be used to construct atomic operations from other filesystem
operations.

The attributes of a vnode are not stored in the vnode, as they might change with time and may need
to be read from a remote source.Attributes have the form:

-14-

/*
* V node attributes. Afield value of -1
* represents a field whose value is unavailable
* (getattr) or which is not to be changed (setattr).
*/
struct vattr {

enum vtype va_type; /*vnode type (for create) */
u_short va_mode; /*files access mode and type */

! uid_t va_uid; /*owner user id */
! gid_t va_gid; /*owner group id */

long va_fsid; /*file system id (dev for now) */
! long va_fileid; /* file id */

short va_nlink; /* number of references to file */
u_long va_size; /*file size in bytes (quad?) */

+ u_long va_size1; /*reserved if not quad */
long va_blocksize; /*blocksize preferred for i/o */
struct timeval va_atime; /*time of last access */
struct timeval va_mtime; /*time of last modification */
struct timeval va_ctime; /*time file changed */
dev_t va_rdev; /* device the file represents */
u_long va_bytes; /*bytes of disk space held by file */

+ u_long va_bytes1; /*reserved if va_bytes not a quad */
};

Conclusions

The Sun VFS filesystem interface is the most widely used generic filesystem interface. Ofthe inter-
faces examined, it creates the cleanest separation between the filesystem-independent and -dependent layers
and data structures.It has several flaws, but it is felt that certain changes in the interface can ameliorate
most of them.The interface proposed here includes those changes.The proposed interface is now being
implemented by the Computer Systems Research Group at Berkeley. If the design succeeds in improving
the flexibility and performance of the filesystem layering, it will be advanced as a model interface.

Acknowledgements

The filesystem interface described here is derived from Sun’s VFS interface. Italso includes features
similar to those of DEC’s GFS interface. We are indebted to members of the Sun and DEC system groups
for long discussions of the issues involved.

References

Brownbridge82 Brownbridge, D.R., L.F. Marshall, B. Randell, ‘‘The Newcastle Connection, or
UNIXes of the World Unite!,’’ Software− Practice and Experience, Vol. 12, pp.
1147-1162, 1982.

Cole85 Cole,C.T., P.B. Flinn, A.B. Atlas, ‘‘A n Implementation of an Extended File System
for UNIX,’’ Usenix Conference Proceedings, pp. 131-150, June, 1985.

Kleiman86 ‘‘Vnodes: An Architecture for Multiple File System Types in Sun UNIX,’’ Usenix
Conference Proceedings, pp. 238-247, June, 1986.

Leffler84 Leffler, S., M.K. McKusick, M. Karels, ‘‘Measuring and Improving the Performance
of 4.2BSD,’’ Usenix Conference Proceedings, pp. 237-252, June, 1984.

-15-

McKusick84 McKusick, M.K., W.N. Joy, S.J. Leffler, R.S. Fabry, ‘‘A Fast File System for UNIX,’’
Tr ansactions on Computer Systems, Vol. 2, pp. 181-197, ACM, August, 1984.

McKusick85 McKusick, M.K., M. Karels, S. Leffler, ‘‘Performance Improvements and Functional
Enhancements in 4.3BSD,’’ Usenix Conference Proceedings, pp. 519-531, June,
1985.

Rifkin86 Rifkin, A.P., M.P. Forbes, R.L. Hamilton, M. Sabrio, S. Shah, and K. Yueh, ‘‘RFS
Architectural Overview,’’ Usenix Conference Proceedings, pp. 248-259, June, 1986.

Ritchie74 Ritchie,D.M. and K. Thompson, ‘‘The Unix Time-Sharing System,’’ Communica-
tions of the ACM, Vol. 17, pp. 365-375, July, 1974.

Rodriguez86 Rodriguez,R., M. Koehler, R. Hyde, ‘‘The Generic File System,’’ Usenix Conference
Proceedings, pp. 260-269, June, 1986.

Sandberg85 Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, ‘‘Design and Implemen-
tation of the Sun Network Filesystem,’’ Usenix Conference Proceedings, pp.
119-130, June, 1985.

Satyanarayanan85 Satyanarayanan,M., et al., ‘‘The ITC Distributed File System: Principles and
Design,’’ Proc. 10th Symposium on Operating Systems Principles, pp. 35-50, ACM,
December, 1985.

Walker85 Walker, B.J. and S.H. Kiser, ‘‘The LOCUS Distributed Filesystem,’’ The LOCUS
Distributed System Architecture, G.J. Popek and B.J. Walker, ed., The MIT Press,
Cambridge, MA, 1985.

Weinberger84 Weinberger, P.J., ‘‘The Version 8 Network File System,’’ Usenix Conference presen-
tation, June, 1984.

