Toward a Compatible Filesystem Interface

Michael J Karels
Marshall Kirk McKusidk

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

ABSTRAT

As network or remote filesystems V& been implemented fouNIX,T seeral stylized
interfaces between the filesystem implementation and the rest otthel lkhae been
developed. Notableamong these are Sun Microsystemdéitial Filesystem intedce
(VFS) using vnodes, Digital EquipmentGeneric File System (GFS) architecture, and
AT&T' s Hle System Switch (FSS)Each design attempts to isolate filesystem-dependent
details belar a generic interhce and to prade a framwork within which nev filesys-
tems may be incorporateddowever, each of these intestes is dierent from and
incompatible with the othersEach of them addresses savhat diferent design goals.
Each vas based on a €lifrent starting grsion ofUNIX, targetted a dierent set of filesys-
tems with \arying characteristics, and uses deddnt set of primitie gperations preided

by the filesystem.The current study compares tharious filesystem intesites. Criteria
for comparison include generalitgpompleteness, ralstness, éitiengy and esthetics.
Several of the underlying design issues axamined in detail.As a result of this com-
parison, a proposal for awdilesystem intedce is adanced that includes the best fea-
tures of the xsting implementations.The proposal adopts the calling gention for
name lookup introduced in 4.3BSDuthis otherwise closely related to SsIvVFS. A
prototype implementation is mobeing deeloped at Berkley. This proposal and the
rationale underlying its delopment hae been presented to major soétie \endors as an
early step tavard corvergence on a compatible filesystem index.

Intr oduction

As network communications andarkstation emironments became common element&/MiX sys-
tems, seeral vendors ofUNIX systems hee designed and Wilt network file systems that allo client pro-
cess on on@NIX machine to access files on a sgrmnachine.Examples include SusNetwork File Sys-
tem, NFS [SandbgB5], AT&T' s recently-announced Remote File Sharing, RFS [Rifkin86], the LOCUS
distributed filesystem [\&lker85], and Masscomp’extended filesystem [Cole85]Other remote filesys-
tems hae keen implemented in research orvansity groups for internal use, notably the netkfilesys-
tem in the Eighth EditiowNIX system [Vé¢inbeger84] and tw different filesystems used at CagieeMel-
lon University [Satyanarayanan85Numerous other remote file access methods haen deised for use
within individual UNIX processes, mamof them by modifications to the C 1/O library similar to those in
the Navcastle Connection [Brenbridge82].

T UNIX is a registered trademark of TR&T.

This is an update of a paper originally presented at the September 1986 conference of the Bupean
Users’ Group.Last modified April 16, 1991.

Multiple network filesystems may frequently be found in use within a singlantration. Theseir-
cumstances makit highly desirable to be able to transport filesystem implementations from one system to
another Such portability is considerably enhanced by the use of a stylizedaicgerfith carefully-defined
entry points to separate the filesystem from the rest of the operating sy$tennterfice should be simi-
lar to the interfice between déee drivers and the &rnel. Althoughvarying som&hat among the common
versions ofUNIX, the deice driver interfaces are sfi€iently similar that deice drivers may be mweed
from one system to another without major probleixlean, well-defined inteaice to the filesystem also
allows a single system to support multiple local filesystem types.

For reasons such as theseyesal filesystem integices hae keen used when ingeating nev filesys-
tems into the systemThe best-knan of these are Sun Microsystemsttval File System intedce, VFS
[Kleiman86], and A&T’s Fle System Switch, FSSAnother interhce, knavn as the Generic File System,
GFS, has been implemented for theTRIX$ system by Digital [Rodriguez86]There are numerous dif-
ferences among these desigrighe diferences may be understood from treying philosophies and
design goals of the groupsvoilved, from the systems under which the implementations were done, and
from the filesystems originally tgetted by the designd-hese diferences are summarized in the foling
sections within the limitations of the published specifications.

Design goals

There are seral design goals which, inawying dgrees, hee diven the \arious designs.Each
attempts to dide the filesystem into a filesystem-type-independent layer anddudi filesystem imple-
mentations. Thealivision between these layers occurs at sena diferent places in these systems,
reflecting diferent vievs of the diersity and types of the filesystems that may be accommod@&empat-
ibility with existing local filesystems hasmying importance; at the usprocess leel, each attempts to be
completely transparenkeept for a fev filesystem-related system management prograrne. AT&T inter-
face also malis a major ébrt to retain &miliar internal system inteates, andwen to retain object-file-
level binary compatibility with operating system modules such agdalrivers. BothSun and DEC were
willing to change internal data structures and iaiegf so that other operating system modules might
require recompilation or source-code modification.

AT&T’ s interface both alles and requires filesystems to support the full aadtesemantics of their
previous filesystem, including interruptions of system calls ow slperations. Systeralls that deal with
remote files are encapsulated with thewiemment and sent to a serwhere gecution continues.The
system call may be aborted by either client oresereturning control to the clientMost system calls that
descend into the file-system dependent layer of a filesystem other than the standard local filesystem do not
return to the highelevel kernel calling routines.Instead, the filesystem-dependent code completes the
requested operation and thereaites a non-local gotdofigimp to exit the system call.These dbrts to
avad modification of main-line &rnel code indicate aff greater emphasis on internal compatibility than
on modularity clean design, or &€iengy.

In contrast, the Sun VFS intade maks major modifications to the internal interés in the érnel,
with a \ery clear separation of filesystem-independent and -dependent data structures and opEhations.
semantics of the filesystem aredely retained for local operations, although this is aediet some
expense where it does not fit the internal structuring wigtle filesystem implementations are not required
to support the same semantics as lagdlX filesystems. Seeral historical features dfNIX filesystem
behaior are dificult to achige wsing the VFS intekce, including the atomicity of file and link creation
and the use of open files whose namee fmen remued.

A major design objecte d Sun’s retwork filesystem, statelessness, permeates the VFSaicgerf
No locking may be done in the filesystem-independent lagdriocking in the filesystem-dependent layer
may occur only during a single call into that layer

A final design goal of most implementors is performarte@.remote filesystems, this goal tends to
be in conflict with the goals of complete semantic consigtenmpatibility and modularity Sun has cho-
sen performancever modularity in some areasubhas emphasized clean separation of the layers within
the filesystem at thexpense of performanceéAlthough the performance of RFS is yet to be sed&TA

F ULTRIX is a trademark of Digital Equipment Corp.

seems to hae onsidered compatibilityar more important than modularity or performance.

Differences among filesystem interfaces

The «isting filesystem intedces may be characterized irvesal ways. Eachsystem is centered
around a fev data structures or objects, along with a set of pnestior performing operations upon these
objects. Inthe originalUNIX filesystem [Ritchie74], the basic object used by the filesystem is the inode, or
index node. Theinode contains all of the information about a fikeept its name: its type, identification,
ownership, permissions, timestamps and locatilmndes are identified by the filesystenvide number
and the inde within the filesystem.The major entry points to the filesystem aeamej which translates a
filesystem pathname into the underlying inode, igetl which locates an inode by number and installs it in
the in-core inode tableNameiperforms name translation by itexatilookup of each component name in
its directory to find its inumbethen usindget to return the actual inoddf the last component has been
reached, this inode is returned; otherwise, the inode describescttiiraetory to be searchedhe inode
returned may be used imnous vays by the caller; it may bexamined, the file may be read or written,
types and access may be chegtkand fields may be modifieodified inodes are automatically written
back the the filesystem on disk when the last reference is releasédutitAlthough the details are con-
siderably diferent, the same general scheme is used iraterffilesystem in 4.2BSONIX [Mckusick85].

Both the A'&T interface and, to a lessextent, the DEC intedice attempt to preserthe inode-ori-
ented interice. Eachmodify the inode to alle different \arieties of the structure for &fent filesystem
types by separating the filesystem-dependent parts of the inode into a separate structure or one arm of a
union. Bothinterfaces allav operations equielent to thenameiandiget operations of the old filesystem to
be performed in the filesystem-independent layih entry points to the indidual filesystem implemen-
tations to support the type-specific parts of these operatlordicit in this interbce is that files may be
conveniently be named by and located using a singlexindthin a filesystem.The GFS preides specific
entry points to the filesystems to change most file properties rather tham@lkrbitrary changes to be
made to the generic part of the inode.

In contrast, the Sun VFS intade replaces the inode as the primary object with the vnode.
vnode contains no filesystem-dependent fieldept the pointer to the set of operations implemented by
the filesystem.Properties of a vnode that might be transient, such asathership, permissions, size and
timestamps, are maintained by thevéo layer These properties may be presented in a generic format upon
request; callers arexpected not to hold this information foryalength of time, as tlyemay not be up-to-
date later on.The vnode operations do not include a corollaryif@t, the only aternal interhce for
obtaining vnodes for specific files is the name lookup operaf®aparate procedures are\pded outside
of this interfice that obtain &file handle’ for a vnode which may bevgh to a dient by a serer, such that
the vnode may be rettied upon later presentation of the file handle.)

Name translation issues

Each of the systems described include a mechanism for performing pathname-to-internal-representa-
tion translation. The style of the name translation function Ery different in all three systemsAs
described abee, the AT&T and DEC systems retain tiimeifunction. Thetwo are quite diferent, hov-
eve, as the ULTRIX interface uses theameicalling covention introduced in 4.3BSDThe parameters
and contet for the name lookup operation are collected imameidatastructure which is passed namei
for operation.Intent to create or delete the named file is declared ian@gy so that the final directory scan
in nameimay retain information such as thdset in the directory at which the modification will be made.
Filesystems that use such mechanismsvtidaredundant wrk must therefore lock the directory to be
modified so that it may not be modified by another process before completithre System V filesystem,
as in pregious \ersions ofuNIX, this information is stored in the pprocessuserstructure bynameifor
use by a la-level routine called after performing the actual creation or deletion of the file itkelf.
4.3BSD and in the GFS intede, these sidefetts ofnameiare stored in theameidatastructure gren &s
argument tonamej which is also presented to the routine implementing file creation or deletion.

The ULTRIX nameiroutine is responsible for the generic parts of the name translation process, such
as coping the name into an internaliffer, validating it, interpolating the contents of symbolic links, and
indirecting at mount pointsAs in 4.3BSD, the name is copied into théfér in a single call, according to

the location of the nameAfter determining the type of the filesystem at the start of translation (the current
directory or root directory), it calls the filesysteamameientry with the same structure it recsl from its

caller The filesystem-specific routine translates the name, component by component, as long as no mount
points are reachedt may return after annumber of components ¥@ been processedNameiperforms

ary processing at mount points, then calls the correct translation routine forxthilesystem. Network
filesystems may pass the remaining pathname to ardemntranslation, or themay look up the pathname
components one at a tim&he former stratgy would be more dicient, kut the latter scheme alle mount

points within a remote filesystem without sarknavledge of all client mounts.

The AT&T nameiinterface is presumably the same as that inipus UNIX systems, accepting the
name of a routine to fetch pathname characters and an operation (one of: lookup, lookup for creation, or
lookup for deletion). It translates, component by component, as beftird. detects that a mount point
crosses to a remote filesystem, it passes the remainder of the pathname to the regnofe gattimame-
oriented request other than open may be completed withimatineicall, asoiding return to the (unmodi-
fied) system call handler that calledmei

In contrast to the first twvsystems, Sus VFS interbce has replacatimeiwith lookupname This
routine simply calls a e pathname-handling module to allocate a pathnanfiehand cop in the path-
name (coping a character per call), then cdtiekuppn Lookuppnperforms the iterationver the directo-
ries leading to the destination file; it copies each pathname component to auffe@lthen calls the
filesystemlookupentry to locate the vnode for that file in the current direct®gr-filesystemlookuprou-
tines may translate only one component per dadt. creation and deletion of nefiles, the lookup opera-
tion is unmodified; the lookup of the final component only eete check for thexestence of the fileThe
subsequent creation or deletion call, if;amust repeat the final name translation and associated directory
scan. Ir new file creation in particularthis is rather indicient, as file creation requires dwcomplete
scans of the directory

Several of the important performance impamnents in 4.3BSD were related to the name translation
process [McKisick85][Lefler84]. Thefollowing changes were made:

1. Asystem-wide cache of recent translations is maintaifiéé. cache is separate from the inode cache,
so that multiple names for a file may be present in the cabre.cache does not holthard” refer
ences to the inodes, so that the normal reference pattern is not disturbed.

2. A perprocess cache isht of the directory and skt at which the last successful name lookas w
done. Thisallows sequential lookups of all the entries in a directory to be done in linear time.

3. Theentire pathname is copied into erkel luffer in a single operation, rather than using sbrou-
tine calls per character

4. Apool of pathnameufers are held bypamej avoiding allocation @erhead.

All of these performance impvements from 4.3BSD are well asth using within a more generalized
filesystem fram&ork. Thegeneralization of the structure may otherwise enakaready-expensve func-

tion even more costly Most of these imprements are present in the GFS system, as iveefiom the
beta-test grsion of 4.3BSD.The Sun system uses a name-translation cache generaltigdikin 4.3BSD.

The name cache is a filesystem-independeeititiy provided for the use of the filesystem-specific lookup
routines. TheSun cache, lig that first used at Beekey but unlike that in 4.3, holds dHard” reference to

the vnode (increments the reference couifit)e ‘soft’” reference scheme in 4.3BSD cannot be used with

the current NFS implementation, as NFS allocates vnodes dynamically and frees them when the reference
count returns to zero rather than caching théta.a result, faer names may be held in the cache than
(local filesystem) vnodes, and the cache distorts the normal reference patterns otherwise seenlby the LR
cache. Agshe name cache referencesrflow the local filesystem inode table, the name cache must be
purged to mak room in the inode tableAlso, to determine whether a vnode is in use (kamaple, before
mounting upon it), the cache must be flushed to frgecache referenceThese problems should be €or
rected by the use of the soft cache reference scheme.

A final obseration on the diciency of name translation in the current Sun VFS architecture is that
the number of subroutine calls used by a multi-component name lookup is dramatigeliythan in the
other systemsThe name lookup scheme in GFSfstdg from this problem much less, at Mpense in vio-
lation of layering.

A final problem to be considered is synchronization and consisté&ecthe filesystem operations
are more stylized and brek into separate entry points for parts of operations, it is mdieuttifo guaran-
tee consistencthroughout an operation and/or to synchronize with other processes using the same filesys-
tem objects.The Sun intedce sufers most seerely from this, as it forbids the filesystems from locking
objects across calls to the filesystelinis possible that a file may be created between the time that a lookup
is performed and a subsequent creation is requeBtrthaps more strangebfter a lookup &ils to find the
target of a creation attempt, the actual creation might find that thet tamv exists and is a symbolic link.
The call will either &il unexpectedly as the taget is of the wrong type, or the generic creation routine will
have © note the error and restart the operation from the looHups problem will alvays eist in a state-
less filesystem, Ui the VFS inteidice forces all filesystems to share the probld@ims restriction aginst
locking between calls also forces duplication @irkvduring file creation and deletiofThis is considered
unacceptable.

Support facilities and other interactions

Several support &cilities are used by the curraniiX filesystem and require generalization for use
by other filesystem typed=or filesystem implementations to be portable, it is desirable that these modified
support &cilities should also va a wiform interface and beha in a onsistent manner in @&t systems.

A prominent gample is the filesysterruier cache.The tuffer cache in a standard (System V or 4.3BSD)
UNIX system contains piical disk blocks with no reference to the files containing th€his works well

for the local filesystem, Ut has olious problems for remote filesystemSun has modified theuffer
cache routines to describafters by vnode rather than byviee. For remote files, the vnode used is that
of the file, and the block numbers are virtual data blo¢ks. local filesystems, a vnode for the block
device is used for cache reference, and the block humbers are filesystsicaphlocks. Use of peffile
cache description does not easily accommodate caching of indirect blocks, inode blocks, superblocks or
cylinder group blocks.However, the vnode describing the blockuilee for the cache is one created inter
nally, rather than the vnode for theuvitee looked up when mounting, and it is located by searchingvateri
list of vnodes rather than by holding it in the mount structééhough the Sun modification mes it pos-
sible to use theuiffer cache for data blocks of remote files, a better generalization otiffee tache is
needed.

The RFS filesystem used byr&T does not currently cache data blocks on client systems, thus the
buffer cache is probably unmodifie@he form of the bffer cache in ULRIX is unknavn to us.

Another subsystem that has eglainteraction with the filesystem is the virtual memory systéhe
virtual memory system must read data from the filesystem to satisfy fill-on-demancaphge or efi-
ciengy, this read call is arranged to place the data directly into theigat pages assigned to the process (a
“raw’” read) to moid copying the data.Although the read operation normally bypasses the filesystem
buffer cache, consistepenust be maintained by checking theffler cache and cging or flushing modi-
fied data not yet stored on diskhe 4.2BSD virtual memory system,dithat of Sun and ULRIX, main-
tains its @vn cache of reusablextepages. This creates additional complicationds the virtual memory
systems are redesigned, these problems should beagdnyvreading through theutber cache, then map-
ping the cached data into the user address spbitee buffer cache or the process pages are changed while
the other reference remains, the datal have © be copied (‘copy-on-write”).

In the meantime, the current virtual memory systems must be used withwtHdesgstem frame-
work. Boththe Sun and A&T filesystem interfices praide entry points to the filesystem for optimization
of the virtual memory system by performing logical-togial block number translation when setting up a
fill-on-demand image for a processhe VFS preides a vnode operation analogous tolihepfunction
of the UNIX filesystem. QGien a wode and logical block numbét returns a vnhode and block number
which may be read to obtain the datfthe filesystem is local, it returns the yatie vnode for the block
device and the pysical block numberAs the bmapoperations are all performed at one time, during pro-
cess startup, gnindirect blocks for the file will remain in the cache after/tae once readln addition,
the interbice preides astrategy entry that may be used fdraw’ reads from a filesystem dee, used to
read data blocks into an address space withowtimgp Thisentry uses auffer header lfuf structure) to
describe the 1/O operation instead afia structure. Théuffer-style interbce is the same as that used by
disk driers internally This difference allavs the currentiio primitives to be avoided, as the copy all data

to/from the current user process address sphatstead, for local filesystems these operations could be
done internally with the standardwralisk read routines, which useu# interface. Wheroading from a
remote filesystems, the data will be reediin a retwork huffer. If network huffers are suitably aligned,
the data may be mapped into the process address space by a gagétsaut coging. Ineither case, it
should be possible to use the standard filesystem read entry from the virtual memory system.

Other issues that must be considered wisiieg a portable filesystem implementation includenlel
memory allocation, the implicit use of ussructure global conkg, which may create problems with reen-
trangy, the style of the system call intade, and the cemntions for synchronization (sleepkeup, han-
dling of interrupted system calls, semaphores).

The Berkeley Proposal

The Sun VFS intedce has been most widely used of the three described Ihésealso the most
general of the three, in that filesystem-specific data and operations are best separated from the generic layer
Although it has seeral disadantages which were described afamost of them may be corrected with
minor changes to the intedde (and, in a ¥ areas, philosophical changesfhe DEC GFS has other
adwantages, in particular the use of the 4.3B8imeiinterface and optimizationdt allows single or mul-
tiple components of a pathname to be translated in a single call to the specific filesystem and thus accom-
modates filesystems with either preferentbe FSS is least well understood, as there is little public-infor
mation about the inteate. Havever, the design goals are the least consistent with those of thel&erk
research groupsAccordingly, a rew filesystem intedce has been dised to &oid some of the problems
in the other systemsThe proposed integite dewes drectly from Suns VFS, ht, like GFS, uses a
4.3BSD-style name lookup intede. Additionakontet information has been naed from theuserstruc-
ture to thenameidatastructure so that name translation may be independent of the globadt afraeuser
process. Thiss especially desired in grsystem where é&rnel-mode seers operate as light-weight or
interrupt-level processes, or where a servunay store or cache coxteor several clients. This calling
interface has the additional atage that the call parameters need not all be pushed onto the stack for each
call through the filesystem intade, and the may be accessed using shortsefs from a base pointer
(unlike dobal variables in theuserstructure).

The proposed filesystem intace is describedevy tersely hereFor the most part, data structures
and procedures are analogous to those used by VFS, and only the changes will be be trea®ee here.
[Kleiman86] for complete descriptions of the vfs and vnode operations is Bterface.

The central data structure for name translation isitmeidatastructure. Thesame structure is used
to pass parameters t@amej to pass these same parameters to filesystem-specific lookup routines, to com-
municate completion status from the lookup routines baclamoej and to return completion status to the
calling routine. For creation or deletion requests, the parameters to the filesystem operation to complete the
request are also passed in this same struciure.form of thenameidatsstructure is:

/*
* Encapsulation of namei parameters.
* One of these is located in the u. area to
* minimize space allocated on therkel stack
* and to retain peprocess conte.
*/
struct nameidata {
[* arguments to namei and related coatrtés/

caddr_t ni_dirp; /* pathname pointer */

enum uio_sgni_sey; * location of pathname */

short ni_nameiop; /* see belov */

struct vnodeni_cdir; /* current directory */

struct vnodeni_rdir; /* root directoryif not normal root */
struct ucredni_cred; [* credentials */

/* shared between namei, lookup routines and commit routines: */
caddr_t ni_pnbf; /* pathname wbffer */

char *ni_ptr; /* current location in pathname */

int ni_pathlen; /* remaining chars in path */

short ni_more; /* more left to translate in pathname */
short ni_loopcnt; /* count of symlinks encountered */

* results: */
struct vnodeni_vp; /* vnode of result */
struct vnodeni_dvp; [* vnode of intermediate directory */

/* BEGIN UFS SPECIFIC */

struct dirofcache { /* last successful directory search */
struct vnodénc_prevdir; /* terminal directory */
long nc_id; [* directory’s wique id */
off t nc_preoffset; [*where last entry found */
} ni_nc;
/* END UFS SPECIFIC */
h
/*
* namei operations and modifiers
*/
#define LOOKUP 0 f* perform name lookup only */
#define CREAE 1 * setup for file creation */
#define DELETE 2 * setup for file deletion */
#define VANTPARENT 0x10 [* return parent directory vnode also */
#define NOCAKHE 0x20 /* name must not be left in cache */
#define FOLLQV 0x40 /* follow symbolic links */
#define NOFOLL®V 0x0 /* don't follow symbolic links (pseudo) */

As in current systems other than SUNFS, nameiis called with an operation request, one of LOOKUP
CREATE or DELETE. For a LOOKUR, the operation is»actly like the lookup in VFS.CREATE and
DELETE allav the filesystem to ensure consistghg locking the parent inode (pete to the filesystem),
and (for the local filesystem) tow@d duplicate directory scans by storing thevrdirectory entry and its
offset in the directory in thedirinfo structure. Thiss intended to be opaque to the filesystem-independent
levels. Notall lookups for creation or deletion are actually falka by the intended operation; permission
may be denied, the filesystem may be read;@dy Thereforean entry point to the filesystem is pided

to abort a creation or deletion operation andnalielease of anlocked internal dataAfter anameiwith a
CREATE or DELETE flag, the pathname pointer is set to point to the last flename compeitesytstems
that choose to implement creation or deletion entirely within the subsequent call to a create or delete entry
are thus free to do so.

Thenameidatas used to store conteused during name translatiomhe current and root directories
for the translation are stored heréor the local filesystem, the perocess directory et cache is also
kept here. A file sener could lege the directory dket cache empjygould use a single cache for all clients,
or could hold caches forweal recent clients.

Several other data structures are used in the filesystem operatresis theucred structure which
describes a cliers’ aedentials to the filesystenilhis is modified slightly from the Sun structure; the
“accounting’group ID has been mged into the groups arrayrhe actual number of groups in the array is
given explicitly to avoid use of a reseed group ID as a terminatoAlso, typedefs introduced in 4.3BSD
for user and group IB’havebeen usedTheucredstructure is thus:

/*
* Credentials.
*/
struct ucred {
u_short cr_ref; /* reference count */
uid_t cr_uid; [* effective wser id */
short cr_ngroups; /* number of groups */
gid_t cr_groups[NGRUPS]; [*groups */
/*
* The following either should not be here,
* or should be treated as opaque.
*/
uid_t cr_ruid; /* real user id */
gid_t cr_svgid; /* saved set-group id */
%

A final structure used by the filesystem irded is thauio structure mentioned earlieThis structure
describes the source or destination of an 1/O operation, withspo for scatter/gther 1/O. It is used in
the read and write entries to the filesystérhe uio structure presented here is modified from the one used
in 4.2BSD to specify the location of eaclctor of the operation (user oerkel space) and to alloan
alternate function to be used to implement the datzement. Thealternate function might perform page

remapping rather than a gofor example.

/*

* Description of an 1/0 operation which potentially

* invaves scattegather with individual sections

* described by ieec, belav. uio_resid is initially

* set to the total size of the operation, and is

* decremented as the operation proceeds. offset

* is incremented by the amount of each operation.

* uio_iov is incremented and uio vont is decremented
* after each ector is processed.

*/

struct uio {
struct
int
off t
int
enum

%

iovec *uio_iov;
uio_iovent;
uio_ofset;
uio_resid;
uio_nawio_rw;

enum uio_n{ UIO_READ, UIO_WRITE };

/*

* Description of a contiguous section of an 1/O operation.
*|fiov_op is non-null, it is called to implement the gop

* gperation, possibly by remapping, with the call

* (*iov_op)(from, to, count);

*where from and to are caddr_t and count is int.

* Otherwise, the copis done in the normal ay,

* treating base as a user arhel virtual address

* according to iv_seyflg.

*/
struct iovec {
caddr t iw_base;
int iov_len;
enum uio_sgiov_seaflg;
int (*Yiov_op)();
%
/*
* Segment flag alues.
*/
enum uio_sg{
UIO_USERSRCE, /* from user data space */
UIO_SYSSRCE, /* from system space */
UIO_USERISRCE f* from user | space */
¥

File and filesystem operations

With the introduction of the data structures used by the filesystem operations, the complete list of
filesystem entry points may be listeds noted, the derive nostly from the Sun VFS inta€e. Lines
marked with+ are additions to the Sun definitions; lines nearkvith! are modified from VFS.

The structure describing theternally-visible features of a mounted filesystefs, is:

/*

* Structure per mounted file system.

* Each mounted file system has an array of
* gperations and an instance record.

* The file systems are put on a doubly &dNist.

*/

struct vfs {
struct vfs *vfs_next; /* next vfs in vfs list */

+ struct vfs *vfs_prev; /* prev vfs in vfs list */
struct vfsops *vfs_op; /* operations on vfs */
struct vnode *vfs_vnodecwoered; /*vnode we mounted on */
int vfs_flag; /* flags */

! int vfs_fsize; /* fundamental block size */

+ int vfs_bsize; /* optimal transfer size */

! uid_t vfs_eroot; [* exported fs uid O mapping */
short vfs_eflags; [*exported fs flags */
caddr_t vfs_data; /* private data */

+

/*
* vfs flags.

-10-

*VFS_MLOCK lock the vfs so that name lookup cannot proceed past the vfs.
* This keeps the subtree stable during mounts and unmounts.

*

#define VFS_RDONY 0x01
#define VFS_NOEXEC 0x02
#define VFS_MLOCK 0x04
#define VFS_MWKIT 0x08
#define VFS_NOSUID 0x10
#define VFS_EXPORED 0x20

/*

* exported vfs flags.

*

#define EX_RDONY 0x01

[* read only vfs */

/* cant exec from filesystem */

/*lock vfs so that subtree is stable */
/* someone is &iting for lock */
/*don't honor setuid bits on vfs */

[* file system is gported (NFS) */

[* exported read only */

The operations supported by the filesystem-specific layer on aidinalifilesystem are:

/*
* Operations supported on virtual file system.

*/

struct vfsops {

|
!
+

T+ + T

—

int
int
int
int
int
int
int
int

(*vfs_mount)(
(*vfs_unmount)(
(*vfs_mountroot)();
(*vfs_root)(
(*vfs_statfs)(
(*vfs_sync)(
(*vfs_fhtovp)(
(*vfs_vptofh)(

Thevfs_statfentry returns a structure of the form:

/*
* file system statistics

*/
struct statfs {

+
!
+

+

h

typedef long fsid_t[2];

short
short
long
long
long
long
long
long
long
fsid_t
char
char
long

f_type;

f_flags;

f fsize;

f bsize;

f blocks;

f bfree;

f baalil,

f files;

f ffree;

f fsid;
*f_mntonname;
*f_mntfromname;
f_spare[7];

[* vfs, path, data, datalen */);
[* vfs, forcibly */);

[* vfs, vpp */);

[* vfs, vp, sbp */);
[* vfs, waitfor */);
[* vfs, thp, vpp */);
[* vp, thp */);

/* type of filesystem */

/* copy of vfs (mount) flags */

/* fundamental file system block size */
/* optimal transfer block size */

/* total data blocks in file system */

[* free blocks in fs */

[* free blocks aail to non-superuser */
/* total file nodes in file system */
[*free file nodes in fs */

/* file system id */

/* directory on which mounted */

/* mounted filesystem */

[* spare for later */

[* file system id type */

-11-

The modifications to Sus’interface at this leel are minor Additional aguments are present for the
vfs_mountindvfs_umounentries. vfs_statfsaccepts a vnode as well as filesystem identégethe infor
mation may not be uniform throughout a filesystear example, if a client may mount a file tree that
spans multiple pysical filesystems on a senydifferent sections may ta dfferent amounts of free space.
(NFS does not alle remotely-mounted file trees to spanygpigal filesystems on the serny Thefinal
additions are the entries that support file handiés. vptofhis provided for the use of file sesvs, which
need to obtain an opaque file handle to represent the current vnode for transmission toTtlierfte
handle may later be used to relocate the vnode wéindhtap without requiring the vnode to remain in

memory

Finally, the external form of a filesystem object, tleode is:

/*

*vnode types. VNON means no type.

*/

enum vtype

struct vnode {

{VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK },

/* vnode flags (see belg */
[* reference count */

[* count of shared locks */
/* count of &clusive locks */

*v_vfsmountedhere; /ptr to vfs mounted here */

u_short v_flag;
u_short v_count;
u_short v_shlockc;
u_short v_glockc;
struct vfs

struct vfs *v_vfsp;
struct vnodeops *v_op;

+ struct text *v_text;
enum vtype V_type;
caddr_t v_data;

%

/*

*vnode flags.

*/

#define VROOT 0x01

#define VTEXT 0x02

#define VEXLOCK 0x10

#define VSHLOCK 0x20

#define VIWAIT 0x40

[* ptr to vfs we are in */
/* vnode operations */

[* text/mapped rgion */
/*vnode type */

[* private data for fs */

/* root of its file system */

/*vnode is a pure x& prototype */

/* exclusive lock */

/*shared lock */

I* proc is waiting on shared orxel. lock */

The operations supported by the filesystems owiohaal vnodes ae:

-12-

/*

* Operations on vnodes.

*/

struct vnodeops {

! int (*vn_lookup)([*ndp */);

! int (*vn_create)(/* ndp, vap, flags */);
+ int (*vn_mknod)(/* ndp, vap, flags */);
! int (*vn_open)([* vp, fflags, cred */);
int (*vn_close)([* vp, fflags, cred */);
int (*vn_access)([* vp, fflags, cred */);
int (*vn_getattr)([*vp, vap, cred */);
int (*vn_setattr)([* vp, vap, cred */);
+ int (*vn_read)([* vp, uiop, ofp, ioflag, cred */);
+ int (*vn_write)([* vp, uiop, ofp, ioflag, cred */);
! int (*vn_ioctl)([* vp, com, data,ffag, cred */);
int (*vn_select)(/* vp, which, cred */);
+ int (*vn_mmap)([*vp, ..., cred */);
int (*vn_fsync)([* vp, cred */);
+ int (*vn_seek)([* vp, offp, off, whence */);
int (*vn_remaove)([* ndp */);
int (*vn_link)([*vp, ndp */);
int (*vn_rename)(/* src ndp, taget ndp */);

int (*vn_mkdir)(/* ndp, vap */);
int (*vn_rmdir)([*ndp */);

int (*vn_symlink)(/* ndp, vap, nm */);
int (*vn_readdir)([* vp, uiop, ofp, ioflag, cred */);
int (*vn_readlink)(/* vp, uiop, ioflag, cred */);
+ int (*vn_abortop)(/* ndp */);
+ int (*vn_lock)([*vp *I);
+ int (*vn_unlock)([*vp *I);
! int (*vn_inactie)(I*vp*);
¥
/*
* flags for ioflag
*/

#define 10_UNIT 0x01 /*do io as atomic unit for UP_RDNVR */
#define 1O_APPEND 0x02 /*append write for OP_RDNR */
#define 10_SYNC 0x04 /*sync io for VOP_RDWVR */

The agument types listed in the comments falilog each operation are:

ndp Apointer to anameidatastructure.

vap A pointer to avattr structure (vnode attrilies; see belo).

fflags Fileopen flags, possibly including O_APPEND, O_CREA TRUNC and O_EXCL.
vp A pointer to asznodepreviously obtained witlvn_lookup

cred Apointer to aucredcredentials structure.

uiop A pointer to auio structure.

ioflag Ary of the 10 flags defined akbe.

-13-

com Anioctl command, with typensigned long

data Apointer to a charactewuffer used to pass data to or fromiactl.
which Oneof FREAD, FWRITE or 0 (select foxeeptional conditions).
off A file offset of typeoff_t.

offp A pointer to file ofset of typeoff_t.

whence Onef SEEK_SETSEEK CUR, or SEEK_END.

fhp A pointer to a file handleuffer.

Several changes hee been made to Sum'et of vnode operationsMost olviously, the vn_lookup
receves anameidatastructure containing its guments and corte as describedThe same structure is
also passed to one of the creation or deletion entries if the lookup operation is fof EREBELETE to
complete an operation, or to tkie_abortopentry if no operation is undertai. For filesystems that per
form no locking between lookup for creation or deletion and the call to implement that action, the final
pathname component may be left untranslated by the lookup rodtiregy case, the pathname pointer
points at the final hame component, and riaeeidatacontains a reference to the vnode of the parent
directory The interfce is thus fldble enough to accommodate filesystems that are fully stateful or fully
stateless, whilev@iding redundant operations whemee possible. Oneoperation remains problematical,
thevn_renamecall. Itis tempting to look up the source of the rename for deletion and et far cre-
ation. Havever, filesystems that lock directories during such lookups muuid @eadlock if the tw paths
cross. IBr that reason, the source is translated for LOOKUP, avitih the WANTPARENT flag set; the
target is then translated with an operation of CREA

In addition to the changes concerned withribeneidatainterface, seeral other changes were made
in the vnode operationsThevn_rdrw entry was split intovn_readandvn_write frequently the read/write
entry amounts to a routine that checks the direction flag, then calls either a read routine or a write routine.
The two entries may be identical for ggiven filesystem; the direction flag is contained in tieegiven as
an agument.

All of the read and write operations useia to describe the file &det and bffer locations. All of
these fields must be updated before retlinnparticular thevn_readdirentry uses this to return awmdile
offset tolen for its current location.

Several nav operations hae keen added.The first,vn_seekis a oncession to record-oriented files
such as directoriedt allows the filesystem toerify that a seek le@s a fie at a sensible fsfet, or to return
a rew dfset tolen relatve © an earlier one. For most filesystems and files, this operation amounts to per
forming simple arithmetic Another n&v entry point isvn_mmapfor use in mapping dé&e memory into a
user process address spatts. semantics are not yet decide@ihe final additions are then_lodk and
vn_unlo& entries. Thesare used to request that the underlying file beddckginst changes for short
periods of time if the filesystem implementation @&Hoit. They are used to maintain consistgnduring
internal operations such agec and may not be used to construct atomic operations from other filesystem
operations.

The attrilutes of a vnode are not stored in the vnode, asrtight change with time and may need
to be read from a remote sourgittributes hae the form:

-14-

/*
*V node attrilites. Afield value of -1
* represents a field whosalue is unwailable

* (getattr) or which is not to be changed (setattr).

*/

struct \attr {

enum vtype va_type; /*vnode type (for create) */
u_short a_mode; /Hfiles access mode and type */
! uid_t va_uid; [*owner user id */
! gid_t va_gid; [*owner group id */
long va_fsid; [*file system id (defor now) */
! long va_fileid; [*file id */
short \a_nlink; /*number of references to file */
u_long \a_size; [*file size in bytes (quad?) */
+ u_long \a_sizel; /*resened if not quad */
long va_blocksize; [locksize preferred for i/o */
struct timeval va_atime; /*time of last access */
struct timeval va_mtime; [*time of last modification */
struct timeval va_ctime; [*time file changed */
dev_t va_rder; [* device the file represents */
u_long \a_bytes; I*bytes of disk space held by file */
+ u_long \a_bytes1; [resenred if va_bytes not a quad */
%
Conclusions

The Sun VFS filesystem intade is the most widely used generic filesystem imterf Ofthe inter
faces @amined, it creates the cleanest separation between the filesystem-independent and -dependent layers
and data structuredt has seeral flavs, hut it is felt that certain changes in the inded can ameliorate
most of them.The interfice proposed here includes those changés. proposed integite is nav being
implemented by the Computer Systems Research Group &l&erk the design succeeds in impiog
the fleibility and performance of the filesystem layering, it will beatbed as a model intade.

Acknowledgements

The filesystem inteaice described here is dead from Sun$ VFS interfice. Italso includes features
similar to those of DEG'GFS interhice. V¢ ae indebted to members of the Sun and DEC system groups
for long discussions of the issuesadlved.

References

Brownbridge82 Bravnbridge, D.R., L.F Marshall, B. Randell,'The Newcastle Connection, or
UNIXes of the Wrld Unite!} Softwae- Practice and Experiengévol. 12, pp.
1147-1162, 1982.

Cole85 ColeC.T., PB. Flinn, A.B. Atlas, ‘An Implementation of an Extended File System
for UNIX,” Usenix Confeznce Poceedingspp. 131-150, June, 1985.

Kleiman86 ‘Vnodes: An Architecture for Multiple File Systenydes in Sun UNIX, Usenix
Confeence Poceedingspp. 238-247, June, 1986.

Leffler84 Lefler, S., M.K. McKusick, M. Karels,'‘Measuring and Impngng the Performance

of 4.2BSD’; Usenix Confeence Poceedingspp. 237-252, June, 1984.

McKusick84

McKusick85

Rifkin86

Ritchie74

Rodriguez86

Sandbeg85

Satyanarayanan85

Walker85

Weinbeger84

-15-

Mckusick, M.K., WN. Joy/, SJ. Lefler, R.S. Rabry, “A Fast File System for UNIX,
Transactions on Computer Systensl. 2, pp. 181-197, 8M, August, 1984.

Mckusick, M.K., M. Karels, S. Lér, “Performance Impreements and Functional
Enhancements in 4.3BSDUsenix Confeznce Poceedings pp. 519-531, June,
1985.

Rifkin, A.P., M.P. Forbes, R.L. Hamilton, M. Sabrio, S. Shah, and KelY, ‘RFS
Architectural Oerview,” Usenix Confegnce Poceedingspp. 248-259, June, 1986.

Ritchie,D.M. and K. Thompson, The Unix Time-Sharing Systerh,Communica-
tions of the £M, Vol. 17, pp. 365-375, Jul4974.

RodrigueR., M. Koehler R. Hyde, ‘The Generic File SystefnUsenix Confeznce
Proceedingspp. 260-269, June, 1986.

Sandbey, R., D. Goldbey, S. Kleiman, D. \&lsh, B. lyon, “‘Design and Implemen-
tation of the Sun Neterk Filesysteni, Usenix Confeence Poceedings pp.
119-130, June, 1985.

Satyanarayanih, et al, “The ITC Distributed File System: Principles and
Design; Proc. 10th Symposium on Opéing Systems Principlepp. 35-50, ACM,
December1985.

Walker, B.J. and S.H. Kiser‘The LOCUS Distriluted Filesysteri, The LOCUS
Distributed System A&hitecture, G.J. Popek and B.J. &kker, ed., The MIT Press,
Cambridge, MA, 1985.

Winbeger, RJ., ‘The Version 8 Netwrk File Systeni, Usenix Confeence pesen-
tation, June, 1984.

